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Abstract

The current surge in wireless connectivity, anticipated to amplify significantly in future wireless

technologies, brings a new wave of users. Given the impracticality of an endlessly expanding

bandwidth, there’s a pressing need for communication techniques that efficiently serve this

burgeoning user base with limited resources.

Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long

addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality

becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA),

employing superposition coding, serves more users within the same bandwidth as OMA by

allocating different power levels to users whose signals can then be detected using the gap

between them, thus offering superior spectral efficiency and massive connectivity.

This thesis examines the integration of NOMA techniques with cooperative relaying, EX-

trinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and

beyond communication systems. The adopted methodology aims to optimize the systems’ per-

formance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall

system efficiency and data rates.

The primary focus of this thesis is the investigation of the integration of NOMA with

cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative

relaying context, NOMA notably improved diversity gains, thereby proving the superiority

of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis,

NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the

power allocation stage. Additionally, employing a trained neural network enhanced signal

detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection

for NOMA which addresses NOMAs’ complex receiver problem.
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Chapter 1

Introduction

1.1 Introduction

With the ongoing deployment of Internet of Things (IoT) systems and ever-increasing use

of wireless connectivity by billions of user around the world, the next generation of wireless

communication systems will not be able to cope up with the demands for much higher data

rates and ultra-reliable connectivity with extremely-low latency [1,2]. To overcome these issues,

innovative solutions are essential. Non-Orthogonal Multiple Access (NOMA) has recently been

proposed as a promising technology for the next generation of wireless communication systems

due to its superior spectral efficiency in comparison to conventional Multiple Access (MA)

techniques [1]-[3].

The NOMA technique facilitates the coexistence of multiple users within the same code,

frequencies, and time domains through the allocation of distinct power levels to each user.

The resulting gap is subsequently utilised for signal detection [4]. Furthermore, it has been

observed that users who experience superior channel conditions are assigned a reduced amount

of transmission power. This approach serves to preserve transmission power for users located

at the cell-edge or in close proximity to it. Conversely, users who encounter weaker channel

conditions are allocated a greater amount of transmission power [5]

The key features of NOMA include:

Superposition Coding: Unlike traditional schemes where users occupy orthogonal re-

sources, in NOMA, multiple users can share the same frequency/time resource. Their signals

are superimposed in the power domain, with different power levels assigned based on their
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respective channel conditions.

Spectral Efficiency: Due to superposition coding, NOMA can serve multiple users in the

same resource block, leading to a higher spectral efficiency compared to Orthogonal Multiple

Access (OMA) techniques.

Massive Connectivity: NOMA is suitable for scenarios with a large number of devices,

such as IoT, because it can accommodate more users simultaneously.

Complex Decoding at the Receiver: With the use of Successive Interference Cancella-

tion (SIC) at the receiver end, NOMA allows users with better channel conditions to subtract

out the signals intended for other users, thereby decoding their own intended signal.

Flexible User Pairing: In the downlink, users can be paired based on their channel

conditions to optimize the system’s performance.

Enhanced Throughput: By accommodating more users in a given resource block, NOMA

can potentially increase the overall system throughput.

Robustness in Varied Environments: NOMA can work in diverse scenarios, from broad-

band multimedia services to narrow-band IoT applications.

Integration with Other Technologies: NOMA can be integrated with other technologies

such as MIMO (Multiple Input Multiple Output) and mmWave to further boost its performance.

Dynamic Power Allocation: Depending on the requirements and channel conditions,

the power allocated to different users in NOMA can be dynamically adjusted to optimize

performance.

While NOMA offers several advantages, it’s worth noting that its practical implementation

requires sophisticated signal processing techniques and might pose challenges, especially in a

highly dynamic environment. However, its potential benefits make it an attractive option for

next-generation wireless networks.

The NOMA approach is fundamentally grounded in the notion of non-orthogonal resource

allocation, which aims to facilitate network user support. However, this approach is not without

its drawbacks, as it can lead to heightened receiver complexity that scales in direct proportion

to the number of users employing SIC within the system, as well as increased inter-user interfer-

ence. The latest NOMA solutions can be classified into two distinct categories, namely power-

domain NOMA and code-domain NOMA. Prominent NOMA techniques comprise Sparse Code

Multiple Access (SCMA) [8, 9], Low Density Spreading (LDS) [10], MultiUser Shared Access

(MUSA) [11], Spatial Division Multiple Access [12], and Successive Interference Cancellation
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Amenable Multiple Access [13].

Literature such as [13], [14], and [15] provide detailed insights into the efficacy of NOMA as

opposed to conventional MA techniques such as Orthogonal Frequency Division Multiple Access

(OFDMA). The utilisation of a NOMA system model, despite its high spectral efficiency, may

lead to a reduction in the performance of individual users due to the prioritisation of users with

weaker channel conditions over those with stronger channel conditions [15].

Cooperative relaying, with its natural increase in diversity gains, EXtrinsic Information

Transfer (EXIT) chart analysis, with its enhanced user fairness during allocation scheme, and

deep learning models that aid in signal detection can be used to minimise these concerns.

All of these factors result in improved user fairness and receiver dependability for users with

better channel settings [14], utilising NOMA’s propensity to be paired with other transmission

systems.

1.2 Motivation for Research

The future of wireless communications (fifth generation (5G) and beyond) needs three critical

attributes: low latency, ultra fast speeds, and massive connectivity. NOMA manages to not

only satisfy these three demands but also massively improve the overall spectral efficiency of

the network. This makes NOMA a highly sought after technology for the future of wireless

communications.

According to the requirements of both 5G and the coming sixth generation (6G), the moti-

vation behind adopting NOMA can be critically understood.

The present deployment of 5G mobile networks exhibits a speed that is 100 times faster

than fourth-generation (4G) networks. The implementation of 5G networks is expected to

offer data transmission rates reaching 10 Gbps, reduced latency measured in milliseconds, and

enhanced reliability. A high-definition film can be downloaded within a matter of seconds.

This technology has the capability to provide support for a wide range of IoT devices as well as

intelligent automobiles. In order to address the continuous requirements of 5G, it is imperative

to possess a wireless access technology that is efficient and capable of enhancing throughput

without necessitating an increase in bandwidth.

Currently, 6G mobile networks are in the developmental phase and are expected to offer

transmission speeds in the terabit level. The implementation of this technology would need
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the integration of an advanced antenna system, a substantial increase in the memory capacity

of mobile devices, and the establishment of extensive optical networks. The forthcoming 6G

networks are anticipated to be cell-free, hence enabling the integration of Artificial Intelligence

(AI) within wireless networks. The frequency range to be utilised by 6G networks is currently

subject to uncertainty. However, it is apparent that a substantially higher frequency band will

be necessary in order to fulfil the data rate requirements of 6G networks.

The utilisation of frequencies exceeding 30 GHz and reaching up to 300 GHz, commonly

referred to as millimetre waves, characterises 5G technology. Conversely, 6G is linked to sub-

stantially elevated frequencies within the terahertz (THz) bands, ranging from 300 GHz to

3 THz. It is anticipated that within the forthcoming 5-7 year period, the THz spectrum

will be employed for the purpose of 6G communications. In the realm of 6G network technol-

ogy, potential applications encompass interconnected robotic and autonomous systems, wireless

brain-computer interface mechanisms, advancements in blockchain methodologies, immersive

multisensory extended realities, interstellar expeditions, deep-oceanic exploration ventures, tac-

tile internet innovations, and the industrial internet paradigm.

The challenges facing the sixth generation of wireless communication technologies are very

demanding. NOMA is suggested as a prime candidate to address some of these demands.

Especially demands such as spectral efficiency and connection density can be met by adopting

NOMA. Taking advantage of NOMA’s proclivity to being combined with other techniques, such

as cooperative relaying, EXIT charts, and deep learning, the rest of these demands can be met

quite vehemently.

The following are some key gaps in NOMA:

• While the NOMA principle is designed to serve cell edge users or users with high QoS

requirements, there is room for improvement in regards to BER performance and mas-

sive connectivity. This improvement can be achieved by combining NOMA with other

communication techniques such as cooperative relaying.

• NOMA is designed to prioritize users with poor channel conditions and, as such, there

can exist a lack of user fairness in the power allocation stage. EXIT charts can be used

to evaluate and improve user fairness in a NOMA system.

• NOMA provides higher BER performance and connection density when compared to the

conventional OMA approach. This improvement in performance comes at the price of
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higher receiver complexity since SIC is required to receive the signals of user with lower

power levels. Deep learning can applied here in order to simplify and streamline the signal

detection process.

1.3 Aims and Objectives

The main aim of this research is to analyse NOMA techniques for next generation communi-

cations systems by applying cooperative relaying, EXIT chart analysis and deep learning to

achieve improved performance. The key research objectives are listed as follows:

• Maximising diversity gains for a proposed cooperative NOMA system through exploitation

of key NOMA features. The aim is to prove that combining NOMA with cooperative

relaying yields better BER performance versus deploying NOMA by itself.

• Investigating the effects of employing EXIT chart analysis on a cooperative NOMA sys-

tem. The aim is to prove the efficacy of applying EXIT chart analysis on determining the

user fairness of the proposed NOMA system as well producing the exact SNR value that

yields an infinitesimally small BER.

• Applying deep learning techniques in order to enhance the signal detection of a NOMA

system. The aim is to provide a deep learning-aided alternative to normal signal detection

in NOMA that is streamlined and simpler to implement.

1.4 Novel Contributions

The main contributions of this thesis are discussed as follows:

1. First contribution (Chapter 3): NOMA techniques were applied to a cooperative relaying

system and the results show a significant improvement in overall system performance in

regards to BER vs SNR. This shows that it is better to combine NOMA with cooperative

relaying than deploying NOMA by itself in terms of BER performance

This contribution has led to the following publications:
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A. Ahmed, Z. Elsaraf, F. A. Khan and Q. Z. Ahmed, ”Cooperative Non-Orthogonal

Multiple Access for Beyond 5G Networks,” in IEEE Open Journal of the Communications

Society, vol. 2, pp. 990-999, 2021.

2. Second contribution (Chapter 4): The effects of applying EXIT chart analysis on a coop-

erative NOMA system were investigated theoretically and practically. The results show

a remarkable improvement in user fairness in power allocation as a result of using EXIT

chart analysis.

This contribution has led to the following publications:

Elsaraf, Z., Ahmed, A., Khan, F.A., Q. Z. Ahmed, ”Cooperative Non- Orthogonal Mul-

tiple Access for Wireless Communication Networks by Exploiting the EXIT Chart Anal-

ysis,” J Wireless Com Network 2021, 79 (2021).

Z. Elsaraf, A. Ahmed, F. A. Khan and Q. Z. Ahmed, ”EXIT Chart Analysis of Co-

operative Non-Orthogonal Multiple Access for Next Generation Wireless Communica-

tion Systems,” 2020 European Conference on Networks and Communications (EuCNC),

Dubrovnik, Croatia, pp. 281-285,2020.

3. Third contribution (Chapter 5): The application of deep learning in communication sys-

tems was investigated as well as its deployment in a NOMA system in regards to signal

detection. The results show an improved performance in signal detection with less com-

plexity than standard SIC in NOMA.

This contribution has led to the following publications:

Z. Elsaraf, F. A. Khan and Q. Z. Ahmed, ”Deep Learning Based Power Allocation Schemes

in NOMA Systems: A Review,” 2021 26th International Conference on Automation and

Computing (ICAC), Portsmouth, United Kingdom, pp. 1-6, 2021.
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1.5 Thesis Structure

Following the main aims and objectives, the thesis is structured as follows:

• Chapter 1 introduces the research as well as outlining the motivation for researching

NOMA. The research objectives are listed here as well.

• Chapter 2 presents the literature review for cooperative NOMA, EXIT chart analysis,

and deep learning in NOMA. The background of each area is vividly detailed and the

challenges facing each area are defined.

• Chapter 3 focuses on cooperative NOMA and the new research that has been carried out

in this area.

• Chapter 4 describes EXIT chart analysis and its use with NOMA as well as the research

that has been carried out in this area.

• Chapter 5 is entirely concerned with deep learning in NOMA. It begins with a brief

background about deep learning in general before hyper-focusing on its application in

NOMA and the research that was undertaken in this area.

• Chapter 6 concludes the thesis by first summarising the research and objectives met as

well as the methodology adopted to meet said objectives. Then the overall contributions

the research has made are outlined. The future works are then outlined in concise yet

vivid detail.

1.6 Summary

The primary objective of this thesis is to address some of the challenges facing the next gen-

eration of wireless communications by utilising NOMA and its features, such as SIC, power

allocation, and signal detection, to serve cell edge users and users with a higher quality of

service.

NOMA has been shown to outperform other conventional MA techniques, such as the widely

adopted OMA, due to its higher spectral efficiency as well as its ability to achieve massive

connectivity while effectively serving users with limited resources. As a result of having such

7



features, NOMA has been poised as a reliable approach for future wireless communication

systems to adopt in order to meet their stringent demands.

However, NOMA has some flaws, including a greater receiver complexity for SIC, a high

IUI, and poor user fairness for users with a higher CSI. Incorporating additional approaches,

such as cooperative relaying, EXIT chart analysis, and deep learning for signal detection into

NOMA can address these issues.
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Chapter 2

Background and Related Works

2.1 Introduction

The trajectory of our society seems to be steering towards one dominated by fully automated

and remotely operated systems. The swift progression of nascent technologies like AI, Virtual

Reality (VR), 3D media, and the Internet of Things (IoT) has led to a significant surge in data

traffic [1]. Autonomous systems are gaining traction across various sectors - from industry to

health, transportation, maritime, and even space exploration. The anticipation is that urban

areas, vehicles, residences, industrial sites, food items, toys, and more will be embedded with

millions of sensors to enable an intelligent, automated way of life. To bring these advanced

applications to fruition, there’s a pressing need for greater spectral efficiency coupled with

ultra-low latency and energy efficiency. Studies have indicated that NOMA can deliver these

performance metrics without additional transmission resource demands. Consequently, NOMA

emerges as a promising solution for the forthcoming wave of wireless communication innovations.

2.2 Requirements of the Next Generation of Wireless

Communication Networks

To accommodate the requirements of these advanced applications, both a high data transfer

rate and reliable connectivity are essential. 5G networks, however, fall short in delivering a

fully automated, intelligent system and a comprehensive immersive experience for users utiliz-

ing VR technologies [3]. Even though 5G communication infrastructures present substantial
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improvements over their antecedents, they might not be adequate to support the anticipated

intelligent and automation systems a decade hence [4]. This is in spite of 5G networks boast-

ing heightened capabilities and an elevated Quality of Service (QoS) when juxtaposed with

4G technologies [5]-[8]. The innovations within 5G encompass several novel strategies, which

include the introduction of new frequency bands like millimetre wave (mmWave) and optical

spectra, refined spectrum allocation and oversight, and the amalgamation of both licensed and

unlicensed frequency bands [4].

However, the swift proliferation of data-driven and automated technologies could potentially

eclipse the potential of 5G wireless infrastructures. Certain devices, such as VR systems, neces-

sitate transitioning beyond 5G due to their requirement for data rates not less than 10 Gbps [1].

Consequently, as the boundaries of 5G are projected to be reached by 2030, research pursuits

are already exploring the architectural objectives for the subsequent version. To surmount the

constraints of 5G and address emerging challenges, the formulation of a 6G wireless architec-

ture endowed with groundbreaking characteristics becomes imperative. The foundational pillars

of 6G will encompass an amalgamation of attributes observed in previous iterations, such as

heightened network density, substantial throughput, elevated reliability, energy efficiency, and

extensive interconnectivity. Moreover, 6G is anticipated to perpetuate the trends of its fore-

runners by ushering in innovative services and technologies. These novel services will span

AI, smart wearable gadgets, biomedical implants, self-driving vehicles, computational reality

tools, sensory mechanisms, and 3D spatial modeling [9]. Among the paramount prerequisites

for 6G wireless infrastructures is their ability to handle vast data quantities and exceedingly

high device-specific data speeds [1].

2.3 Motivation for Multiple Access (MA)

Multiple access was proposed to enhance the 5G capabilities of Spectrum efficiency, Connec-

tivity density, and Peak data rate. In essence, MA provides concurrent access to the same

communication resources by several users. To achieve multiple access, numerous dimensions,

including time, frequency, and code, were examined. Hence, Time Division Multiple Access

(TDMA), Frequency Division Multiple Access (FDMA), TDMA/FDMA hybrid, and Code Di-

vision Multiple Access (CDMA) were developed, in that order [5].

Conventional MA techniques such as OMA experience a limit on the number of users they
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can support due to the orthogonality of their approach. This means that OMA systems cannot

support a higher number of users without requiring more bandwidth.

NOMA, on the other hand, due to the non-orthogonality of its approach, is able to support

double the number of users while utilising the same allocated bandwidth. This very desirable

trait makes NOMA a highly sought after technique for efficient MA.

2.4 MA techniques: Past and Present

Time Division Multiple Access

TDMA, as illustrated in Fig.2.1, makes use of the time domain to facilitate multiple access.

Users in a TDMA system are allotted distinct time slots or time intervals during which they

may transmit signals. Other network users are expected to wait until their corresponding

transmission time slot before transmitting. This method permits the division of a single channel

into many time slots, allowing a greater number of users to transmit per channel. However,

the reception of signals in a TDMA system is time-based and, as a result, is extremely error-

sensitive; a minor delay at one user could result in the propagation of error to every subsequent

user [6].

Figure 2.1: Time Division Multiple Access [6]
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Frequency Division Multiple Access

As shown in Fig.2.2, using the frequency domain, FDMA achieves multiple access by allocating

each user a distinct transmission frequency band. By assigning each user a specific frequency

band, each user’s signal becomes distinct enough to be easily identified by a receiver with low

complexity. Whereas FDMA would struggle to handle numerous users in a frequency-limited

system, the multiple access strategy is able to provide reliable and easy communications since

only one user can use a frequency band at any given moment.

Nonetheless, FDMA is extremely sensitive to phase shift delays, which can cause adjacent

channel interference, as shown in Fig.2.2. Adjacent channel interference occurs when a change

in the phase shift of a signal, even a small one, causes two or more signals from adjacent bands

to overlap, which makes it very difficult to extract the information from the signal using a

low complexity receiver. Adjacent channel interference can occur as a result of propagation

delay or even simple noise interference. Propagation delay refers to the time it takes for a

signal to travel from the sender to the receiver over a wireless medium and noise interference

refers to unwanted random signals or disturbances that interfere with the desired signal in a

communication system.

A strategy for combating this issue is to leave a portion of the available bandwidth empty so

that there is no information to overlap in the event of a phase shift. The unoccupied frequency

bands are known as guard bands. This strategy, however, reduces spectral efficiency because a

significant portion of the available bandwidth is underused.

TDMA/FDMA Hybrid

As Fig.2.3 illustrates, combining the mechanics of FDMA and TDMA, a system was constructed

using both approaches. This multiple access technique, termed ”Hybrid FDMA/TDMA,”

utilises both the time and frequency domains to enable multiple access to numerous users.

The method is based on the premise that users within the same frequency range might occupy

distinct time slots. This permits the allocation of the same carrier frequency to several users,

provided that these users transmit at different times to prevent interference.

This hybrid scheme allows for a network to accommodate a much larger number of users

when compared to FDMA and TDMA selectively but with the added cost of requiring a more

complex receiver to function.
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Figure 2.2: Frequency Division Multiple Access [6]

Figure 2.3: TDMA/FDMA hybrid System

Code Division Multiple Access

CDMA, as shown in Fig.2.4, is a technology for multiple access that leverages spread spectrum

signalling. CDMA uses a set of specially created pseudo-random code words to spread the

user signal, allowing it to consume more bandwidth than is required. CDMA permits the

multiplexing of numerous users on the same physical channel by utilising the code domain, as

opposed to FDMA and TDMA, which disperse their users throughout the frequency domain

and the time domain, respectively. Signal identification in a CDMA-based system is simple

since each codeword used to spread user signals is unique and can thus be used to de-spread

those signals at the receiver. [9]-[14]
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Figure 2.4: Code Division Multiple Access Signal Spreading [6]

In order to increase spectral efficiency, CDMA can also enable users to overload the system.

A system is termed overloaded when multiple users are permitted to utilise the same spread-

ing code to propagate their message. Theoretically, this strategy is capable of enhancing the

spectrum efficiency of a network, but at the expense of an increase in inter-user interference,

as user signals are given more opportunities to overlap. [6]-[15]

2.5 NOMA: Principle, Model, and Performance

NOMA, shown in Fig.2.5, is a type of superposition coding that permits several users to occupy

a single sub-carrier by assigning them various power levels based on the channel conditions of

each user. The majority of the available transmit power is allocated to users with worse channel

conditions, i.e. cell-edge users, while the remainder is allocated to customers with better channel

conditions. Due to its use of superposition, NOMA is characterised to as a type of multi-user

superposition transmission in [16].

According to the model presented in [5], consider a downlink scenario with n users ni, and

channel gain, hi, where i = 1, 2, and one base station. Assuming h1 <= h2 and ai = [1, 2] as

a21+a22 = 1 for power allocation coefficients. After performing all encoding and modulation, the

Base Station (BS) would superpose both user signals and concurrently transmit the composite

signal through each channel. As a1 > a2, User 1 can decode its own signal by considering

the other signal as noise, for instance by employing Maximal Ratio Combining (MRC), which

weighs each received signal copy according to its channel gain and then combines them. By

doing so, it coherently adds the signals in phase, thereby maximizing the signal-to-noise ratio

(SNR) for the weaker user’s signal. User 2 must decode User 1’s message before subtracting it
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from the received message to decode its own message. A procedure also referred to as Successive

Interference Cancellation or SIC, which is explored in detail in [17] and [18].

NOMA can work with both single antenna and multiple antenna scenarios. In a basic

Single-Input Single-Output (SISO) scenario, NOMA typically uses power domain separation to

serve multiple users on the same frequency and time resource. SIC is applied at the receiver.

The user with the stronger channel gain (typically the near user) is decoded first, and its signal

is subtracted from the combined received signal, thereby allowing the weaker user’s signal

(typically the far user) to be decoded next.

MIMO-NOMA can leverage spatial domain along with the power domain or code domain for

user multiplexing. The spatial degrees of freedom offered by multiple antennas can be used to

serve more users simultaneously or to enhance the reliability and robustness of user detection.

Techniques like beamforming can be integrated with NOMA to direct signals toward specific

users, thereby increasing the efficiency of user multiplexing. MRC and other techniques can be

employed to improve the decoding, especially in the presence of inter-user interference.

Figure 2.5: Basic Downlink NOMA

Studies such as [19]-[22] analyse and study the performance of NOMA in terms of its Outage,

data rate, and bit-error performance. NOMA has improved data rates compared to the current

industry standard OFDMA, as demonstrated in [23]. NOMA has much to offer to meet the

requirements of beyond 5G technology as Orthogonal Frequency Division Multiplexing (OFDM)

and its derivatives (Rel.15 CP-OFDM) are exceeded by NOMA in terms of spectral efficiency
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and data throughput.

[24] provides a clear mathematical demonstration why NOMA is superior to OMA. Outlining

various facets of each technique and conducting a comprehensive assessment of basic Power

Domain (PD) NOMA in comparison to Type I and Type II OMA in terms of the optimization

difficulties associated with user fairness. Even with diverse user fairness case scenarios, [25]

indicates that the minimum power required for NOMA is always less than that of OMA, and

the total rate is always higher.

[25] examines NOMA from the perspective of user fairness. The research investigates NOMA

under two conditions: Instantaneous and Averaged Channel State Information (CSI) at the

transmitter, with maximum-minimum and minimum-maximum approaches, respectively. Uti-

lizing conventional TDMA as a test standard, the results indicate that NOMA provides greater

user fairness. The work alludes to the fact that such performance was obtained by careful power

allocation.

The performance of NOMA with Internet of Things applications is investigated in [27], where

the spectrum usage of NOMA is compared against the fixed spectrum allocation of OMA in a

MIMO system optimised for tiny packet transmissions. Due to a lack of flexibility in spectrum

resource distribution, the article concludes that NOMA provides superior performance benefits

than OMA overall. NOMA also outperforms OMA in the low to mid SNR range. Adaptive

resource allocation for OMA is investigated, and while it introduces dynamic changes to the

features of orthogonal resource blocks, it may necessitate the use of time slots with extremely

short durations, which may not be practical [28].

