202,356 research outputs found

    Seeing and Exploring the Universe Resource Guide

    Get PDF
    This guide provides an overview of 16 NASA missions studying the structure and evolution of the Universe. A description of the science and educational programs for each mission is provided, along with a list of other relevant resources and websites. The following missions are described in the guide: Advanced Composition Explorer (ACE), Astro-E2, Chandra, Cosmic Hot Interstellar Plasma Spectrometer (CHIPS), Constellation X-ray Mission (CON-X), Galaxy Evolution Explorer (GALEX) Gamma-Ray Large Area Space Telescope (GLAST) Gravity Probe-B (GP-B), High Energy Transient Explorer 2 (HETE-2), International Gamma-Ray Astrophysics Laboratory (INTEGRAL), Laser Interferometer Space Antenna (LISA), Microwave Anisotropy Probe (MAP), Rossi X-ray Timing Explorer (RXTE), Submillimeter Wave Astronomy Satellite (SWAS), Swift, and X-ray Multi-Mirror-Newton Mission (XMM-Newton). Educational levels: Primary elementary, Intermediate elementary, Middle school, High school

    Spartan Daily, March 3, 1981

    Get PDF
    Volume 76, Issue 25https://scholarworks.sjsu.edu/spartandaily/6729/thumbnail.jp

    Spartan Daily, March 3, 1981

    Get PDF
    Volume 76, Issue 25https://scholarworks.sjsu.edu/spartandaily/6729/thumbnail.jp

    Spartan Daily, March 3, 1981

    Get PDF
    Volume 76, Issue 25https://scholarworks.sjsu.edu/spartandaily/6729/thumbnail.jp

    Use of Gas Electron Multiplier (GEM) Detectors for an Advanced X-ray Monitor

    Get PDF
    We describe a concept for a NASA SMEX Mission in which Gas Electron Multiplier (GEM) detectors, developed at CERN, are adapted for use in X-ray astronomy. These detectors can be used to obtain moderately large detector area and two-dimensional photon positions with sub mm accuracy in the range of 1.5 to 15 keV. We describe an application of GEMs with xenon gas, coded mask cameras, and simple circuits for measuring event positions and for anticoincidence rejection of particle events. The cameras are arranged to cover most of the celestial sphere, providing high sensitivity and throughput for a wide variety of cosmic explosions. At longer timescales, persistent X-ray sources would be monitored with unprecedented levels of coverage. The sensitivity to faint X-ray sources on a one-day timescale would be improved by a factor of 6 over the capability of the RXTE All Sky Monitor.Comment: 10 pages, 5 figs., in X-Ray and Gamma Ray Instrumentation for Astronomy XI, SPIE conference, San Diego, Aug. 200

    Observation of enhanced X-ray emission from the CTTS AA Tau during a transit of an accretion funnel

    Full text link
    AA Tau was observed for about 5h per XMM orbit (2 days) over 8 successive orbits, which covers two optical eclipse periods (8.2 days). The XMM optical/UV monitor simultaneously provided UV photometry with a ~15 min sampling rate. Some V-band photometry was also obtained from the ground during this period in order to determine the dates of the eclipses. Two X-ray and UV measurements were secured close to the center of the eclipse. The UV flux is the highest just before the eclipse starts and the lowest towards the end of it. We model the UV flux variations with a weekly modulation (inner disk eclipse), plus a daily modulation, which suggests a non-steady accretion. No eclipses are detected in X-rays. For one measurement, the X-ray count rate was nearly 50 times stronger than the minimum observed level, and the plasma temperature reached 60 MK, i.e., a factor of 2-3 higher than in the other observations. This X-ray event, observed close to the center of the optical eclipse, is interpreted as an X-ray flare. We identify the variable column density with the low-density accretion funnel flows blanketing the magnetosphere. The lack of X-ray eclipses indicates that X-ray emitting regions are located at high latitudes. Furthermore, the occurrence of a strong X-ray flare near the center of the optical eclipse suggests that the magnetically active areas are closely associated with the base of the high-density accretion funnel flow. We speculate that the impact of this free falling accretion flow onto the strong magnetic field of the stellar corona may boost the X-ray emission (abridged).Comment: 17 pages and 9 Figures. Accepted by A&

    The Global 21-cm Signal in the Context of the High-z Galaxy Luminosity Function

    Get PDF
    Motivated by recent progress in studies of the high-zz Universe, we build a new model for the global 21-cm signal that is explicitly calibrated to measurements of the galaxy luminosity function (LF) and further tuned to match the Thomson scattering optical depth of the cosmic microwave background, τe\tau_e. Assuming that the z≲8z \lesssim 8 galaxy population can be smoothly extrapolated to higher redshifts, the recent decline in best-fit values of τe\tau_e and the inefficient heating induced by X-ray binaries (HMXBs; the presumptive sources of the X-ray background at high-zz) imply that the entirety of cosmic reionization and reheating occurs at redshifts z≲12z \lesssim 12. In contrast to past global 21-cm models, whose z∼20z \sim 20 (ν∼70\nu \sim 70 MHz) absorption features and strong ∼25\sim 25 mK emission features were driven largely by the assumption of efficient early star-formation and X-ray heating, our new fiducial model peaks in absorption at ν∼110\nu \sim 110 MHz at a depth of ∼−160\sim -160 mK and has a negligible emission component. As a result, a strong emission signal would provide convincing evidence that HMXBs are not the only drivers of cosmic reheating. Shallow absorption troughs should accompany strong heating scenarios, but could also be caused by a low escape fraction of Lyman-Werner photons. Generating signals with troughs at ν≲95\nu \lesssim 95 MHz requires a floor in the star-formation efficiency in halos below ∼109M⊙\sim 10^{9} M_{\odot}, which is equivalent to steepening the faint-end of the galaxy LF. These findings demonstrate that the global 21-cm signal is a powerful complement to current and future galaxy surveys and efforts to better understand the interstellar medium in high-zz galaxies.Comment: 17 pages, 9 figures, in pres
    • …
    corecore