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Abstract

With the advancement of computer technology, demand for more accurate and intelligent

monitoring systems has also risen. The use of computer vision and video analysis range from

industrial inspection to surveillance. Object detection and segmentation are the first and

fundamental task in the analysis of dynamic scenes.

Traditionally, this detection and segmentation are typically done through temporal differenc-

ing or statistical modelling methods. One of the most widely used background modelling

and segmentation algorithms is the Mixture of Gaussians method developed by Stauffer and

Grimson (1999). During the past decade many such algorithms have been developed rang-

ing from parametric to non-parametric algorithms. Many of them utilise pixel intensities to

model the background, but some use texture properties such as Local Binary Patterns.

These algorithms function quite well under normal environmental conditions and each has

its own set of advantages and short comings. However, there are two drawbacks in common.

The first is that of the stationary object problem; when moving objects become stationary,

they get merged into the background. The second problem is that of light changes; when

rapid illumination changes occur in the environment, these background modelling algorithms

produce large areas of false positives. These algorithms are capable of adapting to the change,

however, the quality of the segmentation is very poor during the adaptation phase.

In this thesis, a framework to suppress these false positives is introduced. Image proper-

ties such as edges and textures are utilised to reduce the amount of false positives during

adaptation phase. The framework is built on the idea of sequential pattern recognition. In

any background modelling algorithm, the importance of multiple image features as well as

different spatial scales cannot be overlooked. Failure to focus attention on these two factors

will result in difficulty to detect and reduce false alarms caused by rapid light change and

other conditions.

The use of edge features in false alarm suppression is also explored. Edges are somewhat more

resistant to environmental changes in video scenes. The assumption here is that regardless of



environmental changes, such as that of illumination change, the edges of the objects should

remain the same. The edge based approach is tested on several videos containing rapid light

changes and shows promising results.

Texture is then used to analyse video images and remove false alarm regions. Texture gradient

approach and Laws Texture Energy Measures are used to find and remove false positives. It

is found that Laws Texture Energy Measure performs better than the gradient approach. The

results of using edges, texture and different combination of the two in false positive suppression

are also presented in this work. This false positive suppression framework is applied to a smart

house senario that uses cameras to model ”virtual sensors” to detect interactions of occupants

with devices. Results show the accuracy of virtual sensors compared with the ground truth

is improved.
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Chapter 1

Introduction

With the advancement in technology, computers have begun to play a more vital role in

our daily lives. Nowadays, every thing from microwaves to space shuttles are controlled by

computer software. Our homes are no different. Due to the advances in communications and

sensor technology, the turn of the century has witnessed the concept of a smart home elevated

to a whole new level.

A smart home is a dwelling where the appliances can communicate their status to a controller

or with each other. A smart home really differs from a conventional home in its communica-

tions infrastructure. The major systems in the home such as heating, lighting, fire control,

etc., can communicate and pass commands to each other and be controlled remotely. This

type of smart home forms the first generation.

A second generation smart home has seen the birth of a more sophisticated system. Targeted

towards the elderly and the infirm, these homes are capable of monitoring the well being of

the occupants. Simple sensors placed around the house help to monitor the location and

activity of the occupants. Homes such as these are termed Health Smart Homes. There are
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many Health Smart Home systems available currently ranging from the simple use of burglar

alarm type sensors to sensors based on highly sophisticated Radio Frequency Identification

(RFID) systems. Their capabilities also range from those that simply detect movement to

those that can actually aid us in our daily chores.

Although sensor technology has advanced to a stage where sensors have now become very

small and easy to deploy, they still present significant challenges in a smart home setting. In

a Health Smart Home, occupants are becoming more demanding and their needs may vary

over time. As more sensors are added to meet these needs, the task of maintaining them have

become more of a challenge. The cost of implementation will also increase with the rise in

the number of sensors.

An alternate and cheaper solution to using a multitude of sensors is to use video surveillance

and image processing techniques to achieve the same outcome. The computer vision com-

munity has faced this challenge and has been developing vision based systems to detect and

analyse human movements and behaviours. West et al. (2005) explored the use of virtual

sensors to detect human/appliance interactions in a smart home. Instead of a multitude of

sensors placed around the home, they use a single ceiling mounted camera to capture the

daily activities of the occupant. Polygonal regions are placed in areas of interest on the video

stream captured by the camera. Image processing techniques are then applied to these areas

to detect activities. These polygonal regions are termed virtual sensors.

The idea behind this project was to detect the interactions between people and appliances

and to model the normal daily activities of people in a kitchen. This model will ultimately

allow them to use artificial intelligence techniques to analyse and detect abnormality in a

person’s behaviour. For example, the system would be able to differentiate between someone

who has forgotten to switch off the stove or is in the process of making breakfast.
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The first step towards this aim is to build a reliable vision system that can detect human

movements and thus their interactions with appliances. West et al. (2005) used virtual sensors

to achieve this. By applying background modelling techniques on these regions, they are able

to detect and monitor the movements in these regions. This system is proven to work well in

detecting interaction between humans and appliances under normal lighting conditions in the

environment but begins to fail under conditions of rapid light change and other environmental

changes.

As in many computer vision systems, this failure is caused by the inability of the background

modelling techniques to quickly adapt to rapid light changes. Under this condition, most

background modelling algorithms begin to produce large areas of false positives.

1.1 Aims

This thesis extends the virtual system of West et al. (2005) by exploring ways of reducing the

number of false positives produced under adverse lighting conditions with the aims being:

• To develop a framework that will allow easy integration of existing algorithms to sup-

press false positives. For example, when the light change in the environment is spatially

non-uniform or rapid.

• To explore the suitability of edges and texture in false positive suppression. Since most

false positives are caused by light changes, illumination independent image features

should be considered to reduce false positives. To a certain extent, edges and texture

are more robust against light change than any other image feature.
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• To integrate edge and texture feature information into virtual sensors using the devel-

oped framework allowing it to function under adverse environmental conditions.

While there are systems that work towards achieving illumination invariance, they still cannot

cope with spatially non-uniform light change. This is a particularly common problem in indoor

environments such as the smart home. Simply switching lights on can have adverse effects on

these systems such as the detection of large areas of the background as foreground. The failure

of many systems to operate under these conditions highlights the fact that multiple image

features must be used to achieve illumination invariance and thus suppress false positives.

1.2 Approach

Given the aims of this thesis, the approach gives utmost importance to the reduction of false

positives in every stage. The flow of work is then divided into the following stages.

(i) Framework - An application framework based on the idea of sequential pattern recog-

nition is developed.

(ii) Edge Analysis - The use of edge based features in the reduction of false positives is

explored.

(iii) Texture Analysis - Textural features are deemed to be more resistant to light change.

The use of texture in the reduction of false positives is explored at this stage.

(iv) Evaluation - The methods developed are extensively tested on videos captured in a

laboratory environment as well as in a typical kitchen of a suburban home.
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1.3 Significance

The significance of this work is in the methods used to suppress false positives under various

environmental changes such as spatially non-uniform or rapid light changes. The false positive

reduction techniques presented in this thesis will allow many applications to function under

adverse lighting conditions. Particularly in smart homes, it would create a better detection

of events and objects. This improved detection method will enhance the ability of the system

to provide better, more reliable assistance to the occupants.

Object detection and segmentation forms the fundamental task every computer vision system

must perform. Improving the accuracy of detection in this step will have profound effects on

any additional processing that needs to be done. Reduced false positives means that higher

level processing tasks such as object recognition, behaviour analysis, etc., will yield better

results which in turn will greatly enhance further research into the extraction of high level

semantics from video scenes. For example, we may infer what a person is doing from a video

scene as “Person puts pot on the stove”.

The architectural framework presented in this work provides a means of easily integrating

existing imaging algorithms as well as future developments. The framework is designed based

on a plugin architecture. All image processing algorithms inheriting from the ImageOp class

are automatically recognised by the system at start up. Simply by inheriting from this class,

new algorithms can be easily integrated.
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1.4 Thesis Outline

The organisation of this thesis is as follows.

In Chapter 2, a more extensive treatment is made concerning the background modelling tech-

niques used today. The need to consider multiple image features in dealing with false positives

is discussed. Following this, an overview of research in the area of image segmentation and

illumination invariant background modelling is given.

In Chapter 3, sequential pattern recognition and its applicability to false positive suppression

is explored. By analysing a number of frames in a video sequentially, we may find, classify

and ultimately remove false positives. Through the sequential pattern recognition approach

the optimal combinations of algorithms to achieve maximum false positive suppression with

minimal loss of true foreground is found.

Chapter 4 forms the first step towards false positive suppression. The use of edge based

features to correctly classify false positives is explored in this chapter. Chapter 5 takes an

in-depth look at using texture to achieve similar results. Both of these chapters present inital

results of these techniques.

In some instances of light change, background modelling techniques produce large areas or

blobs of false positives. Chapter 6 presents a technique to segment true foreground from these

large blobs. Further experimental results of applying edge and texture based techniques, on

their own and in combination, to videos with rapid light change are presented in Chapter 7.

Finally, in Chapter 8, conclusions are given along with some directions for future work.
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Chapter 2

Literature Review

2.1 Introduction

Computer Vision is a relatively new field of research. It is defined as “the science and technol-

ogy of machines that see” (Wikipedia, 2007). Although there has been earlier investigations,

computer vision as a field of study did not flourish until the late 1970s mainly because com-

puter were only able to begin to process large datasets such as images around that time.

Research from a variety of fields slowly evolved and formed into a new branch known as

Computer Vision and thus it is a highly cross-disciplinary effort with intimate ties to artificial

intelligence, neurobiology, physics and so on. Figure 2-1, adapted from Wikipedia (2007),

shows the multi-disciplinary nature of Computer Vision.

The classical problem in Computer Vision, is that of determining whether or not the image

data contains some specific object, feature or activity. These are trivial tasks for a human to

solve but this is not so for a computer. Computer Vision applications must be highly specific

to a task to be performed and are very hard to generalise. Although Computer Vision systems
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Figure 2-1: The cross-disciplinary nature of Computer Vision (adapted from Wikipedia, 2007)

are highly application dependent, there are typical functions that may be found in many vision

systems:

i Image acquisition: A variety of image data can result, from multi-spectral images to

image sequences, depending on the type of sensor (camera) used.

ii Pre-processing: Before any extraction of data can be done, the image typically needs

to be processed to satisfy certain criteria such as:

– Re-sampling

– Noise reduction

– Contrast enhancement

iii Feature extraction: Image features at various levels of complexity can be extracted from

the image such as edges, textures, corners, blobs and so on.
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iv Detection and Segmentation: Regions of interest are labelled and segmented from the

rest of the image.

v High level processing: This stage typically operates on a small set of blobs to extract

high level semantics such as the recognition of objects, pose estimation and so on.