NOMA relies on superposition coding and SIC at the receiver to separate and decode the

signals from different users. The central concept is around the allocation of power levels based

on the strength of channel conditions. Users with less favourable channel conditions are assigned

greater power levels, whereas users with more favourable channel conditions are assigned lower

power levels. This allows for efficient spectrum utilization and improved system capacity.

NOMA can be used with different channel models, as long as the basic principles of su-

perposition coding and SIC can be applied. Common channel models used in NOMA systems

include:

1. Additive White Gaussian Noise (AWGN) Channel: In this channel model, noise

is assumed to be Gaussian and additive to the received signal. NOMA can be applied in
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AWGN channels by adjusting power levels and using appropriate codebooks for users.

2. Rayleigh Fading Channel: This channel model accounts for the effects of multipath

propagation and can be modeled as a complex Gaussian random process. NOMA can also

be applied in Rayleigh fading channels, but it may require more sophisticated techniques

for power allocation and codebook design to account for the varying channel conditions.

3. Frequency-Selective Fading Channel: In this model, the channel response varies

with frequency, leading to frequency-selective fading. NOMA can still be applied by

considering the frequency-selective nature of the channel and adapting the superposition

coding and SIC techniques accordingly.

4. MIMO (Multiple-Input, Multiple-Output) Channel: NOMA can be extended to

MIMO channels, where multiple antennas are used at both the transmitter and receiver.

In this case, NOMA can exploit spatial multiplexing to serve multiple users simultane-

ously.

NOMA does not rely on the use of the same codes for different users. Instead, it focuses

on power and modulation level allocation to achieve multiple access in wireless communication

systems. In NOMA, users are distinguished by their power levels and modulation schemes, and

they typically use their own unique sets of codes, spreading sequences, or modulation schemes.

NOMA is designed to exploit the differences in channel conditions among users to maxi-

mize spectrum efficiency. Users who experience less favourable channel conditions are assigned

greater power levels and potentially more resilient modulation schemes, whereas users who ex-

perience more favourable channel conditions are assigned lower power levels and less resilient

modulation schemes.

In contrast to OFDMA or CDMA, where users are assigned orthogonal codes or subcarriers,

NOMA allows multiple users to share the same time-frequency resources non-orthogonally by

distinguishing them primarily through power and modulation. As a result, the codes themselves

are not required to be orthogonal.

Codes in NOMA do not become non-orthogonal within the same user subset. Instead,

the non-orthogonality arises from the simultaneous transmission of multiple users over the

same time-frequency resources. The non-orthogonality is managed in the power domain, with
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different power levels assigned to each user based on their channel conditions, ensuring that

their signals can coexist without significant interference.

In summary, NOMA does not use the same codes for different users and does not create

non-orthogonality among codes within the same user subset. It achieves non-orthogonality

by allocating different power levels and modulation schemes to users with different channel

conditions, allowing them to share the same resources efficiently.

2.6 Cooperative NOMA

Cooperation in a NOMA system is examined further in [27], which intends to harness the SIC

mechanics intrinsic to the NOMA principle to maximise the diversity gain for cell-edge users

and users with superior channel conditions. In the suggested system paradigm, transmission is

divided into two phases: A) Direct Transmission and B) Co-operation Phase.

The Direct transmission phase, shown in Fig.2.6, employs the fundamental NOMA principle,

wherein the BS superposes all user signals using superposition coding and transmits the signal

to all users. Each user, save the lead user, uses SIC to detect its message.

Throughout the Co-operation phase, shown in Fig.2.7, each Near User (NU) transmits both

the cell-edge user signal and the superposed signal to the other users. This phase is divided into

(K-1) time slots, with each time slot occupied by a single user transmitting a cooperative signal

to other network users. For instance, user 2 would use the first time slot to broadcast a signal

comprising the messages of (K-1) users to user 1, followed by user 3 transmitting the identical

signal to user 1. This procedure would then be repeated for the remaining network users. At

the conclusion of the cooperative phase, all users integrate the signals from both phases using

MRC. Using the SIC mechanism, the goal of this method is to increase the diversity gain of

all network users. This method improves efficiency at the cost of increased communication

overhead, as each user must wait until both phases are complete before decoding their own

message. [28] suggests that the system should only be utilised for short-range communications

so as to reduce the duration of time slots during the cooperative phase.

The system, however, has three significant flaws: The robustness of the system under re-

alistic inter user interference, the operation of the system in a quasi-ideal environment with

Mobile Users (MU), the energy efficiency and cost of the proposed system, and the feasibility

of the system with limited communication overhead.
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Figure 2.6: Direct Phase [28]

(a) Co-operation at SU1 (b) Co-operation at SU2

(c) Co-operation at SU3

Figure 2.7: Co-operation Phase [28]

[29] investigates energy efficiency in cooperative NOMA. Simultaneous Wireless Information

Power Transfer (SWIPT) is used to a cooperatively relaying NOMA network. The objective

was to examine the impact of the SWIPT energy harvesting protocol on network performance.

Users are separated into two groups: nearby and distant. The suggested method intends to

utilise users closest to the base station as energy collecting relays and then utilise the captured

energy to make the close users relay the message of distant users without using additional

energy. Users are distributed at random within discs using a Poisson Point Process (PPP).

Experimental and theoretical results demonstrated that the diversity gain of the proposed

system is equivalent to that of a standard cooperative NOMA system. With a little greater
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outage probability reduction rate than the typical system.

[29] proposes a system with one base station, N relays, and two users. Assuming there are

no direct links between the BS and the users, only relaying is used for communication. In

accordance with CR principles, power is given to users not based on their channel conditions

but on their individual QoS requirements such as data rates, latency, packet error rate, reliabil-

ity, connection establishment time, mobility support, jitter (for voice and video applications),

throughput, spectral efficiency, fairness, handover performance, energy efficiency, and security

and/or privacy. One primary user (PU) has more stringent QoS needs than the other secondary

user (SU).

Figure 2.8: System model for relay selection [30]

[30] investigates two relay selection strategies. The standard max-min system, in which

the objective is to select relays with the maximum minimal channel gains, and the suggested

two-stage scheme, the objective of which is to maximise the data rate of the primary user in the

first stage and the data rate of the secondary user in the second stage. In comparison to the

conventional scheme, the results demonstrate a significant improvement in the outage perfor-

mance of the system while achieving optimal diversity gain for both users. Notwithstanding the

enhancements outlined in the study, the suggested system, shown in Fig.2.8, requires greater

communication overhead to accomplish the desired outcomes.

The work in [31] also examines user relaying in cooperative NOMA. The suggested sys-

tem model, shown in Fig.2.9, intends to address the issue of enhanced spectral efficiency in

cooperative NOMA, where greater bandwidth is required for relaying, resulting in a decrease

in system-wide spectral efficiency. The suggested model, employs consecutive relaying, with

two Half-Duplex(HD) users decoding and forwarding the signal in an effort to enhance spectral
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efficiency. In an effort to increase user fairness, the research also provides an optimal power

split method for complex power distribution.

The transmission occurs in three phases. At the initial phase, the BS transmits the overlaid

signal to Near Users a and b. During the 2nd Phase, Near User a decodes and passes the far

user message, while Near User b receives a second signal from the BS carrying the far user and

user b messages. This introduces a self-interference element from user a to user b. Using the

side information of the initial signal obtained in the first phase, it is claimed that this piece of

paper is nullified. During the third phase, concurrent transmissions utilising user a and b as

relays alternately occur in reverse.

In conjunction with optimal power split power allocation, the proposed successive relaying

cooperative NOMA scheme provides superior outage performance compared to its OMA coun-

terpart and traditional HD-NOMA counterpart. While the work’s results are very encouraging

in terms of developing a robust Full-Duplex NOMA system, the obtained results assume flaw-

less SIC and disregard the error propagation issue. This system is also limited to the given user

scenario, which involves two nearby users and one distant user. How the system would deal

with the growing self intervention when more users are added has to be determined.

Coordinated direct and relay transmission, shown in Fig.2.10, is applied to NOMA in [32].

The suggested system concept contains a BS that connects directly with one user and relays

with another user using a decode-and-forward method.

The objective is to increase diversity gains by leveraging the NOMA property, in which

one user acquires the side information of another user to decode its own message. At the

initial phase, the BS transmits the overlaid signal containing the messages of users 1 and 2.

During the second phase, the relay transmits the decoded signal for user 2 while the base

station simultaneously transmits a signal containing only the message for user 1. As a result

of interference from the relay transmitting in the same time slot, user 1 uses the knowledge

about user 2’s signal to approximate the signal and, as a result, cancel the interference at the

receiver. The provided results advise employing this system in small macro cells, where a BS

communicates with a small number of users, as the interference generated by relaying would be

too great to be properly cancelled in deployment scenarios with 3 or more users. [31] -[33]

[34] shows a cooperative NOMA system that utilises SWIPT energy harvesting to achieve

cooperation by powering the cooperative relaying, as shown in Fig.2.11. The system model

consists of one BS and two groups of users, one near the BS and the other near the cell edge.
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Figure 2.9: Successive Cooperative NOMA Relaying System Model [29]

The BS is placed within a disc and the two groups of users are scattered around the BS according

to a pre-designed homogeneous PPP.

The users located near the BS are used as energy harvesting relays, used to both harvest

energy using SWIPT and forward cell edge users messages. The transmission process is com-

prised of two phases: a direct transmission phase and a cooperative phase. During the direct

transmission phase, the BS sends a signal of superposed messages according to the NOMA

principle to both user groups Energy harvesting is done at the end of the direct transmission

phase, which serves two purposes: firstly, the energy harvested is used to decode the messages

of the near user(s). According to the NOMA principle, the decoding process relies heavily on

SIC. This results in the near users gaining access to the data of the far users before decoding

their own. Secondly, using the leftover energy, the near users prepare to function as cooperative
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Figure 2.10: Coordinated direct and relay transmission system model [30]

Figure 2.11: Cooperative NOMA with SWIPT

relays for the far cell edge users. During the cooperative transmission phase, the energy leftover

from the previous phase is used to achieve cooperative relaying at the near user(s).

The analytical results cover the outage probability and diversity gains for both the near and
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far user groups. The outage probability is shown to be higher for the non-cooperative case and

the diversity gains are the same across the cooperative NOMA and cooperative NOMA with

SWIPT cases. This shows that, by utilising SWIPT, better cooperation between users can be

achieved without sacrificing diversity gains.

[35] proposes a hybrid cooperative NOMA scheme, where NOMA and OMA are combined.

Fig.2.12 shows the schemes are based on cooperative scheduling and load balancing among

different groups of users based in cells.

Figure 2.12: Cooperative NOMA for load balancing and user scheduling

The system model in this work consists of two neighbouring cells with two users each and

one user on the cell edge of each cell. To achieve ideal performance, the aim is to pair as many

users effectively together as possible according to the NOMA principle. This, however, is not

always possible as one or both cells could have already paired users or just not enough resources

to accommodate the cell edge user.

In this case, OMA is deployed. For example, if there is a user(A) that is the cell edge user
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for cells 1 and 2, two performance scenarios come into effect. One, cell 2 has enough resources to

accommodate user(A), hence no NOMA pairing is required and OMA is used to serve user(A)

or, two, user(A) needs more resources than there is available from cell 2 and there exists a

suitable pair for it, hence, NOMA pairing is used to serve user(A).

After either option is selected, definitive resource allocation is carried out. A forced handover

is performed where cell 2 signals to cell 1 that it can accommodate user(A), where it will only

be served after other users in cell 2 have been served themselves.

The simulation results obtained for a multi-cell, multi-user system model have shown a 12-

18% gain using cooperative NOMA over a non-cooperative NOMA system as well as an increase

in probability of improving their system throughput for cooperative versus non-cooperative

systems, 46% and 12% respectively.

By focusing on maximising the usage of NOMA over OMA, The cooperative NOMA system

that has been suggested enhances the system capacity and is, therefore, the optimal choice in

areas with unbalanced loads i.e hot spot areas.

[36] proposes a system model that aims to establish cooperative communications through

cooperation between the BSs, as shown in Fig.2.13. The system model under consideration here

consists of two BSs sharing one channel and serving two users, thereby exhibiting asymmetric

interference, meaning one user suffers strong interference from one cell as it transmits the second

user’s signal at the same time as the first user.

Figure 2.13: Cooperative NOMA for a mobile user
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To manage this interference, a cooperative protocol is proposed where the second interfering

BS shares its signal information with the first BS in order to aid in cancelling out the interfer-

ence. The interfered user’s BS sends out a superposed signal containing the messages of both

users. The aim of such a scheme is for both signals, the original from the first BS and the

interference signal from the second BS, to add constructively at the interfered user’s receiver.

The analytical results are derived for two cases: where both users are terrestrial and the other

where one user is terrestrial and the other is an Unmanned Aerial Vehicle (UAV).

The simulation results however are obtained for the second case only. The results presented

are obtained for the case of the UAV having a fixed altitude and travelling in a horizontal

line from BS1 to BS2, thereby having the interference caused by BS2 gradually increase as the

UAV flies. The results show that the achievable data rates of the proposed cooperative scheme

start to increase up to capacity as the UAV travels. The proposed scheme is also shown to

outperform it non-cooperative counterparts even when the interference is sufficiently high. The

proposed work is shown to work in both ideal and practical scenarios as the results show.

A MIMO case for cooperative NOMA is examined in [37] where it proposes a spatial modu-

lation aided cooperative relaying system (CRS) NOMA. Spatial modulation is a relatively new

MIMO technique that was develpoled for wireless communications. Unlike regular MIMO sys-

tems that leverage multiple antennas to transmit multiple data streams simultaneously, spatial

modulation uses the indices of the transmit antennas themselves to convey additional informa-

tion. This provides a unique combination of digital modulation and multiple antenna indexing.

The communication for two users is transmitted via two information-carrying entities of SM.

The suggested framework is examined in conjunction with multiple receiving antennas in the

context of the MIMO scenario.

Figure 2.14 illustrates the system model, which encompasses a singular BS transmitting

a composite signal based on the NOMA principle to two users: A and B. Here, user A is

proximate, while user B is positioned farther away from the BS. Users A and B are respectively

furnished with NA and NB receiving antennas, and the BS comes equipped with Nt transmitting

antennas. The communication channels - from BS to A, BS to B, and A to B - are characterized

as independent and identically distributed (i.i.d) complex Gaussian random entities. The entire

transmission procedure is bifurcated into two stages. In the first stage, the BS transmits a

layered signal to both users. Subsequently, user A employs Maximum Likelihood (ML) detection

for message decoding, whereas user B retains the received signal, postponing its decoding to
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Figure 2.14: Cooperative NOMA for MIMO scenario

the conclusion of the second stage.

During phase 2, user A forwards the message of user B through a space shift keying signal.

User B then combines the received message at the end of phase 2 with the one received at

the end of phase 1 to finally decode its own message. Monte Carlo simulations are carried

out in order to evaluate the proposed schemes against two benchmarks: CRS-NOMA, without

SM, and SM-OMA. Two performance metrics are considered here, namely, BER and data

rates. The results are obtained for a varying number of receive antennas where it is shown

that with an increasing number of receive antennas comes an increase in diversity gains and a

slight enhancement of BER performance in the low SNR region. CRS-NOMA utilising spatial

modulation is shown to outperform its CRS-NOMA counterpart by gains of 5dBs and 2.5dBs

at 10−5 BER. CRS-SM-NOMA is also shown to vastly outperform SM-OMA with about 10dBs

gains. Moreover, since the BER curves almost overlap, CRS-SM-NOMA is shown to have better

user fairness as well.

The achievable data rates for CRS-SM-NOMA also outperform the benchmark schemes.

The sum rate is also shown to improve with Nt. The ergodic sum rate of CRS-SM-NOMA

is shown to be higher than SM-OMA in the low SNR region and almost equal in the high

SNR region. The proposed system model, through the simulations, is shown to be robust and

capable in a MIMO scenario. However, the proposed model included only two two users in it’s

testing environment, thus, there exists the question whether this proposed system can achieve

massive connectivity.
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Challenges

According to the research conducted to date, one of the particular issues of cooperative NOMA

is a problem with spectral efficiency, as more relaying will result in higher spectrum use. Full

Duplex is being considered as a possible alternative. Energy efficiency problems also exist at

each cooperative relay in case of large scale deployment.

2.7 EXIT Chart Analysis

EXIT charts have emerged as a fundamental technique for monitoring the convergence tenden-

cies of systems employing iterative decoding [38], [39], [40]. They enable the pinpointing of the

SNR threshold where a markedly minimal Bit Error Rate (BER) can be realized, circumventing

the need for traditional Monte Carlo simulations [39], [40].

Figure 2.15: EXIT chart analysis block diagram example
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Information is exchanged between the input and output module of the MUD by varying the

channel conditions as shown in Fig.2.15. The proposed system model for the EXIT chart is

comprised of a transmission and a reception stage. The transmission box is represented by the

top-left corner of Fig.2.15 while the lower left-hand side represents the reception box. There are

three parts to an EXIT chart: The outer curve, inner curve, and the stair shaped trajectory,

as shown in Fig.2.16.

Figure 2.16: Example of an EXIT chart

The utilisation of interleavers allows for the simulation of both the inner and outer curves,

enabling the prediction of values pertaining to the stair-shaped trajectory. An open tunnel is

present when the trajectory, resembling a staircase, aligns with both the inner and outer curves.

This signifies that the system has achieved its maximum convergence, resulting in unity gain

for the system, provided that the inner and outer curves do not collide prior to this point. The

relationship between the length of the interleavers and the alignment of the inner and outer

curves with the stair-shaped trajectory is direct. Given that the length of the interleavers in

our particular scenario is limited, it is possible that the trajectory will not align precisely with

the inner and outer curves.
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2.7.1 The Turbo Principle

The ’Turbo-Approach,’ which was initially devised for deciphering concatenated codes [41],

[42], is a generalized decoding and detection principle applicable to a wide range of detection

and decoding challenges. Examples of such considerations include parallel or serial concatena-

tion, normalization, encoded modulation, multi-user detection, multiple input/output (MIMO)

detection, joint source and channel decoding, and low-density parity checks. Often, the sys-

tem can be characterized by a serial concatenation, as depicted in Fig.2.17. In a basic mobile

system, the multipath channel would act as the innermost layer’s ”encoder.”

A feature of the receiver is that both detectors/decoders at the reception antenna are soft-

in/soft-out decoders, capable of discerning and generating likelihoods or soft values. Impor-

tantly, the extrinsic segment of one decoder’s soft-output is relayed to the subsequent decoder

as a priori input, underscoring the receiver’s principal attribute. Leveraging this approach, de-

coding of two-dimensional product-like codes [41] and other concatenated codes [42] has been

proposed.

The program that Berrou utilises is sometimes referred to as a ”turbo code.” To be more

specific, nothing in the codes can be interpreted as ”turbo”. The only component that uses

turbo feedback is the decoder.

This is comparable to what happens in a mechanical turbo engine, as depicted in Fig.2.18.

Fig.2.18 depicts the operation of a standard turbo coder. Initially, the data is fed to the

turbo decoder, which processes and yields intrinsic information, such as the Log-Likelihood

Ratios (LLR). This intrinsic data is subsequently relayed to the deinterleaver, resulting in the

extraction of extrinsic information, such as a priori information. This extrinsic data is then

conveyed to the outer decoder, which processes it further before forwarding it to the interleaver.

Following this, the interleaver produces decoded intrinsic data, which is then passed to the inner

decoder. Along with the received signal, this data is used to generate intrinsic details for the

subsequent iteration. This cycle repeats until the error observed at the outer decoder becomes

infinitesimally small. The trubo coding example shown in Fig.2.18 has the interleaver length

set to 2048 bits as to provide operable error correction capability (longer interleavers provide

better error correction but more complex turbo coders), convergence speed, latency, memory

requirements, and performance in varying channels.

Turbo bit Interleaved Coded Modulation (BiCM), serial code concatenation, turbo equali-
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sation, turbo Differential Phase Shift Keying (DPSK) modulation, turbo MIMO, turbo source

channel, and Low Density Parity Check (LDPC) encoder/decoder are some of the established

configurations for a turbo coding system. Most encoders and some decoders utilise Forward

Error Correction (FEC) to carry out their tasks.

Figure 2.17: Serial concatenated system with iterative detection/decoding [43]

Figure 2.18: Turbo decoder including inner and outer decoders

Similar to how compressed air is taken back from the compressor to the main engine, the

other decoder receives extrinsic information. This iterative approach that entails the exchange

of information among the two decoders is challenging to examine and define. The EXIT chart

created by Stephan ten Brink [43] for extrinsic transfer of information is an incredibly useful

tool.
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2.7.2 Mutual Information (MI) and EXIT Charts

Shannon’s MI

Consider U and V represent two random variables with real (as opposed to imaginary) values.

The MI of Shannon is therefore defined as:

I(U ;V ) =

∫ ∫
f(u, v) log

f(u, v)

f(u).f(v)
dudv (2.1)

with

I(U ;V ) = H(V )−H(V |U) (2.2)

where

H(V |U) =

∫ ∫
f(u, v) log

1

f(v|u)
dudv (2.3)

where f(u, v) denotes the joint probability density function and f(u) and f(v) represent the

marginal probability density functions,H(V ) represents the entropy of variable V , andH (V | U)

denotes the conditional entropy of V given U .

For an additive channel with V = U +K with statistically independent K

H(V |U) = H(K) (2.4)

with the transmit power Pu = σ2
u = Es(1/T ), where σ represents the variance of the signal, T

represents the symbol duration, Es represents the energy per symbol, and Es(1/T ) calculates

the power of the signal, the noise power Pn = σ2
n = σ2

k = (N0/2)× (1/T ) and the receive power

Pv = σ2
v = σ2

u + σ2
n = Pv = Pu + Pn we have

I(U ;V ) = H(V )−H(K) (2.5)

I(U ;V ) ≤ 1

2
log2(1 +

Pu

Pn

) (2.6)

I(U ;V ) ≤ 1

2
log2(1 +

2Es

N0

) (2.7)

The MI is consistent with the AWGN channel when there’s a Gaussian input equality. Given

both Gaussian input and noise, the output similarly assumes a Gaussian distribution, thereby

achieving channel capacity.
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C = max
f(U)

I(U ;V ) =
1

2
log2(1 +

2Es

N0

) (2.8)

If we restrict ourselves to binary inputs with u ∈ {+1,−1} the MI becomes

I(U ;V ) =
∑

u=+1,−1

∫ +∞

−∞
f(v|u)P (u) log2

f(v|u)
f(v)

dv (2.9)

and the maximal MI is achieved for equally likely inputs x as

I(U ;V ) =
1

2

∑
u=+1,−1

∫ +∞

−∞
f(v|u)P (u) log2

f(v|u)
f(v)

dv. (2.10)

with

f(v) =
1

2
(f(v|u = +1) + f(v|u = −1)), (2.11)

and for u = 1:

f (v | u = 1) =
1√
2πσ

exp− (u−1)2

2σ2 , (2.12)

and for u = −1:

f (v | u = −1) = 1√
2πσ

exp− (u+1)2

2σ2 (2.13)

where σ2 = N0/(2Es) The performance of the integral, which must be assessed numerically,

is depicted in Fig.2.19. It indicates how much of a bit is known following transmission via a

noisy channel.

2.7.3 The EXIT Chart

The EXIT Chart, which was formulated by Stephan ten Brink, graphically represents the

transmission of information in turbo decoding and the corresponding decoding efficiency in

the descending region. The analysis involves a comparison of the MI of the initial constituent

decoder with that of the second constituent decoder, which is represented by the test (a priori)

channel. To clarify, the quantified result of the inferior division establishes the numerical

representation on the abscissa of the EXIT chart, while the quantified result of the superior
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division establishes the numerical representation on the ordinate. Both of the aforementioned

values have a range that spans from 0 to 1. During the following (partial) iteration, the two

decoders exchange their roles: The initial output of the primary decoder serves as the a priori

input for the secondary decoder. This enables the independent analysis and optimisation of

each individual code component. The output solely utilises extrinsic L-values denoted as L1o”.

