54 research outputs found

    Energy efficiency and interference management in long term evolution-advanced networks.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Cellular networks are continuously undergoing fast extraordinary evolution to overcome technological challenges. The fourth generation (4G) or Long Term Evolution-Advanced (LTE-Advanced) networks offer improvements in performance through increase in network density, while allowing self-organisation and self-healing. The LTE-Advanced architecture is heterogeneous, consisting of different radio access technologies (RATs), such as macrocell, smallcells, cooperative relay nodes (RNs), having various capabilities, and coexisting in the same geographical coverage area. These network improvements come with different challenges that affect users’ quality of service (QoS) and network performance. These challenges include; interference management, high energy consumption and poor coverage of marginal users. Hence, developing mitigation schemes for these identified challenges is the focus of this thesis. The exponential growth of mobile broadband data usage and poor networks’ performance along the cell edges, result in a large increase of the energy consumption for both base stations (BSs) and users. This due to improper RN placement or deployment that creates severe inter-cell and intracell interferences in the networks. It is therefore, necessary to investigate appropriate RN placement techniques which offer efficient coverage extension while reducing energy consumption and mitigating interference in LTE-Advanced femtocell networks. This work proposes energy efficient and optimal RN placement (EEORNP) algorithm based on greedy algorithm to assure improved and effective coverage extension. The performance of the proposed algorithm is investigated in terms of coverage percentage and number of RN needed to cover marginalised users and found to outperform other RN placement schemes. Transceiver design has gained importance as one of the effective tools of interference management. Centralised transceiver design techniques have been used to improve network performance for LTE-Advanced networks in terms of mean square error (MSE), bit error rate (BER) and sum-rate. The centralised transceiver design techniques are not effective and computationally feasible for distributed cooperative heterogeneous networks, the systems considered in this thesis. This work proposes decentralised transceivers design based on the least-square (LS) and minimum MSE (MMSE) pilot-aided channel estimations for interference management in uplink LTE-Advanced femtocell networks. The decentralised transceiver algorithms are designed for the femtocells, the macrocell user equipments (MUEs), RNs and the cell edge macrocell UEs (CUEs) in the half-duplex cooperative relaying systems. The BER performances of the proposed algorithms with the effect of channel estimation are investigated. Finally, the EE optimisation is investigated in half-duplex multi-user multiple-input multiple-output (MU-MIMO) relay systems. The EE optimisation is divided into sub-optimal EE problems due to the distributed architecture of the MU-MIMO relay systems. The decentralised approach is employed to design the transceivers such as MUEs, CUEs, RN and femtocells for the different sub-optimal EE problems. The EE objective functions are formulated as convex optimisation problems subject to the QoS and transmit powers constraints in case of perfect channel state information (CSI). The non-convexity of the formulated EE optimisation problems is surmounted by introducing the EE parameter substractive function into each proposed algorithms. These EE parameters are updated using the Dinkelbach’s algorithm. The EE optimisation of the proposed algorithms is achieved after finding the optimal transceivers where the unknown interference terms in the transmit signals are designed with the zero-forcing (ZF) assumption and estimation errors are added to improve the EE performances. With the aid of simulation results, the performance of the proposed decentralised schemes are derived in terms of average EE evaluation and found to be better than existing algorithms