The degree of success achieved by any high level processing task is highly dependent on the

quality of blobs it receives as input. Only if correctly segmented components are received can

these higher level tasks produce correct results. This is why object detection and segmentation

forms a critical step in many computer vision applications.

In recent literature, a large number of techniques and algorithms have been introduced in the

area of background modelling and object detection as it has created widespread interest in the

Computer Vision community due to its applicability in diverse disciplines. Background mod-

elling finds its roots in simplistic methods like change detection. Change detection consists

of a set of methods to detect pixels that have changed in a set of images that are taken over

disparate time steps. However, in this thesis, we have focussed our attention on processing

video streams where a sequence of images with much information can be obtained. Back-

ground modelling techniques are targeted more towards this type of scenario (Radke et al.

2005).

2.2 Background Modelling and Subtraction

The goal of a background modelling algorithm is to determine which pixels belong to the

background while segmenting the foreground pixels into different objects. The majority of

background modelling techniques calculate the background model using the Mixture of Gaus-
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sian approach. In this approach the probability of observing an intensity value at It(x, y) at

a location (x, y) and at time t is the weighted sum of K Gaussian distributions (Radke et al.

2005).

At each time step, the pixel’s class is determined by the Gaussian distribution that is most

likely to explain the pixel’s intensity value. Several authors (Kanade et al. 1998; Huwer and

Niemann 2000; Cavallaro and Ebrahimi 2001) have proposed adaptive background modelling

techniques using a single Gaussian distribution. Pixels that lie more than +/− two standard

deviations away from the mean are classified as foreground pixels. These techniques typically

require only a few seconds of video of the background for them to initially learn the back-

ground. The mean and variance of background models are updated using simple adaptive

filters capable of accommodating for slow changes in illumination.

Wren et al. (1997) proposed a method of tracking people and interpreting their behaviour

known as Pfinder. Pfinder is built on a fundamental assumption that it will be processing a

relatively static scene, for example an office, the majority of the time. This assumptions means

the background scene will be less dynamic than the object to be detected and tracked. Pfinder

includes a background estimation algorithm that made use of not just a single Gaussian

distribution for the background model but also different Gaussian distributions for different

foreground objects. Classification of pixels as foreground or background is accomplished by

finding the model with the least Mahalanobis distance (Radke et al. 2005). People and

moving objects can then be robustly detected by simply finding the distribution that most

likely explains their intensity values.

Stauffer and Grimson (1999) improved on the Pfinder model to allow the background to be

modelled by a mixture of Gaussian. By having multiple Gaussian distributions modelling

the background. They were able to handle moving backgrounds such as waving trees or
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waves. This model is perhaps the most widely used algorithm in today’s computer vision

applications particulary in visual surveillance systems. It is a representative algorithm of an

adaptive background model utilising normal distributions to model multi-modal background

scenes. Piccardi (2004) termed this background model as an “Image Model” as it provides a

description of both foreground and background.

The probability of observing a certain pixel value, x, at time t by using a Mixture of Gaussians

is:

P (Xt) =
K∑

i=1

ωi,t ∗ η(xt, µi,t,Σi,t) (2.1)

where:

η(x, µ,Σ) =
1

(2π)
n
2 |Σ|

1
2

e
1
2
(Xi−µt)τΣ−1(Xi−µt) (2.2)

and:

ωi,t = (1− α)ωi,t−1 + α(Mk,t) (2.3)

with each K Gaussian describing one and only one foreground or background object. Typically

K is set to 3 or 5. Mk,t is 1 for the matching distribution and 0 otherwise, α denotes the

learning rate and µ is the mean.

The Gaussians are multi-variate describing each of the Red, Green and Blue channels of a

colour image. Since this model describes both foreground and background objects, a criterion

must be given to distinguish between the foreground and background distributions. Stauf-

fer and Grimson (1999) first ranks the distributions based on the ratio ωi/σi. The first B

distributions to meet the criteria of
B∑

i=1

ωi > T (2.4)

where T is a predefined threshold, is taken as the background distributions. The fundamental

assumption here is that the higher and more compact the distributions, the more likely they

are to describe background.
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With each incoming frame two things must simultaneously occur. Firstly, the observed value,

xi , must be assigned to the best matching distribution. Secondly, model parameters must

be estimated and updated. The distribution matching is approximated using:

(xi − µi,t)/σi,t > 2.5 (2.5)

The first ranking distribution satisfying this condition is taken as a match for xt. The pa-

rameters (ωi,t, µi,t, σi,t) are then updated only for this matching distribution. If no match is

found, the lowest ranking distribution is replaced with a new one centred at xi with a low

weight and high variance. This assumes the pixels belong to a new object and hence need a

new distribution to represent it.

Toyama et al. (1999) described an algorithm called Wallflower that makes use of a Weiner

filter to predict a pixel’s current value from a linear combination of its k previous values. Pixels

whose predicted value is far worse than the expected error are deemed to be foreground pixels.

The prediction coefficients are adaptively updated over time. Wallflower was designed to solve

many of the canonical problems suffered by many vision systems ranging from moved objects

and sleeping person problems, to shadows and light switch problems. This is the first system

that attempted to analyse images at different spatial scales in the context of background

modelling and subtraction.

At the region level, this system uses a series of frame differencing techniques to detect regions

of movement. The first step in doing this is to take the difference between the current frame

and the previous frame. Intersecting regions between the difference frame at time t and the

difference frame at time t − 1 are then taken as the foreground region. A histogram of the

foreground regions found is computed and back projected locally so that false negatives are

pushed into the foreground. Their most significant contribution by Toyama et al. (1999) is

their five principles of background modelling:
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i No Semantics: Semantic differentiation should not be handled at the background mod-

elling level. Background modelling and subtraction is simply a component of larger

systems aiming to achieve high level scene understanding.

ii Proper Initial Segmentation: Background subtraction should pick out all objects of

interest allowing higher level algoithms to identify, track or ignore these objects.

iii Stationarity Criteria: An appropriate pixel level stationary criterion needs to be defined

and pixels that satistify this criterion are declared background and ignored.

iv Adaptation: The background model must adapt to both sudden and slow changes in

the background.

v Multiple Spatil Scales: Background models should take into account changes at different

spatial scales.

These principles stemming from their development of Wallflower highlight several points that

all background modelling techniques should take into account. Their fifth principle is one

of the most significant because certain changes such as non spatially uniform light change

cannot be detected at pixel level while these are common causes of false positives typically in

indoor environments.

Haritaoglu et al. (2000) take a different approach from the above mentioned techniques of

background modelling. Rather than having a mixture of Gaussian distributions model the

background, they analyse a segment of video with only the background and calculate the

minimum m and maximum M intensity values of the scene as well as the largest interframe

difference δ. If any pixel is more than δ away from m or M it is considered foreground. They

developed the algorithm W4 for the purpose of detecting and tracking multiple people to

monitor their activities.
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This system uses a two stage approach to background modelling. A pixel-wise median filter

is applied to the first several seconds of the video, typically 20 to 40 seconds, to differentiate

between moving and stationary pixels. The next stage processes the stationary pixels to build

a background model.

This model also integrates two different techniques to update the background model to make

it adapt to changes in the background. The two stages of background update are:

• Pixel-based update: This step updates the background model occasionally to deal

with lighting changes. In the outdoor environments this system is targeted for, rapid

changes in light rarely occur. A periodic update of the background model is sufficient to

deal with slow light changes such as those caused by the time of day problem or clouds

obscuring the sun.

• Object-based update: This step updates the background model for physical changes,

such as abandoned objects.

In order to determine which method to use for a background update, the W4 constructs

and maintains the following (Haritaoglu et al. 2000): a detection support map (gS), which

maintains the number of times a pixel has been detected as background. A motion support

map (mS) that represents the number of times a pixel has been foreground and a change

history map (hS) that contains the amount of time, in frames, a pixels was last classified

as foreground. The detection support map is used to determine the part of the background

that should be updated with the pixel based approach. All three maps are used to work

out the regions where object based update is to be used. During tracking W4 computes the

background model separately for pixels that are classified as foreground and for those that

are marked as background.
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As with the majority of intensity based background modelling techniques, the W4 model

also suffers from false positives when rapid illumination change occurs. To deal with this

problem, W4 relearns the background model when more then 80% of the image is detected

as foreground.

Several researchers (Cucchiara et al. 2003; Greenhill et al. 2004) propose the use of median

value of the last n frames as the background model. This median value model maintains a set

S of N samples for each pixel. The background model is the one that minimises the distance

to all other pixels according to the equation (Greenhill et al. 2004):

D(a, b) = max(|a.c− b.c|) (2.6)

where c = R,G,B, i.e c can take on the values of R,G and B. A threshold T is used to

identify which image pixels are foreground pixels. The drawback of this method is that it has

a relatively short term memory. Any evidence is replaced by new evidence in roughly N/2

samples. The complexity of updating the model is O(N2) but once this is done, classification

is performed in constant time (Greenhill et al. 2004).

The SAKBOT system developed by Cucchiara et al. (2003) improves the Median Value

model by adding adaptivity and object-level reasoning. A separate background model Bt

is maintained from the statistical background model Bs
t . Foreground regions are labelled

as moving objects, shadows, ghosts, etc. An adaptive update factor is included, adding Bt

to S and weighting the distances used for the median function by a factor ωb. Greenhill

et al. (2004) further enhances this model to improve image quality during adaptation using

a history of the mean illumination for N/2 images. A correction factor cf is added to the

threshold T to adjust it to mean illumination shifts.

An approximation of the background probability distribution function can be obtained by the

histogram of the most recent values of the pixels classified as background. As the number of
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samples are limited, this approximation has some drawbacks: the histogram might provide

poor modelling of the true unknown pdf. Elgammal et al. (2002) introduced the idea of using

a nonparametric kernel density estimate to model the intensity of the background and each

foreground object using the following equation:

P (xt) =
1
n

n∑
i=1

η(xt − xi,Σt) (2.7)

The conventional nonparametric background modelling techniques have several limitations

the first of which is its high computational complexity. Nonparametric background models

rely on maintaining a foreground as well. This is unrealistic in real-world situations where

there may not be enough pixel changes to train a foreground model. The third limitation

is that when an object has similar colour as the background model, that foreground object

cannot be detected. Luo et al. (2006) takes nonparametric methods a step further addressing

the high computational complexity of these methods. They use an importance sampling

method to generate a small subset of representative background samples from a large original

dataset. This subset is then used to train the background modelling algorithm.