This implies that the soft output L-value of the complete output is subtracted from the a priori

input value. This hinders the spread of information that has already been established. The

quantification of the information transfer function T is:

I(LE;U) = T (I(LA;U)) (2.14)

with the following provisions:

• The model assumes a Gaussian distribution for the input LA with parameter σ2
a ↔

I(LA;U), while also utilising a large interleaver to ensure statistical independence.

• The utilisation of inner decoders in a serial concatenated scheme and parallel concate-

nated schemes necessitates the incorporation of supplementary parameters, namely LCH

and σ2
CH . The channel SNR or I(LCH ;X) is featured as a parameter on a collection of

EXIT curves.

• In the context of serial concatenation, the input for outer decoders is solely represented

by L
(o)
A , which is derived from the interleaved serial L

(i)
E .

2.7.4 EXIT Chart Applications

Out of the many applications that could be used, we will only provide one example of an outer

code and one example of an inner ”code,” and those examples will be Quadrature Amplitude

Modulation (QAM) mapping and precoding.

QAM Mappings

Take, for instance, a QAM system with memory 2 and a rate 112 outer channel code, illustrated

in Fig.2.19, which represents an application of turbo principles. This system is identified as

bit-interleaved coded modulation (BICM). When the QAM mapping is appropriately selected,
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the a priori information of the other bits, denoted as Ld
e(c), can enhance the detection of the

prevailing bit, even in the absence of explicit memory. Ld
a(c) represents the extrinsic information

returning to the demodulator. C denotes the interleaved encoded data, Ck represents the data

after passing through the serial to parallel converter, and sk is the modulated information, rk

is the information after passing through the channel.

Figure 2.19: Coded system with convolutional codes as outer code and QAM transmission as
inner code with BICM [43]

Irregular and Regular Convolutional Codes

Envision a serial concatenation that utilizes a convolutional outer code. For this external FEC

coding mechanism, a suite of punctured convolutional codes with memory 4 and LR = 7 (4/1

2, 5/1 2, 6/1 2, 7/1 2, 8/1 2, 9/1 2, 10/1 2) rates is adopted. Their EXIT charts are represented

by dashed trajectories in Fig. 2.20 and initiate at the coordinate (0,0) since the outer decoder

solely intakes a singular input from the internal decoder. Postulate a specific EXIT chart for

the internal system (termed decoder II; here, the A Posteriori Probability equalization of a

multi-path channel [II]) at a defined channel SNR. This provides an initial value even when

presented with a zero a priori input. The rate 1/2 code (visible as the fifth dashed trajectory

from the apex) fails to achieve convergence through iterative processes due to the intersecting

nature of the EXIT trajectories. Nevertheless, an irregular code maintaining an average rate

of 1/2, as visualized in Fig. 2.21, can be formulated.

We have the following constraints on the αk, which represents the fraction of edges in the
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Figure 2.20: Multipath transmission as inner code as well as 7 convolutional codes behaving as
outer codes EXIT chart [43]

Figure 2.21: Irregular code construction [43]

tanner graph that are connected to variable nodes of degree k with LR being the maximum

degree of the variable nodes in the graph, and Rk being the coding rate, in this FEC code:

LR∑
k=1

αk = 1, (2.15)

LR∑
k=1

αkRk = 1/2, (2.16)

and

αk ∈ [0, 1], k = 1, ...., LR. (2.17)
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Given that the L-values across all subcode decoders exhibit symmetry and uniformity, the

cumulative transfer function is the aggregate of the individual EXIT transfer curves.

T (i) =

LR∑
k=1

αkTk(i). (2.18)

By fine-tuning the collection {αi} to ensure that curves I and II closely align without inter-

secting, thus preserving a suitable open channel for the iterations [43], we derive the continuous

curve denoted as I.

2.8 Deep Learning

2.8.1 Background

Types of AI

AI, machine learning, neural networks, and deep learning can be compared to Russian nesting

dolls, which is perhaps the simplest method to conceptualise them. Each term is fundamentally

a subset of the preceding.

That is, machine learning is a subfield of AI, as shown in Fig.5.1. Deep learning is a

specialised area within the broader field of machine learning, wherein the fundamental building

blocks of the algorithms are neural networks. The distinguishing factor between a neural

network and a deep learning algorithm lies in the number of node layers, or depth, with the

latter requiring more than three layers. [44]

Deep Learning Versus Machine Learning

Deep learning is distinguished from conventional machine learning by the data types and learn-

ing techniques it employs. Using structured, labelled data, machine learning algorithms make

predictions. This means that certain features are extracted from the model’s input data and

grouped into tables. This does not necessarily imply that it does not employ unstructured data;

if it does, it is typically pre-processed into a structured format [45].

Deep learning eliminates a portion of machine learning’s standard data preprocessing re-

quirements. These algorithms can process and analyse unstructured data such as text and

images, as well as automate feature extraction, thereby reducing the need for human special-
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ists. For instance, suppose we wished to organise a collection of photographs of various pets by

”cat,” ”dog,” ”hamster,” etc. Algorithms capable of deep learning can determine which char-

acteristics (such as ears) distinguish one animal from another. This characteristic hierarchy is

constructed manually by an expert in machine learning. Then, through gradient descent and

backpropagation, the deep learning system modifies and optimises itself for accuracy, enabling

it to make more precise predictions about a new image of an animal [46].

Machine learning and deep learning models are also capable of multiple forms of learning,

which are typically categorised as supervised learning, unsupervised learning, and reinforcement

learning (RL). Supervised learning employs labelled datasets to classify or generate predictions;

this requires human intervention to label input data appropriately. Unsupervised learning, on

the other hand, does not require labelled datasets; it discovers patterns in the data and clusters

them based on any distinguishing criteria. RL is the process by which a model enhances its

performance of an activity in a given environment in order to maximise the reward based on

the feedback it receives.

The Functioning of Deep Learning

Deep learning neural networks, often termed artificial neural networks, endeavor to replicate

the workings of the human brain utilizing data inputs, weights, and biases. In unison, these

components accurately identify, categorize, and delineate data entities. In these networks, the

predictive or classifying function is refined and enhanced through several tiers of interlinked

nodes, a process termed forward propagation. Within such networks, the discernible layers

comprise the input and output stages. The input layer introduces data for processing to the deep

learning structure, while the output layer produces the concluding prediction or classification

[47]-[50].

Back-propagation modifies the function’s weights and biases by traversing backwards through

the layers in an effort to train the model using techniques such as gradient descent to quantify

errors in predictions. Forward and backward propagation allow neural networks to generate

predictions and correct for errors. The precision of the algorithm develops continuously over

time. The basic form of deep neural network has been described above. However, deep learning

algorithms are extremely sophisticated, and there are a variety of neural network designs to

address specific problems or datasets [51-53].
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Convolutional neural networks (CNNs) are predominantly utilised in computer vision and

image classification applications, enabling tasks such as object detection and recognition. In

2015, a CNN bested a human for the first time in an object identification competition. RNNs are

frequently used in natural language and speech recognition applications because they leverage

sequential or time series data [54]-[57].

CNNs obviate the requirement for manual feature extraction, thereby dispensing with the

need to identify the features utilised for image classification. The CNN shown in Fig.2.22 for

example, works by extracting features directly from images. The salient characteristics are not

pre-existing; rather, they are acquired during the network’s training process on a dataset of

images. The utilisation of automated feature extraction renders deep learning models notably

precise for computer vision applications, specifically object classification.

Figure 2.22: A network with many convolutional layers. Filters are applied to each training
image at different resolutions, and the output of each convolved image serves as the input to
the next layer. [89]

CNNs acquire the ability to identify distinct characteristics of an image through the utilisa-

tion of numerous hidden layers, ranging from tens to hundreds in number. The augmentation

of hidden layers results in an elevation of the intricacy of the acquired image characteristics.

As an illustration, the initial concealed layer may acquire the ability to identify edges, while
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the final layer acquires the ability to identify intricate patterns that are tailored to the contour

of the object being identified.

Neural Networks

A neural network is a functional unit of deep learning that operates by accepting input and

producing an output. Artificial neural networks are utilised in the field of Deep Learning.

Artificial neural networks emulate the cognitive processes of the human brain in order to address

intricate data-related challenges. [58]-[60].

These technologies solve problems in image recognition, speech recognition, pattern recog-

nition, and natural language processing, among others.

Before diving into neural networks, a number of key terms needed to be defined [61]-[62]:

• Neuron: A fundamental component of artificial neural networks. The system is account-

able for receiving input data, executing computations, and generating output.

• Input data: Neurons receive information or data.

• Artificial Neural Network: The computational system is modelled after the neural

networks found in the human brain, which are responsible for processing information.

• Deep Neural Network: A deep artificial neural network is characterised by the presence

of multiple layers situated between the input and output layers.

• Weights: The synaptic efficacy refers to the degree of potency in the inter-neuronal

connection. The impact of the input on the output is determined by the weights.

• Bias: A supplementary variable employed in conjunction with the summation of the

multiplication of weights and inputs for the purpose of generating an outcome.

• Activation Function: Determines a neural network’s output.

Overview

Figure 2.23 depicts a basic neural network comprised of synthetic neurons responsible for re-

ceiving and analysing input data. Information is transmitted sequentially through the input

layer, the hidden layer, and the output layer. The initiation of a neural network process occurs
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Figure 2.23: Rudimentary example of a neural network as it is used in deep learning systems
[62]

upon the provision of input data to the system. The information undergoes a series of layers of

processing in order to generate the intended output. A neural network is capable of acquiring

knowledge from organised data and demonstrating the resulting output. The acquisition of

knowledge that occurs within neural networks can be classified into three distinct categories:

• Supervised Learning: The algorithms are fed with inputs and outputs, aided by la-

belled data. Subsequently, the anticipated outcome is projected subsequent to receiving

instruction on data interpretation.

• Unsupervised Learning: An artificial neural network is capable of autonomous learning

without any human intervention. The absence of annotated information necessitates the

utilisation of patterns discerned from the output data to determine the output.

• RL: learning takes place according to the information acquired during the feedback stage.

A neuron is considered to be the fundamental unit of a neural network. The application

employs the supervised learning approach for data classification and acquisition.
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Supervised Learning Algorithms

Supervised learning is a method utilised in the development of AI, whereby a computer algo-

rithm is instructed using input data that has been categorised for a specific output. The model

undergoes training until it attains the capability to identify the fundamental patterns and as-

sociations between the input data and the output labels, thereby facilitating the production of

precise labelling outcomes when confronted with novel data [63].

Supervised learning has demonstrated efficacy in addressing classification and regression

tasks, such as discerning the appropriate category for a news article or forecasting the sales

volume for a forthcoming date. The objective of supervised learning is to interpret data in

relation to a particular inquiry [64].

Unsupervised learning stands in contrast to supervised learning. This methodology involves

providing unannotated data to the algorithm, which is programmed to autonomously identify

patterns or similarities.

Unsupervised Learning Algorithms

The process of training models on unprocessed and unlabeled data is referred to as unsuper-

vised deep learning. Frequently, it is utilised for the purpose of detecting patterns and trends

within unprocessed data sets, or for grouping comparable data into a predetermined quantity

of clusters. Frequently, it is a methodology employed during the initial exploratory stage to

enhance comprehension of the data-sets [65].

Unsupervised deep learning is, as its name suggests, a more hands-off approach than su-

pervised deep learning. The task of setting model hyper-parameters, such as determining the

number of cluster points, is typically performed by a human operator. However, once these pa-

rameters are established, the model is capable of effectively processing vast arrays of data with

minimal human oversight. Unsupervised deep learning is a suitable approach for addressing in-

quiries pertaining to latent patterns and correlations within data that have not been previously

observed.[66]

A significant proportion of the data that is currently accessible is unannotated and unpro-

cessed. Unsupervised learning is a potent technique employed to extract insights from data by

categorising it based on shared characteristics or identifying underlying patterns within data

sets. In contrast, the utilisation of supervised deep learning may require significant resources
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due to the requirement of annotated data [67]-[70].

Unsupervised deep learning is mainly used to:

• To cluster data-sets based on similarities between their features or to segment the data.

• Recognise the correlation among diverse data points, such as the automated suggestions

for music.

• Conduct preliminary data analysis

Reinforcement Learning

RL, illustrated by Fig.2.24, pertains to the process of instructing deep learning models to

execute a series of decisions. The agent acquires the ability to attain a specific objective in

an environment that is characterised by uncertainty and may be intricate in nature. In the

context of Reinforcement Learning, an AI agent is presented with a scenario that resembles a

game. The problem is approached by the computer through the utilisation of a trial and error

method to arrive at a solution. In order to achieve desired outcomes, programmers incentivize

AI systems through a system of rewards and penalties based on their actions. The objective is

to optimise the overall reward, as stated in [71].

Whilst the designer is responsible for establishing the reward policy and game rules, they do

not provide any guidance or recommendations to the model for resolving the game. The model

is responsible for determining the optimal approach to achieve the highest possible reward,

commencing with random attempts and culminating in advanced strategies and exceptional

abilities [72]-[75].

Through the utilisation of search algorithms and iterative experimentation, RL presently

stands as the most effective means of stimulating artificial intelligence’s creative capacity. Unlike

humans, AI has the ability to accumulate experience from numerous simultaneous game-plays

through the utilisation of a RL algorithm, provided that the computer infrastructure is powerful

enough [76].

Historically, the utilisation of RL was constrained by inadequate computational infrastruc-

ture. Nonetheless, advancements were made. The recent advancements in computational tech-

nologies have brought about significant changes in the early progress, paving the way for novel

and inspiring applications.
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The utilisation of RL in the development of autonomous vehicles’ control models is a note-

worthy illustration of its potential application. Under optimal conditions, it is preferable for

the computer to receive no directives pertaining to driving.

Figure 2.24: Simple block diagram for RL [77]

The software developer would refrain from implementing fixed solutions for any aspect

related to the task at hand and instead enable the machine to acquire knowledge from its own

mistakes. Ideally, the sole component that would be pre-programmed in an optimal scenario is

the incentive mechanism.

Differences between RL and unsupervised learning

While both supervised learning and RL involve establishing a relationship between input and

output, there is a fundamental difference in the way feedback is provided to the agent. In

contrast to supervised learning, where the agent is given the correct set of actions to perform

a task, RL employs rewards and punishments as signals to reinforce positive and negative

behaviour.

In contrast to unsupervised learning, RL diverges in its objectives. The objective of unsu-

pervised learning is to identify commonalities and discrepancies among data points, whereas

in the context of reinforcement learning, the objective is to determine an appropriate action

model that would optimise the overall cumulative reward of the agent. The diagram presented

in Figure 2.24 depicts the feedback loop between action and reward in a typical reinforcement

learning model.
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RL problem formulation

Several fundamental terms that define the core components of an RL problem include:

• Environment: material environment where the agent functions.

• State: present state of the agent.

• Reward/Penalty: response from the surroundings.

• Policy: approach to associate the agent’s state with particular actions.

• Value: anticipated reward an agent is expected to obtain by executing an action in a

given state.

2.8.2 Deep learning in NOMA Systems

In the domain of wireless network communication, while the commercial implementation of

deep learning devices is relatively infrequent [78], a considerable number of researchers are

endeavouring to integrate deep learning techniques into communication systems primarily to

enhance the performance of existing signal processing algorithms. In the process of decoding

information transmitted across a channel, deep learning has the capability to acquire a decoding

algorithm rather than a basic classifier. Several instances of effective outcomes have been

documented in the literature. Instances such as the process of deciphering linear code [79] and

the utilisation of polar code [80] serve as illustrative examples.

The study presented in [81] demonstrates the enhancement of the standard belief prop-

agation (BP) decoder and its integration into a BP-CNN system. This integration leads to

enhanced BER performance without significantly increasing the complexity of the receiver. Ac-

cording to deep learning theory [82], this method demonstrates superior performance compared

to state-of-the-art compressed sensing techniques in terms of both signal recovery quality and

computational efficiency. Furthermore, an area of research that has gained significant popular-

ity is the field of modulation categorization and identification, which is mostly based on deep

learning techniques [83].

The efficiency of the design schematic for the stacked auto-encoder is observed during the

deployment of, protocol categorization, feature learning, and anomalous protocol detection

[84]. Mobile traffic classifiers, based on Deep Learning (DL), have also been found to be able to
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operate under encrypted traffic while mirroring their complicated traffic patterns. Achievements

made in blind detection for MIMO systems with DL are also continuously being discovered [85],

[86]. Furthermore, a technique that implements DL into an OFDM system has been presented

[87]; its simulation results divulge the promising performance of DNNs.

In [88], a comprehensive DL system was proposed, consisting of an encoding layer, noise

layer, and decoding layer. This system incorporated a long-short-term memory (LSTM) network

to facilitate uplink non-orthogonal multiple access (NOMA) transmission. Additionally, [89]

extended this DL system to include MIMO scenarios. The auto-encoder’s superb performance

was show-cased by their simulation results for jointly learning transmit and receive functions.

In most real-life environments however, it would be hard to artificially train and optimally

utilise both send and receive functions of the DL system.

The research contributions of [90] have shown that deep learning allows for an effective

solution to fast data clustering since various information features of higher dimensionality can

be used in a flexible manner [91] as well as having unique optimisation behaviour. Adopting a

deep learning approach also allows for the training of the input signals, which leads to better

performance and can be used to design systems to be deployed in unknown channel environ-

ments. It also boasts low system complexity and allows for communication system to operate

with minimal human intervention. Deep learning based communication systems experience low

power consumption.

Moreover, with regards to the pursuit of knowledge discovery, it is essential to develop

algorithms that are efficient through the utilisation of the foundational structures inherent in

channel information. In order to reduce the computational strain associated with the complex

user clustering problem, non-optimal methods such as matching theory-based user scheduling

[92]-[93] were developed. These algorithms aim to provide a solution by reducing the need

for brute-force calculation. The aforementioned research projects, however, mostly focus on

algorithm development while neglecting the incorporation of the learning feature.

Deep learning algorithms supply a novel and effective solution for improving the system

performance of NOMA systems by making expert use of adaptive learning properties. Deep

learning algorithms are also able to discover the link between channel information and system

performance [94], [95].

Motivated by the above-mentioned features and benefits from applying deep learning to

NOMA systems, [96] reviews the techniques that combine NOMA with the aforementioned
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technologies while maintaining an emphasis on several fields or areas of research where deep

learning in NOMA can be applied. Said fields of research are: optimal power allocation using

deep learning, user clustering using deep learning, and signal detection using deep learning.

2.8.3 Application of Deep Learning in Power Allocation

In order to effectively leverage the benefits of the NOMA system, power allocation with re-

stricted resources is a crucial issue that must be addressed. This problem of optimal power

allocation has proven to be Non-deterministic Polynomial time (NP)-hard, meaning that in or-

der to obtain an optimal solution, all channel assignment permutations must be studied, which

is impractical if not extremely computationally difficult and costly.

Researchers have put forth a variety of approaches to address this challenge. The proposed

solutions encompass power allocation techniques for a downlink single-input single-output non-

orthogonal multiple access (SISO-NOMA) system with two users [97]. These solutions address

power allocation for achieving optimal user fairness [98] as well as maximising energy efficiency

[99]. Nevertheless, a considerable number of these proposed solutions have been proven to be

less than ideal, thus requiring the implementation of deep learning methods. In the subse-

quent section, a comprehensive literature review will be provided, focusing on deep learning

approaches to address the power allocation problem. The review will go into the subject matter

with adequate depth and analysis.

The analysed research has attracted significant attention due to recent technological devel-

opments in power allocation, namely in the field of NOMA, which incorporates deep learning

techniques. The aim of this study is to examine the power allocation mechanism within a

NOMA system, with a particular focus on its integration with deep learning techniques. The

utilisation of an Attention-based Neural Network (ANN) is employed for the purpose of con-

ducting channel assignment. [100] presents a method based on Deep Reinforcement Learning

(DRL) for efficiently distributing power to customers. The approach utilises an attention-based

Neural Network for the purpose of channel assignment.

The system model in a downlink NOMA scenario comprises of N subscribers and a single

BS. The RL algorithm based on deep learning operates by designating the BS as the agent and

the users as the performance environment. Prior to allocating channels and resources to users,

the BS elects a course of action (channel assignment) from a predetermined collection. Subse-
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quently, a feedback signal is transmitted to the BS to facilitate the allocation of users for the

next transmission, based on the environment’s response (i.e., the users). The aforementioned

procedure consists of three fundamental components, namely the status space, the action space,

and the reward function. The channel information is allocated to a state space, which is de-

noted by the user channel pairs. The action space pertains to the selection of a transmission

channel for a singular user by the agent, specifically the base station.

In order to comply with the user channel allocation specifications, the quantity of actions is

limited to ensure that each user is associated with a distinct action. The allocation procedure

terminates after N iterations. The reward function is the feedback mechanism that is conveyed

to the agent upon the completion of each time slot, indicating the outcome of the transmission,

whether it was successful or unsuccessful. The signal comprises the data rates experienced

by individual users and transmitted by the base station. The objective of [101] is to enhance

the incentive signal, thereby optimising the data rates that individual users experience. The

collected results demonstrate a comparison of overall rates. [101] proposes a system model for

achieving sum-rate maximisation through the application of DL methodology in joint resource

allocation. The performance of the DL-based approach is compared to that of a non-DL-based

approach, revealing a significant advantage for the former.

The results encompass spectral efficiency, minimum data rates, and sum rates for different

batch sizes and learning rates. Among them, the maximum performance is observed while

using a batch size of 40 and a learning rate of 0.001. The results of all tests indicate that the

DL-based method consistently achieves superior performance compared to its non-DL-based

counterparts. In [101], a power allocation strategy is proposed that utilises DL approaches.

The objective of this scheme is to optimise the system sum-rate in a downlink NOMA scenario

where SIC is incomplete. The utilisation of an exhaustive search technique is employed in order

to ascertain the most optimal distribution of power. A power allocation approach is given

with the objective of maximising the total rate experienced by the system in the scenario of

imperfect SIC. The proposed methodology employs DL techniques to anticipate the optimal

power allocation variables by means of an exhaustive search approach. The system model

consists of a singular BS that offers service to K users, each equipped with a single antenna.

The BS is located at the central position within a cell, whereas the users are randomly dispersed

across the cell.

The proposed inputs for the DNN include the Channel Response Normalised by Noise, the

48



total transmission power, and the signal power percentage without SIC. The DNN incorporates

all input data to effectively optimise the output, which consists of a set of factors related to

power allocation. The obtained outcomes encompass a juxtaposition of the sum-rate in relation

to the overall transmission power for two different signal power configurations in the pre-SIC

scenario, involving two and three users. Additionally, the average Central Processing Unit

(CPU) processing time is examined in relation to the total transmission power for the same

two and three user scenarios.

The findings indicate that the proposed methodology yields performance that is close to

optimal in a scenario involving two users. Furthermore, this level of performance is sustained

even when there is a decline in performance within the range of low total transmission power.

The processing time of the ideal non-DL system exhibits an exponential growth pattern as

the total transmission power increases. In contrast, the proposed scheme demonstrates a low

initial processing time that remains constant despite an increase in total transmission power.

Furthermore, the simulation results illustrate that the proposed approach can get nearly ideal

sum rate performance while greatly reducing computational complexity.

2.8.4 User Clustering Using Deep Learning

User clustering is a significant problem in NOMA systems. Users would be grouped together

according to a clustering algorithm. Every individual user is then served by a NOMA beam.

In a system like this, the problem of clustering the users in an optimal way presents itself. The

aim being to cluster users in such a way that users in one group have

highly correlated channels (e.g: Indoor scenarios with dense users for an environment like

a conference room or auditorium) while, simultaneously, having less correlation with the other

users in the network. This will lead to an efficient use of the available resources since the system

will experience much reduced interference while simultaneously optimising the throughput.

