1,102,213 research outputs found

    Sharp bound on the number of maximal sum-free subsets of integers

    Get PDF
    Cameron and Erd\H{o}s asked whether the number of \emph{maximal} sum-free sets in {1,,n}\{1, \dots , n\} is much smaller than the number of sum-free sets. In the same paper they gave a lower bound of 2n/42^{\lfloor n/4 \rfloor } for the number of maximal sum-free sets. Here, we prove the following: For each 1i41\leq i \leq 4, there is a constant CiC_i such that, given any nimod4n\equiv i \mod 4, {1,,n}\{1, \dots , n\} contains (Ci+o(1))2n/4(C_i+o(1)) 2^{n/4} maximal sum-free sets. Our proof makes use of container and removal lemmas of Green, a structural result of Deshouillers, Freiman, S\'os and Temkin and a recent bound on the number of subsets of integers with small sumset by Green and Morris. We also discuss related results and open problems on the number of maximal sum-free subsets of abelian groups.Comment: 25 pages, to appear in the Journal of the European Mathematical Societ

    Cohomological aspects of Abelian gauge theory

    Full text link
    We discuss some aspects of cohomological properties of a two-dimensional free Abelian gauge theory in the framework of BRST formalism. We derive the conserved and nilpotent BRST- and co-BRST charges and express the Hodge decomposition theorem in terms of these charges and a conserved bosonic charge corresponding to the Laplacian operator. It is because of the topological nature of free U(1) gauge theory that the Laplacian operator goes to zero when equations of motion are exploited. We derive two sets of topological invariants which are related to each-other by a certain kind of duality transformation and express the Lagrangian density of this theory as the sum of terms that are BRST- and co-BRST invariants. Mathematically, this theory captures together some of the key features of Witten- and Schwarz type of topological field theories.Comment: 12 pages, LaTeX, no figures, Title and text have been slightly changed, Journal reference is given and a reference has been adde

    Sidon Sets in Groups and Induced Subgraphs of Cayley Graphs

    Get PDF
    Let S be a subset of a group G. We call S a Sidon subset of the first (second) kind, if for any x, y, z, w ∈ S of which at least 3 are different, xy ≠ zw (xy-1 ≠ zw-1, resp.). (For abelian groups, the two notions coincide.) If G has a Sidon subset of the second kind with n elements then every n-vertex graph is an induced subgraph of some Cayley graph of G. We prove that a sufficient condition for G to have a Sidon subset of order n (of either kind) is that (❘G❘ ⩾ cn3. For elementary Abelian groups of square order, ❘G❘ ⩾ n2 is sufficient. We prove that most graphs on n vertices are not induced subgraphs of any vertex transitive graph with <cn2/log2n vertices. We comment on embedding trees and, in particular, stars, as induced subgraphs of Cayley graphs, and on the related problem of product-free (sum-free) sets in groups. We summarize the known results on the cardinality of Sidon sets of infinite groups, and formulate a number of open problems.We warn the reader that the sets considered in this paper are different from the Sidon sets Fourier analysts investigate

    On the sum of the Voronoi polytope of a lattice with a zonotope

    Full text link
    A parallelotope PP is a polytope that admits a facet-to-facet tiling of space by translation copies of PP along a lattice. The Voronoi cell PV(L)P_V(L) of a lattice LL is an example of a parallelotope. A parallelotope can be uniquely decomposed as the Minkowski sum of a zone closed parallelotope PP and a zonotope Z(U)Z(U), where UU is the set of vectors used to generate the zonotope. In this paper we consider the related question: When is the Minkowski sum of a general parallelotope and a zonotope P+Z(U)P+Z(U) a parallelotope? We give two necessary conditions and show that the vectors UU have to be free. Given a set UU of free vectors, we give several methods for checking if P+Z(U)P + Z(U) is a parallelotope. Using this we classify such zonotopes for some highly symmetric lattices. In the case of the root lattice E6\mathsf{E}_6, it is possible to give a more geometric description of the admissible sets of vectors UU. We found that the set of admissible vectors, called free vectors, is described by the well-known configuration of 2727 lines in a cubic. Based on a detailed study of the geometry of PV(e6)P_V(\mathsf{e}_6), we give a simple characterization of the configurations of vectors UU such that PV(E6)+Z(U)P_V(\mathsf{E}_6) + Z(U) is a parallelotope. The enumeration yields 1010 maximal families of vectors, which are presented by their description as regular matroids.Comment: 30 pages, 4 figures, 4 table

    Universal terms for the entanglement entropy in 2+1 dimensions

    Full text link
    We show that the entanglement entropy and alpha entropies corresponding to spatial polygonal sets in (2+1)(2+1) dimensions contain a term which scales logarithmically with the cutoff. Its coefficient is a universal quantity consisting in a sum of contributions from the individual vertices. For a free scalar field this contribution is given by the trace anomaly in a three dimensional space with conical singularities located on the boundary of a plane angular sector. We find its analytic expression as a function of the angle. This is given in terms of the solution of a set of non linear ordinary differential equations. For general free fields, we also find the small-angle limit of the logarithmic coefficient, which is related to the two dimensional entropic c-functions. The calculation involves a reduction to a two dimensional problem, and as a byproduct, we obtain the trace of the Green function for a massive scalar field in a sphere where boundary conditions are specified on a segment of a great circle. This also gives the exact expression for the entropies for a scalar field in a two dimensional de Sitter space.Comment: 15 pages, 3 figures, extended version with full calculations, added reference

    On the orbit closure containment problem and slice rank of tensors

    Get PDF
    We consider the orbit closure containment problem, which, for a given vector and a group orbit, asks if the vector is contained in the closure of the group orbit. Recently, many algorithmic problems related to orbit closures have proved to be quite useful in giving polynomial time algorithms for special cases of the polynomial identity testing problem and several non-convex optimization problems. Answering a question posed by Wigderson, we show that the algorithmic problem corresponding to the orbit closure containment problem is NP-hard. We show this by establishing a computational equivalence between the solvability of homogeneous quadratic equations and a homogeneous version of the matrix completion problem, while showing that the latter is an instance of the orbit closure containment problem. Secondly, we consider the notion of slice rank of tensors, which was recently introduced by Tao, and has subsequently been used for breakthroughs in several combinatorial problems like capsets, sunflower free sets, tri-colored sum-free sets, and progression-free sets. We show that the corresponding algorithmic problem, which can also be phrased as a problem about union of orbit closures, is also NP-hard, hence answering an open question by Bürgisser, Garg, Oliveira, Walter, and Wigderson. We show this by using a connection between the slice rank and the size of a minimum vertex cover of a hypergraph revealed by Tao and Sawin
    corecore