Cheng et al. (2006) proposes an online discriminative approach to background subtraction.

Their work is based on one-class support vector machines (1-SVM) and introduces Implicit

Online Learning with Kernels. The input feature dimensions are mapped to Hilbert feature

space. A separating function F (·) is predicted as a weighted combination of examples where

the past examples are associated with different weights derived formally from the large margin

principle. To avoid having to maintain past samples when evaluating the separating hyper-

plane, a modification to obtain kernel classifiers based on limited support N , with N << T ,

and approximating f by heuristically truncating past examples is proposed.

As in previous techniques, this model seems to be dealing with a sum of Gaussians but there

are substantial differences. Here, each Gaussian describes just one sample data with the same
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Σt for all models whereas in previous methods the Gaussian describes the main mode of

the pdf and is updated over time. Pixels with intensities that are not based on the density

estimate are classified as foreground. An additional step that compares It(x, y) with learned

densities in a small neighbourhood provides a way of suppressing false positives.

Model updating is obtained by simply updating the buffer of the background values by se-

lective update. The complete model estimation requires the estimation of Σt. This is a key

challenge in Kernel Density Estimation (KDE). In Elgammal et al. (2002), the variance is

calculated in the time domain by analysing a set of differences of two consecutive values.

There are two drawbacks that this method faces. First, the background subtraction stage re-

quires N Gaussian values with N typically being 50/100. This means that much storage space

is needed and subtraction is very time consuming. Secondly, updating the KDE smoothing

factor is also a very slow process.

Kim et al. (2005) uses a quantisation/clustering method to construct a codebook representing

the background of a scene. The key features of this method are: (1) resistance to artifacts

of acquisition, (2) ability to handle lighting changes, and (3) adaptivity and compression

of the background model. For each pixel, a codebook consisting of one or more codewords

is built from a long sequence of observations. Samples at each pixel are then clustered

based on their colour distortions and a brightness bound. Detection is done through testing

the difference of the current image from the background model with respect to colour and

brightness differences.

Most background modelling techniques produce large areas of false positives when the envi-

ronmental conditions such as illumination change. These algorithms will adapt to the changes.

However, the image will contain many false positives during adaptation highlighting the need

for further enhancement in background modelling algorithms.
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2.3 Illumination Invariant Modelling

All of the methods mentioned above perform well under conditions of near constant lighting.

However, rapid illumination changes produce large disparity between current pixel values and

the background model resulting in large areas of the image being detected as foreground.

The detection of these large areas interferes with subsequent processing tasks such as object

segmentation and tracking. This is why it is extremely important to find ways of reducing

false positives during the adaptation phase of background modelling techniques particularly

in indoor environments.

The approach of Greenhill et al. (2004) using median values and adaptive thresholding

performs better than Gaussian Mixture Models and Kernel Density Methods. Gordon et al.

(1999) makes use of colour information as well as range to estimate the background and

detect foreground. Colour (R,G,B) and range (Z) values of each pixel are recorded in a

multidimensional histogram over a sequence of frames. A clustering method is then used to

fit the data with an approximation of a mixture of Gaussians.

Ivanov et al. (1998) describe a method for illumination invariant background modelling using

multiple fixed cameras. A disparity map of the empty background is built offline. This map is

then used to find matches between the primary image (i.e. the image from the main camera)

and the auxiliary image. Any pixel in the two images having the same colour and luminosity

values are considered to be the background.

Illumination normalisation is another approach to background subtraction and change de-

tection (Matsushita et al. 2004). To make the system robust to changes in illumination,

an attempt is made to remove the illumination effects from the image sequence. The input

image sequence is normalised in terms of the distribution of incident lighting. This approach
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is composed of two parts:

(i) Estimation of intrinsic images. An image is assumed to be composed of two parts

reflectance and illumination. Using the Maximum Likelihood estimation method, the

illumination component of the image is extracted. These illumination images are then

constructed into an illumination eigenspace using Principal Component Analysis. This

process is carried out offline.

(ii) Once the illumination eigenspace is built, the illumination image is estimated directly

from the input image using the illumination eigenspace. Shadow interpolation is also

performed to obtain accurate illumination images.

Change detection is based on change in the reflectance image. This method requires a vast

amount of training samples to handle large changes in illumination. The basic idea behind

the Matsushita et al. (2004) approach is similar to Homomorphic filtering proposed by Toth

et al. (2000). In their approach, Toth et al. (2000) apply a log function to the pixels to make

the reflectance and illumination components additive. Assuming illumination changes slowly

over space, a low pass filter is applied to filter out the illumination component and obtain the

reflectance component. This reflectance component represents the background structure and

is used to detect foreground in the image.

Order consistency is another good attribute to use for illumination invariant background mod-

elling. Xie et al. (2004) uses order consistency coupled with statistical measures for camera

noise to develop a foreground detection algorithm. The method is based on the observation

that the ordering of pixel values is preserved under a range of physical conditions for which

the mappings from scene radiance to image measurements are monotonic. It is unlikely that

this consistency is observed for object pixels in the scene. Therefore, order consistency can
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be used to discriminate between change caused by illumination and the appearance of an ob-

ject. While this method works on most of the image, some neighbourhoods such as occlusion

boundaries violate the fundamental assumptions and hence it does not work well in these

areas.

Huang et al. (2007) improves on the Mixture of Gaussian (Stauffer and Grimson 1999) ap-

proach. In addition to colour information, motion information is also taken into account for

modelling the dynamics of the background. Colour and motion are assumed to be indepen-

dent and modelled by K Gaussian distributions respectively. The Bhattacharyya distance

is used to measure the similarity between a region Rm segmented from the region and the

corresponding region Rbm represented by the background model. The classification of fore-

ground and background blobs is then taken as a graph labelling over a Region Adjacency

Graph (RGA) based on a Markov Random Fields (MRF) statistical framework.

2.4 Edge and Texture Based Background Modelling

The lesson to be learnt from the aforementioned techniques and algorithms is that it is very

difficult to model the background based on intensity values alone. Doing so will, more often

than not, produce negative results under unstable environmental conditions. It is therefore

important to consider other image features such as edges and texture to model the background.

Heikkila and Pietikainen (2006) presents a texture based background modelling algorithm

based on a technique called Local Binary Patterns (LBP). LBP is a powerful means of de-

scribing texture. The operator labels an image block by thresholding the neighbourhood of

each pixel with the centre pixel value and considering the result as a binary number. The
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LBP operator is defined by the equation:

LBP (xc, yc) =
p−1∑
p=0

s(gp − gc)2
p

(2.8)

where gc corresponds to the grey value of the center pixel and gp to the grey values of the P

neighbourhood pixels. The function s(x) is defined as:

S(x) =


1 if x ≥ 0

0 if x < 0

(2.9)

Figure 2-2 (adapted from (Heikkila and Pietikainen 2006)) illustrates the operator. The LBP

codes calculated over an image block can be used as a texture descriptor for the block. LBP

is invariant to monotonic changes in grey scale.
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Figure 2-2: Example LBP calculation

The input image is discretised into equal blocks by using a partially overlapped grid structure.

The LBP histogram computed over a circular region of radius Rregion around the pixel is used

as a feature vector. The block process is considered as a time series of LBP histograms. The

background model for each pixel consists of an adaptive LBP histogram. The LBP histogram

computed for a pixel in each new scene is compared against the K histograms using histogram

intersection as a proximity measure. When a match is found, the best matching histogram is

updated with new data.
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An edge based region growing approach to video segmentation is presented by Fan et al.

(2004). This paper outlines three significant achievements.

i The growing seeds are selected at the edge region automatically.

ii The region growing procedure is performed in the homogeneous regions and stops au-

tomatically when the seeds stop growing.

iii The detected object boundary is the true object boundary.

In this approach the input image is first smoothed using an averaging filter to remove the

effects of high frequency noise. The Canny edge detector (Canny 1986) is then applied to the

image to detect edges. The edge region is the place from where the region growing seeds will

be selected. Therefore the edge region should surround the single pixel edges derived by the

Canny operator. Four Sobel operators are applied to the image and the average of the filters

is calculated. The region growing seeds are then selected automatically based on the edge

image and edge region image. This algorithm is tested with images containing non-uniform

illumination changes giving promising results.

Jabri et al. (2000) presents an edge based approach fused with colour information to locate

and segment people in video scenes. The background is modelled into two parts: (1) an edge

model and (2) a colour model. For each colour channel a mean and standard deviation of that

colour component is maintained. The Sobel edge detector is applied to the videos to obtain

the edge model. This yields the horizontal edge difference H and vertical edge difference

image V . A weighted mean of Hi and Vi as well as the standard deviations are maintained.

The colour channels and edge images are subtracted separately to obtain the background

subtraction. A median filter is applied to the result to remove any salt and pepper noise.

22



Background information is very important in segmenting images. If sufficient background

information is available, segmentation can be done more robustly. Alsaqre and Baozong

(2003) suggests that spatial edge information is more important and effective than temporal

information. Moving objects in an image have a coherence property thus a range of filters

can be applied in the segmentation process. The author also suggests that edge information

has two advantages. Firstly it is more resilient to light changes. Secondly it is independent

of the number of objects in the scene.

Alsaqre and Baozong (2003) start their system with edge detection. The frame difference

edge can be defined as:

DFn = ψ(|Fn − Fn−1|) (2.10)

where Fn and Fn−1 represent current and previous frames respectively. The background

subtraction edge map can be defined as follows:

BSn−1 = ψ(|Fn−1 −B|) (2.11)

where B is the background frame, and ψ(.) is obtained by the Canny edge operator. From

these images moving edges are extracted. Once the edge maps are defined, the object is ready

for extraction. The first and last edge points are located for each row of the image and the

pixels in between are assigned to the object.

A two stage approach to removing false alarm pixels caused by light change is presented by

Zeng and Lai (2007). A mixture of gaussians approach is used as the initial background model.

