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Aiming at improving the video visual resolution quality and details clarity, a novel learning-based video superresolution recon-
struction algorithm using spatiotemporal nonlocal similarity is proposed in this paper. Objective high-resolution (HR) estimations
of low-resolution (LR) video frames can be obtained by learning LR-HR correlation mapping and fusing spatiotemporal nonlocal
similarities between video frames.With the objective of improving algorithm efficiency while guaranteeing superresolution quality,
a novel visual saliency-based LR-HR correlation mapping strategy between LR and HR patches is proposed based on semicoupled
dictionary learning. Moreover, aiming at improving performance and efficiency of spatiotemporal similarity matching and fusion,
an improved spatiotemporal nonlocal fuzzy registration scheme is established using the similarity weighting strategy based on
pseudo-Zernike moment feature similarity and structural similarity, and the self-adaptive regional correlation evaluation strategy.
The proposed spatiotemporal fuzzy registration scheme does not rely on accurate estimation of subpixel motion, and therefore it
can be adapted to complexmotion patterns and is robust to noise and rotation. Experimental results demonstrate that the proposed
algorithm achieves competitive superresolution quality compared to other state-of-the-art algorithms in terms of both subjective
and objective evaluations.

1. Introduction and Motivation

Factors such as environmental changes, inaccurate focusing,
optical or motion blur, subsampling, and noise disturbance
can have a negative effect on video visual quality. Superres-
olution (SR) reconstruction technology [1–4] aims to recon-
struct high-resolution (HR) video sequences from their low-
resolution (LR) counterparts. With rapid and significant
development of computer vision, there is a growing need for
HR videos. Video visual resolution quality plays an important
role in accurate moving-target tracking and recognition in
intelligent video surveillance systems, which can provide
more important details of moving targets. HRmedical videos
are also very useful for doctors to make correct diagnoses.
Therefore, SR video has great research significance and
application potential.

In recent years, SR reconstruction technology has been
one of the most active research fields in smart image and

video analytics and processing. SR techniques have been
developed to solve SR problems from the frequency domain
to the spatial domain. Currently relevant studies include
three main categories: interpolation-based SR methods [5,
6], multiframe-based SR methods [7–9], and learning-based
SR methods [10, 11]. Interpolation-based SR methods have
relatively low computational cost and therefore arewell suited
for real-time applications. However, degradation models are
not applicable to these methods if blur and noise characteris-
tics vary for different LR video frames. Moreover, additional
video details cannot be effectively recovered using these
methods because some of the details of interest have usually
been blurred.

Multiframe-based SR methods produce HR video
sequences by fusing several LR video frames, making full
use of complementary and redundant information with
similar but not exactly identical details between adjacent
video frames at different spatiotemporal scales. At present,
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two main fields of research address this kind of method.
One branch is based on accurate estimation of subpixel
motion using methods such as the projections onto convex
sets (POCS) method, the maximum a posteriori (MAP)
estimation method, and the iterative back projection (IBP)
method, which can be applied only to video sequences
with relatively simple motions such as global translation.
These methods cannot be adapted to more complex motion
patterns such as local motion or angles of rotation. The
second branch [12, 13] is based on a recently proposed novel
probabilistic motion-estimation scheme based on nonlocal
similarity, which does not rely on accurate estimation of
subpixel motion and can be adapted to more complex
motion patterns. Using this novel scheme, Protter et al. [14]
proposed a nonlocal fuzzy registration scheme-based SR
reconstruction framework based on a 3D nonlocal mean
filter (3D NLM) [15]. Subsequently, Gao et al. [16] improved
the nonlocal similarity matching method based on Zernike
moment feature similarity and proposed a novel Zernike
moment-based SR method which improved the noise
robustness and rotation invariance of the NLM-based SR
process. However, multiframe-based SR methods cannot be
adapted to a larger magnification factor and usually fail when
insufficient complementary and redundant information
between video frames is provided.

In recent years, learning-based SR methods [17–19] have
receivedmuch attention.Thesemethods estimate themissing
high-frequency details in the input LR images by learning
the relationship between LR image patches and the corre-
sponding HR patches from a training set of LR and HR
image pairs. This kind of method can be adapted to larger
magnification factors and can produce better superresolved
results. This paper concentrates on the learning-based SR
method for video SR. Until now, nearly all studies of this
kind of method have focused on SR for static images. In this
paper, by combining the spatiotemporal similarities between
video frames, learning-based SRmethods will be extended to
the video SR field. In the learning-based image SR field, the
representative methods are the neighbor embedding-based
SR methods (NESR) and the sparse representation-based SR
methods (SRR).

Motivated by locally linear embedding (LLE), Chang et al.
[20] first proposed a neighbor embedding-based SR method,
which reconstructed HR patches by learning a mapping from
the local geometry of the LR image patch manifold to that
of the HR image patch manifold. Since then, numerous
other methods have been proposed and have achieved good
performance. Gao et al. [21] extended this method using
sparse neighbor embedding, in which the k-nearest neighbor
(k-NN) of each LR patch was adaptively chosen by describing
local structural information using the histograms of oriented
gradients (HoG) feature. Timofte et al. [22] proposed a
novel anchored neighborhood regression method for fast
example-based SR, in which the nearest neighbors were
computed using correlation with dictionary atoms rather
than Euclidean distance. However, when dealing with a
huge number of training patches, searching for the nearest
neighbor can be prohibitively slow and also can requiremuch
memory. Moreover, with increasing magnification factor,

the correlation between LR patches and their corresponding
HR patches becomes ambiguous [23].

Recently, sparse representation and dictionary learning
have been proven to be very effective for SR. In sparse
representation-based SR methods, some coupled dictionary
learning methods [24, 25] have been proposed for superreso-
lution. Lin and Tang [26] proposed a novel coupled subspace
learning strategy to learn mappings between different styles.
They first used correlative component analysis to find the
hidden spaces for each style to preserve correlative informa-
tion and then learned a bidirectional transform between the
two subspaces. Yang et al. [27] proposed a coupled dictionary
learningmodel for image superresolution.They assumed that
coupled HR and LR image dictionaries exist which have
the same sparse representation for each pair of HR and LR
patches. After learning the coupled dictionary pair, the HR
patch was reconstructed on the HR dictionary with sparse
coefficients coded by the LR image patch over the LR dic-
tionary. This coupled dictionary learning-based SR method
assumes that the representation coefficients of the image
pair are strictly equal in the coupled subspace. However,
this assumption is too strong to address the flexibility of
image structures at different resolutions. To overcome this
problem, in [28], a semicoupled dictionary learning-based SR
method was proposed, which relaxed the above assumption
and assumed that there exists a dictionary pair over which
the representations of HR and LR image patches have a stable
correlation mapping. He et al. [29] used a beta process for
sparse coding, establishing a mapping function between HR
and LR coefficients. Moreover, in the methods described
in [28–30], nonlocal similarities were used to enhance SR
performance.

However, these learning-based methods consider nonlo-
cal similarities only in the spatial region of the single image.
Therefore, they cannot be directly adapted to video superres-
olution because they do not make full use of spatiotemporal
correlation between video frames, which will influence video
spatiotemporal consistency to some extent. This paper aims
to solve this problem by extending the concept of single
frame-based nonlocal similarities to spatiotemporal nonlocal
similarities. A novel learning-based video superresolution
method using spatiotemporal nonlocal similarity constraint
is proposed which can be adapted to larger magnification
factors while effectively preserving video spatiotemporal
consistency.