Previous solutions to user clustering in NOMA include, dynamic user grouping in order to

achieve better system throughput with better BER using a joint resource allocation algorithm

[103], and user clustering for a downlink NOMA system that remarkably outperforms others

in the literature [104]. The clustering problem, especially with a large number of users, is a

combinatorial problem which is specifically why the application of deep learning is required to

solve it optimally.
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Figure 2.25: Illustrating Multi-cell NOMA uplink resource allocation by using optimisation
algorithm to efficiently cluster users for each resource block at the base-station side[102]

[105] proposes a user clustering-based resource allocation with uplink NOMA techniques

in a multi-cell system that performs user grouping based on network traffic using RL. The

system model, illustrated by Fig.2.25, consists of N BS communicating with K IoT users via J

orthogonal sub-channels. For each BS, the bandwidth is divided equally into orthogonal sub-

channels. Users are grouped together following the NOMA principle, where more than one user

can utilise one orthogonal sub-channel to transmit to the BS in an uplink scenario. The users

start by transmitting the superposed signal containing the signals of both users occupying one

sub-channel to the BS.

Then the BS applies SIC to sequentially decode each user’s signals. The optimal user

resource allocation and user grouping is considered as a Markov Decision Process (MDP) [106].

State-Action-Reward-State-Action Q-learning is used for light network traffic and DRL is used

for heavy network traffic. The results obtained for this work show the proposed system is

stable when deployed in different types of networks. The proposed algorithm is also shown to

outperform its OMA counterpart.

2.8.5 Signal Detection Using Deep Learning

Originally, SIC has been widely employed as the prevailing approach for detecting NOMA

signals. In the context of a downlink scenario, the generation of a transmission signal is achieved
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by means of Superposition Coding (SC), subject to a power constraint imposed at the BS.

Subsequently, the impaired signal will employ the SIC technique at the receiver to decipher its

communication, based on the User Equipment (UE) channel gain sequence within a specific

user cluster. The SIC procedure shall be executed in accordance with the NOMA principle.

SIC can be considered as an optimal detection scheme for MA from an information theoretic

standpoint, as it enables the attainment of the multi-user capacity region in both the uplink

and downlink. Several studies have employed SIC for signal detection. The aforementioned

works encompass a collaborative approach that combines user activity and data detection using

structured compressive sensing for NOMA [107]. Additionally, a scheme for detecting multiple

users and signals in the terrestrial return channel with NOMA is proposed, which is based on

Generalised Spatial Modulation [108]. Furthermore, a grant-free NOMA system is introduced,

which incorporates joint user identification, Channel Estimation (CE), and signal detection

[109].

Instead of SIC however, deep learning techniques are proposed as a viable substitute. Multi-

layer NNs in particular are proposed to achieve signal detection in NOMA systems. As will

become apparent through the rest of this section, there are many deep learning aided techniques

proposed for signal detection in NOMA.

[110] proposes an online learning detection method for detecting users in large clusters that

are utilising NOMA in a downlink scenario. The aim being the development of a sum space

design that is robust against the variations of a changing wireless network environment. Such

changes can deteriorate the performance of a non-linear adaptive filter. The results compare the

proposed partially linear adaptive filter with non-linear adaptive filter (NLAF) and maximum

mean square error (MaxMSE) SIC in terms of average Gray coded BER. The partially linear

adaptive filter is shown to achieve better performance when compared to non-linear adaptive

filters and MaxMSE-SIC.

The study in [111] presents a system model designed to blindly detect the modulation order

of interference signals in a downlink NOMA system using a machine learning algorithm that is

based on the Anderson-Darling test. The system model is comprised of one BS and N users in a

downlink NOMA scenario. Based on the concept of PD-NOMA, the user signals are superposed,

using a process called SC, and broadcast across the network.

The Machine Learning Algorithm based on Anderson-Darling test is divided into two phases,

the training phase and the blind detection phase. The training phase consists of clustering,
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where all candidates of modulation order for interference user are used to cluster received

constellation points, feature extraction, where accurate features of received constellation points

are extracted, and classification training, where a model parameter of the logistic regression

model is found. The blind detection phase consists of model parameter selection criteria, where

one model for the classification model is chosen, and blind detection, where the output of the

modulation order of interference user is presented.

The results obtained include blind detection rate comparisons and throughput comparison.

The blind detection rate shows that the proposed scheme is more accurate than the conventional

max-log algorithm on modulation order blind detection. The throughput comparison shows the

proposed algorithm is close to the ideal curve and achieves larger gains compared to the max-log

algorithm. The throughputs of NOMA and OMA are also addressed in the final result, due to

the imperfect SIC, the throughput of NOMA maybe worse than OMA but the total throughput

of NOMA is better than that of OMA in most SNR regions.

[112] proposes a learning technique that automatically evaluates the CSI of the network and

detects the original transmit sequences. As opposed to traditional SIC methods, in which the

search for the optimal order of channel gain must be done in order to remove the signal with

the higher power allocation factor while detecting the signal with the lower power factor. The

proposed DL algorithm combines the CE process while recovering the desired signal that is

deteriorating from channel distortion and multiuser signal superposition. The system model,

shown in Fig.2.26, consists of one BS and K number of users spread across N clusters. For

brevity’s sake, the work considers signal detection from users in a single cluster. The trans-

mission process follows a conventional PD-NOMA, where the BS sends a superposed signal to

users in the cluster. A DNN in applied in the signal detection process along with SIC to detect

and decode each user’s signal. Without any more signal processing at the receiver side, signals

from the receive antennas are sent directly to the MIMO-NOMA-DL detector. As a whole, the

MIMO-NOMA-DL system is comprised of three parts, a training block, a testing block, and a

DNN detecting block.

The purpose of the training block is to generate the MIMO-NOMA signal and furnish

the DNN with the corresponding NOMA signal labels. To obtain the MIMO-NOMA signal

for the receive antennas, two sequences are generated for each antenna corresponding to user

1 and user 2. The technique of superposition coding is employed to modulate the signal,

whereby distinct power factors are allocated to individual users. Subsequently, the signal is
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disseminated throughout the network. Upon experiencing the effects of both independent fading

channel and the AWGN channel, the signal is subsequently obtained at the receiver. The

labels, which are akin to the pilot sequence, are recognised by the recipient as the sequences in

question. The utilisation of the testing block enables the emulation of real-time MIMO-NOMA

transmission. Initially, the MIMO-NOMA signal is generated, wherein the labelling process is

deemed unnecessary. The testing dataset is utilised to assess the efficacy of the deep neural

network in detecting signals. In order to ensure optimal performance of the deep neural network

(DNN) during both the training and testing phases, the channel models and generated data

within the training and testing blocks are independently and identically distributed, thereby

avoiding a perfect match. The training and testing process utilise different data sequences as

to avoid overfitting.

Figure 2.26: System model for user clustering in a MIMO-NOMA system.[38]

During the training phase, the SNR is stochastically generated, while the duration of the

data time slot is varied within the desired range. The SNR within the testing block remains
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constant in order to evaluate the error of the DNN under certain SNR conditions. The primary

component responsible for deciphering the received signal is the DNN block. The investigation

focuses on the analysis of channel characteristics and the MIMO-NOMA decoding algorithm

by effectively utilising the hyperparameters of the DNN in an optimal fashion. This block

incorporates various levels, including the number of layers, the loss function, the optimisation

criteria, and the iteration method. The DNN algorithm under consideration consists of a total

of seven layers, specifically, one input layer, one output layer, and five hidden layers. The

objective of the loss function employed in the proposed study is to quantify the disparity

between the predicted values and the corresponding labels. The selection of the loss function

and optimisation technique is of utmost importance for the MIMO-NOMA-DL network. The

selected loss function is the usual MSE function. In this study, the cross-entropy function is

being examined. The cross-entropy function exhibits rapid convergence and low computational

complexity throughout the iterative optimisation procedure.

In addition, the optimisation algorithm employed for the self-adaptation of the learning

rate and the enhancement of robustness is the Adam method [113]. Various parameters were

utilised to obtain the results. In a particular transmission environment, a comparative analysis

is conducted between the performance of the conventional SIC and the proposed method,

MIMO-NOMA-DL, which utilises MIMO-NOMA-DL. The investigation also encompassed the

impact of diverse categories of MIMO-NOMA modulations on the symbol error rate (SER).

The simulation of the power allocation factor’s impact was conducted and its influence on the

system’s performance was examined. Subsequently, an investigation was conducted into the

scenario in which the approximated CSI diverged from the factual CSI. Various mini-batch

sizes are utilised during the simulations to expedite the convergence of the MIMO-NOMA-DL

algorithm. The findings demonstrate that the suggested algorithm is a feasible and efficient

replacement for traditional SIC.

In [114], a demodulator utilizing a convolutional neural network (CNN) is proposed for

Non-Orthogonal Multiple Access-Visible Light Communications (NOMA-VLC), facilitating si-

multaneous signal compensation and recovery. The objective of the proposed system is to

mitigate the issue of error propagation, as well as linear and non-linear distortions caused by

multipath propagation. Additionally, it aims to address the limitations imposed on the trans-

mission performance of NOMA-VLC systems due to the nonlinearity of light emitting diodes

and the constrained modulation bandwidth. Furthermore, the accuracy of CSI is crucial in
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the recovery of the NOMA signal, particularly in the context of a transportable VLC wireless

system. However, obtaining precise CSI is a challenge in such a system mainly because of

the dynamic environment, where any obstruction or change in environment can result in quick

and dramatic variations in the channel, interference, since VLC is susceptible to interference

from any other light sources, and multipath reflections, where indoor environments experience

multipath reflection due to walls, floors, and ceilings which leads to a high degree of multipath

dispersion. The system model comprises two components: a transmission side and a reception

side. At the transmitting end, the data streams originating from the source data modules

are further transformed into a 4-QAM format and then fed into the OFDM modulators. The

resulting output is subsequently transmitted to the power allocation factor modules and then

combined using superposition coding. Before being subjected to Intensity Modulation (IM) of

the LED, the resulting NOMA signal is biased with Direct Current (DC). The optical NOMA

signal is received in free space and subsequently detected by an optical receiver including a

photo-diode and a trans-impedance amplifier.

At the recipient, subsequent to the process of frame synchronisation, the regenerated NOMA

signal is introduced to the frame synchronisation module. Following this, the correlation opera-

tion is performed, resulting in the detection of the frame header. The NOMA signal is decoded

through direct utilisation of a CNN based demodulator. In traditional receivers based on SIC,

each user performs message decoding after the decoding of messages from users with higher

power allocation factors, considering signals from other users with lower power allocation fac-

tors as noise. Also, if an error occurs where a signal in the SIC decoding chain is not decoded

correctly, that error will propagate throughput the rest of the network. This phenomenon is

referred to as an error propagation problem. In order to enhance performance, it is necessary

to have precise CE in VLC systems. However, achieving accurate CE poses challenges due to

user mobility and driving bias drift, which hinder the acquisition of reliable channel responses.

In this work, the authors employ the MaxMSE based CE technique to compute the CSI in the

SIC based receiver. The MaxMSE based CE approach is found to outperform other traditional

CE methods. In the proposed CNN based demodulator, channel equalization is performed im-

plicitly with signal demodulation, thus, it suffers less from the influence of the high correlation

among user’s channel responses.

Furthermore, no pilot overhead and CSI are required in the CNN based receiver. The results

are obtained for the power-voltage characteristics for the LED as well as its frequency response

55



where the simulated experimental results almost fit perfectly to the fitting curve. The average

BER Vs SNR is obtained for the CNN, LSTM, and fully connected neural network, where the

proposed CNN is shown to outperform its deep learning counterparts and achieve a much lower

BER. The CNN is also compared to conventional SIC in a series of tests comprising of BER

Vs SNR comparisons in different transmission environments. In general, the machine learning-

based CNN suggested in this study demonstrates a notable level of performance, indicating

that the concurrent attainment of offline training of NN channel properties and signal mapping

is feasible.

[115] proposes a novel type of Active User Detection (AUD) based on a DNN for a grant-free

NOMA system in an uplink scenario. The proposed AUD scheme aims to learn the non-linear

mapping between the received NOMA signal and the indices of active users; hence, the proposed

scheme can identify between active and idle users in the network, which is a significant problem

for grant-free access NOMA systems. The system model consists of one BS equipped with a

single antenna that receives information from multiple (N) machine-type devices with a single

antenna.

During the transmission process, the mobile user chooses a frequency sub-band randomly

from a set of free sub-bands. In this work, the overloaded scenario is considered, where the

number of users in a cell is higher than the number of frequency resources. The BS is required to

identify the active users from the inactive users since each user transmits packets freely without

scheduling first. Active users transmit to the BS using device specific non orthogonal sequences,

namely LDS, being that every codeword used for signal spreading contains lots of zeros. Each

user signal is first modulated then the signal is spread using sparse low density codewords.

As a result of using sparse codewords, each user has a more unique spread signal, thereby

reducing inter-user interference drastically. The codewords are generated using a predesigned

set of codewords from a codebook. The channels experience independent Rayleigh fading along

with AWGN.

The proposed AUD scheme uses a deep neural network with one input layer, one output

layer, and L hidden layers. The are many results obtained for this work. The probability of

success comparison with SNR is presented to evaluate the performance of the proposed al-

gorithm. The simulation is based on the grant-free NOMA transmission in OFDM systems.

The probability of success as a function of SNR is presented, where it is shown that the pro-

posed deep learning AUD algorithm outperforms the comparison benchmarks; MaxMSE-block
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orthogonal matching pursuit (BOMP), LS-BOMP, and approximate message passing (AMP)

algorithm. The probability of success is further tested under various overloading factors as well

as compared against varying device activity levels. The hyperparameter tuning process is also

presented, including different factors such as, depth of hidden layers, width of hidden layers,

batch size, dropout probability, optimiser, and activation function. Finally, the probability of

success is presented as a function of SNR in a multi-antenna scenario.

In [116], the issue of pilot contamination attack (PCA) on NOMA in mm-Wave and massive

MIMO in 5G communications and beyond is introduced. PCA detection is confronted with

novel issues due mainly, to the novel characteristics of NOMA including but not limited to

superposed signals with multiple users. Two efficient PCA detection techniques for NOMA are

proposed for both static and dynamic conditions by making expert use of the sparse nature of

NOMA as well as the statistics of mm-Wave and massive MIMO virtual channel. In the case of

the dynamic channel condition, to differentiate between the normal state and the contaminated

state, the statistics of the peak in the virtual channel is influenced. In the case of the static

channel condition, as a binary hypothesis test of virtual channel sparseness, the problem of

PCA detection is developed. To reach high detection performance, a machine learning, and

peak detection algorithm-based technique are presented.

The system model being considered for this work consists of one BS and multiple users,

some of which are pilot contamination attackers, in an uplink NOMA scenario. The simulation

results obtained for this work showcase the performance of the proposed system under different

scenarios, that being a varying number of PCA attackers. The case with one attacker achiev-

ing 92.1% accuracy and the one with two and three attackers reaching 96.15% and 96.85%

respectively. Also, the detection rate can reach 100% with a very low false alarm rate in the

case of the static conditions and it can reach higher than 95% in dynamic conditions under

varying system parameters settings. For future research directions though, there are a number

of issues with this work that can be addressed. Issues such as, the selection of the optimal

threshold and the distance problem of attackers. Under the condition of legitimate users being

very spatially close to the attackers, because of the correlation between the two existing, the

performance of the virtual channel needs to be examined further. Also, deciding the optimal

detection threshold is an issue to be addressed with the proposed machine learning algorithm.

[117] introduces a SIC technique incorporating the K-means clustering algorithm tailored for

a Standard Single Mode Fibre (SSMF) integrated with multiple user On-Off Keying modulated
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PD-NOMA systems. The adoption of NOMA in this study aims to augment user capacity.

Empirical analyses conducted within this research underscore the efficacy of the advanced di-

rect detection scheme for transmitting PD-NOMA signals at 20 Gbps at a wavelength of 1.55

um. Furthermore, simulation outcomes reveal that the unsupervised DL based direct detection

receiver is capable of producing a BER substantially below the FEC threshold, as noted in [111]

and [112]. This is evident for data rates of 5 Gbps, 5.5 Gbps, and 10 Gbps spanning a 50 km

SSMF distance in the context of the far user scenario. The peak observed power penalty for

the cumulative 20 Gbps per channel data rate, when employing the DL methodology, registers

at 2.7 dB at a BER of 10−3, again pertaining to the far user scenario. However, the proposed

technique does not include any compensation method for handling fibre induced damage while

still detecting the data for the near and far user, which is usually 50 km away from the BS. This

can be strongly considered an avenue for future research direction this work can be extended

to.

In [118], the use of deep learning is explored in the context of uplink Multi-User Detection

(MUD) for NOMA technology, specifically focusing on the Welch bound equality Spread Multi-

ple Access. Multiple non-cooperative users are allocated individual NOMA signature sequences,

which are then sent over the same resource. The signature sequences stated above exhibit a

limited degree of correlation among themselves, hence facilitating user separation at the receiver

during MUD. Several key subtasks are associated with MUD, including combining, slicing, in-

terference cancellation, and signal reconstruction. The NN offers a one-shot estimation for

these modules, while also replacing the clearly defined receiver blocks with a singular opaque

entity. As a result, the performance of the proposed neural networks is evaluated in comparison

to conventional receivers. This work explores two distinct implementations of supervised feed

forward neural networks for MUD: a deep learning based NN and a 2D-convolutional NN. The

performance of the two proposed neural networks is compared with their traditional equivalents

in terms of SER.

[118] focuses on a system model that includes a single BS and K users in an uplink NOMA

scenario. Each of the K users modifies its sent symbol by a preassigned spread-vector before to

transmitting it over the shared uplink channel. The signal received at the access point can be

described as a noisy representation of the combined transmit vectors from all users, who share

the same communication resources based on the principle of NOMA. The neural network used

for MUD consists of two distinct phases: a training phase and a testing phase. The objective
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of the training phase is to adequately construct and optimise the NN in anticipation of the

subsequent test phase. Furthermore, it is during the testing phase that the neural network’s

function as a detector is actualized. Prior to being inputted into the neural network, the received

signal and channel estimations undergo pre-processing in both phases. In this scenario, the

process of pre-processing entails the manipulation and combination of the received signal and

the channel estimations in a suitable manner to conform to the input dimension of the neural

network, which can be either a vector or a matrix. The neural network being examined in this

study is presumed to have the capability to process inputs that are expressed as real numbers.

Hence, the conversion of complex values into real-valued numbers constitutes the ultimate stage

of pre-processing.

The NN consists of multiple hidden layers, each containing trainable parameters known

as biases and weights. These parameters are optimised during the training phase. There are

multiple layers in the system, each characterised by a distinct number of nodes. Additionally,

there are forward connections established between nodes belonging to different layers. The

architecture of a NN is primarily concerned with the manner in which its layers are intercon-

nected, configured, and organised to establish a coherent framework. The input is sequentially

processed through the fully connected layer, the activation layer, and the Batch-Normalisation

(BN) layer. The BN layer ensures appropriate scaling of the input flowing through the NN,

while the activation layer introduces non-linearity and does not require any trainable parame-

ters. The Rectified Linear Unit (ReLU) is a commonly employed activation function for hidden

layers. It operates by generating an element-wise output for a given input, where the output is

determined by the largest value between the input and zero. Several activation layers, such as

BN, ReLU, and fully connected layers, are iteratively applied in a sequential fashion until the

output is obtained. In the context of a classifier, the selection of the activation function for the

output layer is often either a softmax or a sigmoid function. Simultaneously, the determination

of the number of nodes in the output layer is dependent on the specific functionality of the NN.

The findings of this study indicate that by careful selection of NN parameters, the black box

estimation can achieve superior and more efficient performance compared to standard MUD

approaches. Furthermore, the performance of the system attains a SER that is nearly identical

to the ultimate symbol error rate achieved by the sophisticated maximum likelihood-based

detectors.

[119] starts with a preliminary examination of DL for signal detection for multiple users in
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a NOMA wireless communication system. Typical in NOMA systems, where multiple users’

messages are decoded sequentially, the SIC process is carried out at the receiver. However,

due in large part to the effects of error propagation, the correct detection of previous users

will decide the detection accuracy of the entire system. Designed to detect and decode user

messages for multiple users in one-shot process, a DL-based NOMA receiver is designed, without

approximating channels in an explicit manner.

Jointly carrying out signal detection and channel approximation, the DL-based NOMA

receiver is represented by a DNN. The transmission process is divided into two phases, an

offline training phase and an online deployment phase. During the offline training phase, the

DNN is trained using simulation data that is based on channel statistics. During the online

deployment phase, the simulation data provided in the previous phase is used to recover the

transmitted symbols in a direct manner. The system model under consideration in this work is

compose of two users in an uplink NOMA scenario in an OFDM system. Both users are sharing

the same frequency bands according to the NOMA principle to transmit data in a simultaneous

manner. In this work, the DNN for MUD is comprised of 5 layers: an LSTM layer, a SoftMax

layer, an input layer, a fully connected later, and a classification layer. Able to make expert

use of data time-dependencies, the LSTM is the core component of the DNN and is also a

kind of RNN that is usually deployed to handle sequences and time series data for classification

purposes. An LSTM base network has the ability to preserve relevant information as well as

being able to learn new information between time steps of sequence data. In the LSTM-based

DL model for this work, the time steps are equivalent to subcarriers in the OFDM system.

The DNN can be trained to realize MUD for an arbitrary subcarrier by focusing on the one

time-step module in the LSTM layer.

The preliminary results obtained for [119] demonstrate that the DL based approach to signal

detection has the capability to achieve superior performance when compared with traditional

pilot-based channel approximation techniques. It is also shown to be more robust to the number

of pilot symbols. Furthermore, the DNN is shown to be capable of handling the likely event of

error propagation as a result of SIC occurring in the receiver. The DL solution to signal detec-

tion can even outperform the ML detector, which does not factor in the effects of interference,

in the case of high inter-symbol interference. For future research directions, the proposed DL

algorithm for signal detection can be further tested under dynamic channel conditions.

Although NOMA has great potential as a prospective solution for wireless communications in
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the future, its inherent non-orthogonality poses a challenge in terms of achieving its performance

limit alone through conventional communication theoretic techniques. In [120], for end-to-end

optimisation, deep multi-task learning is sought as solution through regarding the overlapped

transmissions as multiple distinctive but correlated learning tasks. A unified multi-task DNN

framework for NOMA is first created that is aptly called DeepNOMA. The DeepNOMA system

comprises three main modules: DeepMUD, a MUD module; a channel module; and DeepMAS,

a Multiple Access Signature (MAS) mapping module. DeepMAS and DeepMUD are trained

using an automated approach that relies on data-driven methods.

A multi-task balancing method is then proposed to ensure fairness amongst tasks and to

avoid the local optima. Furthermore, in order to make expert use of the advantages of the

communication-domain expertise, a constellation shape prior is introduced as well as an inter-

task interference cancellation structure. These modules are then inserted into the DeepMAS

and DeepMUD design structure. The aforementioned advanced designs aid in reducing the

deployment complexity of the proposed system and algorithms without negatively impacting

the DNN’s universal function estimation property, which, in turn, makes DeepNOMA a widely

applicable universal transceiver optimisation method. Deep multi-task learning achieves induc-

tive migration among multiple associated tasks, as opposed to traditional DL methods which

optimise a specific and single task. One task may supply inductive bias into the system to

other tasks, which encourages the parameters to converge while maintaining a better level of

generalisation. Due to its improvements in system performance, deep multi-task learning is now

universally deployed in the machine learning community in order to acquire better collaboration

amongst tasks [121].

The findings of this study demonstrate that DeepNOMA can achieve improved transmission

accuracy and reduced computing complexity concurrently across different channel types. It is

also shown to outperform its conventional counterparts when it comes to operative in a dynamic

environment. For future research directions, the proposed work can be extended for the multi-

antenna case and MIMO. For this case the parameter sharing and recurrent network structure

could be made expert use of in order to lower the overall computational complexity.
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2.9 Methodology for Research

This thesis has presented key works of literature concerning the subject of NOMA in the next

generation of wireless communication systems. Every relevant piece of work was reviewed in

a concise manner, outlining at the end of each topic covered the challenges facing the area of

NOMA under review. Three areas were chosen as the focus for the review as well as future

research: 1) NOMA in cooperative relaying, 2) NOMA with EXIT chart analysis, and 3) NOMA

with deep learning techniques.

2.9.1 NOMA in Cooperative RelayingWireless Communication Sys-

tems

Over the course of the material covered, the following challenges for cooperative relaying in

NOMA were identified:

Spectral Efficiency Optimisation for User-to-User Relaying

In order to conduct cooperative relaying effectively without experiencing inter-user interfer-

ence, cooperative transmissions are divided into a transmission phase and a cooperative phase.