Once the initial pixels are removed, the image is analysed with a two stage classification

approach to identify the false positive pixels. The first step is the pixel-wise classification. A

number of manually labelled images is collected to train the classifier to recognise false positive

pixels caused by light change. This is a labour intensive task. The pixel wise classification is

able to remove pixels detections caused by slow lighting changes. To handle fast light changes,

Zeng and Lai (2007) uses a region-wise classification.
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The remaining pixels are grouped into regions based on their gain value using a region growing

technique. The assumption is that the pixels belonging to the same light change should

have the same gain value. The regions are then compared to the corresponding regions in

the background and the average gain (gain)is used for classification. Pixel regions with

gain < Tgain is defined as the background region, where Tgain is a predefined threshold set at

0.5.

2.5 Summary

In this chapter, a discussion into the currently available background modelling techniques

is given. While most of these methods function well under near constant environmental

conditions, they tend to generate foreground images with large areas of false positives when

the conditions change. Adaptive methods can recover from the effects of environmental change

but the image quality during the adaptation phase is far from satisfactory. The following

chapter discusses a framework to improve image segmentation accuracy during the adaptation

phase by using additional image processing methods to remove false positives.
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Chapter 3

Sequential Pattern Recognition

3.1 Introduction

Crucial to the approach to removing false alrms is the use of sequential pattern recognition.

Pattern recognition typically involves two steps as depicted in Figure 3-1: (1) acquisition and

pre-processing of raw data and (2) classification of captured data. During the pre-processing

stage, raw data is captured and prepared for analysis. This stage may involve cleaning and

formatting of the data and the extraction of features to be analysed. Once the features of

interest are extracted, the classification stage begins. In this stage, the feature vectors are

analysed and classified as belonging to one class or another.

Incoming 
Data

Preprocessing Classification Result

Figure 3-1: A Pattern Recognition Approach

In Computer Vision, this type of classification is used extensively to achieve many outcomes

one of which is to identify moving objects. The typical feature vectors to be analysed consti-

tute pixel intensities across video scenes. Based on the variations of these intensities, objects
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are classified as foreground or background. Figure 3-2 presents the result of the Mixture

of Gaussians method, a widely used background modelling algorithm (Stauffer and Grimson

1999) that eliminates pixels classified as background and leaves the foreground pixels.

The pattern recognition model used by this method is similar to that of Figure 3-1. This

model works very well for computer vision applications working under stable environmental

conditions but produces a lot of false positives when the conditions change. Figure 3-2 (a)

presents the output of the the Gaussian Mixture Model of Stauffer and Grimson (1999) under

normal lighting conditions and (b) the result at an instance of light change.

(a) (b)

Figure 3-2: Gaussian Mixture Model Detected Foreground (a) Foreground under stable con-

ditions (b) Foreground at instance of light change

The reason for this change is that this model learns the feature vectors of previous frames

of video and tries to classify the pixels in the current frame. When the illumination in the

environment changes, for example, the features vectors change drastically and the classifica-

tion model used in the previous time step no longer applies. Due to this, false positives are

introduced. This highlights the fact that features may change at any instant and must be

repeatedly analysed using different methods to get correct classification.
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3.2 Sequential Pattern Recognition in False Positive Suppres-

sion

A sequential pattern recognition method is used in this thesis as a solution to the problem

of misclassification in background modelling techniques. Sequential pattern recognition is

typically used when patterns in the data may be costly or difficult to extract. In such cases,

sequential pattern recognition analyses pattern/feature vectors sequentially, making decisions

whether to continue the extraction of features or if it already has enough for classification.

The data may also contain features that are best exploited in some linear fashion. This type

of data is exemplified by time series data, on-line hand written data and video sequences

(Smith and Yau 1972).

In Figure 3-3, the two distributions show the detection of feature values for foreground objects

(Class C1) and background (Class C2). Where the overlap of the two distributions occur,

misclassification will be produced. Foreground objects to the right of T1 will be detected as

background and background objects to the left of T1 will be misclassified as foreground objects.

T1 is where the minimum error rate occurs. Moving the decision boundary to T2 results in all

foreground objects being detected correctly but results in a corresponding increase in the false

alarm rate (background classed as foreground). The alternative is to use T2 as the decision

boundary and use increasingly comlex methods to eliminate false alarms.

In an attempt to minimise the false positives, i.e the shaded region in Figure 3-3, the pattern

recognition model in Figure 3-1 is extended to include multiple classification techniques to

correctly classify objects. The extracted feature vectors are iteratively analysed using these

different algorithms removing as many of the false positives as possible while preserving the

true foreground. The modified model is depicted in Figure 3-4.
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Figure 3-3: The Two Class Pattern Classification Problem.

(adapted from Smith and Yau (1972))
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Figure 3-4: Sequential False Positive Suppression

The ability to apply these algorithms sequentially is facilitated by the fact that as we progress

through the algorithms, the data to be processed will decrease. As each algorithm is applied

some of the false positives are expected to be removed, reducing the amount of data to

work on. Therefore algorithm 2 in Figure 3-4 will have less data to process than algorithm

1. This allows an increase in complexity of algorithms as the image progresses through the

false positive (FP) removal steps. As shown in Figure 3-5 lesser data means more complex

algorithms can be applied while maintaining a reasonable throughput.

Taking this into account, a framework for false positive suppression is developed and illus-

trated in Figure 3-6. False positives can be caused by a number of changes in the environment.

This framework allows us to integrate any number of algorithms in any combination to deal

with false positives. The main advantage of this framework is the ease with which different

algorithms can be integrated.
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Figure 3-5: Data rate vs program complexity

Figure 3-6: Sequential false positive removal
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3.3 Implementing the Sequential Architecture

Java is chosen as the implementation language and a plugin design concept is chosen as the

underlying architecture for this framework. The reasoning behind this choice is that plugins

allow the algorithms to be loaded into memory when needed. This design also gives the user

the ability of choose which algorithms to load. The primary advantage to this design is that

additional algorithms can be integrated into the system with minimal effort.

The key to a successful plugin design is a minimal set of methods all plug ins must implement

so that the incorporating application may search for and find plug ins. This is achieved by

creating an Interface called ImageOps. All image processing algorithms must inherit from

this interface. When integrating new algorithms it is a simple matter of creating a wrapper

class that inhertis from ImageOp and create a method that accepts and returns an image.

The core implementation of the algorithm itself can remain untouched. When the system

starts up, Algorithm 1 iterates through the plug ins folder and loads all the algorithms that

inherit from ImageOps.

Algorithm 1: Algorithm to load plugins
Input: Path to folder containing java archive files

Output: An array containing available plugin objects

begin
AlgoList←− null

fileCount←− getF ileCount()

for i←− 0 to fileCount do
file←− readF ile(i)

if file instanceof ImageOp then
AlgoList←− file

end
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Once everything is loaded, the user is presented with the list of available algorithms in the

form of menus. The user selected algorithms are then placed in a queue and executed in the

order of selection. This gives the user the ability to change the combination of algorithms to

get desired results. Implementing this in the form of plugins also allows for easy integration

of new algorithms in the future.

This system is implemented in java using the Java Media Framework (Sun 1999) to control

video streams and the Java Advanced Imaging (Sun 2000) packages as a basis to implement

the image processing algorithms. The framework is developed on a Linux platform and makes

use of a Java Advanced Imaging package that is optimised for Linux.

3.4 Summary

This chapter introduced the idea of using sequential pattern recognition to suppress false

positives. The main advantage of using this architecture is that multiple image processing

algorithms can be integrated together to achieve a certain outcome, in this case, false positive

suppression. The fact that computational time may be maintained through out the process

is an added bonus.

In order to achieve false positive suppression, we advocate edge based and texture based

methods. Based on this edge and texture information the differentiation between false positive

and true foreground is made. The details of the edge based method are discussed in the next

chapter.
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Chapter 4

Edge Based False Positive

Suppression

4.1 Introduction

Feature detection plays an important role in Computer Vision and image processing. Feature

detection refers to the methods of computing abstractions of image information making local

decisions at each pixel as to whether there is an image feature of a given type at that pixel.

There is no universal or explicit definition of an image feature and the exact explanation may

depend on the context and application in which feature detection is performed. Depending

on the context of its use, a feature may be interpreted as (Davies 2005):

i Edges: are points where there is a boundary between two image regions that can be

of arbitrary shape. Edges are usually defined as sets of points with strong gradient

magnitudes. The wide variety of edge detection algorithms can be grouped into search

based and zero-crossing based techniques. This image feature is extensively used in this
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Chapter.

ii Corners/points of interest: During earlier years of development, these algorithms

first detected edges and then analysed them to find rapid changes in direction (corners).

Later developments no longer required explicit edge detection. Instead they look for

high curvature in the image gradient to detect corners.

iii Blobs/regions of interest: Blobs are a natural way to describe image structures

in terms of regions as opposed to corners that are more point-like. A variety of blob

detection and tracking algorithms are also available.

iv Ridges: A ridge descriptor computed from a gray-level image can be seen as a gen-

eralisation of a medial axis. It is harder to extract ridges from an image than edges,

corners or blobs.

Once the features have been detected, a local image patch around the feature may be ex-

tracted. The result is known as a feature vector. The feature vectors can then be used in

a wide variety of tasks including but not limited to false positive suppression. In Computer

Vision and image processing, false positives can be produced under a variety of conditions.

For example, when the illumination in the room changes rapidly or the objects to be seg-

mented occupy regions with non-uniform lighting, conventional background modelling and

segmentation algorithms give poor results. As mentioned before, the Mixture of Gaussians

method (Stauffer and Grimson 1999) in particular over segments in cases like these and thus

gives large regions as foreground. Figure 4-1 shows an example of this over segmentation.

In this chapter an edge based approach is proposed to reduce the large areas produced by the

Mixture of Gaussians algorithm. There are several advantages in using edges for this purpose.

The most important of which is that edges are rather insensitive to illumination changes.

Several edge detection methods such as Sobel edge detector, Canny edge detector (Canny
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(a) (b)

Figure 4-1: (a) Result of MoG before light change (b) Result of MoG after light change

1986), Marr-Hildreth edge detector (Marr and Hildreth 1980) and Gabor filters (Turner 1986)

were explored for use in this work. Gabor filters tend to be more resistant to environmental

changes and can produce rich descriptions of textural and edge features (Ji et al. 2004;

Kamarainen et al. 2006). Thus Gabor filters are used in this work.

4.2 Gabor Filters

Gabor filtering is a widely used approach to feature extraction, particularly for texture anal-

ysis in images. The two dimensional Gabor function can be thought of as a two dimensional

sinusoidal signal of a particular frequency and orientation modulated by a Gaussian envelope.