    Beamforming optimization for two-way relay channel

    Get PDF
    In this thesis, we focus on the optimization of the two-way relay channel (TWRC), which can double the data rate of communications comparing to the traditional one-way relay channel (OWRC). Because of the broadcasting nature of wireless transmissions, secure transmission is an appealing research topic. We take secrecy rate consideration into the optimization of the TWRC. Overall we provide near-optimal solutions for the secrecy rate maximization problems of the TWRC with imperfect channel state information (ICSI). A much lower complexity optimal SOCP solution is provided for SNR balancing of the TWRC without secrecy consideration. We first look at a flat fading TWRC network model with a multiple-input multiple-output (MIMO) relay where perfect channel state information (CSI) is assumed available. We then formulate an optimization problem, with the objective to minimize the relay’s power usage under the constraints that the signal-to-noise ratio (SNR) of the two transceivers should exceed a preset threshold. A low-complexity optimal beamforming solution is provided to this optimization problem by reformulating it in the form of second-order cone programming (SOCP). Later in the thesis, we consider the presence of an eavesdropper and address the beamforming optimization for minimizing the relay’s power with the constraints of the secrecy rates of the two transceivers. A semi-definite programming (SDP) based searching algorithm is proposed to find a near-optimal solution. For each search of the proposed approach, the previous non-convex optimization problem is transferred into an SDP problem, which can guarantee the optimality of the beamforming matrix. Afterwards, more realistic imperfect CSI (ICSI) situations are considered for the TWRC network models. As ICSI completely changes the structure and the property of the optimization problems, we reformulate the optimization problems into two scenarios. For the first case, we consider that the relay is an untrusted eavesdropper and in this case an SDP solution is provided to maximize the joint-decoding sum-secrecy rate. For the second case, we investigate the robust beamforming problems where the relay is trusted but there is an external eavesdropper, another SDP solution is provided to maximize the sum-secrecy rate

    Integrated Data and Energy Communication Network: A Comprehensive Survey

    Get PDF
    OAPA In order to satisfy the power thirsty of communication devices in the imminent 5G era, wireless charging techniques have attracted much attention both from the academic and industrial communities. Although the inductive coupling and magnetic resonance based charging techniques are indeed capable of supplying energy in a wireless manner, they tend to restrict the freedom of movement. By contrast, RF signals are capable of supplying energy over distances, which are gradually inclining closer to our ultimate goal – charging anytime and anywhere. Furthermore, transmitters capable of emitting RF signals have been widely deployed, such as TV towers, cellular base stations and Wi-Fi access points. This communication infrastructure may indeed be employed also for wireless energy transfer (WET). Therefore, no extra investment in dedicated WET infrastructure is required. However, allowing RF signal based WET may impair the wireless information transfer (WIT) operating in the same spectrum. Hence, it is crucial to coordinate and balance WET and WIT for simultaneous wireless information and power transfer (SWIPT), which evolves to Integrated Data and Energy communication Networks (IDENs). To this end, a ubiquitous IDEN architecture is introduced by summarising its natural heterogeneity and by synthesising a diverse range of integrated WET and WIT scenarios. Then the inherent relationship between WET and WIT is revealed from an information theoretical perspective, which is followed by the critical appraisal of the hardware enabling techniques extracting energy from RF signals. Furthermore, the transceiver design, resource allocation and user scheduling as well as networking aspects are elaborated on. In a nutshell, this treatise can be used as a handbook for researchers and engineers, who are interested in enriching their knowledge base of IDENs and in putting this vision into practice