This paper presents a novel learning-based video super-
resolution reconstruction algorithm using spatiotemporal
nonlocal similarity (LBST-SR).Thenovelty and contributions
of this paper are as follows:

(1) By combining LR-HR correlation mapping learning
and spatiotemporal nonlocal similarity, video SR
performance is further improved via fusion of non-
local similarity structural redundancies at different
spatiotemporal scales.

(2) With the aim of improving algorithm efficiency while
guaranteeing SR quality, the authors propose a novel
visual saliency-based correlation mapping strategy



Mathematical Problems in Engineering 3

Additive noise

Original HR Observed LR,
noised sequence

Degrading process

Superresolution reconstruction

Blurred 
sequencesequence LR, noise-free 

sequence

Filtering

Downsampling

Subsampling gridxt

yt

F

Figure 1: Observation model for video superresolution reconstruction.

between LR and HR patches based on semicou-
pled dictionary learning. In addition, a self-adaptive
regional correlation evaluation strategy based on
regional average energy and structural similarity is
used in spatiotemporal similarity matching.

(3) An improved spatiotemporal nonlocal fuzzy registra-
tion scheme using pseudo-Zernike moment (PZM)
and structural similarity is proposed for spatiotem-
poral similarity matching with the aim of further
improving SR accuracy and robustness.

The remainder of the paper is organized as follows.
Section 2 gives the observation model for video superresolu-
tion reconstruction. Section 3 presents the details of the pro-
posed LBST-SR algorithm. Section 4 gives the experimental
results and analysis. Conclusions are presented in Section 5.

2. Observation Model for Video
Superresolution Reconstruction

Theobservationmodel for video superresolution reconstruc-
tion shown in Figure 1, which describes the relationship
between HR and LR video frames for superresolution recon-
struction, can be formulated as follows:

𝑦
𝑡
= 𝐷𝐵

𝑡
𝑀

𝑡
𝑥
𝑡
+ 𝜃

𝑡
, 𝑡 = 1, 2, . . . , 𝑇, (1)

where 𝑥
𝑡
denotes the 𝑡th original HR video frame and 𝑦

𝑡

denotes the 𝑡th observed LR video frame, which is processed
by warping 𝑀

𝑡
, blurring 𝐵

𝑡
, downsampling 𝐷, and noise

disturbance 𝜃
𝑡
.𝑀

𝑡
describes themotions which occur during

video acquisition, such as global or local translation and
rotation. 𝑇 denotes the frame number in the video sequence.

3. Proposed LBST-SR Algorithm

3.1. Algorithm Architecture and Mathematical Formulation.
On the basis of LR-HR correlationmapping learning between
LR patches and the corresponding HR patches, this paper
aims to improve the performance of video superresolution
reconstruction further by combining spatiotemporal domain

nonlocal similarity structural redundancies at different spa-
tiotemporal scales. Therefore, in this paper, a novel learning-
based video superresolution reconstruction algorithm using
spatiotemporal nonlocal similarity (LBST-SR) is proposed.
ObjectiveHR estimations of LR video frames can be obtained
by learning LR-HR correlation mapping and fusing spa-
tiotemporal nonlocal similarity information between video
frames. With the aim of improving algorithm efficiency
while guaranteeing superresolution quality, LR-HR correla-
tion mapping is performed only for the visual salient object
region, and then an improved nonlocal fuzzy registration
scheme using pseudo-Zernikemoment feature and structural
similarity is proposed for spatiotemporal similarity matching
and fusion. The advantages of the proposed LBST-SR algo-
rithmmainly lie in the following three aspects: (1) it does not
rely on accurate estimation of subpixel motion and therefore
can be adapted to complex motion patterns (local motions,
angles of rotation, etc.); (2) it has high rotation invariance
effectiveness and is robust to noise and illumination; and
(3) it can be adapted to larger superresolution magnification
factors. The proposed algorithm architecture is shown in
Figure 2. It includes the following twomain processes: LR-HR
correlation mapping learning and spatiotemporal nonlocal
fuzzy registration and fusion.

Given an input LR video sequence 𝑌 =

{𝑦
𝑚
[𝑖, 𝑗, 𝑡]}

𝑇

𝑡=1
(𝑚 = 1, . . . , 𝑁) and a set of LR and HR

training pairs, the objective is to infer the corresponding HR
video sequence 𝑋 = {𝑥

𝑚
[𝑖, 𝑗, 𝑡]}

𝑇

𝑡=1
(𝑚 = 1, . . . , 𝑁), where

𝑚 ∈ [1,𝑁] and 𝑁 denotes the video frame number. The
mathematical model of the proposed LBST-SR algorithm
is formulated as minimizing the following objective energy
function:

𝑋
∗

=
{

{

{

argmin
𝑋

{𝐸
CML
SR (𝑋, 𝑌) + 𝜆𝐸

STNL
SR (𝑋, 𝑌)} , 𝑦 ∈ 𝑅so

argmin
𝑋

{𝐸
STNL
SR (𝑋, 𝑌)} , 𝑦 ∈ 𝑅nso,

(2)

where 𝑋∗ denotes the HR estimation of the video sequence.
𝑦 denotes the pixel in the LR sequence 𝑌. 𝑅so denotes the
salient object region in 𝑌, and 𝑅nso denotes nonsalient region
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Figure 2: Proposed algorithm architecture.

in 𝑌. 𝐸CML
SR (𝑋, 𝑌) denotes an LR-HR correlation mapping

energy element, 𝐸STNL
SR (𝑋, 𝑌) denotes a spatiotemporal non-

local similarity regularization constraint element, and 𝜆 is
the balancing parameter between the two elements. Aiming
at improving algorithm time efficiency while guaranteeing
superresolution quality, the LR-HR correlation mapping is
established only for the human-eye concentrated salient
object region 𝑦 ∈ 𝑅so.

3.2. LR-HR Correlation Mapping Learning. The HR estima-
tions of LR video frames can be obtained by learning correla-
tionmapping between LR andHRpatches.With the objective
of improving algorithm efficiency while guaranteeing SR
quality, the LR-HRcorrelationmapping is established only for
the human-eye concentrated salient object region𝑅so ∈ 𝑅𝑌 in
the LR video frame 𝑌. In this paper, a saliency optimization
method based on robust background detection [31] is used
to detect and extract the visual salient region. The learning
process for LR-HR correlation mapping can be formulated as
follows: given the LR patch set 𝑌 and the HR patch set 𝑋,
the mapping process can be described as a process of seeking
a mapping function 𝑀 = 𝑓(⋅) from space 𝑌 to space 𝑋:
𝑋 = 𝑓(𝑌).