Having to assign the relaying phase it’s own slot out of the available bandwidth has networks

employing cooperative schemes requiring more total bandwidth to function. One solution sug-

gested by the literature is to deploy a composite scheme that combines cooperative relaying with

full duplex technology, which refers to a communication system that carries out transmission

and reception simultaneously between two devices, in a NOMA enabled network. The idea is to

have the cooperative relaying occur simultaneously with the normal direct phase transmissions,

thus eliminating the system’s need for more bandwidth as the cooperation occurs within the

same allotted bandwidth as both phases now share the resource. Implementing this scheme,

however, requires answering the self-interference problem of FD, which is planned to be the

subject of a future collaborative work.

62



2.9.2 NOMA with EXIT Chart Analysis

User Fairness Analysis

EXIT chart analysis can be utilized to measure the level of user fairness for power allocation

in NOMA networks by observing the convergence behaviour in the inner/outer decoder con-

vergence graph. If the inner and outer decoders converge at unity gain then the system is

considered fair and balanced in terms of power allocation.

Convergence Behaviour

EXIT charts have evolved into a valuable tool for analysing the convergence characteristics of

models by employing iterative decoding techniques [30–32]. The attainment of an exceptionally

low BER at the SNR can be predicted by the utilisation of EXIT charts, eliminating the need

for Monte Carlo Simulations [30, 31]. The implementation of EXIT charts in the NOMA system

involves the exchange of information between the input/output module of MUD.

2.9.3 NOMA with Deep Learning Techniques

Power Allocation

To safely exploit the features of the NOMA system, the distribution of power with restricted

resources becomes a crucial concern. The issue of achieving optimal power allocation has

been demonstrated to be NP-hard, indicating that a comprehensive examination of all possible

channel assignment alternatives is necessary to get an optimal solution. However, this approach

is impracticable due to its high computational complexity and associated costs. Consequently,

a multitude of methods have been proposed by researchers to effectively tackle this matter. The

proposed solutions encompass power allocation techniques for a downlink Single-Input Single-

Output (SISO) NOMA system with two users [27]. Additionally, power allocation methods for

achieving optimal user fairness [28] and maximising energy efficiency [29] are also considered.

Nevertheless, a considerable number of these proposed solutions have been proven to be less

than ideal, thus requiring the implementation of deep learning methodologies.
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Signal Detection

Until recently, SIC has been widely employed as the prevailing technique for detecting NOMA

signals. In the context of a downlink scenario, a transmission signal is generated by SC while

adhering to a predetermined power constraint at the BS. Subsequently, the impaired signal will

employ the SIC technique to decipher its message, contingent upon the sequence of channel

gains of the user UE within a certain group of users. The SIC process will subsequently be

executed in accordance with the NOMA principle. From an information theoretic standpoint,

SIC is considered an ideal strategy for detecting multiple access in terms of the attainable area

of capacity for many users, both in the uplink and the downlink.

Examples of works that have utilised SIC for signal detection include, joint user activity

and data detection based on structured compressive sensing for NOMA [70], generalised spa-

tial modulation-based multi-user and signal detection scheme for terrestrial return channel with

NOMA [71], and joint user identification, CE, and signal detection for grant-free NOMA [72].In-

stead of SIC however, deep learning techniques are pro-posed as a viable substitute. Multi-layer

NNs in particular are proposed to achieve signal detection in NOMA systems.

User Clustering

User clustering is a significant problem in NOMA systems. Users would be grouped together

according to a clustering algorithm. Every individual user is then served by a NOMA beam.

In such a system, the problem of clustering the users in an optimal way becomes evident. The

aim being to cluster users in such a way that users in one group have fully occupied a resource

with minimal to no overlapping.

Illustrating Multi-cell NOMA uplink resource allocation by using optimisation algorithm to

efficiently cluster users for each resource block at the base-station side [32] then transmitting

over highly correlated channels while, simultaneously, having less correlation with the other

users in the network. This will lead to an efficient use of the available resources since the system

will experience much reduced interference while simultaneously optimising the throughput.

Previous solutions to user clustering in NOMA include, dynamic user grouping in order

to achieve better system throughput with better BER using a joint resource allocation al-

gorithm[49], and user clustering for a downlink NOMA system that remarkably outperforms

others techniques proposed in [50]. The clustering problem, especially with a large number of
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users,is a combinatorial problem which is specifically why the application of deep learning is

required to solve it optimally.

2.10 Summary

Incorporating other techniques with NOMA in order to address some of its shortcomings was

thoroughly discussed in this chapter. It has been shown that, while each combination of tech-

niques results in improved performance, each technique, when combined with NOMA, addresses

an issue facing both NOMA and the next generation of wireless communications.

For example, NOMA with cooperative relaying was shown to be able to serve cell edge users

more efficiently, NOMA with EXIT chart analysis has better user fairness during the power

allocation stage, and NOMA with deep learning techniques has the potential to result in more

optimal power allocation, more efficient user clustering, and more reliable signal detection with

reduced receiver complexity.
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Chapter 3

Cooperative Non-Orthogonal Multiple

Access for 5G Networks and Beyond

3.0.1 Introduction

In addressing the pressing requirements for enhanced data rates and augmented user capacity,

NOMA emerges as a promising solution for forthcoming wireless communication architectures.

This is attributed to its superior diversity gains and potential for vast connectivity. This

work introduces a cooperative relaying approach designed to augment the overall data rates

and diversity gains of the NOMA-centric system. Concurrently, EXIT charts are employed to

probe the user fairness of the proposed system and to assess its performance under IRregular

Convolution Coding (IRCC). Notably, the EXIT chart incorporating IRCC offers insights into

the convergence behaviour of the aforementioned system. This research harnesses EXIT charts

for convergence optimization by leveraging power optimization as well as SIC for combined data

rates, thereby enriching the system’s fairness evaluation. The simulations performed underscore

the efficacy of the proposed cooperative NOMA framework in attaining markedly superior data

rates and diversity gains.

As a result of the work carried out in this chapter, the following paper(s) were published:

• A. Ahmed, Z. Elsaraf, F. A. Khan and Q. Z. Ahmed, ”Cooperative Non-Orthogonal

Multiple Access for Beyond 5G Networks,” in IEEE Open Journal of the Communications

Society, vol. 2, pp. 990-999, 2021.
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3.0.2 System Model

The user data is passed to the QAM, which maps the information bits. These bits are spread

using predefined codewords and assigned a power in accordance with NOMA principles. This

information is conveyed across a Rayleigh fading channel to the receiver. The MUD on the re-

ceiver side compensates for channel-caused interference. As the receiver knows the predesigned

code, the signal is despread. As depicted in Fig.3.1, MRC is applied following demodulation of

the user bits.

Figure 3.1: Proposed cooperative NOMA system

Fig.3.1 depicts the cooperative communication for NOMA. It can be seen from the figure

that there are two distinct sorts of users. There are N NU positioned in close proximity to

the BS and one Far User (FU) in the system. Phase I and Phase II are the two phases of

communication.

4-QAM (or QPSK) was used to carry out signal modulation in this system model. This

specific modulation scheme was chosen because of the following factors:
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• Robustness in Noisy Environments: In terms of BER performance, 4-QAM outper-

forms higher-order QAM configurations such as 16-QAM or 64-QAM when they operate

at an equivalent SNR. This characteristic renders 4-QAM appropriate for scenarios where

the SNR may be low or inconsistent.

• Affinity with PD-NOMA: In PD-NOMA, superposition coding is utilized, allowing for

the concurrent transmission of signals intended for distinct users at varying power levels.

The inherent simplicity and resilience of 4-QAM facilitate the differentiation and decoding

of overlapping signals at the receiving end, particularly when a pronounced power gap

exists between those signals.

The NOMA cooperative communication operation is depicted in Fig.3.2. It can be seen

from the figure that there are two distinct categories of users: N number of NUs who are

located closer to the BS, and FUs who are located further away. There are two phases to the

telecommunications procedure: phase I and phase II.

• Phase-I: As depicted in Fig.3.2, the BS transmits the signal to every NU and the FU.

This signal is composed of the superimposed signals of the NUs in accordance with the

NOMA principles. The nth NU user signal is represented by:

rn,1 = hn,1x+
√

PFUhn,1xFU + wn,1, (3.1)

√
PFUhn,1xFU represents the FU signal, where PFU denotes the allocated power to the

FU and x represents the total composite transmit signal that contains all the users’, NUs

and FU, messages. The composite signal is structured as follows:

x =
√

P1x1 +
√
P2x2 + ...+

√
PNxN , (3.2)

wn,1 represents the AWGN for each channel that naturally occurs as a result of transmis-

sion over a fading channel. The Rayleigh fading of the utilised channel is represented in

this model by hn,1. This type of fading is experienced by every user in the network.

The power allocation process during this phase is carried out by first assigning the distance

of the n-th user away from the BS, where one user, FU, is placed far away from the BS
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(10m) and the other user, NU, is placed very close to the BS (1m). In this model, the user

farthest away from the BS is allocated the most power while the user closest to the BS

is allocated the least amount of power. The aim of this protocol is to allocate power to

users based on their subjective needs to receive their messages successfully. The channel

conditions of the proposed NOMA system are presented as:

|hFU,1|2 < |h1,1|2 < |h2,1|2 < ... < |hN,1|2 . (3.3)

The power levels in the proposed system are consequently presented as:

PFU > P1 > P2 > ... > PN , (3.4)

and

PFU +
N∑

n=1

Pn = 1. (3.5)

• Phase-II: This phase is sectioned into N time slots by assigning each NU a time slot to

transmit a superposed signal to the FU. All NUs make use of their allocated time slot to

relay data to the FU. The order regarding which NU transmits in negligible, as long as

all NUs have transmitted to the FU by the last time slot. In order to avoid and thereby

eliminate IUI, every transmission is carried out in a separate fashion.

This phase begins by having the nth NU broadcast the composite signal it received at the

end of phase-I to the FU in the n-th time slot. The purpose being to transmit the data

of the FU from different sources thereby increasing the diversity gains experienced at the

FU since the FU does not need to carry out SIC and can decode its message directly as

a result of being allocated more, if not most, of the available transmission power. This is

where the cooperative relaying takes place.

After this process is finished, the signal experienced by the FU as a result of the cooper-

ative relaying will be presented as:

rn,2 =
√

Pn,2hn,2xFU + wn,2, n = 1, 2, ..., N. (3.6)
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The power allocated by the nth user is denoted by Pn,2 while the Rayleigh fading experi-

enced as a result of the signal passing through the inter-user channels is denoted by hn,2

and the AWGN is denoted as wn,2.

Figure 3.2: The cooperative relaying NOMA system comprises two distinct phases, namely
Phase-I and Phase-II.

Both Phases, I and II, are represented visually by Fig.3.2.

Factors Affecting Processing Time for Various Cooperative Relay Models

The processing time for various cooperative relay models in a wireless communication system

can vary significantly based on multiple factors, including the specific model, system parame-

ters, and hardware used. Cooperative relay models involve additional signal processing steps

beyond direct communication between the source and destination, which can introduce addi-

tional processing delays. Here are some common cooperative relay models and factors affecting

their processing time:
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1. Amplify-and-Forward Relay:

• In AF relay, the relay amplifies the received signal and forwards it to the destination.

• Processing time depends on the complexity of amplification and forwarding, as well

as the hardware used.

• Typically, AF relay processing introduces minimal delay, especially if the amplifica-

tion is straightforward.

2. Decode-and-Forward Relay:

• In DF relay, the relay decodes the source’s signal, re-encodes it, and then forwards

it to the destination.

• Processing time is influenced by the complexity of decoding and encoding, and it

may introduce more significant delays compared to AF relays.

3. Compress-and-Forward Relay:

• Compress-and-Forward relay models involve data compression before forwarding.

• The processing time depends on the compression algorithm and the hardware used.

• Complex compression algorithms may lead to longer processing times.

4. Network Coding Relay:

• Network coding relays combine multiple source signals and transmit a coded signal

to the destination.

• The processing time depends on the encoding and decoding of network-coded signals.

• The complexity of network coding can vary, affecting processing time.

Factors influencing processing time:

• Hardware and computational resources: The processing time can be influenced by

the computational capabilities of the relay nodes. More powerful hardware may reduce

processing time.

• Transmission rates: Higher data rates may require more processing time for coding

and decoding operations.
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• Coding complexity: The complexity of the coding and modulation schemes used in the

relay models can impact processing time.

• Relay locations: The distance between the source, relay, and destination nodes can

affect processing time, as it determines the propagation delay for signals between nodes.

• QoS requirements: Different applications may have varying requirements for processing

time. Low-latency applications, such as real-time multimedia, demand shorter processing

times.

In practice, the processing time for cooperative relay models is typically minimized to ensure

efficient communication. Various optimizations, including hardware acceleration and efficient

coding techniques, can be applied to reduce processing delays. The specific processing time

for a cooperative relay model should be determined through simulations, measurements, or

performance analysis, taking into account the system’s parameters and the application’s re-

quirements.

List of Assumptions

Designing a cooperative NOMA system involves several considerations, and to create a tractable

analysis or efficient design, certain assumptions might need be made. When designing the

system model for this work, the following assumptions were made:

1. Channel State Information (CSI): It was assumed the BS and users have perfect

knowledge of channel conditions. This assumption was made in order to simplify the

power allocation process.

2. Decoding Capability: It was assumed that all users in the network are well equipped

to carry out signal detection in a NOMA system by performing SIC.

3. Power Allocation: Since the power allocation is carried out based on distance from the

BS for each user and in order to take full advantage of the NOMA scheme, the difference

of power levels between both users (FU and NU) was designed to be wide.

4. Cooperative Relaying: It was assumed that the NU, when acting as a relay in the

second phase of transmission, can perfectly decode and forward the signal of the FU.
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5. Time Synchronization: It was assumed that all users are perfectly synchronized in

time since timing synchronization is critical for NOMA to operate successfully.

6. Gaussian Noise: All background noise was modeled after AWGN.

7. Antenna Devices: It was assumed that both the BS and both users in the network are

equipped with a single antenna.

8. Number of Users: The number of users in the proposed system was fixed to 2. This

was done in order to simplify the SIC decoding process.

3.0.3 Performance Analysis

In this section, we operate under the assumption that ideal detection occurs during both of

the communication phases. The overall performance of the system is measured through the

evaluation of the data rates experienced at each user and the total system throughput. EXIT

chart analysis is also utilised here to evaluate the convergence behaviour of the system and

the system performance is further measured by diversity gains, normalisation throughput, and

online evaluating complexity in MUD.

• Data Rate: The data rates experienced at the end of phase-I at the NUs after applying

SIC is presented as:

Rn = log2

(
1 +

Pn |hn,1|2∑N
j=n+1 Pj |hn,1|2 +N0n,1

)
(3.7)

The noise variance is denoted by N0n,1 and takes effect at the end of phase-I.

By applying MRC at the receiver, the expression for the data rate of the FU at the end

of phase-II can be presented as:

Rn = log2

(
1 +

PFU |hFU,1|2∑N
n=1 Pn |hFU,1|2 +N0FU1

+
1

N

N∑
n=1

Pn,2 |hn,2|2

N0FU2

)
. (3.8)

The data rate experienced by the FU relies on the addition of two data rates from two

different time slots. The data rate experienced in the second time slot is normalised by N

as a result of passing through the MRC first. hn,2 represents the data relayed to the FU
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during the second phase (cooperative phase) and is the signal that the NU relays through

the inter-user channel that contains the data of the FU. As opposed to the signal received

by the FU at the end of the first phase, which contains the data of both the NU and FU

that is superposed together, hn,2 contains only the data of the FU.

• System Throughput: The system throughput is described as the collection of data

rates received by each user. The system throughput is a significantly imperative metric

to measure as it can comment on the overall efficiency of the proposed system. As per its

definition, the system throughput is presented as:

S =
N∑

n=1

Rn +RFU (3.9)

• EXIT Chart Analysis: EXIT charts employ iterative decoding to analyse and monitor

the system’s convergence analysis [69].

EXIT charts provide a means to bypass the need for Monte Carlo Simulations, since they

enable the straightforward prediction of the BER for a specific SNR [69], [70]. EXIT charts

facilitate the sharing of information between the MUD module by making modifications

to the channel conditions. Furthermore, the MUD module calculates the probability of

the joint alphabet. The computation of these probabilities can be performed offline by

both the base station and the user.

Interleavers are employed for the purpose of emulating EXIT charts. In an ideal scenario,

the utilisation of shorter interleavers in any given system would result in a trajectory that

does not align with the inner and outer arcs of the EXIT chart [66], [68], [71]. Hence,

interleavers of increased lengths are employed.

In Figure 3.2, it is observed that there are N NU users and 1 FU. The channel encoder

employed in this scenario utilises Recursive Systematic Convolution (RSC) codes. The

aforementioned data is transmitted to the signal spreader, whereupon it is encoded util-

ising the principles of spread spectrum.

The data is transferred to the interleavers, where it is mapped by the signal mapper,

and subsequently broadcast via the antenna. The receiver obtains the mapped signal

information for each user, and subsequently the MUD computes the Log Likelihood Ratio
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(LLR). The evaluation of the extrinsic LLR of the output bit from the nth user’s MUD

is conducted in the following manner:

Let υ ∈ {0, 1}. The apriori LLR for the nth user can be represented by Lapr

(
i(n)
)

It’s important to highlight that, in the MUD context, the initial probabilities for bits

being zero and one are equally likely. Therefore, initial values in the soft registers are

set to zero, as pointed out in [68] and [71]. The apriori symbol is symbolized by Pr,

signifying the multi-user probability. Consequently, the codeword can be represented as

r =
[
r(0), r(1), ..., r(N)

]T
.

The channel probability relative to the apriori r is denoted by P (υ | r), which assesses

the cost function for the MUD, defined as:

f (r) = P (υ | r)P (r) , (3.10)

and

f (r) = exp
(
−∥υ − PHr∥2

)
P (r). (3.11)

Let P denote the aggregate power allocated, and H symbolize the channel conditions for

all network participants. Prior to delivering the apriori LLRs to the channel decoder, a

despreading process is executed. This ensures that the extrinsic LLRs for each user are

ascertained through the deinterleaving action applied to the user input sequence.

The channel decoder produces bit-centric aposteriori LLRs. These are subsequently

forwarded to the signal spreader, where further iterative processes occur between the

interleavers and the MUD. Following multiple cycles involving both the Decoding (DEC)

and the MUD-Despreading/Spreading (DES) stages, the decoder converges to a point

where the receiver derives estimations for the information bits pertaining to each user.

• System Performance: This section will examine the diversity gain, normalisation

throughput, and complexity associated with the MUD approach in the NOMA model.
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1. Diversity Gain: It equals the number of given slots and is stated as:

ηDG = N + 1, (3.12)

Let N represent the cumulative count of NUs within the system. Furthermore, the

system’s diversity gain, which plays a role in ensuring fair treatment among users,

is expressed as:

ηIG = N. (3.13)

2. Normalization Throughput: The normalization throughput of the MUD system

is calculated as:

NormalizationThroughput =
R ·B

(N + 1) · SF
(3.14)

let B =
∑N

i=0 b
(n) represent the total number of bits per MUD, with R denoting the

coding rate and SF=2 indicating the Spreading Factor (SF). Given that the MUD’s

inner decoder encompasses the despreader and the deinterleaver, the system capacity

can be represented as:

where φ(i,j) is presented as:

φ(i,j) = −∥PH +W∥2 + ∥W∥2 (3.15)

Where W denotes the noise matrices in the system.

3. Online Evaluating Complexity in MUD: The complexity in the MUD system

emerges during an iteration of the Maximum A Posteriori (MAP) detector when the

Cost Function (CF) is computed over the number of bits developed in the cycle. The

calculation is performed as follows:
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N (MAP ) =

∏N
n=1 2

b(n)∑N
n=1 b

(n)
(3.16)

let b(n) denote the number of bits per codeword in the MUD designated for the

nth user. Factors such as the count of users accessing the channel, the quantity

of transmitting antennas, and the number of receiving antennas play pivotal roles

in the real-time assessment for calculating the CF, thereby affecting the MUD’s

complexity. Furthermore, the complexity evaluations of both the SISOMUD and

the Hard-Input Hard-Output are represented as O
(√

NMAP
(CFEs/bits)

)
based on [71].

3.0.4 Simulation Results

Command and Control Information

– Number of Relaying Slots: Theoretically, the system model is designed to accom-

modate up to 3 users sharing one frequency band according to the NOMA principle.

In practice, however, in order to minimise inter-user interference, the system model

consists of one near user and one far user. Thus, one relaying slot is required since

only the near user will participate in cooperative relaying.

– Transparency with the Receiver: The frame structure of the cooperative NOMA

system is designed to include a predefined number of slots for relaying. This frame

structure is adhered to by all network nodes, ensuring that both the transmitter and

receiver know when and how many relaying slots are available.

– Duration of Transmission: The total duration of transmission has been calculated

over a range of SNR values.

Fig.3.3 shows that the total transmission time improves drastically with an increasing

SNR value. This is due to there existing less interference and thereby less time is

required to decode and detect each user signal. As expected, the far user has a much

lower total transmission time since its signal gets detected easliy by treating all other

user signals as noise. However, it can be noted that at 33 dBs, the total transmission

time for the near user drops lower than the far user. This is due to the interuser

interference that is experienced at high SNR values.
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Figure 3.3: Total transmission time for the proposed cooperative relaying NOMA system for a
range of SNR values

Figure 3.4 illustrates a comparison between conventional and cooperative NOMA tech-

niques, specifically in terms of their SNR against BER performance. In this particular

instance, the analysis focused solely on one FU and one NU. The graph demonstrates

a positive correlation between the SNR and BER performance of the system, indicating

that an increase in SNR leads to an improvement in system performance. The graph

presented herein illustrates that the utilisation of cooperative communication in the FU

yields a notably superior performance compared to FU systems that do not apply cooper-

ation. Diversity is attained by means of the iterative reception of information from the NU

throughout the Phase-II transmission process, leading to an enhancement in performance.

Figure 3.5 illustrates the contrast between traditional NOMA and cooperative NOMA

in relation to data rate and system power allocation. α1 represents the power splitting

ratio between the NU and FU ranging from 0 ⩽ α ⩽ 1. In the context of typical NOMA

deployment, it can be observed from Figure 3.5 that the system necessitates 3.5 bits

for broadcasting at a power allocation of 0.1. This assertion is substantiated through

an analysis of the intersection between FU and NU. In contrast, the utilisation of NU
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Figure 3.4: BER Vs SNR for the proposed system comprising of the performance of the NUs
and the FU with and without cooperative relaying

and FU in a cooperative NOMA framework necessitates 1.5 bits for broadcasting at

an equivalent power allocation. This enables the cooperative NOMA system to achieve

superior bandwidth utilisation compared to a conventional NOMA system.

The efficacy of cooperative NOMA may be observed through the comparison of the data

rates achieved by the system with cooperation and the system without cooperation. It is

evident that the system employing cooperation exhibits superior performance in terms of

data rate.

In Fig.3.6, both the NU and FU are depicted as moving away from the BS. Notably,

when both FU and NU are in close proximity to the BS and are allocated equivalent

power levels, the system’s efficacy significantly diminishes due to the SIC’s inability to

decode the stronger user effectively. However, as the FU starts distancing itself from the

BS, there is a marked improvement in performance. Given that both the NU and FU

need to maintain identical decoding rates, it becomes essential to allocate more power to

the symbol information, especially when distanced from the BS, to substantially boost

the cooperative model’s performance. Based on the simulation results, it is recommended
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Figure 3.5: Allocation of power within the NOMA framework and its correlation with decoded
data speeds in both cooperative and traditional NOMA setups

to position the FU and NU at an increased separation from each other.

Fig.3.7 illustrates the cooperative NOMA system using EXIT chart analysis. The inner

decoder is predicated on MI, while the outer decoder leverages channel decoding/despreading

data. With the SF set at 2 and R = 1/2, the joint spread stands at 0.25. Given the ini-

tialization of both ones and zeros with an equal probability of 0.5, an initial loss becomes

apparent from the chart. It’s discernible that an open tunnel materializes around a 10 dB

SNR. Provided there are adequate iterations between the decoder and despreader, trans-

mission can achieve error-free outcomes. This visualization suggests that EXIT charts

can be effectively employed for cooperative NOMA, contingent on the optimal number of

iterations between MUDDEC and MUDDES.