    Cooperative diversity in wireless networks: frameworks and analysis

    Get PDF

    Backscatter Communication: Design and Optimisation For Emerging Use-Cases

    Get PDF
    Backscatter communication (BackCom) holds significant potential to improve the pervasiveness and energy efficiency of future wireless networks, through its passive modulation and reuse of existing radiofrequency signals. In order to function as a key technology under the Internet of Things paradigm, issues relating to BackCom, such as its limited coverage and deployment flexibility, low data rates, and the difficulty of channel estimation, need to be addressed. To complement this, a wider range of use-cases and deployment scenarios also need to be established. This thesis focuses on addressing these issues inherent to BackCom, by exploring a series of system setups which push the boundaries in terms of coverage and flexible deployment, and then future-proofs BackCom through the study of the assistance from another emerging technology, the intelligent reflecting surface (IRS). The first half of the thesis focuses on the coverage and deployment flexibility of BackCom devices under conventional wireless communication settings. First, we study a novel use-case in which BackCom devices replace conventional, actively transmitting relays to assist an information transmission from a source to a destination. We introduce the decode-and-forward (DF) BackCom relaying scheme and perform a detailed bit error rate (BER) characterisation of the DF BackCom scheme alongside the amplify-and-forward (AF) BackCom 'reflection' scheme. The feasibility and practical range of the BackCom relay is demonstrated through a case study, and our findings indicate that with careful selection of relay parameters, the DF scheme can improve the functionality of BackCom relays through the decoding operation, while resulting in minimal BER differences compared to the AF 'reflection' scheme. Second, we study the coverage maximisation of bistatic BackCom systems in wide-area environmental monitoring applications through judicious power beacon (PB) placement. We propose a straightforward metric to characterise coverage, the guaranteed coverage distance (GCD), to overcome the complex shape of each PB's coverage area when the performance of the BackCom link is dependent on the strength of the energy transfer link. We find that a single-tier symmetric deployment of PBs performs favourably under a practical number (24 or less) of PBs, with a GCD of more than 100m being readily achievable. The second half of the thesis studies the incorporation of the IRS into BackCom systems, with the aim of improving BackCom performance. The IRS-assisted bistatic BackCom system is studied first, where we solve a transmit power minimisation problem at the carrier emitter involving the joint optimisation of the transmit and receive beamforming, the IRS phase shifts and the BackCom splitting coefficients. We present a unique signal model arising from this system, where a signal originating from the carrier emitter may be reflected by the IRS twice before reaching the reader, and account for this added complexity in our algorithm design. Our results indicate that transmit power savings of over 6 dB may be achieved with a moderately-sized IRS, which may be converted to nearly 50m of range increase. Then, we study the use of the IRS in an ambient BackCom system, with the goal of reducing direct-link interference and improving detection performance. We assume the absence of all ambient signal and channel knowledge, which is a practical assumption given the passively reflecting nature of both BackCom devices and IRSs. We propose a deep reinforcement learning (DRL)-based algorithm which maximises the backscatter channel difference (that is, the ratio of the energies of the direct-link interference and overall received signal) based on instantaneous signal samples, which may be converted to BER reductions. We find that the DRL approach with no channel knowledge can achieve a backscatter channel difference within 25% of that obtained using benchmarks with full channel knowledge

    Relay assisted device-to-device communication with channel uncertainty

    Get PDF
    The gains of direct communication between user equipment in a network may not be fully realised due to the separation between the user equipment and due to the fading that the channel between these user equipment experiences. In order to fully realise the gains that direct (device-to-device) communication promises, idle user equipment can be exploited to serve as relays to enforce device-to-device communication. The availability of potential relay user equipment creates a problem: a way to select the relay user equipment. Moreover, unlike infrastructure relays, user equipment are carried around by people and these users are self-interested. Thus the problem of relay selection goes beyond choosing which device to assist in relayed communication but catering for user self-interest. Another problem in wireless communication is the unavailability of perfect channel state information. This reality creates uncertainty in the channel and so in designing selection algorithms, channel uncertainty awareness needs to be a consideration. Therefore the work in this thesis considers the design of relay user equipment selection algorithms that are not only device centric but that are relay user equipment centric. Furthermore, the designed algorithms are channel uncertainty aware. Firstly, a stable matching based relay user equipment selection algorithm is put forward for underlay device-to-device communication. A channel uncertainty aware approach is proposed to cater to imperfect channel state information at the devices. The algorithm is combined with a rate based mode selection algorithm. Next, to cater to the queue state at the relay user equipment, a cross-layer selection algorithm is proposed for a twoway decode and forward relay set up. The algorithm proposed employs deterministic uncertainty constraint in the interference channel, solving the selection algorithm in a heuristic fashion. Then a cluster head selection algorithm is proposed for device-to-device group communication constrained by channel uncertainty in the interference channel. The formulated rate maximization problem is solved for deterministic and probabilistic constraint scenarios, and the problem extended to a multiple-input single-out scenario for which robust beamforming was designed. Finally, relay utility and social distance based selection algorithms are proposed for full duplex decode and forward device-to-device communication set up. A worst-case approach is proposed for a full channel uncertainty scenario. The results from computer simulations indicate that the proposed algorithms offer spectral efficiency, fairness and energy efficiency gains. The results also showed clearly the deterioration in the performance of networks when perfect channel state information is assumed