The correlation learning model based on a coupled
dictionary assumes that each pair of HR and LR patches has
the same sparse representation coefficients. This assumption
is too strong to address the flexibility of frame structures
at different resolutions, which will restrict superresolution
performance. Therefore, in this research, a more flexible and
stable semicoupled dictionary learningmethodhas beenused
to establish correlationmapping betweenHR and LR patches,
which assumes that there exists a stable correlation mapping
between the sparse representation coefficients of HR and LR
patches. In the LR-HR correlation learning process based
on semicoupled dictionary learning, the LR-HR dictionary
pair (𝐷

𝑦
, 𝐷

𝑥
) and the correlation mapping matrix𝑀 can be

obtained by minimizing the objective energy function given
in

min
{𝐷
𝑥
,𝐷
𝑦
,𝑀}

󵄩󵄩󵄩󵄩𝑋 − 𝐷
𝑥
𝑆
𝑥

󵄩󵄩󵄩󵄩
2

𝐹
+
󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝐷

𝑦
𝑆
𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ 𝛾
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑥
−𝑀𝑆

𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜆

𝑥

󵄩󵄩󵄩󵄩𝑆𝑥
󵄩󵄩󵄩󵄩1 + 𝜆𝑦

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑦

󵄩󵄩󵄩󵄩󵄩1

+ 𝜆
𝑤
‖𝑀‖

2

𝐹

s.t. 󵄩󵄩󵄩󵄩𝑑𝑥,𝑖
󵄩󵄩󵄩󵄩𝑙
2

≤ 1,

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑦,𝑖

󵄩󵄩󵄩󵄩󵄩𝑙
2

≤ 1,

∀𝑖,

(3)

where 𝛾, 𝜆
𝑥
, 𝜆

𝑦
, and 𝜆

𝑤
denote the regularization parameters

needed to balance the terms in the objective function; 𝑆
𝑦

and 𝑆
𝑥
are the sparse representation coefficients of LR and

HR patches, respectively; ‖𝑋 − 𝐷
𝑥
𝑆
𝑥
‖
2

𝐹
and ‖𝑌 − 𝐷

𝑦
𝑆
𝑦
‖
2

𝐹

denote the reconstruction errors; ‖𝑆
𝑥
− 𝑀𝑆

𝑦
‖
2

𝐹
denotes the

mapping error; and 𝑑
𝑦,𝑖

and 𝑑
𝑥,𝑖

denote the atoms of 𝐷
𝑦
and

𝐷
𝑥
, respectively.
To solve the minimization problem for the objective

energy function in (3), it can be separated into three subprob-
lems: (1) sparse coding for training samples; (2) dictionary
updating; and (3)mapping updating.

Sparse Coding for Training Samples. With the initialization
of 𝑀 and the dictionary pair (𝐷

𝑦
, 𝐷

𝑥
), the sparse coding

coefficients 𝑆
𝑦
and 𝑆

𝑥
can be obtained by solving (4) using

𝐿
1
-optimization algorithms:

min
{𝑆
𝑥
}

󵄩󵄩󵄩󵄩𝑋 − 𝐷
𝑥
𝑆
𝑥

󵄩󵄩󵄩󵄩
2

𝐹
+ 𝛾

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑦
−𝑀

𝑥
𝑆
𝑥

󵄩󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜆

𝑥

󵄩󵄩󵄩󵄩𝑆𝑥
󵄩󵄩󵄩󵄩1 ,

min
{𝑆
𝑦
}

󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝐷

𝑦
𝑆
𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝐹
+ 𝛾

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑥
−𝑀

𝑦
𝑆
𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜆

𝑦

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑦

󵄩󵄩󵄩󵄩󵄩1
,

(4)
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where𝑀
𝑥
denotes themapping from 𝑆

𝑥
to 𝑆

𝑦
and𝑀

𝑦
denotes

themapping from 𝑆
𝑦
to 𝑆

𝑥
. ‖𝑆

𝑦
−𝑀

𝑥
𝑆
𝑥
‖
2

𝐹
denotes themapping

error generated during 𝑆
𝑥
is mapped to 𝑆

𝑦
. ‖𝑆

𝑥
− 𝑀

𝑦
𝑆
𝑦
‖
2

𝐹

denotes the mapping error generated during 𝑆
𝑦
is mapped to

𝑆
𝑥
.

DictionaryUpdating.With 𝑆
𝑦
and 𝑆

𝑥
fixed, the dictionary pair

(𝐷
𝑦
, 𝐷

𝑥
) can be updated using

min
{𝐷
𝑥
,𝐷
𝑦
}

󵄩󵄩󵄩󵄩𝑋 − 𝐷
𝑥
𝑆
𝑥

󵄩󵄩󵄩󵄩
2

𝐹
+
󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝐷

𝑦
𝑆
𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝐹

s.t. 󵄩󵄩󵄩󵄩𝑑𝑥,𝑖
󵄩󵄩󵄩󵄩𝑙
2

≤ 1,

󵄩󵄩󵄩󵄩󵄩
𝑑
𝑦,𝑖

󵄩󵄩󵄩󵄩󵄩𝑙
2

≤ 1,

∀𝑖.

(5)

MappingUpdating.With the dictionary pair (𝐷
𝑦
, 𝐷

𝑥
), 𝑆

𝑦
, and

𝑆
𝑥
fixed, the mapping𝑀 can be updated as follows:

min
{𝑀}

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑥
−𝑀𝑆

𝑦

󵄩󵄩󵄩󵄩󵄩

2

𝐹
+ (

𝜆
𝑤

𝛾
) ‖𝑀‖

2

𝐹
. (6)

By solving (6), the following expression can be derived:

𝑀 = 𝑆
𝑥
𝑆
𝑇

𝑦
(𝑆

𝑦
𝑆
𝑇

𝑦
+ (

𝜆
𝑤

𝛾
) ⋅ 𝐼)

−1

, (7)

where 𝐼 is an identity matrix.
After obtaining the LR-HR correlation mapping𝑀 using

the above learning process, the superresolution reconstruc-
tion is done by using it to derive the HR estimation of
the salient object region in the video frame. For the salient
object region 𝑅so ∈ 𝑅

𝑌
in LR video frame 𝑌, the following

optimization problem given in (8) is solved to obtain its HR
estimation:

min
{𝑆
𝑥,𝑖
,𝑆
𝑦,𝑖
}

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝐷𝑥
𝑆
𝑥,𝑖

󵄩󵄩󵄩󵄩
2

𝐹
+
󵄩󵄩󵄩󵄩󵄩
𝑦
𝑖
− 𝐷

𝑦
𝑆
𝑦,𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ 𝛾
󵄩󵄩󵄩󵄩󵄩
𝑆
𝑥,𝑖
−𝑀𝑆

𝑦,𝑖

󵄩󵄩󵄩󵄩󵄩

2

𝐹
+ 𝜆

𝑥

󵄩󵄩󵄩󵄩𝑆𝑥,𝑖
󵄩󵄩󵄩󵄩1
+ 𝜆

𝑦

󵄩󵄩󵄩󵄩󵄩
𝑆
𝑦,𝑖

󵄩󵄩󵄩󵄩󵄩1
,

(8)

where 𝑦
𝑖
is a patch of LR video frame 𝑌 and 𝑥

𝑖
is the

corresponding patch in the initial estimation of HR video
frame 𝑋. An initial estimation of 𝑋 can be obtained using a
Bicubic interpolator. Equation (8) can be solved by alternately
updating 𝑆

𝑥,𝑖
and 𝑆

𝑦,𝑖
. The objective HR estimation 𝑥

𝑐𝑚

𝑖
of

each patch 𝑥
𝑖
in the salient object region 𝑅so ∈ 𝑅

𝑋
of 𝑋 can

be derived by solving

𝑥
𝑐𝑚

𝑖
= 𝐷

𝑥
𝑆
𝑥,𝑖
. (9)

