5,437 research outputs found

    Exploring Deep Learning Image Super-Resolution for Iris Recognition

    Full text link
    In this work we test the ability of deep learning methods to provide an end-to-end mapping between low and high resolution images applying it to the iris recognition problem. Here, we propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN) with the most possible lightweight structure to achieve fast speed, preserve local information and reduce artifacts at the same time. We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.Comment: Published at Proc. 25th European Signal Processing Conference, EUSIPCO 201

    Quality-driven and real-time iris recognition from close-up eye videos

    No full text
    International audienceThis paper deals with the computation of robust iris templates from video sequences. The main contribution is to propose (i) optimal tracking and robust detection of the pupil, (ii) smart selection of iris images to be enrolled, and (iii) multi-thread and quality-driven decomposition of tasks to reach real-time processing. The evaluation of the system was done on the Multiple Biometric Grand Challenge dataset. Especially we conducted a systematic study regarding the fragile bit rate and the number of merged images, using classical criteria. We reached an equal error rate value of 0.2% which reflects high performance on this database with respect to previous studies

    Toward Flare-Free Images: A Survey

    Full text link
    Lens flare is a common image artifact that can significantly degrade image quality and affect the performance of computer vision systems due to a strong light source pointing at the camera. This survey provides a comprehensive overview of the multifaceted domain of lens flare, encompassing its underlying physics, influencing factors, types, and characteristics. It delves into the complex optics of flare formation, arising from factors like internal reflection, scattering, diffraction, and dispersion within the camera lens system. The diverse categories of flare are explored, including scattering, reflective, glare, orb, and starburst types. Key properties such as shape, color, and localization are analyzed. The numerous factors impacting flare appearance are discussed, spanning light source attributes, lens features, camera settings, and scene content. The survey extensively covers the wide range of methods proposed for flare removal, including hardware optimization strategies, classical image processing techniques, and learning-based methods using deep learning. It not only describes pioneering flare datasets created for training and evaluation purposes but also how they were created. Commonly employed performance metrics such as PSNR, SSIM, and LPIPS are explored. Challenges posed by flare's complex and data-dependent characteristics are highlighted. The survey provides insights into best practices, limitations, and promising future directions for flare removal research. Reviewing the state-of-the-art enables an in-depth understanding of the inherent complexities of the flare phenomenon and the capabilities of existing solutions. This can inform and inspire new innovations for handling lens flare artifacts and improving visual quality across various applications

    A Survey of Super-Resolution in Iris Biometrics With Evaluation of Dictionary-Learning

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe lack of resolution has a negative impact on the performance of image-based biometrics. While many generic super-resolution methods have been proposed to restore low-resolution images, they usually aim to enhance their visual appearance. However, an overall visual enhancement of biometric images does not necessarily correlate with a better recognition performance. Reconstruction approaches thus need to incorporate the specific information from the target biometric modality to effectively improve recognition performance. This paper presents a comprehensive survey of iris super-resolution approaches proposed in the literature. We have also adapted an eigen-patches’ reconstruction method based on the principal component analysis eigen-transformation of local image patches. The structure of the iris is exploited by building a patch-position-dependent dictionary. In addition, image patches are restored separately, having their own reconstruction weights. This allows the solution to be locally optimized, helping to preserve local information. To evaluate the algorithm, we degraded the high-resolution images from the CASIA Interval V3 database. Different restorations were considered, with 15 × 15 pixels being the smallest resolution evaluated. To the best of our knowledge, this is the smallest resolutions employed in the literature. The experimental framework is complemented with six publicly available iris comparators that were used to carry out biometric verification and identification experiments. The experimental results show that the proposed method significantly outperforms both the bilinear and bicubic interpolations at a very low resolution. The performance of a number of comparators attains an impressive equal error rate as low as 5% and a Top-1 accuracy of 77%–84% when considering the iris images of only 15 × 15 pixels. These results clearly demonstrate the benefit of using trained super-resolution techniques to improve the quality of iris images prior to matchingThis work was supported by the EU COST Action under Grant IC1106. The work of F. Alonso-Fernandez and J. Bigun was supported in part by the Swedish Research Council, in part by the Swedish Innovation Agency, and in part by the Swedish Knowledge Foundation through the CAISR/SIDUS-AIR projects. The work of J. Fierrez was supported by the Spanish MINECO/FEDER through the CogniMetrics Project under Grant TEC2015-70627-R. The authors acknowledge the Halmstad University Library for its support with the open access fee