In order to analyse the capabilities of the MUD, a SF = 2 is utilised by exploiting the

IRCC codes as can be observed from Fig.3.7.

Fig.3.8 exhibits a narrow pathway between the inner and outer curves at an SNR =

−10dB within the EXIT chart. A convergence of the system is discerned when these
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Figure 3.6: The association between power distribution and decoded data speeds when both
the NU and FU receive equivalent power allocations

trajectories align, manifesting an ”open tunnel”. This point of convergence, denoted as

[1, 1], is featured in the top right quadrant of Fig.3.8. For the inner decoder, the MUD

employs a Gaussian distribution to formulate the a priori LLRs. In this context, the inner

curve overshoots for the MAP in the interval 0 < IMUDapr < 1, as illustrated in Fig.

3.7. An IRCC generates the outer curve of the EXIT chart, aligning with the inner curve

of the EXIT chart for the MAP MUD, as delineated in Fig.3.8.

All participants transmit over the accessible subcarriers at a rate given by R/SF = 0.4,

where SF = 2. The decoding pathway navigates through the open tunnel depicted in

the EXIT chart, ultimately converging to a value of IDES=DEC;ex = 0.96 after undergoing

1000 iterations between MUDDES/DEC . This process culminates in a notably reduced

BER.

The BER performance of the MUD system is illustrated in Fig. 3.9. From the figure,

it can be discerned that after a span of 100 decoding iterations, the system is 1.08 dB

off from the Shannon channel capacity. This observation is corroborated by the BER
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Figure 3.7: The NOMA system’s EXIT chart, the outer decoder employs an RSC code with a
SF of 2, while the inner decoder is adapted for multiple SNR values within the MUD framework.

line situated at = 10−5, where the SNR registers at -0.86 dB. Such a deviation can be

attributed to a duo of reasons: initially, the constraints of the interleaver, which has a

length of 2048 bits per user, and subsequently, the external coding mechanism which fails

to meet the IDES = DEC; ex = 1 benchmark.

It is evident that conducting over 100 iterations can lead to the attainment of optimal

Shannon capacity performance. This suggests that our proposed model would exhibit

improved performance if a greater number of decoding iterations were executed within

the MUD model.
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Figure 3.8: EXIT chart analysis using IRCC codes for the proposed NOMA system

3.1 Summary

In this chapter, NOMA was implemented into a cooperative relaying scenario. The sys-

tem model consisted of four users and a base station. Three users were placed in close

proximity to the base station, while one user was designated as the cell edge user and

placed at a greater distance away.

The primary objective of this simulation was to demonstrate that applying NOMA to a

cooperative relaying scenario would result in improved performance for all users and the

ability to effectively support the far cell edge user, despite it having significantly higher

QoS requirements than the nearby users.

The results demonstrate that both the far cell edge user and the users in close proximity

to the BS were provided with acceptable service with extremely low error rates as a result

of efficient power allocation according to the NOMA concept.

An EXIT chart analysis was also performed on the proposed cooperative NOMA system.

Its results are able to show the SNR needed for the system to achieve a very low BER. It
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Figure 3.9: BER Vs SNR for the MUD system, where various number of MUD DES/DEC
iterations are utilised when SF=2

can also be observed that, by increasing the number of decoding and despreading iterations

between the inner and outer decoders, the BER experienced by the MUD significantly

decreases. These results showcase the importance of EXIT chart analysis as a tool for

performance enhancement and evaluation.
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Chapter 4

EXIT Chart Analysis in Cooperative

NOMA

4.1 Introduction

The employment of SIC is a crucial element in facilitating signal acquisition within a NOMA

framework. This is due to its ability to provide an opportunity for users with relatively weaker

power levels to effectively retrieve their transmitted messages. The process of SIC involves

the initial identification of the signal emanating from the higher power user while considering

the remaining users as noise. Subsequently, the identified signal is extracted from the received,

superimposed signal, leading to the retrieval of the signal belonging to the low power user [6, 8].

A drawback associated with PD-NOMA is its tendency to prioritise users with inferior channel

conditions by allocating them with a larger proportion of the available transmission power, while

users with superior channel conditions receive a significantly lower amount of power, which may

not be sufficient to meet their requirements in certain scenarios. As a result, the performance of

individual users may be negatively impacted, as reported in [6, 8, 23]. This chapter introduces

EXIT charts as a potential solution to address the aforementioned issue.

As a result of the work carried out in this chapter, the following paper(s) were published:

• Elsaraf, Z., Ahmed, A., Khan, F.A., Q. Z. Ahmed, ”Cooperative Non-Orthogonal Multiple

Access for Wireless Communication Networks by Exploiting the EXIT Chart Analysis,”

J Wireless Com Network 2021, 79 (2021).

• Z. Elsaraf, A. Ahmed, F. A. Khan and Q. Z. Ahmed, ”EXIT Chart Analysis of Co-
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operative Non-Orthogonal Multiple Access for Next Generation Wireless Communica-

tion Systems,” 2020 European Conference on Networks and Communications (EuCNC),

Dubrovnik, Croatia, pp. 281-285, 2020.

4.2 System Model

It is important to note that the system model utilised here is identical to the one presented

in chapter 3. Concisely, this system model operates by transforming the information bits

according to 4-QAM (or QPSK) [8, 23], the user’s data are modified. In the process, the

signal bits undergo transmission to the signal-spreading component. Within this component,

the mapped bits undergo multiplication with a receiver-acknowledged, pre-established code.

Following the foundational principle of power allocation intrinsic to the NOMA mode, the data

derived from the signal spread is allocated a specific power level. Subsequent to its navigation

through the Rayleigh fading channel, the interference signal is then captured at the receiving

end. At the receiver juncture, the interference introduced by the channel is attenuated using

the MUD iterative method. Herein, the optimal sequence for SIC detection is ascertained by

prioritizing the detection of the most robust user, followed by the least robust.

Based on the specified SIC-detection order, each user has the capability to detect its own

information while minimising the adverse impact on other users with lower normalised channel

gains. Subsequently, the received signal undergoes despreading using a pre-established code,

followed by demodulation at the receiver. In order to accurately identify the appropriate com-

ponents at the receiver, the utilisation of the MRC technique [27] is employed. This approach

is applicable to a wide range of antennas, including those utilised in BS [28-31], due to the

general nature of our system model.

4.3 Performance Analysis

The evaluation of the proposed system’s effectiveness is contingent upon the attainable rate

at each individual user and the total throughput of the system. The achievable rate for each

user is in accordance with the SIC chain. The determination of the user’s fairness is contingent

upon the analysis of the EXIT chart.
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4.3.1 Achievable Rate Analysis

The achievable rate is typically measured in bits/s/Hz. At the conclusion of the first phase of

transmission, the attainable rate of the FU is calculated as follows:

R1,FU = log

(
1 +

P1,FU |h1,FU |2∑N
j=1 P1,j |h1,j|2 +N01,FU

)
(4.1)

Thus, the NUj achievable rate after the first phase of transmission is denoted as:

R1,NUj
= log

(
1 +

P1,j |h1,j|2

N01,NUj

)
, j = 1, 2, ..., N. (4.2)

As shown in Fig. 2, the ultimate FU attainable rate following the cooperative phase of

transmission can be represented as:

RFU = log =

(
1 +

P1,FU |h1,FU |2∑N
j=1 P1,j |h1,j|2 +N01,FU

+
N∑
j=1

P2,j |h2,j|2

N0j,FU

)
. (4.3)

4.3.2 System Throughput Analysis

For the purpose of simulation analysis, the system throughput is delineated as the aggregate

of the data rates experienced by individual users. This metric serves as a pivotal performance

indicator, instrumental in assessing the holistic efficacy of the proposed system. The throughput

of the system can be represented as:

S =
N∑
j=1

R1,NUj
+RFU (4.4)

EXIT chart analysis

The encoded bit stream is subjected to a signal mapper to facilitate the conveyance of infor-

mation to a receiver characterized by noise. Consequently, when accommodating N parallel

decoder chains, the MUD [34, 36] is employed to compute the LLR for the pertinent bits. The

extrinsic LLR corresponding to the nth user’s zth bit, emanating from the MUD, is assessed in

the context of the reception of the mth sub-carrier as:

L
MUD,ex

(i
(n)
l

)
= ln

∑
Y ∈v(m,z,0) P (Zq | Y )P (Y )∑
Y ∈v(m,z,1) P (Zq | Y )P (Y )

− LMUD,apr(il)
(n) , (4.5)
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In this context, z pertaining to the nth user’s data is aggregated, where both v and n are

elements of their respective sets. The apriori LLR of the nth user’s zth bit can be denoted

as LMUD,apr(i
(n)
l ). It is imperative to acknowledge that within the MUD framework, the initial

probabilities of zero and one bits are equal. Consequently, as delineated in [34,38,39], the

inaugural values within the soft registers are initialized to zero. Additionally, the symbol for

the apriori is represented by P (Y ), signifying the multi-user probability, with the codeword

being articulated as Y =. Furthermore, the channel probability associated with Y is conveyed

as P (Zq | Y ), and the cost function (CF) is defined in accordance with [34,40].

FCF (Y ) = P (Zq | Y ) (P (Y )) = exp (− ||Zq − PHnWY ||)2 × P (Y ) . (4.6)

In this framework, Hn symbolizes the channel states encompassing all users within the

model, while W denotes the quantity of transmitter and receiver antennas that are equitably

matched. Prior to forwarding the apriori LLRs to the channel decoder, a despreading operation

is executed, facilitating the identification of the extrinsic LLRs for each user, as determined

by the deinterleaving applied to the user’s input sequence. The channel decoder subsequently

yields bit-oriented a posteriori LLRs, which are channeled to the signal spreading, wherein

supplementary iterations transpire between the interleavers and the MUD. Following a prede-

termined count of DEC and MUD-Despreading/Spreading iterations, labeled as ’I’, the decoder

engages in a rigorous selection process.

4.4 Simulation Results

Figure 4.1 illustrates the BER performance of the NU and FU in relation to SNR. As anticipated,

owing to its elevated power level (approximately 90 % of Pt) attributed to its extended distance

from the BS, specifically at a distance of 10 meters, the FU manifests a diminished BER

in comparison to the NU. The NU is allocated a minimal power, approximately 1% of Pt,

determined by its proximity to the BS, being merely 1 meter away.

Figure 4.2 assesses the rate at which data is transferred for each individual user. Empirical

evidence suggests that as the SNR increases, the data rate of the FU reaches a ceiling, whereas

the data rate of NU systems surpasses it. The rise in channel SNR directly corresponds to the

increase in IUI implemented by the NU onto the FU. The observable impact of cooperative
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NOMA can be seen in Figures 4.1 and 4.2. The implementation of cooperative relaying signifi-

cantly improves the data rate and BER in a NOMA network, as compared to a NOMA network

that does not employ cooperative relaying.

Figure 4.3 illustrates the overall system throughput of both the cooperative and non-

cooperative systems in the proposed model. The aggregate throughput of the system is de-

termined by the combined data transfer speeds of the NU and FU.

Figure 4.1: Comparison of BER performance between near and far users

Cooperative relaying dramatically increases the system’s throughput, as the cooperative

relaying outcome exceeds its noncooperative counterpart. At 0 dBs, the cooperative system’s

system throughput begins to be much higher than that of its non-cooperative counterpart, and

this difference persists until 40 dBs. As the SNR value for the channel climbs and the system

approaches its capacity limit, the performance gap narrows. According to Shannon’s capacity

rule [34, 40], however, the performance reaches a limit at approximately 40 dBs.

Figure 4.4 illustrates the EXIT chart analysis, where the inner decoder utilises the MI of

the MUD, while the outer decoder utilises the information obtained from despreading and
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Figure 4.2: Near and far users’ data rates

channel decoding. The only further calculation performed in the MUD involves the offline

determination of the joint probability of the alphabet at the receivers of both the user and the

BS. The aforementioned objective is accomplished by the use of a fair assortment of codewords

in combination with the predetermined parameters of our systems’ interleavers.

The MUD decoder produces the bit-oriented a posteriori LLRs for the corresponding code-

words. These are then channeled to the DES spreading, followed by the interleavers, and

subsequently recirculated to the MUD for further iterations. As a result, the coding rate for

the combined spreading is expressed as R/SF, which, in the context of this study, stands at

0.25. This corresponds to a SF of 2 and R of 0.5. Drawing insights from Fig. 4.4, it is inferred

that the MUD necessitates a minimum SNR of 12 dB to achieve the intended output. Hence,

by integrating the RSC code with a repetition factor of SF=2, it becomes feasible to attain

error-free transmission, contingent upon the MUD-DES and MUD-DEC undergoing a suitable

number of iterations.

The suboptimal performance exhibited by the MUD can be attributed to the initialization
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Figure 4.3: System throughput for proposed NOMA system

of MI for IMUD, apr as zero, given the equivalent likelihood of ones and zeros at the inception.

To generate the ’open tunnel’ delineated between the inner and outer curves, a higher SNR

becomes indispensable. As illustrated in Fig. 4.5, when the external code is synergized with the

MUD architecture, a value of IDES/DEC,ex = 1 is achieved at relatively diminutive IDES/DEC,apr

levels.

As shown in Fig.4.5, the suggested NOMA model achieves user fairness because the in-

ner/outer curves reach the [1 1] point without crossing at any given position. Fig. 4.6 demon-

strates that when the MUD model is deployed, the inner curve has a steeper slope than the

outer curve. In addition, the decoding trajectory of our proposed system is dependent on the

iteration between the MUD and the despreader. Moreover, at SNR = 3dB, the open EXIT

tunnel exists between the inner and outer curves after 1000 iterations in MUDDES/DEC , where

the inner and outer curves intersect at IMUD,ex = 0.89 and IDES/DEC,ex = 1, as depicted in

Fig.4.5.

In order to determine the normalised throughput of a single-carrier and multi-user carrier
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Figure 4.4: EXIT diagram for a NOMA system with the outer decoder utilizing RSC code at an
SF=2, while the inner decoder functions across diverse SNR values within the MUD framework

model when the number of users is U = 1 and U = 2 in non-dispersive Rayleigh channels,

Fig.4.6 is generated. Fig.4.6 illustrates that when used in the decoding paradigm, both multi-

user and single-carrier users achieve a higher throughput gain simultaneously. In addition, the

throughput gain in the single carrier system is greater than in the multi-user model, indicating

that more transmitting antenna combinations are utilised in the single carrier system.

In a single carrier system, ten transmitting antennas are utilised, but only two are used

in a multi-user type. This work demonstrates that increasing the number of antenna array

combinations for a single user decreases the correlation between the code word used to decode

the message, hence enabling the uniform selection of antenna array combinations across the

single-user model.
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Figure 4.5: EXIT chart for the proposed NOMA system

4.5 Summary

This chapter applies NOMA to a cooperative relaying scenario and performs an EXIT chart

analysis on the network. According to the EXIT chart analysis, information was exchanged

between the inner and outer decoders over a thousand times until an infinitesimally small BER

was achieved. The analysis of the EXIT chart also revealed that the simulation reached unity

gain, where convergence is observed after one thousand iterations and the open EXIT tunnel

between the inner and outer curves can be observed. The results show that unity gain was

achieved at point [1,1] without the inner and outer curves intersecting at any previous point.

Therefore, the system was able to achieve optimal user fairness during power allocation through

the application of NOMA. The normalised throughput was also shown to increase significantly

when a single carrier system is implemented, as it allows for more antenna combinations to be

utilised for transmission and reception. As opposed to multi-carrier systems, where antenna

combinations are significantly lower.

93



Figure 4.6: Normalised throughput analysis for MUD model
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Chapter 5

Enhancing the Performance of NOMA

Systems Using Deep Learning

Techniques

5.1 Introduction

Deep learning is a key driver behind numerous AI applications and services, which enhance

automation by enabling analytical and physical tasks to be performed without the need for

human intervention. The technology of deep learning underlies commonplace products and

services, including but not limited to digital assistants, voice-activated television remotes, and

credit card fraud detection, as well as nascent technologies such as autonomous vehicles.

This chapter will begin by introducing the concept of deep learning before focusing on the

research performed on signal detection in a conventional NOMA system using deep learning

assisted SIC instead of conventional SIC. The aim of the research is to reduce the receiver

complexity inherent in SIC without sacrificing receiver reliability.

As a result of the work carried out in this chapter, the following paper(s) were published:

• Z. Elsaraf, F. A. Khan and Q. Z. Ahmed, ”Deep Learning Based Power Allocation Schemes

in NOMA Systems: A Review,” 2021 26th International Conference on Automation and

Computing (ICAC), Portsmouth, United Kingdom, 2021, pp. 1-6.
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5.2 Signal Detection in a Downlink NOMA system using

Deep Learning

5.2.1 Introduction

In order to highlight the importance of adopting a deep learning approach to signal detection in

future wireless communication systems (5G and beyond), a signal detection using deep learning

for both a NOMA and OFDM system is proposed here.

The aim is to adequately present the significant advantages a network adopting both NOMA

and deep learning, for its transmission and reception of data, has in terms of efficient and

less complex signal detection. The system model will be outlined and discussed first before

presenting and discussing the acquired results.

5.2.2 System Model

General Block Diagram

Fig.5.1 illustrates the general relationship between functions. The squares represent the scripts,

the circles represent the functions and the dashed circle represents a private internal function in

the testData.m script. The arrows represent the transfer of data from one entity to another. It

is obvious that the transfer of data between scripts is unidirectional as opposed to bidirectional

when it comes to functions. A function receives arguments when it is called and then returns

certain outputs hence the bi-directionality. We note that the parameters exchanged between

each entity are not specified in order to have a clean figure. We should also note that the size

of each entity does not reflect its importance nor the size of its code.

As mentioned, there are three scripts (trainData, trainNN and testData) as well as seven

functions (getFeaturesAndLabels, allocatePower, dataTransmissioReception, detectML, chan-

nelEstimation, symbolDecodeSIC, symbolDecodeDL) and an private internal function for the

testData script (getRhh).

This deep learning technique follows the standard approach. First the creation of the train-

ing data using the trainData script, followed by creating and training a neural network using the

trainNN script then finally testing the network using the testData script. As the name suggest

the trainData script is used to generate the data used. It takes no inputs whatsoever, following
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Figure 5.1: General diagram for the proposed deep learning model

the code it calls allocatePower, dataTransmissionReception and getFeaturesAndLabels in this

order to finally generate the training data and some essential parameters.

The trainNN script is a conventional neural network training script. It used the training

data generated by the trainData script to train a LSTM-based neural network and then returns

at the end the trained network. This code does not use any external functions.

The testData script generates the test data using the trained network as well as some pa-

rameters generated by the trainData script and almost all the functions in the following order

getRhh, allocatePower, dataTransmissionReception, detectML, channelEstimation, symboleDe-

codeSIC, SymboleDecodeDL. The getFeatureAndLabel function is called by the symbolDecod-

eDL function.

Signal Modulation

QPSK was used for signal modulation in this work. It was chosen for its simplicity in imple-

mentation as as well as its robustness in Low to mid range SNRs, making it a favorable choice

of modulation schemes in environments with varying conditions. Using QPSK instead of other

more complex modulation schemes is beneficial for DL system design since lower complexity

leads to faster training for the neural network.
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Power Allocation

The allocatePower function’s role is to allocate transmit power to the users based on their chan-

nel gain in order for each user to achieve the targeted SNR. This function takes as arguments

the signal power per symbol (symPower), the static channel gain (gainH), the targeted SNR for

each user (targetSNR-1,targetSNR-2) and the noise variance (nVar) then returns the resulted

power factor( powerFactor) and the decoding order of the users (decOrder). When the function

is called the difference between the channels’ gain is calculated, depending on the result low

and high gain levels are assigned for each user. Using the gain levels, the targeted SNR and

the noise variance low and high power factors are computed which results in the general power

factor. Using the power factor, the decoding order of the users can be found. Algorithm 1

shows the power allocation process in pseudo-code. (Figure A.1 in the Appendix shows the

power allocation process in the form of a flowchart)

Channel Estimation (CE)

The channelEstimation function performs least square (LS) and minimum mean square error

(MMSE) CE. It takes as input arguments the received data (rData, the pilot frame (pilotFrame),

the power factor (powerFactor), the pilot start (pStart), the channel covariance matrix (RHH),

the noise variance (nVar), the number of pilot subcarrier (numPSC) and the perfect channel

frequency response (H-perf) then returns the LS estimation (H-LS) and the MMSE (H-MMSE)

CE. The process begins by computing the pilot spacing, then, for each user, the pilot symbol,

the power factor, and the data symbol are extracted and the power of the interfering users is

computed. Then for each packet of this user, the LS and MMSE CEs are computed. When

all is done the relevant values are returned. Algorithm 2 showcases the CE process in pseudo-

code.(Figure A.2 in the Appendix illustrates the CE in the form of a flowchart)

Data transmission and reception

The dataTransmissionReception function’s role is to model the signal received after being trans-

mitted using the OFDM method. A key point in OFDM is that the receiver will receive a super-

position of the signals from every user. This function takes as arguments the transmitPacket,

the power factor (powerFactor), the length of the Cyclic Prefix (CP) (lengthCP), the channel

response (h), the noise variance (nVar) and returns the received packets (receivePacket) and the
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Algorithm 1 Power Allocation

1: function allocatePower(symPower, gainH, targetSNR 1, targetSNR 2, nVar)
2: (numUE, numSC)← dimensions of gainH
3: // Channel gain levels
4: gainDiff← difference of gainH along first dimension
5: for each element of gainDiff do
6: if element < 0 then
7: highGain[element]← 1
8: else
9: highGain[element]← 2
10: lowGain[element]← 1
11: end if
12: end for
13: for each element of gainDiff do
14: if element > 0 then
15: lowGain[element]← 1
16: else
17: lowGain[element]← 2
18: end if
19: end for
20: Transpose highGain
21: Transpose lowGain
22: //Calculate power allocation factor
23: Initialize powerFactor with zeros of size (numSC, numUE)
24: for sc = 1 to numSC do
25: lowPower← targetSNR 2×nVar

symPower×gainH[highGain[sc], sc]

26: highPower← targetSNR 1×(lowPower×symPower×gainH[highGain[sc], sc]+nVar)
symPower×gainH[lowGain[sc], sc]

27: highPowerFactor← highPower
highPower+lowPower

28: lowPowerFactor← lowPower
highPower+lowPower

29: powerFactor[sc, highGain[sc]]← lowPowerFactor
30: powerFactor[sc, lowGain[sc]]← highPowerFactor
31: end for
32: Initialize decOrder with zeros of size (numSC, numUE)
33: decOrder[:, 1]← index of maximum value of powerFactor along the second dimension
34: decOrder[:, 2]← index of minimum value of powerFactor along the second dimension
35: return powerFactor, decOrder
36: end function
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Algorithm 2 Channel Estimation (CE)

1: function channelEstimation(rData, pilotFrame, powerFactor, pStart, RHH, nVar,
numPSC, H perf)

2: (numUE, numSC, numPacket)← dimensions of pilotFrame from the 2nd, 3rd, and
3: 4th dimensions
4: pilotSpacing← numSC

numPSC

5: Initialize H LS as zeros of size (numSC, numUE, numPacket)
6: Initialize H MMSE as zeros of size (numSC, numUE, numPacket)
7: for u = 1 to numUE do
8: // Pilot symbols and data symbols
9: pilot sc← sequence starting from pStart[u], incrementing by pilotSpacing, up to numSC
10: pilot← extract the specific pilotFrame values based on u, pilot sc, and u for all packets
11: pF ← extract the specific powerFactor values based on pilot sc, u, and all packets
12: data← extract the specific rData values based on u, pilot sc, and all packets
13: // Power of interfering user
14: intfPower← extract powerFactor values excluding the current u
15: for p = 1 to numPacket do
16: pl←

√
pF for packet p× pilot for packet p

17: hLS ← data for packet p÷ pl
18: hLS interp ← interpolate hLS using spline method from 1 : pilotSpacing :

numSC to 1 : numSC
19: Transpose hLS interp
20: H LS for packet p and u = hLS interp
21: H MMSE for packet p and u = RHH × (inverse of (RHH + nV ar×
22: diagonal of intfPower for packet p)× hLS interp
23: end for
24: end for
25: return H LS,H MMSE
26: end function
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random phase. The process is simple and is divided into two parts, transmission then reception.