3.3. Spatiotemporal Nonlocal Fuzzy Registration and Fusion.
The superresolution process based on the learned LR-HR
correlation mapping uses only the spatial information in
the video frame and the LR-HR mapping. Therefore, it

does not make full use of the spatiotemporal relationship
between video frames and therefore cannot preserve video
temporal consistency. Large quantities of spatiotemporal
nonlocal similarity information exist between video frames,
and these nonlocal redundancies are very useful for video
superresolution reconstruction. Therefore, in this research,
video spatiotemporal nonlocal similaritywas used to enhance
further the performance of the proposed superresolution
algorithm based on LR-HR correlation learning. With the
objective of improving the performance and efficiency of the
spatiotemporal nonlocal similarity matching, the spatiotem-
poral nonlocal fuzzy registration scheme was improved using
the similarity weighting strategy based on PZM feature simi-
larity and structural similarity and the self-adaptive regional
correlation evaluation strategy.

3.3.1. Improved Spatiotemporal Nonlocal Fuzzy Registration
Scheme Using PZM and Structural Similarity (ZSFR). Con-
sidering good rotation, translation, and scale-invariance
properties and insensitivity to noise and illumination of PZM
feature, the nonlocal fuzzy registration scheme could be
further improved by using this feature, resulting in a more
accurate and robust similarity measure between regional
features in the nonlocal spatiotemporal domain for weighting
calculations. In this way, the performance and robustness of
SR reconstruction could be further improved. Unlike tradi-
tional methods, the improved spatiotemporal nonlocal fuzzy
registration scheme does not rely on accurate estimation of
subpixel motion and therefore it can be adapted to complex
motion scenes and is robust to noise and rotation.

Let PZM(𝑘, 𝑙) and PZM󸀠
(𝑖, 𝑗) represent two PZM feature

vectors of local regions corresponding to pixel (𝑘, 𝑙) and pixel
(𝑖, 𝑗) in the nonlocal search region𝑁nonloc(𝑘, 𝑙) of pixel (𝑘, 𝑙),
which can be calculated as

PZM (𝑘, 𝑙) = (PZM
00
,PZM

11
,PZM

20
,PZM

22
,

PZM
31
,PZM

33
) ,

PZM󸀠
(𝑖, 𝑗) = (PZM󸀠

00
,PZM󸀠

11
,PZM󸀠

20
,PZM󸀠

22
,

PZM󸀠

31
,PZM󸀠

33
) ,

(10)

where PZM feature with order 𝑛 and repetition 𝑚 (0 ≤ 𝑛 ≤

∞, 0 ≤ |𝑚| ≤ 𝑛) of video frame 𝑓(𝑥, 𝑦) is defined as

PZM
𝑛𝑚

=
𝑛 + 1

𝜋
∬
𝑥
2
+𝑦
2
≤1

𝑓 (𝑥, 𝑦)𝑉
∗

𝑛𝑚
(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=
𝑛 + 1

𝜋
∑

𝜌≤1

∑

0≤𝜃≤2𝜋

𝑓 (𝜌, 𝜃)𝑉
∗

𝑛𝑚
(𝜌, 𝜃) 𝜌,

𝑉
𝑛𝑚

(𝜌, 𝜃) = 𝑅
𝑛𝑚

(𝜌) exp (𝑗𝑚𝜃) ,

𝑅
𝑛𝑚

(𝜌) =

𝑛−|𝑚|

∑

𝑠=0

(−1)
𝑠
(2𝑛 + 1 − 𝑠)!𝜌

𝑛−𝑠

𝑠! (𝑛 + |𝑚| + 1 − 𝑠)! (𝑛 − |𝑚| − 𝑠)!
,

(11)
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where 𝜌 and 𝜃 are the radius and angle, respectively, of the
pixels in the polar coordinate system, 𝜌 = √𝑥2 + 𝑦2, and 𝜃=
tan−1(𝑦/𝑥). The function {𝑉

𝑛𝑚
(𝑥, 𝑦)} is the basis of PZM

feature, and 𝑉
∗

𝑛𝑚
(𝑥, 𝑦) denotes the complex conjugate of

𝑉
𝑛𝑚
(𝑥, 𝑦).
The nonlocal fuzzy registration scheme based on PZM is

based on a similarity match in the nonlocal spatiotemporal
domain between video frames at different spatiotemporal
scales, which is measured by the Euclidean distance between
regional PZM feature vectors. The weight 𝜔PZM

SR [𝑘, 𝑙, 𝑖, 𝑗, 𝑡] of
each pixel in the nonlocal spatiotemporal region is calculated
based on this similarity as follows:

𝜔
PZM
SR [𝑘, 𝑙, 𝑖, 𝑗, 𝑡]

=
1

𝐶 (𝑘, 𝑙)
exp

{

{

{

−

󵄩󵄩󵄩󵄩󵄩󵄩
PZM (𝑘, 𝑙) − PZM󸀠

(𝑖, 𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

𝜀2

}

}

}

,

(12)

where 𝜀 controls the decay rate of the exponential function
and the weight. 𝐶(𝑘, 𝑙) is a normalization constant, which is
calculated as follows:
𝐶 (𝑘, 𝑙)

= ∑

(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

exp
{

{

{

−

󵄩󵄩󵄩󵄩󵄩󵄩
PZM (𝑘, 𝑙) − PZM󸀠

(𝑖, 𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

𝜀2

}

}

}

.

(13)

Note that the higher the PZM order is, the more sensitive
the PZM is to noise.Therefore, in the experiments performed
in this study, only the first third-order moments, including
PZM

00
, PZM

11
, PZM

20
, PZM

22
, PZM

31
, and PZM

33
, were

calculated.
By analyzing the weight calculation formula for the PZM-

based nonlocal fuzzy registration scheme in (12), it is clear
that the time complexity is much too high and increases
with the number of LR video frames and the amplification
factor. To achieve further improvements in time efficiency
and the edge detail-preserving ability of the superresolution
algorithm, a novel spatiotemporal nonlocal fuzzy registration
scheme (ZSFR) was established by improving the PZM-based
spatiotemporal nonlocal fuzzy registration scheme using the
similarity weighting strategy based on PZM feature similarity
and structural similarity and the self-adaptive regional corre-
lation evaluation strategy.

The improvements in the ZSFR involve twomain aspects:
(1) with the aim of improving algorithm efficiency, a self-
adaptive regional correlation evaluation strategy based on
regional average energy and regional structural similarity
was constructed for nonlocal similarity matching; and (2)

an improved similarity weighting strategy based on regional
PZM feature similarity and regional structural similarity was
proposed for spatiotemporal nonlocal similarity matching,
with the aim of further improving SR performance. To
describe this improved ZSFR scheme, the following three
definitions are required.

