1,803 research outputs found

    Using the Annotated Bibliography as a Resource for Indicative Summarization

    Get PDF
    We report on a language resource consisting of 2000 annotated bibliography entries, which is being analyzed as part of our research on indicative document summarization. We show how annotated bibliographies cover certain aspects of summarization that have not been well-covered by other summary corpora, and motivate why they constitute an important form to study for information retrieval. We detail our methodology for collecting the corpus, and overview our document feature markup that we introduced to facilitate summary analysis. We present the characteristics of the corpus, methods of collection, and show its use in finding the distribution of types of information included in indicative summaries and their relative ordering within the summaries.Comment: 8 pages, 3 figure

    Evaluations of User-Driven Ontology Summarization

    Get PDF
    Ontology Summarization has been found useful to facilitate ontology engineering tasks in a number of different ways. Recently, it has been recognised as a means to facilitate ontology understanding and then support tasks like ontology reuse in ontology construction. Among the works in literature, not only distinctive methods are used to summarize ontology, also different measures are deployed to evaluate the summarization results. Without a set of common evaluation measures in place, it is not possible to compare the performance and therefore judge the effectiveness of those summarization methods. In this paper, we investigate the applicability of the evaluation measures from ontology evaluation and summary evaluation domain for ontology summary evaluation. Based on those measures, we evaluate the performances of the existing user-driven ontology summarization approaches

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Evaluating Knowledge Anchors in Data Graphs against Basic Level Objects

    Get PDF
    The growing number of available data graphs in the form of RDF Linked Da-ta enables the development of semantic exploration applications in many domains. Often, the users are not domain experts and are therefore unaware of the complex knowledge structures represented in the data graphs they in-teract with. This hinders users’ experience and effectiveness. Our research concerns intelligent support to facilitate the exploration of data graphs by us-ers who are not domain experts. We propose a new navigation support ap-proach underpinned by the subsumption theory of meaningful learning, which postulates that new concepts are grasped by starting from familiar concepts which serve as knowledge anchors from where links to new knowledge are made. Our earlier work has developed several metrics and the corresponding algorithms for identifying knowledge anchors in data graphs. In this paper, we assess the performance of these algorithms by considering the user perspective and application context. The paper address the challenge of aligning basic level objects that represent familiar concepts in human cog-nitive structures with automatically derived knowledge anchors in data graphs. We present a systematic approach that adapts experimental methods from Cognitive Science to derive basic level objects underpinned by a data graph. This is used to evaluate knowledge anchors in data graphs in two ap-plication domains - semantic browsing (Music) and semantic search (Ca-reers). The evaluation validates the algorithms, which enables their adoption over different domains and application contexts
    corecore