First generate relevant variables like the number of symbols per packet (numSym), the number

of subcarriers (numSC), the number of user equipment (numUE) and the number of packets

(numPacket) based on trasmitPacket. These values could have been sent to the function as

arguments however, this can cause some problems due to the high number of arguments that

would have to be written (8 arguments).

The transmission begins by generating a random phase shift for each packet of each user.

The signal of each user is then multiplied by the square root of its power factor and the

inverse Discrete Fourier transform is applied to the result. Then a CP is inserted between each

subsequent symbol in the time domain. The result is transposed (parallel to serial) and the

convolution with the multipath channel response is computed then the phase shift is introduced.

The signals of the users are added together hence the superposition and a Gaussian noise is

added to this sum. At the receiver, the received signal is transposed (serial to parallel), the

CP is removed and the discrete Fourier transform is applied (DFT). The function then returns

the received packet and the random phase. Algorithm 3 shows this process in pseudo-code.

(Figure. A.3 in the Appendix illustrates this process in the form of a flowchart)

Deep learning signal detection

The detectML function performs ML detection for two users while assuming perfect CE. It

takes as inputs the channel frequency response (H), the random phase, the Quadrature Phase

Shift Keying (QPSK) modulation constellation (constQPSK), the power factor (pF), the re-

ceive data (rData), the decoding order indices (idx-1, idx-2), the transmitted packets (tData)

and the QPSK symbols combination class (symClass) then returns the error rate between the

transmitted labels and the estimated labels (errorML)as well as the received labels (rLabel).

When the function is called the symbols labels are computed followed by all possible trans-

mitted data and by extension all possible received data. Having both received data and es-

timated received data, the MSE of the two is calculated then the transmitted signals for the

minimum MSE are found. Following all that the labels of the estimated symbols and the

transmitted symbols are found and the error rate is computed. The function then returns the

error rate (errorML) and the received labels. Algortihms 4 and 5 showcase this process in

pseudo-code. (Figure A.4 in the Appendix illustrates this process in the form of a flowchart)
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Algorithm 3 Data Transmission and Reception

1: function dataTransmissionReception(transmitPacket, powerFactor, lengthCP, h,
nVar) → receivePacket, randomPhase

2: // Extract dimensions of transmitPacket
3: (numSym, numSC, numUE, numPacket)← dimensions(transmitPacket)
4: // Reshape and duplicate powerFactor
5: powerFactor ← reshape(powerFactor, 1, numSC, numUE, numPacket)
6: powerScale← duplicate(powerFactor, numSym, 1, 1, 1)
7: // Generate randomPhase matrix
8: randomPhase← generateComplexExponentialMatrix(numUE, numPacket)
9: for u = 1 to numUE do
10: for p = 1 to numPacket do
11: // IFFT for the subcarrier
12: x1← Inverse FFT(

√
powerScaleu,p × transmitPacketu,p)

13: // Inserting CP
14: x1 CP ← addCyclicPrefix(x1)
15: // Parallel to serial
16: x← convertToColumnVector(x1 CP )
17: // Multipath channel convolution
18: y conv ← convolve(x, hu,p)
19: y ← randomPhaseu,p × y conv[1 : length(x)]
20: end for
21: end for
22: // Superpose signals from 2 users
23: y total← sum(y, 2)
24: // Add AWGN to channel
25: sigLength← length(y total)
26: nFre← generateGaussianNoise(numPacket, numSC)
27: nTime← Inverse FFT(nFre, sigLength)
28: // Receiver
29: y total← y total + nTime
30: Y ← emptyMatrix(numPacket, numSym, numSC)
31: for p = 1 to numPacket do
32: // Serial to parallel
33: block ← reshape(y totalp, numSC + lengthCP, numSym)
34: // Removing CP
35: y block ← block[:, lengthCP + 1 : lengthCP + numSC]
36: // FFT
37: Yp ← FFT(y block, 2)
38: end for
39: receivePacket← permuteDimensions(Y )

return receivePacket, randomPhase
40: end function
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Algorithm 4 Deep Learning Signal Detection

1: function detectML(H, randomPhase, constQPSK, pF, rData, idx 1, idx 2, tData, symClass)
2: // Initialize sizes and labels
3: (numUE, numPacket)← Dimensions of H
4: numLabel← Length of constQPSK2

5: for each element in symClass do
6: if element == constQPSK[1] then
7: symLabel of that element← 1
8: else if element == constQPSK[2] then
9: symLabel of that element← 2
10: else if element == constQPSK[3] then
11: symLabel of that element← 3
12: else if element == constQPSK[4] then
13: symLabel of that element← 4
14: end if
15: end for
16: Reshape symLabel to size(numLabel, numUE)
17: // Compute all possible transmitted data
18: allSym← Copy of 1/

√
2× symClass repeated numPacket times

19: powerFactor← Reshape pF with dimensions (1, numUE, numPacket)
20: powerFactor← Repeat powerFactor with dimensions (numLabel, 1, 1)
21: allData← allSym times the square root of powerFactor
22: // Compute all possible received data
23: Reshape H to dimensions (1, numUE, numPacket)
24: H all← Repeat H for numLabel times
25: phase all← Reshape randomPhase to dimensions (1, numUE, numPacket)
26: phase all← Repeat phase all for numLabel times
27: restoreData← allData×H all × phase all
28: restoreDataSum← Sum of restoreData along second dimension
29: // Compute mean square error
30: Y ← Permute rData to dimensions (2, 1)
31: Y ← Repeat Y for numLabel times
32: err ← Square of (Y − restoreDataSum)
33: // Find the transmitted signals for the minimum mean square error
34: idx← Indices of Minimum values of err along first dimension
35: // Obtain labels for estimated symbols
36: estLabel← Initialize zeros matrix of size (numPacket, numUE)
37: for p = 1 to numPacket do
38: estLabel at (p, :)← symLabel at (idx(p), :)
39: end for
40: // Labels for estimated symbols for given indices
41: estLabel 1 and estLabel 2← Initialize zeros vector of size 1× numPacket
42: for p = 1 to numPacket do
43: estLabel 1[p]← estLabel at (p, idx 1[p])
44: estLabel 2[p]← estLabel at (p, idx 2[p])
45: end for
46: end function(cntd...)
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Algorithm 5 Deep Learning Signal Detection cntd

1: // Labels for transmitted symbols
2: tLabel← Initialize zeros matrix of the same size as tData
3: for each c in constQPSK do
4: Replace tLabel elements where tData == (1/

√
2× constQPSK[c]) with c

5: end for
6: // Compute Error rate
7: errorNum 1← 1− (Sum of (estLabel 1 equals tLabel[1, :]))/numPacket
8: errorNum 2← 1− (Sum of (estLabel 2 equals tLabel[2, :]))/numPacket
9: errorML← Vector [errorNum 1, errorNum 2]
10: rLabel← Matrix [estLabel 1; estLabel 2]
11: return (errorML, rLabel)
12: end function

Acquiring the feature and label

The getFeatureAndLabel function’s purpose is to construct a real-valued feature vector and

corresponding labels for training from complex data. The function takes as arguments the

real (realData) and the imaginary part (imagData) of the data, the labels (labelData) and the

target label (targetLabel) then returns the feature vector (feature), the label (label) and the

indices (idx) where the data label matches the target label.

When the function is called the indices where the data labels match the target label are

found. Then a label vector (label) is created which contains simply the target label. After

that, a real data and an imaginary data feature vectors are created which are then combined

into a single feature vector (feature). Feature, label and idx are then returned. Algorithm 6

showcases this process in pseudo-code. (Figure A.5 in the Appendix illustrates this process in

the form of a flowchart).

Symbol Decoding Using Deep Learning

The symbolDecodeDL function uses a trained neural network to detect received symbols for two

users simultaneously. It takes as input arguments the classes of labels (labelClass), the received

packets (receivePacket), the labels of the transmitted symbols (dataLabel), the trained neural

network (net), the decoding order (decOrder-sc), the QPSK symbols combination class (sym-

Class), the QPSK modulation constellation (constQPSK) then returns the error rate (numErr)

and the received labels.

When the function is called two index variables are created for each user based on the initial
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Algorithm 6 Get Feature and Label

1: function getFeatureAndLabel(realData, imagData, labelData, targetLabel) → fea-
ture, label, idx

2: Extract dimensions of realData→ (numSym, numSC, )
3: dimFetureV ec← numSym× numSC × 2
4: idx← indices in labelData where value = targetLabel
5: numSample← length(idx)
6: // Labels
7: label← array(numSample, targetLabel)
8: // Real-valued feature vectors
9: RealCollection← extract data from realData using idx
10: Permute dimensions of RealCollection
11: Reshape RealCollection→ (numSC × numSym, numSample)
12: // Collect real and imaginary parts of training data as feature vectors
13: ImagCollection← extract, permute, and reshape imagData similarly
14: feature← zero matrix of size (dimFetureV ec, numSample)
15: Fill odd rows of feature with RealCollection
16: Fill even rows of feature with ImagCollection
17: return feature, label, idx
18: end function

decoding order. Then a feature vector (XTest) and estimated label vector (YTest) are created

using the getFeatureAndLabel function for all possible labels. Having created the feature vector,

the trained network can be used for signal detection. Based on the result given by the network,

missclassified packets are found and then corrected. The error rate for each user are computed

as well as the received constellations. The number of errors (numErr) and the received labels

are returned. Algorithms 7 and 8 showcase this process in pseudo-code. (Figure A.6 in the

Appendix illustrates this process in the form of a flowchart)

Symbol decode Using SIC

The symbolDecodeSIC function performs SIC at the receiver when having a two-user NOMA

system. The signal received is a superposition of two signals from two users one considered

weak and the other strong. During the SIC process, the signal of the strong user is decoded

first and then subtracted from the received signal leaving only the signal of the weak user

that is then decoded. The function takes as input the received data (rData), the channel

frequency response (H), the decoding order (decOrder), the power factor (powerFactor), QPSK

constellation (const), the transmitted packet (tData) then returns the error rate (numErr) and

the received labels (rLabel).
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Algorithm 7 Symbol Decoding Using Deep Learning

1: function symbolDecodeDL(labelClass, receivePacket, dataLabel, net, decOrder sc,
symClass, constQPSK) return numErr, rLabel

2: // Extract dimensions from decOrder sc
3: (numUE, numPacket)← Dimensions of decOrder sc
4: idx 1← First row of decOrder sc
5: idx 2← Second row of decOrder sc
6: // Construct feature vectors and estimated labels
7: Initialize XTest as an empty list with length numPacket
8: Initialize Y Test as a zero list with length numPacket
9: for each n in labelClass do
10: (feature, label, idx)← getFeatureAndLabel with parameters (real part of receivePacket,

imaginary part of receivePacket, dataLabel, n)
11: Convert feature matrix to list and store in XTest at idx
12: Store label in Y Test at idx
13: end for
14: Convert XTest to column vector
15: Convert Y Test to categorical column vector
16: // Signal detection (prediction)
17: Y Pred← classify signals using net and XTest
18: wrongPred← Values of Y Pred where Y Pred is not equal to Y Test
19: Convert wrongPred to numbers
20: numWrongPred← Length of wrongPred
21: // Identify misclassified packets
22: wrongPacket← Packet indices where Y Pred is not equal to Y Test
23: // Calculate correct prediction for each user
24: correctPred 1← Count where Y Pred equals Y Test
25: correctPred 2← Count where Y Pred equals Y Test
26: for each n from 1 to numWrongPred do
27: correctLabel ← dataLabel at wrongPacket[n]
28: correctSym← symClass at correctLabel
29: correct 1← correctSym at idx 1[wrongPacket[n]]
30: correct 2← correctSym at idx 2[wrongPacket[n]]
31: decodeSym← symClass at wrongPred[n]
32: decodeSym 1← decodeSym at idx 1[wrongPacket[n]]
33: decodeSym 2← decodeSym at idx 2[wrongPacket[n]]
34: if correct 1 is equal to decodeSym 1 then
35: Increment correctPred 1
36: end if
37: if correct 2 is equal to decodeSym 2 then
38: Increment correctPred 2
39: end if
40: end for
41: // Calculate error rate per user
42: numErr 1← 1− correctPred 1

numPacket

43: numErr 2← 1− correctPred 2
numPacket

44: numErr ← Vector [numErr 1, numErr 2]
45: end function(cntd...)
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Algorithm 8 Symbol Decoding Using Deep Learning cntd

1: // Obtain received constellation for each user
2: for each symbol in symClass do
3: if symbol is equal to constQPSK[1] then
4: Set corresponding value of symLabel to 1
5: else if symbol is equal to constQPSK[2] then
6: Set corresponding value of symLabel to 2
7: else if symbol is equal to constQPSK[3] then
8: Set corresponding value of symLabel to 3
9: else if symbol is equal to constQPSK[4] then
10: Set corresponding value of symLabel to 4
11: end if
12: end for
13: Reshape symLabel to size (length of labelClass, numUE)
14: Convert Y Pred to a list of numbers named estimateLabel
15: Initialize rLabel as a zero matrix of size (numPacket, numUE)
16: for each p from 1 to numPacket do
17: rLabel[p, :]← symLabel at estimateLabel[p]
18: end for
19: Transpose rLabel
20: return (numErr, rLabel)
21: end function

When the function is called two index variables are created for each user based on the

initial decoding order. Then zero-forcing is applied to user number 1 who is considered to be

the strong user. Zero-forcing aims to restore the signal received after passing by the channel by

applying the inverse of the frequency response of said channel. The result is then hard decoded.

Then the decoded signal is extracted from the received signal to find the signal of user 2, which

is considered the weak user and then zero-forcing is applied followed by hard decoding. The

labels for the transmitted symbols are found followed by those of the detected symbols and the

error rate between the two is calculated. All relevant values are then returned by the function.

Algorithm 9 showcases this process in pseudo-code. (Figure A.7 in the Appendix illustrates

this process in the form of a flowchart)

Test data

The testData script is the third script to be run which loads the output of both previous scripts

and during which every function is called whether directly or indirectly. The process begins by

loading essential parameters generated by the trainData script which are the channel response

(h), the number of pilot subcarrier (numPSC), the length of the CP (lengthCP), the index
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Algorithm 9 Decoding Symbols Using Conventional SIC

1: function symbolDecodeSIC(rData,H, decOrder, powerFactor, const, tData)
2: Extract the dimensions of tData as (numUE, numPacket)
3: Squeeze the dimensions of matrix H
4: // Indices for strong user and weak user
5: idx1 ← first row of decOrder
6: idx2 ← second row of decOrder
7: // Strong user
8: zfSym1 ← array of zeros of size (1, numPacket)
9: for p = 1 to numPacket do
10: zfSym1[p]← rData[p]/H[idx1[p], p]
11: end for
12: // Hard decoding
13: decSym1 ← 1√

2
× complex(sign(real(zfSym1)), sign(imag(zfSym1)))

14: // Weak user
15: zfSym2 ← array of zeros of size (1, numPacket)
16: for p = 1 to numPacket do
17: resData← rData[p]−H[idx1[p], p]×

√
powerFactor[idx1[p], p]× decSym1[p]

18: zfSym2[p]← resData/H[idx2[p], p]
19: end for
20: // Hard decoding
21: decSym2 ← 1√

2
× complex(sign(real(zfSym2)), sign(imag(zfSym2)))

22: Combine decSym1 and decSym2 to form matrix decSym
23: // Obtain labels for transmitted symbols
24: tLabel← matrix of zeros of size of tData
25: for each c in const do
26: tLabel[tData = 1√

2
× c]← index of c in const

27: end for
28: // Obtain labels for detected symbols
29: rLabel← matrix of zeros of size of decSym
30: for each c in const do
31: rLabel[decSym = 1√

2
× c]← index of c in const

32: end for
33: // Error rate
34: numErr ← array of zeros of size (numUE, 1)
35: for u = 1 to numUE do
36: numErr[u]← 1− sum(rLabel row u=tLabel row u)

numPacket

37: end for
38: return numErr, rLabel
39: end function

108



of subcarrier (idx-sc), and the fixed pilot symbols (fixedPilot) then load the trained neural

network (net) that resulted from running the trainNN script. Some system parameters are set

then the QSPK modulation parameters are generated from which the labels and combination

class are extracted. After that, the target SNR are set and the noise is computed. The channel

covariance matrix can either be generated by calling the (getRhh) function or by loading in the

beginning, a previously generated one. We will not go into detail on how (getRhh) works.

Then two successive loops are used, the first looping over the number of Monte-Carlo itera-

tions and the second over the size of the noise variance. In the second loop, we first create the

transmitted packets for which we collect the labels. Following that the power is allocated by

calling the allocatePowerfunction and the packets are received by calling the dataTransmission-

Reception function. ML detection is applied using the proper function and then LS and MMSE

CE are done using the channelEstimation function. After that, the symboleDecodeSIC function

is applied to decode based on the LS and MMSE CE. Then the deep learning approach is used

by calling the symboleDecodeDL function. After all iterations of both loops finish the error

rate for LS, MMSE, and ML are computed and comparative figures are plotted. Algorithms

10 and 11 showcase this process in pseudo-code. (Figure A.8 in the Appendix illustrates this

process in the form of a flowchart)

Training data

The trainData script is the first script that needs to be run. It creates the data that will be used

to train the neural network. No preexisting variables are needed to be loaded at the beginning

and the result saved is the training data and some essential parameters that are required to

maintain the same conditions.

In the beginning, the random seed is set to reproduce the static channel. Then some system

parameters are initialized like the length of the CP (lenghtCP), the number of pilot subcarriers

(numPSC), the number of user equipment (numUE), the number of subcarriers (numSC) and

many more. Then all parameters for the QSPK modulation are created, from the constellation

to the symbol combination class. Following that the noise is computed, the target SNR are set

and the static channel is created with a channel response h.

The allocatePower function is called to calculate the power allocation factor and generate

the decoding order. After that, the number of OFDM labels per packet is set and the pilot
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Algorithm 10 Testing Data

1: Clear all variables
2: // Load training data and essential parameters
3: Load h, numPSC, lengthCP, idx sc, fixedP ilot from trainData.mat
4: // Load neural netwrok
5: Load net from NN.mat
6: // System parameters
7: [numPath, numUE] ← dimensions of h
8: numSC ← 64
9: numPSym← numUE
10: numDSym← 1
11: numSym← numPSym+ numDSym
12: pilotSpacing ← numSC

numPSC

13: pilotStart← [1, 1]
14: // QPSK modulation
15: constQPSK ← [1− 1j, 1 + 1j,−1 + 1j,−1− 1j]
16: [a, b, c, d] ← constQPSK
17: // Labels
18: symClass← combinations of a, b, c, d
19: labelClass← 1 to size of symClass
20: // Testing data size
21: numPacket← 1000
22: Replicate fixedP ilot for numPacket times
23: // Power allocations
24: targetSNR1, targetSNR2 ← 12
25: Convert targetSNR1, targetSNR2 to linear scale

26: H ← FFT of h along first dimension

27: Compute gain of H
28: // Noise computation
29: EsN0 dB ← sequence 4 to 28 with step 2
30: EsN0← conversion of EsN0 dB
31: symRate← 2, Es← 1
32: sigPower ← Es× symRate
33: symPower ← sigPower

numUE

34: N0← sigPower
EsN0

35: bw ← 1, nPower ← N0× bw
36: nV ar ← nPower

2

37: // Generate channel covariance matrix
38: Rhh← getRhh(numPath, numSC, 1e5)
39: // Testing stage
40: ITER← 1
41: Initialize matrices numErr ML, numErr LS, numErr MMSE, numErr DL with

zeros...
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Algorithm 11 Testing Data cnt

1: for it← 1 to ITER do
2: for snr ← 1 to size of nV ar do
3: // Transmit packets
4: Initialize pilotFrame with zeros

5: Fill pilotFrame with random complex values

6: Override pilotFrame values with fixedP ilot at specific positions

7: Initialize dataFrame with random complex values

8: Initialize transmitPacket with zeros

9: transmitPacket← pilotFrame
10: Assign modified dataFrame to transmitPacket
11: // Collect labels for transmitted data symbols
12: Determine tLabel based on dataFrame and symClass
13: // Allocate Power
14: Calculate powerFactor and decOrder
15: Replicate h, powerFactor, and decOrder for numPacket times
16: // Received packets
17: [receivePacket, randomPhase] ← dataTransmissionReception function

18: [receiveP ilot, receiveData] ← extract from receivePacket
19: // ML detection with perfect channel estimation
20: Compute decOrder sc, idx 1, idx 2, H sc, pF sc, rData, and tData
21: [numErr ML, rLabel ML] ← detectML function

22: // LS and MMSE estimation
23: [H LS,H MMSE] ← channelEstimation function

24: [numErr LS, rLabel LS] ← symbolDecodeSIC function with H LS
25: [numErr MMSE, rLabel MMSE] ← symbolDecodeSIC function with

H MMSE
26: // DL detection
27: numErr DL← symbolDecodeDL function

28: end for
29: end for
30: Average errors and plot results
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symbol is fixed for all packets. The code then loops over the number of classes i.e. over numLa-

bel, to generate the training data for each class. In the loop, the pilot frame is created followed

by the data symbols which are then transmitted and received by calling the dataTransmission-

Reception function. After that, the feature vector and the label vector are created by calling

the getFeatureAndLabel function. After the condition of the loop is fulfilled the training data

are saved and the program ends. Algorithms 12 and 13 showcase this process in pseudo-code.

(Figure A.9 in the Appendix illustrates this process in the form of a flowchart.)

The following are the main components of the dataset definition used in the train data

process:

• System Parameters: The code starts by defining various system parameters like the

number of pilot subcarriers (numPSC), the number of users (numUE), and other relevant

parameters to simulate a NOMA system.

• Symbol Modulation: The symbols are modulated using QPSK (Quadrature Phase Shift

Keying). The constQPSK variable contains the 4 possible QPSK symbols. A combination

of symbols that can be sent by two users is stored in symComb.

• Noise Computation: The code calculates the energy per symbol (Es) and the signal

power (sigPower). Based on a given SNR (EsN0dB), it calculates the noise variance

(nVar).

• Channel and Power Allocation: There’s a static channel realization generated with

numPath number of paths. The power allocation for the users and the decoding order

are determined using the allocatePower function.

• Training Data Generation: For each class (combination of symbols from symComb),

the code generates training samples. For each sample the pilot symbols are generated,

random data symbols are created, the symbols are the target subcarrier (idxsc) are then

replaced with the current data combination (symComb(n,:)), and the packet, which com-

bines the pilot and data symbols, undergoes data transmission and reception. The received

packet is then used to construct the feature vector and labels.

• Feature Extraction: The processing of this stage is detailed in ”Acquiring the Feature

and Label”.
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• Data Storage: The extracted features (’XTrain’) and labels (’YTrain’) are stored in the

’trainData.mat’ file, as shown in the pseudocode in algorithm 13.

Train NN

The trainNN script is the second script to be used during which the training data is loaded

and a neural network based on LSTM is created and trained then returned. This script is a

conventional neural network training script where the training data is loaded then some training

parameters like the number of batches and the number of epochs are set. Following that the

structure of the network is set and the network is created, trained and finally saved. No external

function is called by this script. Algorithms 14 and 15 showcase this process in pseudo-code.

(Figure A.10 in the Appendix illustrates this process in the form of a flowchart).

SNR Range

A range of SNR values was chosen to test this proposed system. The range chosen was from 0

to 30 dBs. This range of SNRs was chosen for the following reasons:

• Medium SNR range (0 to 20 dB): This range typically represents urban and suburban

environments, which allows for the proposed system to be tested in moderate noise levels

that represent most real-world application cases.