Definition 1 (regional average energy). The video frame 𝐹 is
divided into many regions of equal size, and each region is
divided into 5 × 5 patches. The total number of pixels in
each region is Num, and the energy value of each pixel is
denoted by 𝑝

1
, 𝑝

2
, . . . , 𝑝Num, respectively. AE(𝑥, 𝑦) is defined

as the regional average energy centered on pixel (𝑥, 𝑦) and is
calculated as

AE (𝑥, 𝑦) =
Num
∑

𝑖=1

𝑝
𝑖

Num
. (14)

Definition 2 (PZM feature similarity). Given two regions cen-
tered on pixels (𝑘, 𝑙) and (𝑖, 𝑗), denoted by 𝑅(𝑘, 𝑙) and 𝑅(𝑖, 𝑗),
respectively, the corresponding feature vectors extracted
from these two regions are PZM(𝑘, 𝑙) and PZM󸀠

(𝑖, 𝑗). The
parameter 𝜀 controls the decay rate of the exponential func-
tion.The PZM feature similarity between these two regions is
defined as

RFS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗))

= exp
{

{

{

−

󵄩󵄩󵄩󵄩󵄩󵄩
PZM (𝑘, 𝑙) − PZM󸀠

(𝑖, 𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

𝜀2

}

}

}

.

(15)

Definition 3 (regional structural similarity). Given two
regions centered on pixels (𝑘, 𝑙) and (𝑖, 𝑗), denoted by 𝑅(𝑘, 𝑙)
and 𝑅(𝑖, 𝑗), respectively, 𝜂

(𝑘,𝑙)
and 𝜂

(𝑖,𝑗)
are the means of these

two regions, 𝜎
(𝑘,𝑙)

and 𝜎
(𝑖,𝑗)

are the standard deviations of
these two regions, and 𝜎

(𝑘,𝑙,𝑖,𝑗)
is the covariance between the

two regions. 𝑒
1
and 𝑒

2
are two constants. Then, the structural

similarity RSS(𝑅(𝑘, 𝑙), 𝑅(𝑖, 𝑗)) between the two regions is
defined as

RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗))

=
(2𝜂

(𝑘,𝑙)
𝜂
(𝑖,𝑗)

+ 𝑒
1
) (2𝜎

(𝑘,𝑙,𝑖,𝑗)
+ 𝑒

2
)

(𝜂2
(𝑘,𝑙)

+ 𝜂2
(𝑖,𝑗)

+ 𝑒
1
) (𝜎2

(𝑘,𝑙)
+ 𝜎2

(𝑖,𝑗)
+ 𝑒

2
)

.

(16)

In the improved spatiotemporal nonlocal fuzzy regis-
tration scheme, the regional correlation is first evaluated
to divide the local regions centered on all pixels (𝑖, 𝑗) in
the nonlocal search region for pixel (𝑘, 𝑙) into related and
unrelated regions. Only related regions are used to calculate
the weight, an approach which can further improve time
efficiency and is beneficial for mining the most similar
patterns to calculate the similarity weight. The regional
correlation is calculated by combining the regional average
energy and regional structural similarity. Moreover, a self-
adaptive threshold 𝛿adap is introduced, which yields a self-
adaptive regional correlation evaluation mechanism. If two
regions are related, the criterion is defined as

󵄨󵄨󵄨󵄨AE (𝑘, 𝑙) − AE (𝑖, 𝑗)󵄨󵄨󵄨󵄨

× (
(1 − RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗)))

2
) < 𝛿adap.

(17)

The self-adaptive threshold 𝛿adap is adaptively determined
by the average energyAE(𝑘, 𝑙) for the region centered on pixel
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(𝑘, 𝑙), which leads to a more accurate regional correlation
evaluation. 𝛿adap is calculated as

𝛿adap = 𝜆AE (𝑘, 𝑙) , (18)

where 𝜆 is an adjustment factor that controls 𝛿adap. Exper-
iments have confirmed that the best SR quality is obtained
when 𝜆 is set to 0.08.

With the aim of further improving superresolution
accuracy and detail-preserving ability, the similarity weight
𝜔
EPZM
SR [𝑘, 𝑙, 𝑖, 𝑗, 𝑡] is improved on the basis of the weighting

strategy given in (12) by combining the two factors of regional
PZM feature similarity and regional structural similarity.The
improved similarity weight 𝜔EPZM

SR [𝑘, 𝑙, 𝑖, 𝑗, 𝑡] is calculated as
follows:

𝜔
EPZM
SR [𝑘, 𝑙, 𝑖, 𝑗, 𝑡]

=

{{

{{

{

1

𝐶 (𝑘, 𝑙)
× RFS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗)) × (1 − 0.0002RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗))) , |AE (𝑘, 𝑙) − AE (𝑖, 𝑗)󵄨󵄨󵄨󵄨 × (

(1 − RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗)))
2

) < 𝛿adap

0, otherwise,

=

{{{

{{{

{

1

𝐶 (𝑘, 𝑙)
× exp

{

{

{

−

󵄩󵄩󵄩󵄩󵄩󵄩
PZM (𝑘, 𝑙) − PZM󸀠

(𝑖, 𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

𝜀2

}

}

}

× (1 − 0.0002RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗))) , |AE (𝑘, 𝑙) − AE (𝑖, 𝑗)󵄨󵄨󵄨󵄨 × (
(1 − RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗)))

2
) < 𝛿adap

0, otherwise,

(19)

𝐶 (𝑘, 𝑙) = ∑

(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

exp
{

{

{

−

󵄩󵄩󵄩󵄩󵄩󵄩
PZM (𝑘, 𝑙) − PZM󸀠

(𝑖, 𝑗)
󵄩󵄩󵄩󵄩󵄩

2

2

𝜀2

}

}

}

× (1 − 0.0002RSS (𝑅 (𝑘, 𝑙) , 𝑅 (𝑖, 𝑗))) , (20)

where (𝑘, 𝑙) denotes the pixel to be superresolved and (𝑖, 𝑗)

denotes a pixel in the nonlocal search region 𝑁nonloc(𝑘, 𝑙)
centered on pixel (𝑘, 𝑙). The parameter 𝜀 controls the decay
rate of the exponential function, as well as the weight. 𝐶(𝑘, 𝑙)
is a normalization constant.

3.3.2. Spatiotemporal Nonlocal Similarity Information Fusion
Based on ZSFR. Spatiotemporal nonlocal similarity informa-
tion fusion is based on the improved nonlocal fuzzy regis-
tration scheme using PZM feature similarity and structural
similarity. By learning spatiotemporal nonlocal similarities
between video frames, the similarity weight is calculated
according to (19). The HR estimation of the video frame to
be superresolved can then be obtained by spatiotemporal
information fusion, which is implemented by a weighted
average based on spatiotemporal nonlocal similarities.