    Multiple Exemplars-based Hallucinationfor Face Super-resolution and Editing

    Full text link
    Given a really low-resolution input image of a face (say 16x16 or 8x8 pixels), the goal of this paper is to reconstruct a high-resolution version thereof. This, by itself, is an ill-posed problem, as the high-frequency information is missing in the low-resolution input and needs to be hallucinated, based on prior knowledge about the image content. Rather than relying on a generic face prior, in this paper, we explore the use of a set of exemplars, i.e. other high-resolution images of the same person. These guide the neural network as we condition the output on them. Multiple exemplars work better than a single one. To combine the information from multiple exemplars effectively, we introduce a pixel-wise weight generation module. Besides standard face super-resolution, our method allows to perform subtle face editing simply by replacing the exemplars with another set with different facial features. A user study is conducted and shows the super-resolved images can hardly be distinguished from real images on the CelebA dataset. A qualitative comparison indicates our model outperforms methods proposed in the literature on the CelebA and WebFace dataset.Comment: accepted in ACCV 202

    Techniques for Ocular Biometric Recognition Under Non-ideal Conditions

    Get PDF
    The use of the ocular region as a biometric cue has gained considerable traction due to recent advances in automated iris recognition. However, a multitude of factors can negatively impact ocular recognition performance under unconstrained conditions (e.g., non-uniform illumination, occlusions, motion blur, image resolution, etc.). This dissertation develops techniques to perform iris and ocular recognition under challenging conditions. The first contribution is an image-level fusion scheme to improve iris recognition performance in low-resolution videos. Information fusion is facilitated by the use of Principal Components Transform (PCT), thereby requiring modest computational efforts. The proposed approach provides improved recognition accuracy when low-resolution iris images are compared against high-resolution iris images. The second contribution is a study demonstrating the effectiveness of the ocular region in improving face recognition under plastic surgery. A score-level fusion approach that combines information from the face and ocular regions is proposed. The proposed approach, unlike other previous methods in this application, is not learning-based, and has modest computational requirements while resulting in better recognition performance. The third contribution is a study on matching ocular regions extracted from RGB face images against that of near-infrared iris images. Face and iris images are typically acquired using sensors operating in visible and near-infrared wavelengths of light, respectively. To this end, a sparse representation approach which generates a joint dictionary from corresponding pairs of face and iris images is designed. The proposed joint dictionary approach is observed to outperform classical ocular recognition techniques. In summary, the techniques presented in this dissertation can be used to improve iris and ocular recognition in practical, unconstrained environments

    A Computer Vision Story on Video Sequences::From Face Detection to Face Super- Resolution using Face Quality Assessment

    Get PDF

    Infrared Image Super-Resolution: Systematic Review, and Future Trends

    Full text link
    Image Super-Resolution (SR) is essential for a wide range of computer vision and image processing tasks. Investigating infrared (IR) image (or thermal images) super-resolution is a continuing concern within the development of deep learning. This survey aims to provide a comprehensive perspective of IR image super-resolution, including its applications, hardware imaging system dilemmas, and taxonomy of image processing methodologies. In addition, the datasets and evaluation metrics in IR image super-resolution tasks are also discussed. Furthermore, the deficiencies in current technologies and possible promising directions for the community to explore are highlighted. To cope with the rapid development in this field, we intend to regularly update the relevant excellent work at \url{https://github.com/yongsongH/Infrared_Image_SR_SurveyComment: Submitted to IEEE TNNL
    • …
    corecore