• High SNR range (20 to 30 dB or more): This range represents good channel condi-

tions, where the Line of Sight (LoS) is typically unobstructed. This range was chosen in

order to ensure the deep learning signal detection model does not produce errors in ideal

scenarios and to test just how far the tested system can get to its theoretical limits in

near perfect conditions.
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Algorithm 12 Training Transmitted Data

1: Clear all variables
2: Close all figures
3: Initialize s as random stream with ’mt19937ar’ and Seed 1921164231
4: Set s as the global random stream
5: // Define parameters
6: lengthCP ← 20
7: numPSC ← 64
8: numUE ← 2
9: numSC ← 64
10: numPSym← numUE
11: numDSym← 1
12: numSym← numPSym+ numDSym
13: pilotSpacing ← numSC/numPSC
14: pilotStart← [1, 1]
15: // Define QPSK constellation
16: constQPSK ← [1− 1j, 1 + 1j,−1 + 1j,−1− 1j]
17: a← first element of constQPSK
18: b← second element of constQPSK
19: c← third element of constQPSK
20: d← fourth element of constQPSK
21: // Generate combinations of symbols
22: symComb← [a a, a b, a c, a d, b a, b b, b c, b d, c a, c b, c c, c d, d a, d b, d c, d d]
23: labelClass← sequence from 1 to number of rows in symComb
24: numLabel← length of labelClass
25: // Define SNR parameters
26: EsN0 dB ← 40
27: EsN0← 10(EsN0 dB/10)

28: symRate← 2
29: Es← 1
30: sigPower ← Es× symRate
31: symPower ← sigPower/numUE
32: N0← sigPower/EsN0
33: bw ← 1
34: nPower ← N0× bw
35: nV ar ← nPower/2
36: targetSNR 1← 12
37: targetSNR 2← 12
38: targetSNR linear 1← 10(targetSNR 1/10)

39: targetSNR linear 2← 10(targetSNR 2/10)

40: // Generate channel response
41: numPath← 20
42: h ← (1/

√
2/
√
numPath)× complex(random numbers with Gaussian distribution of size

numPath× numUE)
43: H ← FFT of h with size numSC along the first dimension
44: gainH ← square magnitude of H transposed
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Algorithm 13 Training Transmitted Data cntd

1: [powerFactor, decOrder] ← allocatePower(symPower, gainH, targetSNR 1,
targetSNR 2, nV ar)

2: numPacketClass← 3× 104

3: fixedP ilot← zeros of size [numPSym, numPSC, numUE]
4: fixedP ilot for user 1← complex numbers with random bipolar values of size [1, numPSC, 1]
5: fixedP ilot for user 2← complex numbers with random bipolar values of size [1, numPSC, 1]
6: fixedP ilotPacket ← replicate fixedP ilot with size

[numPSym, numPSC, numUE, numPacketClass]
7: idx sc← 20
8: XTrain← empty list
9: Y Train← empty list
10: Start timer
11: for n = 1 numLabel do
12: Initialize pilotFrame with zeros of size [numPSym, numSC, numUE, numPacketClass]
13: pilotFrame for user 1 ← 1/

√
2 multiplied by complex random bipolar values of size

[1, numSC, 1, numPacketClass]
14: pilotFrame for user 2 ← 1/

√
2 multiplied by complex random bipolar values of size

[1, numSC, 1, numPacketClass]
15: pilotFrame for user 1 at pilotSpacing intervals starting from pilotStart(1) ←

fixedP ilotPacket for user 1
16: pilotFrame for user 2 at pilotSpacing intervals starting from pilotStart(2) ←

fixedP ilotPacket for user 2
17: dataFrame ← 1/

√
2 multiplied by complex random bipolar values of size

[numDSym, numSC, numUE, numPacketClass]
18: currentData← replicate symComb nth row across all packet classes
19: reshape currentData to size [1, 1, numUE, numPacketClass]
20: dataFrame at subcarrier idx sc← 1/

√
2 multiplied by currentData

21: hAll← replicate h for all packet classes
22: powerFactorAll ← replicate powerFactor for all packet classes
23: decOrderAll ← replicate decOrder for all packet classes
24: Initialize transmitPacket with zeros of size [numSym, numSC, numUE, numPacketClass]
25: transmitPacket for pilot symbols ← pilotFrame
26: transmitPacket for last symbol ← dataFrame
27: [receivePacket, ] ← dataTransmissionReception(transmitPacket, powerFactorAll,

lengthCP , hAll, nV ar)
28: dataLabel← n replicated for numPacketClass times
29: [feature, label, ]← getFeatureAndLabel(real part of receivePacket, imaginary part of

receivePacket, dataLabel, n)
30: Convert feature matrix into a cell array with one column per sample
31: Append feature cell array to XTrain
32: Append label array to Y Train
33: end for
34: Stop timer
35: Transpose XTrain
36: Convert Y Train to categorical and transpose
37: Save XTrain, Y Train, h, numPSC, lengthCP , idx sc, fixedP ilot into ’trainData.mat’
38: End Function
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Algorithm 14 Training the Neural Network

1: function TrainNeuralNetwork
2: // Initialization
3: Clear all variables.
4: Close all graphical interfaces.
5: // Load data
6: (XTrain, Y Train)← LoadData(′trainData.mat′)
7: // Parameter Initialization
8: numSC ← 64
9: miniBatchSize← 4000
10: maxEpochs← 50
11: inputSize← 2× numSC × 3
12: numHiddenUnits← 128
13: numHiddenUnits2← 64
14: numHiddenUnits3← numSC
15: numClasses← 16
16: // Define Neural Network Layers
17: layers← CreateLayers(inputSize, numHiddenUnits, numClasses)
18: // Training Options
19: options← SetTrainingOptions(maxEpochs,miniBatchSize)
20: // Train the Neural Network
21: startT ime← GetCurrentTime
22: net← TrainNetwork(XTrain, Y Train, layers, options)
23: endT ime← GetCurrentTime
24: // Save the Trained Network
25: SaveModel(’NN.mat’, net)
26: end function
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Algorithm 15 Training the Neural Network (Supporting Functions)

1: function LoadData(fileName)
2: return data from given fileName
3: end function
4: function CreateLayers(inputSize, numHiddenUnits, numClasses)
5: return a list containing:
6: Sequence Input Layer of size inputSize
7: LSTM Layer with numHiddenUnits and output mode set to ’last’
8: Fully Connected Layer with numClasses
9: Softmax Layer
10: Classification Layer
11: end function
12: function SetTrainingOptions(maxEpochs, miniBatchSize)
13: return training options with the following parameters:
14: Optimizer: ’adam’
15: Initial Learning Rate: 0.01
16: Execution Environment: ’auto’
17: ... (and other provided parameters)
18: end function
19: function TrainNetwork(XTrain, YTrain, layers, options)
20: return trained network using given data, layers, and options
21: end function
22: function SaveModel(fileName, model)
23: Save given model to specified fileName
24: end function
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5.2.3 Simulation Results

Fig.5.2 demonstrates that the second user (User 2) does not perform as well as the first user

(User 1) in terms of efficiency. This is to be expected due to the nature of NOMA signal

superposition, which provides one user with more power than is allocated to the other user

based on need. Because it was determined that User 1 required more assistance than User

2, User 1 was granted more authority. The requirement was established after considering the

amount of interference that each user was anticipated to experience. This was determined by

employing strategies for deep learning, such as the MMSE approximation.

Another observation is that, for both users, the deep learning technique for ML for data

regression has performed better than the other deep learning techniques, which are LS and

MMSE. This is a conclusion that can be drawn from the results of the comparison. This

demonstrates that these data regression procedures, while comparable, are not identical, and

that, for our proposed system, adopting the ML methods provides the highest performance.

The training procedure for our conceptual neural network is depicted in Fig.5.3 in regard

to the system accuracy and the amount of data lost. It is clear from looking at the figure that

the precision of the system continues to rise with each new iteration and epoch that is added.

As was to be expected, the accuracy of the system approaches one hundred percent (about

99.78%) by the time the fourth epoch or the 400th iteration has passed. Each iteration and

epoch that is performed brings the system’s data loss closer and closer to being at a point where

there is no data loss at all. But, by the 1000th iteration, or the beginning of the 9th epoch, the

system data loss has decreased to a value very close to zero (0.32). Based on these findings,

we are able to deduce that there is room for improvement in the data loss of our proposed

system. Specifically, there is room for improvement so that the system can achieve near-zero

data loss at an earlier stage in a manner that is congruent with the system accuracy reaching

one hundred percent. The goal of this is to reduce the total number of necessary iterations so

that the proposed neural network can be trained to its full potential and then deployed. This

is an opportunity for new works in the future.

The training procedure for the neural network that is depicted in Fig.5.4 was carried out

for a total of 30 epochs, or 3600 iterations. The processing depicted in this figure is comparable

to that depicted in the previous figure; however, there are very slight drops in performance

twice, once at the 20th and 21st epochs and again at the 28th and 29th epochs, as shown by
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Figure 5.2: BER Vs SNR graph for 2 users using different signal detection techniques
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the system accuracy graph and the system data loss graph, respectively. Because the code was

being executed on an out of date machine, this has been determined to be a problem with the

system. Because the performance drops are fixed in the subsequent epochs and iterations and

do not have an effect on the performance of the system as a whole, the error has been assessed

to be of minimal significance.

Figure 5.3: Training neural network in terms of system accuracy and data loss

The Effects of Spectral Bandwidth

The spectral bandwidth in a NOMA system can affect deep learning performance for signal

detection in several ways. Spectral bandwidth refers to the range of frequencies or the amount

of frequency spectrum allocated to a communication system. In the context of signal detection

in NOMA, here’s how spectral bandwidth can impact deep learning performance:

• SNR Improvement: A wider spectral bandwidth typically allows for more power to be

transmitted over the channel. This can lead to improved SNR, which is a crucial factor in

signal detection. Deep learning models used for signal detection can benefit from higher

SNR as it leads to cleaner and more distinguishable signals, making it easier to classify

and detect them accurately.
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Figure 5.4: Training neural network in terms of system accuracy and data loss for 30 epochs

• Increased Complexity: With wider bandwidths, the complexity of the communication

system increases. Deep learning models can handle complex systems, but they require

more parameters, layers, and computational resources to effectively model and detect

signals in wider bandwidths. Training and deploying deep learning models for NOMA

signal detection in a high-bandwidth environment can be computationally intensive.

• Multipath and Interference: In wireless communication, wider bandwidths may intro-

duce more multipath propagation and interference sources. Deep learning models need to

account for these additional complexities when detecting signals. Training deep learning

models to cope with a wider range of multipath and interference conditions may require

more diverse and extensive training datasets.

• Data Availability: The availability of training data is crucial for deep learning mod-

els. In NOMA systems with wider spectral bandwidths, obtaining labeled training data

for various scenarios and channel conditions can be more challenging. Adequate and di-

verse training data is essential for deep learning models to generalize well to real-world

conditions.

• Computational Overhead: Processing wide bandwidths requires more computational
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power, both during training and inference. Deep learning models used for signal detection

may need to be optimized and run on more powerful hardware to handle the increased

computational demands.

• Latency and Real-Time Processing: In some NOMA systems, especially those tar-

geting low-latency applications, the processing time for signal detection is critical. Wider

bandwidths may require faster and more efficient deep learning models and hardware to

maintain low latency.

In summary, while wider spectral bandwidths can potentially improve SNR and capacity

in NOMA systems, they also introduce challenges for deep learning-based signal detection

due to increased complexity, data requirements, and computational demands. To optimize

deep learning performance in such systems, a careful balance between spectral bandwidth and

the capabilities of the deep learning model, along with the availability of suitable training

data, should be considered. Additionally, advanced techniques like transfer learning and model

compression can be explored to make deep learning models more efficient for signal detection

in NOMA systems with varying spectral bandwidths.

5.3 Summary

In this chapter, Deep Learning was used to enhance the signal detection capabilities of a stan-

dard NOMA system. The system model includes two users who are served by NOMA and

OMA. Multiple deep learning algorithms for signal detection were tested via MATLAB simu-

lation. The algorithms for signal detection that were tested were LS, ML, and MMSE.

The transmission data is first generated and then trained, where power allocation occurs,

after which it is passed to the subsequent stage, where the neural network is first generated

and then trained. This process is carried out over two thousand epochs, and the resulting

data is then tested in a transmission and reception environment during the final stage. The

testing data process is also executed over two thousand epochs until the optimal performance

is attained, as demonstrated by the test results.

The results reveal a significant performance disparity between OMA and NOMA, with

NOMA exhibiting significantly superior performance. Comparing the various signal detection
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algorithms, it is demonstrated that the ML protocol achieves the best performance in detecting

the NOMA signal with minimal to no errors.
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Chapter 6

Conclusion and Future Works

In this chapter, the thesis will conclude by presenting a thorough summary of the carried

out work. In order to effectively summarise the work presented in the previous chapters, the

conclusion will be comprised of a number of sections.

Answers to Research Questions: in this section, the research questions posed at the

introduction chapter will be answered in order to show the progress made throughout the

research.

How the Aims and Objectives were Met: the exact methodology the research was

carried out with will be presented.

Contribution of Research: The results from the original work that was carried out over

the course of the research will be mentioned here.

Future works: areas for possible future research for each research area conducted will be

presented.

6.1 Answers to Research Questions

1. Enhancing the diversity gains of a cooperative relaying system by utilising key NOMA

features.

• NOMA techniques were applied to a cooperative relaying system and the results

show a significant improvement in overall system performance in regards to BER vs

SNR.
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2. Investigating the effects of employing EXIT chart analysis on a cooperative NOMA sys-

tem.

• The effects of applying EXIT chart analysis on a cooperative NOMA system were

investigated theoretically and practically.

3. Improving the performance of a NOMA system by employing a deep learning model.

• The application of deep learning in communication systems was investigated as well

as its deployment in a NOMA system in regards to signal detection.

6.2 How the Aims and Objectives were Met

The methodology undertaken to approach each research topic was as follows:

1. Conduct a thorough literature review in order to build a strong background in the re-

spective area of research and identify areas where a possible original work can be carried

out.

2. Conduct a review of already established and published works in order to ensure that the

work(s) decided upon in the previous step are wholly original.

3. Build a rudimentary block diagram in order to represent the system model in a visual

state.

4. Build a mathematical system model in order to represent the system model in a theoretical

state.

5. Use both the block diagram constructed in step 3 and the mathematical model in step 4

to construct the code on MATLAB.

6. Debug the code to ensure there are no conflicts or errors.

7. Run the code and draw conclusions on the propsed system model from the results.
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6.3 Contribution of research

The findings of all the original research will be summarised here, along with their overall

significance to communication technologies.

6.3.1 Cooperative Relaying with NOMA

Three observations were made concerning cooperative relaying with NOMA. First was the BER

versus SNR comparison, which compared a distant user’s transmission without cooperative re-

laying, a distant user’s transmission with cooperative relaying, and a nearby user’s transmission

with cooperative relaying. Note that regardless, all users utilised NOMA. Despite the fact that

all users received good service, the result demonstrated that the cell edge users at greater dis-

tances received superior service. Among the two distant cell edge users, the one who utilised

cooperative relaying in conjunction with NOMA had the best performance. This result demon-

strates the possibility of using NOMA and cooperative relaying in tandem to provide service

to users with higher QoS.

The second comparison was between power allocation and data rate, which illustrated the

number of bits required for transmission at a given power allocation factor. A conventional

NOMA system requires 3.5 bits to broadcast at 0.1 power allocation factor, while a cooperative

NOMA system only requires 1.5 bits to transmit at the same power allocation factor. This

improved performance results in a reduction of required data bits by more than 50 percent while

maintaining the same power allocation factor. This demonstrates that cooperative relaying with

NOMA uses transmission resources significantly more efficiently than a conventional NOMA

system.

The EXIT chart analysis for the cooperative NOMA system revealed that the system ini-

tialises at a loss, as both ones and zeros are initialised with a probability of 0.5. This initial

loss can be mitigated by repeatedly decoding and despreading between the inner and outer

decoders. This result demonstrates that EXIT charts can be useful for cooperative relaying

with NOMA, provided a certain number of iterations are performed to eliminate the initial loss

and achieve error-free transmission.
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6.3.2 EXIT Chart Analysis in Cooperative NOMA

The design and analysis of a cooperative NOMA system produced its data rate and system

throughput. The system was subsequently analysed using EXIT chart analysis.

The data rate illustrates the rates attained by each user in three transmission scenarios: far

user with NOMA but without cooperation, far user with NOMA and cooperation, and near

user with NOMA and cooperation. The result demonstrates that the far user with NOMA and

cooperation attained the highest data rate, while the near user with NOMA and cooperation

attained the lowest data rate. However, it can also be observed that this performance disparity

becomes negligible in cases with high SNR ( more than or equal to 32 dBs). This phenomenon is

known as the error floor and is a characteristic of NOMA. The error floor can be offset by either

switching to OMA in the high SNR range or employing more transmit and receive antennas

(MIMO).

The system throughput is equal to the total data transfer rate of all network users. The

system throughput is simulated in two transmission scenarios, one with NOMA and the other

without. The results mirror those observed in the comparison of data rates, where it was

determined that the system throughput with cooperative relaying is significantly higher than

that without it. This further demonstrates that NOMA with cooperative relaying has the

potential to serve users in scenarios requiring a higher QoS.

Additionally, the normalised throughput is measured for the single and multiple user cases.

It is demonstrated that both the single-user and multi-user cases simultaneously achieve higher

throughput gains. When ten antennas are utilised, the correlation between the code word used

to decode the message decreases. It can be deduced from this result that increasing the number

of antenna array combinations improves performance.

Since the initial loss for the system is zero, the EXIT chart analysis demonstrates that the

minimum SNR required for error-free transmission is 12 dBs. To achieve a very small BER, the

data must be transferred from the MUD decoder to the MUD despreader and back for a specific

number of iterations (approximately 1000). Finally, the EXIT chart analysis demonstrates that

the user fairness at the power allocation stage was optimal, as the lines for the inner and outer

decoders converge at unity gain without intersecting at any earlier point.
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6.3.3 Deep Learning for Signal Detection in NOMA

Two observations have been made regarding the use of deep learning techniques to improve

signal detection in a NOMA system. First, the performance of the first user is superior to

that of the second user. This enhanced performance was anticipated due to the nature of

NOMA signal superposition, which allocates more transmission resources to users with greater

requirements. The first user was deemed to have a greater need than the second user because

the amount of interference the first user was expected to experience was significantly greater

than that of the second user. Using MMSE approximation, the precise level of interference was

determined.

Three deep learning (data regression) signal detection algorithms were then evaluated and

compared. The signal detection algorithms evaluated were ML, LS, and MMSE. ML was shown

to be the most effective algorithm for signal detection when compared to LS and MMSE. This

leads to the conclusion that, despite the fact that these algorithms are comparable, they are

not identical.

Regarding system accuracy and data loss, it is evident from the results that network accuracy

increases exponentially with the number of iterations and epochs. At the 400th iteration (or

fourth epoch), the system accuracy approaches 100 percent (approximately 99.78 percent), as

shown by the results. By increasing the number of iterations further, the proposed system can

achieve an error rate that is approximately 0.22 percent. While the error rate is extremely

low, it is not zero; therefore, it stands to reason that the proposed system can be improved by

reducing the number of training iterations required to achieve an operable error rate.

The accuracy and system data loss graphs illustrate the proposed system’s training progress.

As the number of iterations and epochs increases, the graphs depict the system’s accuracy and

data loss steadily improving. However, between the 20th and 21st epoch and again between

the 28th and 29th epoch, the performance decreases slightly for a brief period of time before

resuming its exponential growth. The performance decreases are infrequent and insufficient to

affect the overall performance; as a result, they were deemed a system error caused by operating

on an outdated machine.
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6.4 Future Works

There are a number of research directions for possible future work that were discovered. These

include but are not limited to cancelling out inter-user interference for NOMA based systems

where the inter-user interference that is inherent in NOMA systems as a result of conducting

its SIC process during the signal detection phase remains an issue and conducting hardware

based experiments where factors like signal penetration and fading can be further taken into

account by simulating a real life-like scenario.

6.4.1 NOMA with Cooperative Relaying

The following are examples of possible avenues for future research in NOMA systems that

employ cooperative relaying:

1. Multi-user scenario: It still remains to be seen how the NOMA system will adapt to

an increasing number of users as the IUI problem becomes more apparent and relevant

with a higher number of users.

2. Relay nodes as energy harvesters for SWIPT: it is possible to utilise inactive or idle

users in a network as energy harvesting nodes for the application of SWIPT in the network.

Doing so will allow for inactive or idle user to play a supporting role in providing service

to far away or cell edge users. This scheme might even increase the overall broadcast

range of a network.

6.4.2 NOMA with EXIT Chart Analysis

The following are examples of possible research direction(s) for NOMA with EXIT chart anal-

ysis:

1. Increasing the number of inner and outer decoders: Increasing the number of

inner and outer decoders will allow for the EXIT chart analysis to be carried out more

efficiently as when the information passes through more inner and outer decoders, the

result will be an even lower BER for the system’s signal detection. This will allow for

EXIT chart analysis to assist in high interference circumstances such as NOMA’s inherent

inter-user interference.
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6.4.3 NOMA with Deep Learning Techniques

The following are examples for future work in the area of power allocation in NOMA using

deep learning:

1. Dynamic mm-Wave NOMA: The majority of techniques listed for optimal power

allocation do not take into account more advanced reinforcement and online learning

procedures that update the partition according to dynamic mm-Wave NOMA scenarios;

this is a potential area for future research.

2. Smart Jamming: some of the presented works can be extended to include more practical

applications for NOMA broadcasts, notably with the inclusion of smart jamming, where

a programmable jammer takes use of radio equipment to choose jamming policies in a

flexible manner.

3. Multiple Antennas and MUs: Some of the planned works can be expanded to accom-

modate users with multiple antennas, as well as MUs for whom the power allocation and

beam selection must be updated in real time.

Other probable future research directions include data set collection, model selection, learning

mechanism and performance analysis, DRL for the wireless physical layer, and model compres-

sion for deep learning-based 5G and beyond.

The following are examples for future work in the area of signal detection in NOMA using

deep learning:

1. SER Error Floor: by considering a deeper architecture, increasing the number of train-

ing epochs, and increasing the number of filters, the SER floor may be reduced.

2. Channel Profile: the works can also be extended for practical applications by consid-

ering a dynamic channel profile as well as evaluating further the effects of channel fading

on the system; this can be done with the aim to further test the sturdiness of the DL

model to dynamic/unknown channel conditions.

3. System Security: issues to be addressed regarding security issues are, the selection

of the optimal threshold as well as the distance issue of the attackers, i.e., dynamically

changing the distance of the attackers to the BS. Attackers may also correlate with other
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users if they are close enough. The performance of the algorithms needs to be evaluated

under the aforementioned condition.

4. Signal Detection in Different Types of NOMA: the proposed algorithms can be

implemented to detect signals in other types of NOMA systems, including, SCMA, pattern

division multiple access, and MUSA.

Furthermore, the works can be extended to consider evaluating the performance under varying

channel conditions and with the implementation of multiple clusters. Signal detection utilising

RNNs can be further explored. CNNs can also be applied to the proposed system on account

of its potential for signal detection. Implementing some of the proposed works for cases with

varying transmission parameters and channel conditions can also be considered. The algorithms’

performance can also be improved for the high SNR regime. Some of the proposed works can

also be extended for the multi-antenna case as well as a number of interesting applications,

such as, mmWave CE, MIMO detection, and direction of arrival estimation.

Overall, drawing from the observations made from all simulation results, it has been made

abundantly clear that, while NOMA is an effective candidate for meeting the needs of the next

generation of wireless communications, in order to overcome NOMA’s issues, such as inter-user

interference, it is imperative for it to be combined with other communication technologies.

NOMA has been shown to have a great affinity for working alongside other communication

technologies.
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Appendix A

Appendix

Figure A.1: Flowchart for the power allocation algorithm (allocatePower) for the proposed
system
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Figure A.2: Flowchart for the CE algorithm for the proposed system
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Figure A.3: Flowchart for the data transmission and reception algorithm for the proposed
system
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Figure A.4: Flowchart for the signal detection algorithm for the proposed system
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Figure A.5: Flowchart for acquiring the feature and label algorithm for the proposed system
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Figure A.6: Flowchart for decoding transmitted symbols for the proposed system
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Figure A.7: Flowchart for decoding transmitted symbols using SIC for the proposed system
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Figure A.8: Flowchart for Testing the transmitted data for the proposed system
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Figure A.9: Flowchart for training the transmitted data of the proposed system
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Figure A.10: Flowchart for training the neural network of the proposed system
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