Once the weight 𝜔EPZM
SR [𝑘, 𝑙, 𝑖, 𝑗, 𝑡] has been determined,

the HR estimation of each pixel in the video frame to be
superresolved can be obtained using the weighted average of
the pixels in the nonlocal spatiotemporal region. The objec-
tive superresolution energy function based on spatiotemporal
nonlocal similarity can be expressed as follows:

𝑥stnl = arg min
{𝑥(𝑘.𝑙)}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑘, 𝑙)

−

𝑡
2

∑

𝑡=𝑡
1

∑

(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

𝜔
EPZM
SR (𝑘, 𝑙, 𝑖, 𝑗, 𝑡) 𝑥 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

,

(21)

where [𝑡
1
, 𝑡
2
] denotes a 3D spatiotemporal region (tempo-

ral sliding window). By minimizing the objective energy
function in (21), the HR estimation 𝑥stnl of each video frame
can be obtained as follows:

𝑥stnl

=
∑
(𝑘,𝑙)∈Ψ

∑
𝑡∈[𝑡
1
,𝑡
2
]
∑
(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

𝜔
EPZM
SR (𝑘, 𝑙, 𝑖, 𝑗, 𝑡) 𝑥

𝑡
(𝑖, 𝑗)

∑
(𝑘,𝑙)∈Ψ

∑
𝑡∈[𝑡
1
,𝑡
2
]
∑
(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

𝜔EPZM
SR (𝑘, 𝑙, 𝑖, 𝑗, 𝑡)

,

(22)

where Ψ denotes the video frame to be superresolved.
Consequently, the proposed learning-based video super-

resolution reconstruction using spatiotemporal nonlocal
similarity can be performed as follows:

𝑥
∗
=

{{{{{{{{

{{{{{{{{

{

arg min
{𝑥(𝑘.𝑙)}

𝐸
CML
SR + 𝜆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑘, 𝑙) −

𝑡
2

∑

𝑡=𝑡
1

∑

(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

𝜔
EPZM
SR (𝑘, 𝑙, 𝑖, 𝑗, 𝑡) 𝑥 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

, (𝑘, 𝑙) ∈ 𝑅so

arg min
{𝑥(𝑘,𝑙)}

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 (𝑘, 𝑙) −

𝑡
2

∑

𝑡=𝑡
1

∑

(𝑖,𝑗)∈𝑁nonloc(𝑘,𝑙)

𝜔
EPZM
SR (𝑘, 𝑙, 𝑖, 𝑗, 𝑡) 𝑥 (𝑖, 𝑗)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

2

, (𝑘, 𝑙) ∈ 𝑅nso,

(23)
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Figure 3: Objective evaluation indices of the six algorithms for the “Satellite-1” sequence.

where 𝐸CML
SR denotes the energy function defined in (8) and 𝜆

is a balancing parameter.

3.4. Implementation Steps of the Proposed LBST-SR Algorithm.
The LBST-SR algorithm implementation includes the follow-
ing steps, as shown in Algorithm 4.

Algorithm 4. LBST-SR algorithm implementation steps are as
follows:
Input. LR video sequence {𝑦

𝑚
[𝑖, 𝑗, 𝑡]}

𝑇

𝑡=1
(𝑚 = 1, . . . , 𝑁), scale

amplification factor 𝑠, HR training dataset 𝑋, LR training

dataset 𝑌, nonlocal search region size 𝑊 × 𝑊, local region
size for similarity weight calculation𝐵×𝐵, weight-controlling
filter parameter 𝜀, and iteration scale 𝐾.

Output. The superresolved HR video sequence
{𝑥
𝑘
[𝑖, 𝑗, 𝑡]}

𝑇

𝑡=1
(𝑘 = 1, . . . , 𝑁).

Training Process

Step 1. Sample LR and HR patches from LR and HR training
datasets 𝑌 and𝑋, respectively.
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Figure 4: Objective evaluation indices of the six algorithms for the “Satellite-2” sequence.

Step 2. Train the LR-HRdictionary pair (𝐷
𝑦
, 𝐷

𝑥
) and the cor-

relation mapping matrix 𝑀 by LR-HR correlation learning
according to (3).

Superresolution Reconstruction Process

Step 1. Initialize LR video sequence {𝑦
𝑚
[𝑖, 𝑗, 𝑡]}

𝑇

𝑡=1
(𝑚 = 1,

. . . , 𝑁) using the Bicubic interpolator with the aim of obtain-
ing its HR initial estimation {𝑌

𝑝
[𝑖, 𝑗, 𝑡]}

𝑇

𝑡=1
(𝑝 = 1, . . . , 𝑁).

Step 2. According to the learned dictionary pair (𝐷
𝑦
, 𝐷

𝑥
) and

the LR-HR correlationmapping𝑀, map each LR patch of the
salient region 𝑅so of video frame to its HR estimation

∧

𝑥 using
(8) and (9).

Step 3. Update 𝑥 using the improved spatiotemporal nonlocal
similarity regularization constraint in (23).

Step 4. Iteratively refine the fusion result for further optimiza-
tion. Update the counter, 𝑡 = 𝑡 + 1. If 𝑡 ≤ 𝐾, return to Step 3;
otherwise, end the process.

4. Experimental Results and Analysis

4.1. Experimental Dataset and Evaluation Indices. The exper-
imental datasets in this paper consist of the benchmark video
sequences taken from the http://trace.eas.asu.edu/yuv/index
.html website and the spatial video sequences taken from
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Figure 5: Objective evaluation indices of the six algorithms for the “Forman” sequence.

the YOUKU website (http://www.youku.com/). The super-
resolution effects were validated in terms of both subjec-
tive visual evaluation and four objective quantitative indices:
peak signal-to-noise ratio (PSNR), structural similarity
(SSIM), feature similarity (FSIM), and root-mean-square
error (RMSE), which were calculated as follows:

PSNR = 10

⋅ log
10

255
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(24)
where 𝑀 and 𝑁 denote the length and width of the
video frame; 𝑅 and 𝐹 denote the reconstructed frame and
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Figure 6: Objective evaluation indices of the six algorithms for the “Calendar” sequence.

the original frame, respectively; 𝜂
𝑅
and 𝜂

𝐹
are the means;

𝜎
𝑅
and 𝜎

𝐹
are the standard deviations for the original and

reconstructed frames; 𝜎
𝑅𝐹

is the covariance for the original
and reconstructed frames; 𝑒

1
and 𝑒

2
are constants;Ω denotes

the whole spatial domain of the video frame; 𝑆
𝐿
(𝑥) is a

similarity measure of the phase congruency and gradient
magnitude features between 𝑅 and 𝐹; 𝑆

𝐶
(𝑥) is a chrominance

similaritymeasure between𝑅 and𝐹;𝑃𝐶
𝑚
(𝑥) is used toweight

the importance of 𝑆
𝐿
(𝑥) in the overall similarity between

𝑅 and 𝐹, where 𝑆
𝐿
(𝑥), 𝑆

𝐶
(𝑥), and 𝑃𝐶

𝑚
(𝑥) are calculated

according to [32]. The greater the PSNR is, the closer

the reconstructed frame is to the original. The closer SSIM
(0 ≤ SSIM ≤ 1) is to 1, the greater is the similarity between the
original and reconstructed frame structures.The closer FSIM
(0 ≤ FSIM ≤ 1) is to 1, the greater is the similarity between
the original and reconstructed frame features.The smaller the
RMSE is, the closer the reconstructed frame is to the original.

