4,931 research outputs found

    Activity Recognition based on a Magnitude-Orientation Stream Network

    Full text link
    The temporal component of videos provides an important clue for activity recognition, as a number of activities can be reliably recognized based on the motion information. In view of that, this work proposes a novel temporal stream for two-stream convolutional networks based on images computed from the optical flow magnitude and orientation, named Magnitude-Orientation Stream (MOS), to learn the motion in a better and richer manner. Our method applies simple nonlinear transformations on the vertical and horizontal components of the optical flow to generate input images for the temporal stream. Experimental results, carried on two well-known datasets (HMDB51 and UCF101), demonstrate that using our proposed temporal stream as input to existing neural network architectures can improve their performance for activity recognition. Results demonstrate that our temporal stream provides complementary information able to improve the classical two-stream methods, indicating the suitability of our approach to be used as a temporal video representation.Comment: 8 pages, SIBGRAPI 201

    Scene segmentation using similarity, motion and depth based cues

    Get PDF
    Segmentation of complex scenes to aid surveillance is still considered an open research problem. In this thesis a computational model (CM) has been developed to classify a scene into foreground, moving-shadow and background regions. It has been demonstrated how the CM, with the optional use of a channel ratio test, can be applied to demarcate foreground shadow regions in indoor scenes illuminated by a fixed incandescent source of light. A combined approach, involving the CM working in tandem with a traditional motion cue based segmentation method, has also been constructed. In the combined approach, the CM is applied to segregate the foreground shaded regions in a current frame based on a binary mask generated using a standard background subtraction process (BSP). Various popular outlier detection strategies have been investigated to assess their suitabilities in generating a threshold automatically, required to develop a binary mask from a difference frame, the outcome of the BSP. To evaluate the full scope of the pixel labeling capabilities of the CM and to estimate the associated time constraints, the model is deployed for foreground scene segmentation in recorded real-life video streams. The observations made validate the satisfactory performance of the model in most cases. In the second part of the thesis depth based cues have been exploited to perform the task of foreground scene segmentation. An active structured light based depthestimating arrangement has been modeled in the thesis; the choice of modeling an active system over a passive stereovision one has been made to alleviate some of the difficulties associated with the classical correspondence problem. The model developed not only facilitates use of the set-up but also makes possible a method to increase the working volume of the system without explicitly encoding the projected structured pattern. Finally, it is explained how scene segmentation can be accomplished based solely on the structured pattern disparity information, without generating explicit depthmaps. To de-noise the difference frames, generated using the developed method, two median filtering schemes have been implemented. The working of one of the schemes is advocated for practical use and is described in terms of discrete morphological operators, thus facilitating hardware realisation of the method to speed-up the de-noising process

    Virtual image sensors to track human activity in a smart house

    Get PDF
    With the advancement of computer technology, demand for more accurate and intelligent monitoring systems has also risen. The use of computer vision and video analysis range from industrial inspection to surveillance. Object detection and segmentation are the first and fundamental task in the analysis of dynamic scenes. Traditionally, this detection and segmentation are typically done through temporal differencing or statistical modelling methods. One of the most widely used background modeling and segmentation algorithms is the Mixture of Gaussians method developed by Stauffer and Grimson (1999). During the past decade many such algorithms have been developed ranging from parametric to non-parametric algorithms. Many of them utilise pixel intensities to model the background, but some use texture properties such as Local Binary Patterns. These algorithms function quite well under normal environmental conditions and each has its own set of advantages and short comings. However, there are two drawbacks in common. The first is that of the stationary object problem; when moving objects become stationary, they get merged into the background. The second problem is that of light changes; when rapid illumination changes occur in the environment, these background modelling algorithms produce large areas of false positives.These algorithms are capable of adapting to the change, however, the quality of the segmentation is very poor during the adaptation phase. In this thesis, a framework to suppress these false positives is introduced. Image properties such as edges and textures are utilised to reduce the amount of false positives during adaptation phase. The framework is built on the idea of sequential pattern recognition. In any background modelling algorithm, the importance of multiple image features as well as different spatial scales cannot be overlooked. Failure to focus attention on these two factors will result in difficulty to detect and reduce false alarms caused by rapid light change and other conditions. The use of edge features in false alarm suppression is also explored. Edges are somewhat more resistant to environmental changes in video scenes. The assumption here is that regardless of environmental changes, such as that of illumination change, the edges of the objects should remain the same. The edge based approach is tested on several videos containing rapid light changes and shows promising results. Texture is then used to analyse video images and remove false alarm regions. Texture gradient approach and Laws Texture Energy Measures are used to find and remove false positives. It is found that Laws Texture Energy Measure performs better than the gradient approach. The results of using edges, texture and different combination of the two in false positive suppression are also presented in this work. This false positive suppression framework is applied to a smart house senario that uses cameras to model ”virtual sensors” to detect interactions of occupants with devices. Results show the accuracy of virtual sensors compared with the ground truth is improved