Gabor (1946) proposed a simple cell receptive field model consisting of harmonic oscillations

within Gaussian envelopes (Turner 1986). A number of authors describe the use of a bank of

Gabor filters to extract local image features (Ji et al. 2004; Kamarainen et al. 2006).

In signal analysis a function f(x) defines its temporal (spatial in the case of an image) be-

haviour and its Fourier transform F (ω) denotes the frequency (spectral) behaviour. Ji et al.

(2004) presents a Gabor expansion for time-frequency analysis based on the work by Gabor.

This filter localises image information in both the time and space domains as well as the
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frequency domain resulting in a simultaneous description of both temporal and spectral be-

haviour of a signal f . In this thesis a similar Gabor filter based on the work by Turner (1986)

is used.

There are, however, a few important points to note in Turner’s approach to Gabor filters. For

all frequencies, the Gaussian envelope is kept constant. Turner (1986) suggested that this has

the effect of reducing the bandwidth of the filters with increasing frequency. The are several

advantages in having the same size filters. Firstly, the computational complexity is much

less in applying the same size filters to an image than applying those of different sizes. More

importantly, same size filters allow a more direct comparison of features across frequencies.

The Gabor filters also have a tendency to produce a DC offset response to uniform illumina-

tion. The sine component of a complex Gabor function has zero mean. However, the cosine

component does not. This is the reason for the DC offset response in Gabor filters (Movellan

2006). This DC response is normalised by subtracting the mean value from each pixel.

The reasoning behind the use of Gabor filters is that they can produce a very strong edge

map of an image and are more resistant to light changes than other edge detection algorithms.

They can also be tuned to include or remove certain frequencies of an image. An input image

is filtered with a bank of Gabor filters. There are several forms of 2-D Gabor filters. The

filter used in the work is defined in Turner (1986) as:

G(x, y) = e{−[(x−x0)2+(y−y0)2]/(2σ)2} ∗ sinω[(x cos θ − y sin θ) + ρ] (4.1)

where x0 and y0 specify the centre of the Gaussian. For the sinusoidal plane wave, ω is the

frequency, and ρ is the phase of the plane wave. Once G(x, y) is obtained the filtered image is

created by r(x, y) = G(x, y) ∗ i(x, y) where ∗ denotes two dimensional convolution and i(x, y)

is the input image. This process can be applied at different frequencies and orientations

resulting in a filter bank. This gives us a stack of filtered edge maps containing the object
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edges which are defined at different frequencies and in different orientations.

Two Gabor implementations are tested. One in the spatial domain and the other in the

frequency domain. In the spatial domain, the filter is applied as a 32 × 32 pixel sliding

window. Every pixel in the cell is sampled using this sliding window. This places a restriction

on the size of the cells. The cells need to be larger than the sliding window. In frequency

space the filter and the cell needs to be of the same size. This is further restricted by the fact

that the size of the filter must be a power of two if we are to achieve some performance gain

from the Fourier transform. Otherwise, it does not give any noticeable improvement in speed

over the spatial implementation.

Algorithm 2 outlines the creation of Gabor filters in the spatial domain. SizeX and SizeY

denote the vertical and horizontal size of the filters. The values of a and f are the angle and

frequency respectively. The size of the Gaussian envelope is defined by s. In Algorithm 2 line

9 generates the exponential portion of the Gabor filter: the Gaussian envelope. Lines 10 to

12 create the filter.

Algorithm 3 then uses algorithm 2 to generate a bank of Gabor filters for every angle and

frequency pair. If for example, two frequencies and six angles are used, a bank of 12 filters is

generated, and minF and maxF specify the range of frequencies to process. A two dimen-

sional convolution between the input image and the filter bank is performed to obtain the

edge map. Figure 4-2 shows a set of Gabor outputs in the frequency domain and a Gabor

filtered image for all orientations of the filter set.
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Algorithm 2: Gabor Filter Generator
Input: SizeX,SizeY,a,f,s

Output: G(x, y) for an angle and frequency pair

begin
mFrequency ←− (f ∗ PI/2.0)

mYO ←− SizeY/2

mXO ←− SizeX/2

for i←− 0 to sizeY do

for j ←− 0 to sizeX do
y ←− (i−mYO)

x←− (j −mXO)

9 exponent←− exp(−(x2 + y2)/s)

10 sincos←− (mFrequency ∗ (y ∗ cos(a)− x ∗ sin(a)))

11 G(x, y).real←− (exponent ∗ sin(sincos))

12 G(x, y).imag ←− (exponent ∗ (cos(sincos)− exp((−1.0 ∗ PI2)/2.0))

end

(a) (b)

Figure 4-2: (a) A Gabor Filtered Image (b) A Frequency Representation of Gabor Filters

(D.C. centered at the middle of the image).
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Algorithm 3: Gabor Filter Bank Generator
Input: sigma,NoOfAngles,NoOfFreqs,minFreq,maxFreq

Output: G(x, y) for all angle and frequency combinations

begin
SizeX ←− 32

SizeY ←− 32

s←− (sigma ∗ PI2)

for i←− 0 to a do

for j ←− 0 to f do
angle←− ((i ∗ PI)/NoOfAngles)

freq ←− (minF + (j ∗ (maxF −minF ))/NoOfFreqs)

G(x, y)←− gaborfilter(SizeX, SizeY, angle, freq, sigma)

end

4.3 Removing False Positives

The edge maps produced by Gabor filters are used to determine the regions of the foreground

image which are actually background. To accomplish this task, a grid of 5 × 5 cells is first

applied to the image. The reason for having to apply this grid is that false positives are

produced as large blobs that contain both true foreground and background. There needs to

be a way of determining which portions of the blob are background. By dividing the blobs

into small squares, the discrimination between true foreground and background can be made

by analysing each square.

The Gabor filter is applied in each cell of the foreground image. Gabor produces edge maps in

each frequency and orientation combination describing the features dominant in that particu-

lar orientation and frequency. In this work, these feature images are combined to get rotational

invariance.The same is done for the corresponding cells in the reference image. The reference
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image is the background image produced by Mixture of Gaussians. Corresponding cells of

the reference image and the foreground image are then subtracted. The assumption here

is that Gabor filters will produce the same responses if the two corresponding cells contain

background only.

(b)(a)

Figure 4-3: (a) Gabor filtered and tiled background image (b) Foreground Image with back-

ground regions removed

A consequence of using an artificial grid is that in the cleaned image, the objects have a crude

shape because of the large cells rather than the silhouette of the object. This is shown in

Figure 4-4. Post processing of these outputs must be performed to regain the silhouette of

the object. We will describe a post processing technique based on Graph Cuts in Chapter 6.

Figure 4-4 (a) shows the results of the Mixture of Gaussians method for instances of light

change and (b) shows an edge map with false positives removed using algorithm 4. Although

this method still leaves some false positives, they are significantly less than that of the Mixture

of Gaussians on its own showing the usefulness of the sequential pattern recognition approach.

Once a clean edge map is obtained the objects of interest are extracted from the original

image. Figure 4-4 (c) shows the final result of this image. As can be seen from this image, the

resultant foreground contains the object of interest but retains the shape of the rectangular

cells and not the silhouette of the object.
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(a) (b) (c)

Figure 4-4: Image produced by Mixture of Gaussians at an instance of light change (a),

a cleaned image using edge based method (b), and the cells showing the moving object of

interest (c).

Algorithm 4: Edge based false positive removal
Input: CurrentImg,BackgroundImg

Output: A vector containing Gabor responses

begin

// create an artificial grid on image

BLOCKSIZE ←− 10

TILEWIDTH ←− imgWidth/BLOCKSIZE

TILEHEIGHT ←− imgHeight/BLOCKSIZE

TILES ←− createT iles(BLOCKSIZE, TILEWIDTH, TILEHEIGHT )

// get Gabor responses for each tile

for t ∈ TILES do
fgP ix←− grabP ixels(t, currImg)

bgP ix←− grabP ixels(t, bgImg)

fgP ix←− applyGabor(fgP ix)

bgP ix←− applyGabor(bgP ix)

fgP ix←− subtract(fgP ix− bgP ix)

// set the tile area in current image to the subtracted results

CurrentImage←− setImage(fgP ix)

end

40



4.4 Summary

A discussion into using edge features for false positive suppression is made in this chapter.

This technique can be used to reduce false positives in any number of situations and not just

those caused by light changes. A set of Gabor filters is used to obtain an edge map of the

current and previous frames. An edge strength comparison is then made to determine the

regions of false positives and identified regions are removed leaving the objects of interest.

As a side effect of using an artificial grid, the remaining blobs retain a rectangular shape

rather than the silhouette of the object. Techniques to overcome this problem are discussed

in Chapter 6. The next chapter explores the uses of texture in false positive removal. Texture

of an image is assumed to be the same, to a certain extent, regardless of the illumination in

the environment (Tian et al. 2005). A false positive removal method is developed based on

this fundamental assumption. In this work, both Sobel gradient (Tian et al. 2005) and Laws

texture energy measures (Davies 2005) are used to achieve false positive suppression.
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Chapter 5

Texture Based False Positive

Suppression

5.1 Introduction

The texture of an image is an important feature and has been used in a variety of applications

ranging from image segmentation to searching media databases. Image texture, in spite

of its widespread use is a hard property to define. Websters’s dictionary defines texture

as “the visual or tactile surface characteristics and appearance of something”. Only the

visual dimension of texture is considered in computer vision. Sonka et al. (1999) describes

texture as “properties that represent the surface or structure of an object”. Davies (2005)

presents texture as the surface of composition of the object that gives rise to visual properties.

Essentially texture is the spatial variation in pixel intensities (gray values).

Texture is an important feature of images and has been the focus of research at least for

the past four decades (Tan 1993). Texture plays an important role in many applications and
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environments. In visual inspection of manufacturing processes, texture is used to inspect the

products at every stage of production. Tan (1993) highlights several areas such as geology,

petrography, metallography and lumber processing where texture plays an integral role.

One immediate use of texture is for recognising image regions using texture properties. For

instance, we can identify cotton wool, straw matting, etc. in an image. This is known as

texture classification. One could also find texture boundaries even if we cannot identify what

that texture surface represents. This is the second type of problem texture aims to solve and

is known as texture segmentation. The goal here is to obtain a boundary map of regions

separated by different textures. Texture synthesis is used for image compression applications

as well as in computer graphics where the realistic rendering of objects is important (Sonka

et al. 1999).