4.2. Experimental Results andAnalysis. This section describes
the experiments that were carried out to evaluate the per-
formance of the proposed LBST-SR superresolution recon-
struction algorithm and a comparison of these results
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Figure 7: Objective evaluation indices of the six algorithms for the “Coastguard” sequence.

with five recently proposed representative state-of-the-art
superresolution algorithms in terms of both visual quality
and objective quantitative indices, including the learning-
based ANRSR [22], DPSR [30], and ScSR [27] algorithms,
the 3D nonlocal mean-based NL-SR [14] algorithm, and
the Zernike moment-based ZM-SR [16] algorithm. In the
experiments, ten benchmark and two spatial video sequences
were used: “Forman,” “Calendar,” “Coastguard,” “Suzie,”
“Mother Daughter,” “Miss America,” “Ice,” “Football,” “Car-
phone,” “Akiyo,” “Satellite-1,” and “Satellite-2.” Based on

the motion contents, these video sequences are divided into
three categories: (1) “Calendar,” “Suzie,” “Mother Daughter,”
“Miss America,” and “Akiyo” contain small-motion objects;
(2) “Forman,” “Coastguard,” “Carphone,” “Satellite-1,” and
“Satellite-2” contain moderate-motion objects; and (3) “Ice”
and “Football” contain fast-motion objects. Some complex
motion scenes exist in these dynamic sequences, such as
local motion patterns and rotations. Each video sequence
was decimated by a factor of 1 : 3 and then contami-
nated by additive Gaussian white noise with 𝜎 = 2. In
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Figure 8: SR reconstruction visual effects for Frame 6 of the “Forman” sequence with a magnification factor of three.

the proposed LBST-SR algorithm, the spatiotemporal region
used for the similarity weight calculation in the nonlocal
similarity matching process was 3 × 3 × 6. Superresolution
with amagnification factor of threewas implemented in these
experiments.

4.2.1. Objective Quantitative Evaluations. The average SSIM,
PSNR, FSIM, and RMSE index values of ANRSR, DPSR,
ScSR, NL-SR, ZM-SR, and LBST-SR algorithms for the
twelve video sequences are shown in Tables 1, 2, 3, and 4,
respectively. Figures 3–7 show the PSNR, SSIM, and RMSE
values of the six algorithms for the “Satellite-1,” “Satellite-
2,” “Forman,” “Calendar,” and “Coastguard” sequences.

The results indicate that, in most cases, the proposed LBST-
SR algorithm yields better performance with higher PSNR,
SSIM, and FSIM values and smaller RMSE values than the
other five algorithms. In only a few cases, ZM-SR algorithm
achieves slightly better effects in terms of some indices than
the proposed LBST-SR algorithm. Moreover, the SSIM and
FSIM index values demonstrate that the results generated
by the proposed LBST-SR algorithm are much closer to the
original ones than the other five algorithms in terms of
structural similarity and feature similarity, because LR-HR
correlation mapping learning and spatiotemporal similarity
can recover high-frequency details of video frames more
accurately.
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Table 1: Average SSIM index values of the six algorithms.

Video sequences ANRSR DPSR ScSR NL-SR ZM-SR LBST-SR
Satellite-1 0.8485 0.8330 0.8388 0.8872 0.8881 0.9118
Satellite-2 0.7925 0.7654 0.7732 0.7732 0.8182 0.8701
Forman 0.7736 0.7379 0.7474 0.8184 0.8329 0.8612
Calendar 0.5274 0.4968 0.4954 0.5483 0.5508 0.5979
Coastguard 0.5507 0.5747 0.5255 0.5721 0.6022 0.6495
Suzie 0.7348 0.7117 0.7070 0.7456 0.7791 0.8048
Mother Daughter 0.7533 0.7232 0.7239 0.7896 0.8141 0.8186
Miss America 0.8043 0.7803 0.7802 0.8376 0.8664 0.8855
Ice 0.7596 0.7208 0.7163 0.8086 0.8061 0.8234
Football 0.5521 0.5210 0.5278 0.5683 0.5545 0.5941
Carphone 0.7211 0.6910 0.8793 0.7407 0.9114 0.7772
Akiyo 0.8159 0.7904 0.7926 0.8408 0.8573 0.8598

Table 2: Average PSNR index values of the six algorithms.

Video sequences ANRSR DPSR ScSR NL-SR ZM-SR LBST-SR
Satellite-1 32.6112 32.2610 32.2274 33.0043 33.0976 34.3359
Satellite-2 26.7393 27.6419 27.8432 27.8432 28.7216 30.9721
Forman 23.6094 28.8870 28.7007 29.3522 30.0658 30.0229
Calendar 21.8125 21.8218 21.7321 22.5146 23.3250 23.3826
Coastguard 23.5604 25.9583 25.8747 26.8223 27.7863 28.5933
Suzie 22.4611 27.5689 27.3860 27.5675 27.9919 28.5858
Mother Daughter 23.3212 25.4622 25.4056 25.5966 25.9141 25.6664
Miss America 25.4412 27.0984 26.5224 26.7219 27.0799 27.3240
Ice 20.0069 21.5826 21.4745 21.7167 21.8370 21.8413
Football 23.4603 24.3382 24.3644 25.1328 25.5998 26.0958
Carphone 21.6177 26.6009 26.1356 26.7163 27.5862 27.5311
Akiyo 26.3123 28.9223 28.9065 29.4792 29.9924 29.7895

Table 3: Average FSIM index values of the six algorithms.

Video sequences ANRSR DPSR ScSR NL-SR ZM-SR LBST-SR
Satellite-1 0.7817 0.7692 0.7781 0.7994 0.8082 0.8139
Satellite-2 0.8991 0.9035 0.9088 0.9088 0.9180 0.9423
Forman 0.8680 0.8977 0.9022 0.9214 0.9245 0.9359
Calendar 0.8675 0.8654 0.8654 0.8863 0.8912 0.9027
Coastguard 0.7852 0.8140 0.8207 0.8201 0.8399 0.8529
Suzie 0.8596 0.9177 0.9173 0.9291 0.9373 0.9460
Mother Daughter 0.8419 0.8797 0.8830 0.8889 0.9133 0.9125
Miss America 0.8819 0.9162 0.9138 0.9162 0.9307 0.9393
Ice 0.8330 0.8649 0.8740 0.9001 0.8978 0.9032
Football 0.8440 0.8405 0.8488 0.8545 0.8516 0.8673
Carphone 0.8368 0.8825 0.8793 0.8959 0.9114 0.9143
Akiyo 0.9019 0.9252 0.9264 0.9239 0.9353 0.9360

In terms of time efficiency of the spatiotemporal similar-
ity matching process for ten benchmark video sequences and
two spatial video sequences, the average time per video frame
for the spatiotemporal nonlocal fuzzy registration scheme
using PZM (ZFR) and the proposed improved nonlocal fuzzy

registration scheme using PZM and structural similarity
(ZSFR) is given in Table 5. Clearly, compared to ZFR scheme,
the proposed PZSFR scheme improves time efficiency sig-
nificantly while guaranteeing the similarity matching effect.
The reason lies mainly in the use of a self-adaptive regional
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Figure 9: SR reconstruction visual effects for Frame 29 of the “Calendar” sequence with a magnification factor of three.

correlation evaluation strategy based on regional average
energy and regional structural similarity, which is an im-
provement over ZFR scheme.

