12 research outputs found

    Simple, Accurate, and Robust Nonparametric Blind Super-Resolution

    Full text link
    This paper proposes a simple, accurate, and robust approach to single image nonparametric blind Super-Resolution (SR). This task is formulated as a functional to be minimized with respect to both an intermediate super-resolved image and a nonparametric blur-kernel. The proposed approach includes a convolution consistency constraint which uses a non-blind learning-based SR result to better guide the estimation process. Another key component is the unnatural bi-l0-l2-norm regularization imposed on the super-resolved, sharp image and the blur-kernel, which is shown to be quite beneficial for estimating the blur-kernel accurately. The numerical optimization is implemented by coupling the splitting augmented Lagrangian and the conjugate gradient (CG). Using the pre-estimated blur-kernel, we finally reconstruct the SR image by a very simple non-blind SR method that uses a natural image prior. The proposed approach is demonstrated to achieve better performance than the recent method by Michaeli and Irani [2] in both terms of the kernel estimation accuracy and image SR quality

    Enhancing Space-time Video Super-resolution via Spatial-temporal Feature Interaction

    Full text link
    The target of space-time video super-resolution (STVSR) is to increase both the frame rate (also referred to as the temporal resolution) and the spatial resolution of a given video. Recent approaches solve STVSR with end-to-end deep neural networks. A popular solution is to first increase the frame rate of the video; then perform feature refinement among different frame features; and last increase the spatial resolutions of these features. The temporal correlation among features of different frames is carefully exploited in this process. The spatial correlation among features of different (spatial) resolutions, despite being also very important, is however not emphasized. In this paper, we propose a spatial-temporal feature interaction network to enhance STVSR by exploiting both spatial and temporal correlations among features of different frames and spatial resolutions. Specifically, the spatial-temporal frame interpolation module is introduced to interpolate low- and high-resolution intermediate frame features simultaneously and interactively. The spatial-temporal local and global refinement modules are respectively deployed afterwards to exploit the spatial-temporal correlation among different features for their refinement. Finally, a novel motion consistency loss is employed to enhance the motion continuity among reconstructed frames. We conduct experiments on three standard benchmarks, Vid4, Vimeo-90K and Adobe240, and the results demonstrate that our method improves the state of the art methods by a considerable margin. Our codes will be available at https://github.com/yuezijie/STINet-Space-time-Video-Super-resolution

    Scale-Adaptive Feature Aggregation for Efficient Space-Time Video Super-Resolution

    Full text link
    The Space-Time Video Super-Resolution (STVSR) task aims to enhance the visual quality of videos, by simultaneously performing video frame interpolation (VFI) and video super-resolution (VSR). However, facing the challenge of the additional temporal dimension and scale inconsistency, most existing STVSR methods are complex and inflexible in dynamically modeling different motion amplitudes. In this work, we find that choosing an appropriate processing scale achieves remarkable benefits in flow-based feature propagation. We propose a novel Scale-Adaptive Feature Aggregation (SAFA) network that adaptively selects sub-networks with different processing scales for individual samples. Experiments on four public STVSR benchmarks demonstrate that SAFA achieves state-of-the-art performance. Our SAFA network outperforms recent state-of-the-art methods such as TMNet and VideoINR by an average improvement of over 0.5dB on PSNR, while requiring less than half the number of parameters and only 1/3 computational costs.Comment: WACV2024, 16 page

    Super-resolution:A comprehensive survey

    Get PDF

    Super-resolution Image Reconstruction Algorithm Based on Sub-pixel Shift

    Get PDF
    针对多帧图像超分辨率重建问题,利用一阶泰勒展式,在亚像素级上对图像退化过程进行建模,并建立极小化能量函数,选择grAPH-CuT算法进行能量极小化求解.为了验证本文算法的有效性,采用模拟图像退化过程和直接用相机拍摄两种方式获得低分辨率图像序列.从4x4倍重建结果的比较来看,本文算法不仅对模拟退化过程产生的低分辨率图像序列有效,而且在提高真实低分辨率图像的分辨能力方面也有很好的效果.此外,实验结果表明本文算法对噪声有较好的抗干扰能力.This paper studies the problem of multi-frame image super-resolution reconstruction.The process of image degradation is modeled by using the first-order Taylor expansion based on sub-pixel.Then the energy minimization function is established and the graph-cut algorithm is chosen to solve the energy minimization.In order to confirm this algorithm, we obtain the low resolution images by two ways: simulating image degradation and taking photos.By comparing the 4 × 4 times reconstruction results, it is shown that this algorithm is valid not only for simulation of low resolution images but also for real images.Besides, experimental results show that this algorithm possesses good anti-interference ability of noise.国家自然科学基金(61373077); 国防基础科研计划(B0110155); 国防科技重点实验室基金(9140C30211ZS8); 高等学校博士学科点专项科研基金(20110121110020); 福建省自然科学基金(2011J01365); 福建省重点项目(2014H0034); 航空科学基金(20125168001); 黄慧贞集美大学学科建设基金(ZC2014010)资助~

    Image enhancement methods and applications in computational photography

    Get PDF
    Computational photography is currently a rapidly developing and cutting-edge topic in applied optics, image sensors and image processing fields to go beyond the limitations of traditional photography. The innovations of computational photography allow the photographer not only merely to take an image, but also, more importantly, to perform computations on the captured image data. Good examples of these innovations include high dynamic range imaging, focus stacking, super-resolution, motion deblurring and so on. Although extensive work has been done to explore image enhancement techniques in each subfield of computational photography, attention has seldom been given to study of the image enhancement technique of simultaneously extending depth of field and dynamic range of a scene. In my dissertation, I present an algorithm which combines focus stacking and high dynamic range (HDR) imaging in order to produce an image with both extended depth of field (DOF) and dynamic range than any of the input images. In this dissertation, I also investigate super-resolution image restoration from multiple images, which are possibly degraded by large motion blur. The proposed algorithm combines the super-resolution problem and blind image deblurring problem in a unified framework. The blur kernel for each input image is separately estimated. I also do not make any restrictions on the motion fields among images; that is, I estimate dense motion field without simplifications such as parametric motion. While the proposed super-resolution method uses multiple images to enhance spatial resolution from multiple regular images, single image super-resolution is related to techniques of denoising or removing blur from one single captured image. In my dissertation, space-varying point spread function (PSF) estimation and image deblurring for single image is also investigated. Regarding the PSF estimation, I do not make any restrictions on the type of blur or how the blur varies spatially. Once the space-varying PSF is estimated, space-varying image deblurring is performed, which produces good results even for regions where it is not clear what the correct PSF is at first. I also bring image enhancement applications to both personal computer (PC) and Android platform as computational photography applications

    Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis

    Get PDF
    Super-resolution microscopy provides direct insight into fundamental biological processes occurring at length scales smaller than light’s diffraction limit. The analysis of data at such scales has brought statistical and machine learning methods into the mainstream. Here we provide a survey of data analysis methods starting from an overview of basic statistical techniques underlying the analysis of super-resolution and, more broadly, imaging data. We subsequently break down the analysis of super-resolution data into four problems: the localization problem, the counting problem, the linking problem, and what we’ve termed the interpretation problem
    corecore