Texture consists of texture primitives or texture elements called texels (Sonka et al. 1999).

Texture is usually interpreted to measure qualities such as smoothness, coarseness, regularity

and direction. Texture is heavily used in image segmentation and a wide variety of texture

analysis methods are available:

i Statistical Methods: characterise smooth, coarse grainy, etc. using traditional sta-

tistical values such as mean and variance.

ii Structural Methods: detect patterns based on image primitives such as lines or other

repeating structures in the image.

iii Spectral Methods: are based on properties of the Fourier transform such as symmetry,

directionality.

Robust detection of moving objects in a video stream is a significant issue in video surveillance.
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Environments with rapid light changes presents considerable challenges for object detection

and analysis. Several authors (Heikkila et al. 2004; Tian et al. 2005; Heikkila and Pietikainen

2006) suggest that texture is more resistant to environmental changes such as illumination

change than any other image property. This is a very useful fact in suppressing false positives

in adverse environments. In this chapter, two texture based approaches to suppressing false

positives due to light change are presented.

5.2 Texture Gradient Approach

Tian et al. (2005) presented a novel idea to extend the approach of Stauffer and Grimson

(1999) to background modelling. The main extension presented in this paper is to suppress

false alarms caused by light changes. Most methods that try to handle light changes do so

by modifying the background modelling algorithm itself. The disadvantage of this approach

is that only one image feature is considered in modelling the background. Tian et al. (2005)

adds additional processing on top of a conventional background modelling technique. Pixel

intensities are used to model the background and texture is used to suppress false positives

produced at instances of light change.

The idea behind this approach is that texture of an image, regardless of illumination change,

remains the same. Therefore, background pixels and false alarms should have similar textural

features. Tian et al. (2005) suggest that the gradient value is less sensitive to light changes

and can be used to derive local texture difference measures accurately. The texture similarity

measure is defined by:

S(X) =

∑
µ∈Wx

2||g(u)|| · ||gb(u)||cos(θ)∑
µ∈Wx

(||g(u)||2 + ||gb(u)||2)
(5.1)

where Wx denotes the M × N neighbourhood centered at pixel X, g and gb indicate the
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(a) (b) (c)

Figure 5-1: (a) Original Image (b) Hand segmented ground truth (c) image segmented with

texture approach

gradient vector of the current frame and reference frame respectively, and θ is the angle

between the vectors. The gradient vectors g(X) = (gx(X), gy(X)) and the partial derivatives

gx(X) and gy(X) are obtained from applying the Sobel operator to the images.

The foreground false positive areas, caused by rapid lighting changes, will have the same

texture as the reference frames and therefore S(X) ≈ 1. The foreground pixels with S(X) ≥

Ts are removed from the foreground image. In their work Tian et al. (2005) set the threshold,

Ts, at 0.7.

This approach works well on images that have highly textured backgrounds. Their own

experiments are carried out on scenes containing checkered floors as the background. On

scenes that are less textured this method produces less promising results. The results are also

dependent on the size of the window used to analyse the image and the foreground objects.

For example, when applied on scenes from a ceiling mounted camera where the objects are

larger than the evaluation window, this approach creates holes in the middle of the objects

as can be seen in Figure 5-1.
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5.3 Laws Texture Energy Measure Approach

In 1980 Laws presented a novel texture energy approach to texture analysis. He designed

several filters designed to highlight points of high texture energy in images using simple

filters such as Gaussian, edge detection and Laplacian type filters (Davies 2005). Laws’s

texture energy measure determines texture properties by assessing average grey-level, edge,

spot, ripples and waves in texture (Sonka et al. 1999). Laws approach to texture analysis

formed the basis for much work in later years. His approach was highly efficient.

Laws’s introduced three sets of masks in his work. Amongst the three 3× 3 masks are used

in this work. Laws’ created a simple set of 1 by 3 filters, namely:

L3 = [1 2 1]

E3 = [−1 0 1] (5.2)

S3 = [−1 2 − 1]

The initial letters of these masks represent Local averaging, Edge detection and Spot detection

respectively. Additionally Laws created Ripple and Wave detection with the 1 × 5 masks.

By multiplying these vectors with the first term as the column vector and the second as the

row vector, a 3× 3 filter mask is obtained. This creates a complete set of nine masks. These

masks contain one whose components do not sum to zero. This is less useful in texture as it

will give results dependent on pixel intensities (Davies 2005). Once these masks are obtained

the following stages are used to get the texture description of the image.

i Convolution: Given an image of N by M dimensions that we want to perform texture

analysis on, i.e. extract texture features from each pixel, each of the 25 convolution

kernels (masks) are applied to the image. This results in a set of 25 N ×M greyscale
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images. These images form the basis for texture analysis.

ii Windowing: This step replaces every pixel in the 25 N ×M images with a Texture

Energy Measure (Laws 1980). This is done by looking in a local neighbourhood around

each pixel and summing together the values using the formula:

TEM(x, y) =

√√√√ 7∑
i=−7

7∑
i=−7

(grey(x+ i, y + i)2) (5.3)

This is essentially a smoothing function using a 15× 15 window. An alternate method

using absolute values is also suggested by Laws (1980). Although the absolute value

approach is faster, using the squared magnitude corresponds to true energy and give

a better response. Figure 5-2 shows the results of applying three of the nine Laws

covolution masks. These convolution masks are obtained by multiplying the 1×3 masks

together. For example, E3L3 mask is obtained when the E3 filter and a transpose of

the L3 filter are multiplied together.

iii Normalisation: All convolution kernels are zero mean with the exception of one. Laws

(1980) suggested the use of this kernel as a normalisation kernel. Normalising each of

the TEM images with this kernel, pixel by pixel, results in contrast normalisation for

that feature.

iv Combine Similar Features: Most texture applications do not need to use direction-

ality of textures. In this case, similar features can be combined to remove directionality

bias from the features.

Pietikainen et al. (1983) later proved that Laws Texture Energy Measures are more powerful

than measures based on pairs of pixels such as co-occurrence matrices.
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(a) (b) (c)

* * *

Figure 5-2: Output of Laws convolution and windowing operations, * indicates convolution.

(a) result of applying the E3E3 mask (b) result of applying the E3L3 mask and (c) result of

applying the E3S3 maks.

5.4 Removing Background Regions Based on Texture

As mentioned in the above stage, applying Laws filters to the image produces five images each

describing one pixel in five different texture descriptions. The background image produced

by the Mixture of Gaussian method (Stauffer and Grimson 1999) is filtered with the Laws

texture masks. The current incoming frame containing false positives are also processed with

the same filters. The resultant images are then compared for similarity. Assuming that false

positive pixels caused by light changes have the same texture as the corresponding background

pixels, false positives can be removed.

Each new image is processed with the Laws texture approach and the 14 texture energy

measure images created. These images are then compared with those of the reference image.

Background pixels detected as foreground are then removed from the current image.
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5.5 Summary

In this chapter, a texture based image analysis approach is presented to suppress light changs

in video scenes. The main reason for using texture in this work is that it is somewhat

more resistant to illumination changes than any other image property. Textural features are

collected using Laws’s texture energy measures and these texture properties are compared to

those of the reference frame. Pixel regions having the same textural properties of that of the

reference frame are removed from the foreground mask.

Using texture for this purpose produces more stable results as shown in detail in Chapter

7. This is primarily due to the fact that texture features are more stable under illumination

changes. However, it is harder to compare texture if the background is not highly textured.

When the foreground object has similar texture as the reference frame, that foreground object

tends to be mistaken as a false positive. Objects with high texture, for example patterns on a

shirt, on a low textured background and vice versa will be picked up since all we are looking

for are differences in texture.
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Chapter 6

Refined Object Segmentation with

Graph Cuts

6.1 Introduction

Chapters 4 and 5 discussed the use of edge and texture based image features to reduce the

amount of false positives in object detection by enhancing the Mixture of Gaussians method.

In using these techniques, a grid is placed on the image to reduce the size of blobs to be

analysed. The cells in the grid deemed to be the background are eliminated and those that

are foreground retained. As a result of using this grid, the remaining foreground objects

retain a block shape rather than the silhouette of the object.

The challenge now is to automatically regain the shape of the object. A number of methods to

localise object boundaries have been developed over the years such as snakes, active contours

and geodesic active contours. (Boykov and Funka-Lea 2006). The methods all come with their

own set of features. A method based on graph theory known as Graph Cuts (Kolmogorov
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and Zabih 2004) is used in this thesis. Graph Cuts work by segmenting nodes in the graph

based on the cost of edges between them.

The advantage Graph Cuts have over other segmentation methods is that when the edge cost

between the pixels are defined, it can be based on any image property ranging from colour to

texture. If an object has a particular texture for example, the edge costs between the pixels

belonging to that object can be defined based on its texture. The same is true for colour.

Therefore this segmentation method can be adapted to give optimal results depending on the

available information as well as the environment being monitored.

6.2 Graph Cuts

Graph cuts are an efficient and powerful tool for image segmentation and its use in Computer

Vision was first proposed by Boykov et al. (2001). The segmentation of objects may involve

some form of labelling of pixels with the constraint that these labels vary smoothly and

preserve object boundaries. These problems can be naturally defined as energy minimisation

problems and implemented using two minimisation algorithms called swap move and expansion

move.

Boykov et al. (2001) uses these minimisation techniques to develop a maximum flow algorithm

for use in Graph Cuts. The reader is directed to Boykov et al. (2001) for a detailed discussion

and implementation of the maximum flow algorithm. The following section discusses the use

of Graph Cuts for object segmentation.

Let G = (V,E) be a weighted graph with two vertexes known as terminals. A cut C ⊂ E

is a set of edges such that the two terminals are separated in the graph. The sum of the
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edges in C forms the cost of the cut C. The minimum cut problem is to find the cheapest

cut that will segment the two terminals (Boykov et al. 2001). Figure 6-1 (a) shows a directed

graph created from the image. Each pixel is represented as a node in the graph. Graph Cut

techniques then perform a cut between the source and sink/terminal nodes, i.e a s/t cut, to

segment the image.

Figure 6-1: (a) A directed graph G = (V,E) (b) An s/t cut on G

In this work, we make use of the max flow algorithm for graph cuts developed by Boykov and

Kolmogorov (2004). The input image is constructed as a weighted graph taking each pixel as

a node. In Algorithm 5 we first create a graph G = (V,E) based on the input image. Each

pixel P is represented as a node in the Graph G. Line 5 in Algorithm 5 accomplishes this

task.