    Application-aware optimization of Artificial Intelligence for deployment on resource constrained devices

    Get PDF
    Artificial intelligence (AI) is changing people's everyday life. AI techniques such as Deep Neural Networks (DNN) rely on heavy computational models, which are in principle designed to be executed on powerful HW platforms, such as desktop or server environments. However, the increasing need to apply such solutions in people's everyday life has encouraged the research for methods to allow their deployment on embedded, portable and stand-alone devices, such as mobile phones, which exhibit relatively low memory and computational resources. Such methods targets both the development of lightweight AI algorithms and their acceleration through dedicated HW. This thesis focuses on the development of lightweight AI solutions, with attention to deep neural networks, to facilitate their deployment on resource constrained devices. Focusing on the computer vision field, we show how putting together the self learning ability of deep neural networks with application-specific knowledge, in the form of feature engineering, it is possible to dramatically reduce the total memory and computational burden, thus allowing the deployment on edge devices. The proposed approach aims to be complementary to already existing application-independent network compression solutions. In this work three main DNN optimization goals have been considered: increasing speed and accuracy, allowing training at the edge, and allowing execution on a microcontroller. For each of these we deployed the resulting algorithm to the target embedded device and measured its performance

    Advance Intelligent Video Surveillance System (AIVSS): A Future Aspect

    Get PDF
    Over the last few decades, remarkable infrastructure growths have been noticed in security-related issues throughout the world. So, with increased demand for Security, Video-based Surveillance has become an important area for the research. An Intelligent Video Surveillance system basically censored the performance, happenings, or changing information usually in terms of human beings, vehicles or any other objects from a distance by means of some electronic equipment (usually digital camera). The scopes like prevention, detection, and intervention which have led to the development of real and consistent video surveillance systems are capable of intelligent video processing competencies. In broad terms, advanced video-based surveillance could be described as an intelligent video processing technique designed to assist security personnel’s by providing reliable real-time alerts and to support efficient video analysis for forensic investigations. This chapter deals with the various requirements for designing a robust and reliable video surveillance system. Also, it is discussed the different types of cameras required in different environmental conditions such as indoor and outdoor surveillance. Different modeling schemes are required for designing of efficient surveillance system under various illumination conditions

    Video object tracking : contributions to object description and performance assessment

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Universidade do Porto. Faculdade de Engenharia. 201

    Novel Texture-based Probabilistic Object Recognition and Tracking Techniques for Food Intake Analysis and Traffic Monitoring

    Get PDF
    More complex image understanding algorithms are increasingly practical in a host of emerging applications. Object tracking has value in surveillance and data farming; and object recognition has applications in surveillance, data management, and industrial automation. In this work we introduce an object recognition application in automated nutritional intake analysis and a tracking application intended for surveillance in low quality videos. Automated food recognition is useful for personal health applications as well as nutritional studies used to improve public health or inform lawmakers. We introduce a complete, end-to-end system for automated food intake measurement. Images taken by a digital camera are analyzed, plates and food are located, food type is determined by neural network, distance and angle of food is determined and 3D volume estimated, the results are cross referenced with a nutritional database, and before and after meal photos are compared to determine nutritional intake. We compare against contemporary systems and provide detailed experimental results of our system\u27s performance. Our tracking systems consider the problem of car and human tracking on potentially very low quality surveillance videos, from fixed camera or high flying \acrfull{uav}. Our agile framework switches among different simple trackers to find the most applicable tracker based on the object and video properties. Our MAPTrack is an evolution of the agile tracker that uses soft switching to optimize between multiple pertinent trackers, and tracks objects based on motion, appearance, and positional data. In both cases we provide comparisons against trackers intended for similar applications i.e., trackers that stress robustness in bad conditions, with competitive results
    corecore