4.2.2. Subjective Visual Evaluations. Figure 8 shows the SR
reconstruction visual effects of the six algorithms (ANRSR,
DPSR, ScSR, NL-SR, ZM-SR, and LBST-SR) for Frame 6 of
the “Forman” sequence, with the magnified local textures
marked by the red rectangular box. The frame contains
moderate-motion objects (such as local motions of head
and mouth and rotation motion of eyes) in the “Forman”
sequence. By analyzing global and local detail effects (such
as regions around the eyes), it is clear that the proposed

LBST-SR algorithm obtains a better visual effect than the
other five algorithms. The learning-based ANRSR, DPSR,
and ScSR algorithms produce annoying spot artifacts and
unnatural visual effects in the face regions. Edge detail
blurring phenomena are produced in the ZM-SR algorithm.
Some annoying block artifacts are generated in the NL-
SR algorithm, which mainly occurred because local com-
plex motions influenced the accuracy of nonlocal similarity
matching and fusion between video frames. The proposed
LBST-SR algorithmwas able to solve this problembecause the
spatiotemporal similarity matching process can be adapted
to complex motion patterns. In comparison, the proposed
LBST-SR algorithm not only has clearer edges and contours
but also produces smoother effects in the face part.
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(a) ANRSR (b) DPSR

(c) ScSR (d) NL-SR

(e) ZM-SR (f) LBST-SR

Figure 10: SR reconstruction visual effects for Frame 18 of the “Coastguard” sequence with a magnification factor of three.

The superresolved results for Frame 29 of the “Calendar”
sequence are shown in Figure 9, with the magnified local
textures marked by red and blue rectangular boxes. The
results demonstrate that the proposed algorithm generates
the best visual effects and produces clearer contours and
details. The “Calendar” sequence contains complex object
motions, including translation motion, occluded areas, and
newly appearing object areas. The proposed algorithm still
performed well under such complex motion scenes, bene-
fitting mainly from the improved spatiotemporal nonlocal
fuzzy registration scheme based on PZM feature and struc-
tural similarity, which is robust to complex motion scenes.
The local magnified details indicate that ANRSR, DPSR,

and ScSR algorithms introduce noticeable annoying artifacts
around the edges of each number. ZM-SR algorithm shows
some blurring effects. In the local detail area marked by the
red rectangle, the quality of the proposed algorithm is com-
parable to the NL-SR algorithm, but in the magnified road
details areamarked by the blue rectangular box, the proposed
algorithm produces smoother effects, whereas discontinuous
edges and annoying block artifacts are generated in the NL-
SR algorithm.

Figure 10 shows the superresolved results for Frame 18
and the magnified local details of the “Coastguard” sequence.
The “Coastguard” sequence contains the complex back-
grounds and motions of both object and camera. Moreover,
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(a) ANRSR (b) DPSR

(c) ScSR (d) NL-SR

(e) ZM-SR (f) LBST-SR

Figure 11: SR reconstruction visual effects for Frame 1 of the “Akiyo” sequence with a magnification factor of three.

complex motions such as translation, occluded areas, and
newly appearing object areas exist in this sequence. Under
such complex motion scenes, the proposed LBST-SR algo-
rithm still performed better than the other five algorithms.
As can be observed from the magnified local details marked
by the red rectangle and details in the background regions,
annoying black spots and block artifacts are generated in
the ANRSR, DPSR, and ScSR algorithms. ZM-SR algorithm
produces blurred edges and details, especially in the complex
stone bank background area. Annoying block artifacts and
discontinuous edges are generated in the NL-SR algorithm
because its nonlocal similarity matching strategy cannot be
well adapted to the complex motion scenes.

The superresolved results for Frame 1 of the “Akiyo”
sequence are shown in Figure 11, with local details magnified
to emphasize visual quality.Themagnified visual effects of the
face region marked in the red rectangle demonstrate that the
proposed algorithm is superior to the other five algorithms
and produces a more natural and smoother visual effect.
ANRSR, DPSR, and ScSR algorithms produce annoying
artifacts in the face region and unnatural skin colors. NL-
SR algorithm produces block effects. And some blurring
phenomena are generated in the ZM-SR algorithm.

The “Satellite-2” sequence contains local motions, light
variation, and more object details. Figure 12 shows the super-
resolved results for Frame 3 of the “Satellite-2” sequence.
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Table 4: Average RMSE index values of the six algorithms.

Video sequences ANRSR DPSR ScSR NL-SR ZM-SR LBST-SR
Satellite-1 0.0027 0.0028 0.0028 0.0027 0.0026 0.0023
Satellite-2 0.0067 0.0060 0.0060 0.0059 0.0055 0.0044
Forman 0.0120 0.0072 0.0073 0.0072 0.0065 0.0067
Calendar 0.0080 0.0080 0.0080 0.0078 0.0071 0.0070
Coastguard 0.0113 0.0086 0.0087 0.0083 0.0073 0.0067
Suzie 0.0282 0.0170 0.0176 0.0176 0.0168 0.0158
Mother Daughter 0.0159 0.0132 0.0132 0.0130 0.0127 0.0130
Miss America 0.0269 0.0225 0.0240 0.0235 0.0225 0.0220
Ice 0.0216 0.0188 0.0191 0.0188 0.0186 0.0186
Football 0.0131 0.0116 0.0115 0.0113 0.0107 0.0101
Carphone 0.0300 0.0184 0.0192 0.0189 0.0173 0.0179
Akiyo 0.0102 0.0081 0.0081 0.0079 0.0075 0.0077

(a) ANRSR (b) DPSR

(c) ScSR (d) NL-SR

(e) ZM-SR (f) LBST-SR

Figure 12: SR reconstruction visual effects for Frame 3 of the “Satellite-2” sequence with a magnification factor of three.

The magnified details marked by the red rectangle demon-
strate that the proposed LBST-SR algorithm generates the
best visual effects, producing more natural visual effects and
clearer details. Annoying black spot artifacts and unnatural
visual effects are produced in the ANRSR, DPSR, and ScSR
algorithms. Block artifacts and jagged effects are generated
by the NL-SR algorithm, and ZM-SR algorithm produces
blurred object details.

5. Conclusions

A novel learning-based algorithm to implement video SR
reconstruction using spatiotemporal nonlocal similarity was

proposed in this paper. On the basis of LR-HR correla-
tion mapping, spatiotemporal nonlocal similarity structural
redundancies were used to improve SR quality further.
With the objective of improving algorithm efficiency while
guaranteeing SR quality, LR-HR correlation mapping was
performed only for the salient object region of the video
frame, followingwhich an improved spatiotemporal nonlocal
fuzzy registration scheme was established for spatiotemporal
similarity matching and fusion using the similarity weighting
strategy based on pseudo-Zernike moment feature similar-
ity and structural similarity and the self-adaptive regional
correlation evaluation strategy.The proposed spatiotemporal
nonlocal fuzzy registration scheme does not rely on accurate
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Table 5: Comparison of time efficiency for ZFR and ZSFR schemes.

Video sequences ZFR scheme (s) ZSFR scheme (s)
Satellite-1 75.43 40.80
Satellite-2 52.85 25.56
Forman 41.09 18.78
Calendar 141.13 63.95
Coastguard 37.84 18.23
Suzie 8.91 4.58
Mother Daughter 37.08 20.55
Miss America 9.24 4.20
Ice 36.58 17.85
Football 35.65 16.70
Carphone 8.98 4.10
Akiyo 41.43 19.77

estimation of subpixelmotion, and therefore it can be adapted
to complex motion patterns and is robust to noise and rota-
tion. Experimental results demonstrated that the proposed
algorithm achieves competitive SR quality compared to other
state-of-the-art algorithms in terms of both subjective and
objective evaluations.
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