Once the nodes are created, the edges, E, between each node need to be created. The

weights of each edge defines the correlation between the nodes it connects. Therefore we

must take particular care in defining these weights. The connection between each node and

the terminal nodes must also be defined. The correlation, i.e the strength of connection,

between pixels or nodes are defined based on their colour. The assumption is that the pixels

in a particular region belonging to the same object will have similar colour. In order to create

52



this relationship the colour of each pixel is first converted to its gray value using:

g = (.299 ∗ Pr) + (.587 ∗ Pg) + (.114 ∗ Pb) (6.1)

where P is the pixel under consideration and Pr, Pg and Pb represent the red, green and blue

components of the pixel respectively. Line 12 of Algorithm 5 performs this task.

The gray values of the neighbouring pixels or nodes are also calculated. The eight neighbour-

hood of a pixel is represented in Figure 6-2. The centre cell represents the current pixel under

consideration. Each cell beginning from the immediate right of the centre cell going clockwise

represents the position of neighbourhood nodes relative to the current node.

Figure 6-2: Eight Neighbourhood Pixels

By adding the coordinates of each cell to (x, y), the position of the current pixel, we can obtain

the real position of each of the neighbouring pixels. Once these coordinates are obtained, the

colour value of each pixel can be extracted. Lines 15 and 16 in Algorithm 5 calculate the

position of each neighbouring pixel. The difference between the gray values of the current

pixel and its neighbour then defines the weight of the edge between them. If the difference is

close to zero, the probability of both pixels belonging to the same object is very high. If the

difference value is high, then they are deemed to be unrelated.

This suggests that there is a reciprocal relationship between the edge cost and gray difference.
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The edge cost is calculated with:

cost = e(((1.0∗(Gi−Gn)2)∗DIST )/2σ2)∗100 (6.2)

where Gi and Gn are the gray values of current and neighbouring pixels respectively. DIST

is the distance between the current node and the neighbouring node. If the neighbour is

diagonally from the current pixel, the DIST is
√

2 and otherwise 1. The value of σ is twice

the mean intensity of the image. Lines 20 to 23 of Algorithm 5 calculate the cost and creates

the edges with those costs.

A connection between each node and the terminal nodes, namely source and sink nodes needs

to be made and their edge weights defined. In order for graph cuts to work, foreground

and background seeds need to be placed in the image. The weighting between source and

background seed nodes needs to be high, and low with sink. For foreground seeds the reverse

is true. If a node is neither background or foreground seed its connection with source and

sink gets equal weighting. Ways of defining foreground and background seeds are discussed

in Section 6.3.

6.3 Seed Definition and Placement

Graph cuts group pixels based on the weights of the edges that connect them. It then segments

the image into two groups as belonging to the source and sink nodes. Pixels that are defined

as foreground seeds have high connections to the source node and those pixels with high

connections to these seed nodes get cut as belonging to the source as well. Background seeds

work the same way with the sink node.

It is very important that seeds are placed in the correct positions. If a foreground seed gets
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Algorithm 5: Directed Graph Creation from Image
Input: image,width,height

Output: A weighted Graph

begin

for i←− 0 to height do

for j ←− 0 to width do
4 graph←− AddNode

for y ←− to height do

for x←− to width do
7 gray1←− GetGrayValue(currentNode)

for j ←− 0 to 8 do
9 nx = x+ neighbourhood[j].x

10 ny = y + neighbourhood[j].y

if nx >= 0 AND nx <= width AND ny >= 0 AND ny <= height then
gray2←− GetGrayValue(neighbourNode)

grayDiff = abs(gray1− gray2)

if j%2 = 0 then
15 cost = exp(−1.0 ∗ ((grayDiff2))/TWO SIGMA SQ) ∗ 100)

else
17 cost = exp(−1.0 ∗ (((grayDiff2)/TWO SIGMA SQ) ∗ 1.2) ∗ 100)

n←− n+ cost

19 graph←− AddEdge(currentNode,neighbourNode,cost,cost)

if currentNode is foreground then
21 graph←− SetEdgeWeight(currentNode, n, 0)

else if currentNode is background then
23 graph←− SetEdgeWeight(currentNode, 0, n)

else
25 graph←− SetEdgeWeight(currentNode, 10, 10)

end
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placed in a background region, that region will get segmented as foreground. If background

seeds get placed on foreground objects, those objects get suppressed as background. There-

fore, much care needs to be taken in placing seeds. The majority of systems that make use

of Graph Cuts are interactive (Boykov and Jolly 2001; Rother et al. 2003; Talbot and Xu

2006). The user defines where the seeds are to be placed.

However, in many computer vision applications and in the Smart Home situation in particular,

the system needs to be able to operate autonomously if it is to successfully and unobtrusively

monitor behaviours of the occupants. There is a need to place the seeds automatically. Gabor

filters and the Laws Texture Energy Measure used in the previous stages of this work produce

a very strong edge map of the foreground. With this edge map, we can estimate the relative

regions of foreground seeds as well as the background seeds.

To accomplish this, we first scan the edge map for foreground edges. The fundamental

assumption here is that the edge maps would have been sufficiently cleaned in the previous

stages so that it contains only the foreground edges. This image is scanned line by line for

edge pairs. Algorithm 6 shows how this is done.

Since the edge map is a gray image, the pixels with some intensity value are considered to

be part of an edge. The image is scanned from left to right. The objects are hypothesised to

have at least two edges forming its boundaries. The first edge found of an object is termed

the leading edge and the last edge is the trailing edge. This is depicted in Figure 6-3.

From Figure 6-3, it can be seen that there is some noise left in the edge map. As in line 20 of

Algorithm 6 a seed is placed only when both leading and trailing edges are found. To avoid

placing seeds between noise data, the edge pairs are ranked based on the intensity. Seeds are

placed between the top ten pairs.
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Algorithm 6: Foreground and Background Seed Placement
Input: edgeImage,width,height

Output: foregroundSeed,backgroundSeed

begin
foregroundSeed←− new foreground seed image

backgroundSeed←− new background seed image

lead←− false

trail←− false

leadposition←− 0

for y ←− 0 to height do

for x←− 0 to width do

if current pixel intensity is not zero then

if not lead then
lead←− true

while pixel at x not zero do
13 leadposition←− x

14 x←− x+ 1

else if not trail then
tail←− true

17 tailposition←− x

while pixel at x not zero do
19 x←− x+ 1

if lead AND trail then
21 plantseed()

lead←− false

trail←− false

end
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Leading Edge

Tailing Edge

Figure 6-3: Leading and Tailing Edge Pairs

Once the edge pairs are found and ranked, Line 21 of Algorithm 6 places the foreground

and background seeds. The pixels at the mid-point between leading and trailing edges are

marked as foreground seeds. The pixels just before the leading edge and immediately after

the trailing edge are marked as background pixels. After proper seed placement is done, the

maxflow algorithm by Boykov et al. (2001) can be called to segment the image. Figure 6-4

(c) shows the final result of this process.

6.4 Summary

In this chapter a discussion into a method of obtaining a silhouette of an object is given.

Graph Cuts are extensively used to achieve refined boundary segmentation. Graph cuts work

well in segmenting the object as long as the seeds are in the correct positions. However if

there are background regions in close proximity with objects that have similar colours, this

algorithm takes those regions as foreground as well. This is the reason for the false alarms,

the two lines near the object, seen in 6-4 (c).
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(a) (b)

(c)

Figure 6-4: Graph Cut Results (a) An Edge Map (b) Seeds Placed on Image (c) Segmented

Image

In the following chapter, the experimental results of this work is given. This system is tested

on videos of a typical suburban home.
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Chapter 7

Experimental Results

7.1 Introduction

The previous chapters discussed various techniques to detect foreground objects in videos and

suppress false positives during the adaptation phase of the Mixture of Gaussians background

modelling algorithms. In this chapter the experimental results of this work are presented.

The first section presents the results of the edge based approach and the results of texture

based approach are discussed in the following section. Finally the results of applying this

approach in the smart home senario with virtual sensors are shown.

7.2 Results of the Edge Based Approach

Figure 7-1 shows the results of the edge based approach. This video was recorded in the

mpeg4 format at a frame rate of 25 frames per second in the smart house lab. Column (a)

shows the original image, (b) is the ground truth where the images are hand segmented to
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establish a base line comparison, (c) and (d) represents the output of the Mixture of Gaussian

approach and the results from applying the edge based false positive reduction technique on

top of Mixture of Gaussians respectively. This figure is a sequence where there are spatially

non-uniform light changes.

(a) (b) (c) (d)

Figure 7-1: Edge based false positive reduction results of Video 1.

It can be seen from Figure 7-1 that while this approach still has some false positives it

is significantly less than that of the Mixture of Gaussians alone. Moreover the resultant

foreground image more closely matches the ground truth. Three Gaussian distributions are

used for the Mixture of Gaussians and the learning rate set at 200 frames. Figure 7-2 is the

result of using the edge based approach in the kitchen video. When the fridge is open it

creates a sweeping light beam across the room.

Table 7.1 shows the results from different videos taken in the lab environment as well as

a typical kitchen. Videos 1 and 2 are taken in the lab environment with sudden and spa-
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(a) (b) (c)

Figure 7-2: Edge based false positive reduction results of video 3. (a) original image (b)

Mixture of Gaussian and (c) Mixture of Gaussian with FP reduction.

Table 7.1: False positive pixels detected using edge based approach

Videos No of Frames MoG MoG with edge base FP suppression

(%) (%)

1 3000 51.97 2.11

2 2700 39.7 3.5

3 3500 53.8 2.34

4 1500 60.32 3.31
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tially non-uniform changes in light. The frames are first manually segmented to get the true

foreground. This gives us the true positive or foreground pixels. The amount of pixels de-

tected minus the true positive pixels are marked as false positives. These false positives are

presented as a percentage of the total pixels in Table 7.1. Video 1 contains a single person

moving around the room whereas video 2 contains multiple people. Videos 3 and 4 are from

a ceiling mounted camera capturing the daily activities of a quintessential suburban home.

Selected sequences from videos 1, 2 and 3 are shown in Figures 7-1, ?? and 7-2 respectively.

Table 7.1 shows that there are significant reduction in false alarm pixels over the standard

Mixture of Gaussians algorithm.