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Energy E fficiency Oriented Full Duplex Wireless Communication Systems

    Get PDF
    Full-duplex (FD) transmission is a promising technique for fifth generation (5G) wireless communications, enabling significant spectral efficiency (SE) improvement over existing half-duplex (HD) systems. However, FD transmission consumes higher power than HD transmission, especially for millimetre wave band. Therefore, energy efficiency (EE) for FD systems is a critical yet inadequately addressed issue. This thesis addresses the critical EE challenges and demonstrates promising solutions for implementing FD systems, as detailed in the following contributions. In the first contribution, a comprehensive EE analysis of the FD and HD amplify-and-forward (AF) relay-assisted 60 GHz dual-hop indoor wireless systems is presented. An opportunistic relay mode selection scheme is developed, where FD relay with different self-interference (SIC) techniques or HD relay is opportunistically selected. Together with transmission power adaptation, EE is maximised with given channel gains. A counter-intuitive finding is shown that, with a relatively loose maximum transmission power constraint, FD relay with two-stage SIC is preferable to both FD relay with one-stage SIC and HD relay, resulting in a higher optimised EE. A full range of power consumption sources are considered to rationalise the analysis. The effects of imperfect SIC at relay, drain efficiency and static circuit power on EE are investigated. Simulation results verify the theoretical analysis. In the second contribution, EE oriented resource allocation for FD decode-of-forward (DF) relay-assisted 60 GHz multiuser systems is investigated. In contrast to the existing SE oriented designs, the proposed scheme maximises EE for FD relay systems under cross-layer constraints, addressing the typical problems at 60 GHz. A low-complexity EE-orientated resource allocation algorithm is proposed, by which the transmission power allocation, subcarrier allocation and throughput assignment are performed jointly across multiple users. Simulation results verify the analytical results and confirm that the FD relay systems with the proposed algorithm achieve a higher EE than the FD relay systems with SE oriented approaches, while offering a comparable SE. In addition, a much lower throughput outage probability is guaranteed by the proposed resource allocation algorithm, showing its robustness against channel estimation errors. In the third contribution, it is noticed that in wireless power transfer (WPT)-aided relay systems, the SE of the source-relay link plays a dominant role in the system SE due to limited transmission power at the WPT-aided relay. A novel asymmetric protocol for WPT-aided FD DF relay systems is proposed in multiuser scenario, where the time slot durations of the two hops are designed to be uneven, to enhance the degree of freedom and hence the system SE. A corresponding dynamic resource allocation algorithm is developed by jointly optimising the time slot durations, subcarriers and transmission power at the source and the relay. Simulation results con rm that, compared to the symmetric WPT-aided FD relay (Sym-WPT-FR) and the time-switching based WPT-aided FD relay (TS-WPT-FR) systems in the literature, the proposed asymmetric WPT-aided FD relay system achieves up to twice the SE and higher robustness against the relay's location and the number of users. In the final contribution, to strike the balance between high SE and low power consumption, a hybrid duplexing strategy is developed for distributed antennas (DAs) systems, where antennas are capable of working in hybrid FD, HD, and sleeping modes. To maximise the system EE with low complexity, activation/deactivation of transmit/receive chain is first performed, by a proposed channel-gain-based DA clustering algorithm, which highlights the characteristics of distributed deployment of antennas. Based on the DAs' con figuration, a novel distributed hybrid duplexing (D-HD)-based and EE oriented algorithm is proposed to further optimise the downlink beamformer and the uplink transmission power. To rationalise the system model, self-interference at DAs, co-channel interference from uplink users to downlink users, and multiuser interference in both uplink and downlink are taken into account. Simulation results confirm that the proposed system provides significant EE and SE enhancements over the colocated FD MIMO system, showing the advantages in alleviating high path loss as well as in cutting the carbon footprint. Compared to the sole-FD DA system, the proposed system shows much higher EE with marginal loss in SE. Also, the SIC operation in the proposed system is much more simplified compared to the two benchmarks
    • …
    corecore