7.3 Results of Texture Based Approach

Figure 7-3 shows the results of the Laws texture approach. This approach is much more robust

than using edges. The disadvantage of the edge based approach is that light fluctuations may

cause misdetection of some edges making correct seed placement difficult. Laws approach on

the otherhand, can robustly locate the position of the object. It does however, create a halo

effect around the object as can be seen in Figure 7-3 (d).

The texture based method consistently performs better than the edge based approach as can

be seen in Figures 7-3 and 7-4. However, when implementing the texture method, care must

be taken to choose the appropriate analysis window size. If the window is too small, some

texture characteristics can be missed. If the window is smaller than the foreground object, it

can create holes in the foreground, if the foreground and background have similar textures.

Figure 7-5 shows the results of using texture in the kitchen videos. The same videos are

processed with the texture approach and Table 7.2 shows the average percentage of pixels
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(a) (b) (c) (d)

Figure 7-3: Texture based false positive reduction results of video 1

(b) (c) (d)(a)

Figure 7-4: Texture based false positive reduction results of video 2
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detected as false positives in each video. Again there is a significant reduction in the number

of false alarm pixels by using texture over the standard Mixture of Gaussians algorithm.

(a) (b) (c)

Figure 7-5: Texture based false positive reduction results of video 3. (a) Original Image (b)

Mixture of Gaussians (c) Mixture of Gaussian with FP reduction.

Table 7.2: False positive pixels detected using texture based approach

Videos No of Frames MoG MoG with texture base FP suppression

(%) (%)

1 3000 51.97 1.5

2 2700 39.7 2.8

3 3500 53.8 2.34

4 1500 60.32 1.31
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7.4 Results of Using Edge and Texture Approaches in Com-

bination

The previous sections of this chapter showed the results of using Edge based approach and

Texture based approach individially. This section presents the results of using these two

approaches in different combinations.

Table 7.3: False positive pixels detected using edge and texture based approach

Videos No of Frames MoG MoG with combination FP suppression

(%) (%)

1 3000 51.97 0.5

2 2700 39.7 0.8

3 3500 53.8 1.0

4 1500 60.32 0.6

Table 7.4: False positive pixels detected using texture and edge based approach

Videos No of Frames MoG MoG with combination FP suppression

(%) (%)

1 3000 51.97 0.7

2 2700 39.7 1.0

3 3500 53.8 1.0

4 1500 60.32 0.8

As can be seen from Tables 7.3 and 7.4 applying the edge based approach first then the

texture approach performs better than the other way around. It is observed that texture

based approach is better at removing false alarms left by the edge approach.
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7.5 Results of Using This System in Smart Homes for Activity

Detection

West et al. (2005) used a virtual sensor system to detect interactions between humans and

appliances around the house. Virtual sensors, which are polygonal regions, are placed in

areas of interest such as the stove, fridge and so on in the video. The Mixture of Gaussian

(Stauffer and Grimson 1999) is then applied within the virtual sensor regions to detect human

movements. The videos processed are those from a ceiling mounted camera in a quintessential

suburban kitchen. The vidoes are five hours long and a GUI-based method is developed to

manually determine the ground truth efficiently. West et al. (2005) generated two types of

ground truth:

• The ANY ground truth represent events where people are manually observed to be in the

video and interaction with a device defined if they overlapped a Virtual Sensor region.

This ground truth is generated from the knowledge of where the virtual sensors are and

contains events such as people using, being near or passing a device. Human judgement

is used to decide the activity. There should be a high correlation between this and the

event log generated from the Virtual Sensors if the system is working correctly.

• The USING ground truth only contains events where a person is actually using an

appliance. Hence there will be less USING events than ANY events as USING events

are a subset of the ANY events.

The event logs from the Virtual Sensors are then compared with the ground truths. Figure 7-6

show the correlation of the state of each device for a one second time stamp. The correlation

is between ground truth (lowercase device names) and Virtual Sensors (uppercase device

names). Figure 7-6 (a) shows the comparison of ground truth and Mixture of Gaussians only
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and (b) shows the ground truth and Mixture of Guassians wih FP suppression.

(a) (b)

Figure 7-6: Correlations for the video compared with ANY ground truth (a) Mixture of

Gassian only (b) Mixture of Gaussian with FP suppression

The values of the matrices range from 0.0 to 1.0 where 0.0 indicates no correlation and 1.0

indicate perfect correlation. The values in the off diagonal away from the leading diagonal are

small indicating low correlation between unrelated events. The West et al. (2005) comparison

matrix is somewhat optismistic as it considers the status of each device at each time step

independently. For example, in 7-6 (a) if an event in the Virtual Sensor log is also contained

in the ground truth regardless of the time it occurs, it is taken as correct.

This could mean that false positives in the Virtual Sensor log could also be taken as correct.

In Figure 7-6 (b) false positive values are removed and the comparison made. It can be

seen that the matrices indicate that applying the false positive suppression algorithms in this

system does not negatively effect the system’s ability to pick out relevant events. Figure 7-7

(a) shows a comparison of detected events of the ground truth and the virtual sensors using

the Mixture of Gaussians only and Figure 7-7 (b) shows the comparison between ground truth

and Mixture of Gaussian with FP suppression. As can be seen from the Figures, the accuracy

of detected events is much improved by using False Positive suppression techniques as there

are less false alarms.
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Figure 7-7: Events detected using the Virtual Sensor alongside ground truth for using, near

and passing events (a) Ground truth vs Virtual Sensors (b) Ground truth vs Virtual Sensors

with FP Suppression

It can be seen from Figure 7-7 (a) that in the West et al. (2005) model, detected events match

well with those of the ground truth, however, there are also many false positives detected.

Figure 7-7 (b) shows that modified model while leaving some false positives, is more accurate.

7.6 Summary

This chapter shows the results of this research. First the results of using the edge based ap-

proach to false positive suppression is given. Using this approach we are able to significantely

reduce the amount of false positives in video streams. However, there are still a few false

positives left and more over the object itself gets undersegmented in some cases. Texture is

also used to eliminate false alarms. Texture appears to give more stable results than the edge

based approach and there is little or no undersegmentation of the object. It does however,

tend to create a halo around the object.
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The results of using False Positive suppression in the Virtual Sensor system is also presented

in this chapter. It can clearly be seen that using this method, a majority of the false alarms

detected can be removed. The next chapter concludes this thesis and suggests future work to

improve the performance.
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Chapter 8

Conclusions and Future Directions

8.1 Summary

Current day background modelling and object detection algorithms work fairly well when

the video scene that they model has stable environmental conditions. However, in reality

the world around us is changing all the time and the background models must be able to

adapt to these changes. As the technology advances, many algorithms that are capable to

modelling slow changes in illumination and well as scenes with moving backgrounds have

emerged (Stauffer and Grimson 1999; Kim et al. 2004; Tian et al. 2005). These systems are

primarily aimed to be used in outdoor environments for tasks such as surveillance and traffic

monitoring.

West et al. (2005) proposed the use of these technologies along with machine learning tech-

niques to monitor the well being of elder and infirm people in their homes. This system is

aimed at improving the quality of their lives and reduce their dependence on the care takers.

Using currently available background modelling technologies in the indoor environment such

as the smart home presents a new set of challenges particularly concerning the lighting in
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the environment that is not stable or changes rapidly. For example, opening the fridge door

creates a sweaping beam of light across the room.

In an attempt to reduce the false positives produced by these algorithms, we learned two

things:

i Background modelling algorithms must consider integrating different image features

such as edges, texture, etc. rather than building the model on just one feature.

ii Different spatial scales must be considered in modelling the background. Only then are

we able to correctly model the changes that are spatially non-uniform. This idea was

first introduced by Toyama et al. (1999) and is still valid to this day.

In this thesis, a framework based on sequential pattern recognition is presented as a solution

to the problem of reducing false positives caused by changes environmental conditions in video

processing. Complex image processing algorithms are sequentially applied to the incoming

video stream to remove false positives.

An edge based approach to analyse images and removed false alarms is introduced. A Gabor

filter with six angles and two frequencies is applied to the image to get an edge map of the

current frame. The Mixture of Gaussian model also produces a updated background image.

This image is processed with the Gabor filter and compared to the current frame. The two

images are discretised and corresponding blocks are subtracted. The Gabor gives the same

responses as the background image in false positive regions of the current frame. These blocks

are then removed from the current frame. The Gabor responses for each image are combined

for rotation invariance.
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A texture based approach is also presented in this thesis. Laws texture energy maps are

applied to both the current image and the background as before. Three by three Laws masks

are used to process the image. Similar features are then combined to reduce the amount of

data to be process and also to get rotation invariance. The current image and background

images are compared as before and false positive blocks removed.

As a result of discretising the image, the remaining foregound objects retain the shape of

the block instead of the silhouette of the object. To overcome this problem, Graph Cuts are

used. Graph Cuts are an efficient image segmentation algorithm based on graph theory. Most

algorithms that use graph cuts are interactive. The user labels some of the pixels in the image

as object and background. Based on the manually placed seeds, the algorithm segments the

image. In this research a method for automatic placement of seeds is presented.

8.2 Future Work

This thesis has presented two approaches to suppress false positives in video segmentation. A

sequential framework is developed to allow for the integration of multiple algorithms. More

complex and efficient algorithms can be added to this framework to improve the accuracy of

suppressing false alarms.

When seed placement is done for graph cuts, sometimes false positive regions get marked as

foreground. Even though the edges are ranked and the top ten edge pairs taken, false positive

edges may be among the top ten. Objects move slowly over a number of frames where as

the false positive edges tend to appear randomly in frames. We can take advantage of this

temporal cohesion of objects so that the seeds are placed only in approximately the same

regions over a number of frames. This will further reduce the number of false positives.
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Texture can be extracted in many different ways. The Laws texture energy measures are used

in this work. Other texture descriptors such as the Local Binary Patterns may offer better

performance under conditions of changing illumination. These techniques could be integrated

into this work.

There are many other image properties that can be investigated and added to this work

such as colour information, co-variance metrices and so on. The virtual sensors used in this

work can accurately determine when people are near appliances and interpret them as events.

However, it cannot differentiate whether the person is actually using the device or just passing

by. There is a need for the developmet of rules to determine the actual activity. This is an

area for further investigation.

From the experiments we find that processing the videos take a fair amount of time. This is

primarily due to the fact that the data rate does not reduce as much as anticipated before.

One possible solution to this is to introduce a pre-processing step to detect scenes with light

change and use false positive suppression on those frames only.
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