
UNIVERSITY OF GENOA

Application-aware optimization of

Artificial Intelligence for deployment on

resource constrained devices

by

Alessio Canepa
A thesis submitted in partial fulfillment for the degree of

Doctor of Philosophy in Science and Technology for Electronic and

Telecommunication Engineering,

Curriculum: Electromagnetism, Electronics, Telecommunications and Interactive

Cognitive Environments

in the

Faculty of Engineering

Department of naval, electric, electronic and telecommunications engineering

Supervisors: Prof. Paolo Gastaldo, Rodolfo Zunino

Co-Supervisor: Prof. Edoardo Ragusa

Coordinator of PhD Course: Prof. Maurizio Valle

February 2023

http://www.unige.it
mailto:alessio.canepa@edu.unige.it
http://www.ingegneria.unige.it
http://www.unige.it

Declaration of Authorship

I, Alessio Canepa, declare that this thesis titled, ‘Application-aware optimization of

Artificial Intelligence for deployment on resource constrained devices’ and the work

presented in it are my own. I confirm that:

■ This work was done wholly or mainly while in candidature for a research degree

at this University.

■ Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

■ Where I have consulted the published work of others, this is always clearly at-

tributed.

■ Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

■ Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

‘La felicità non dipende da quanto hai, ma da quanto lo sai apprezzare.’

UNIVERSITY OF GENOA

Abstract

Faculty of Engineering

Department of naval, electric, electronic and telecommunications engineering

Doctor of Philosophy in Science and Technology for Electronic and Telecommunication

Engineering,

Curriculum: Electromagnetism, Electronics, Telecommunications and Interactive

Cognitive Environments

by Alessio Canepa

Artificial intelligence (AI) is changing people’s everyday life. AI techniques such as

Deep Neural Networks (DNN) rely on heavy computational models, which are in prin-

ciple designed to be executed on powerful HW platforms, such as desktop or server

environments. However, the increasing need to apply such solutions in people’s every-

day life has encouraged the research for methods to allow their deployment on embedded,

portable and stand-alone devices, such as mobile phones, which exhibit relatively low

memory and computational resources. Such methods targets both the development of

lightweight AI algorithms and their acceleration through dedicated HW.

This thesis focuses on the development of lightweight AI solutions, with attention to

deep neural networks, to facilitate their deployment on resource constrained devices.

Focusing on the computer vision field, we show how putting together the self learning

ability of deep neural networks with application-specific knowledge, in the form of feature

engineering, it is possible to dramatically reduce the total memory and computational

burden, thus allowing the deployment on edge devices. The proposed approach aims

to be complementary to already existing application-independent network compression

solutions. In this work three main DNN optimization goals have been considered: in-

creasing speed and accuracy, allowing training at the edge, and allowing execution on

a microcontroller. For each of these we deployed the resulting algorithm to the target

embedded device and measured its performance.

http://www.unige.it
http://www.ingegneria.unige.it
http://www.unige.it
mailto:alessio.canepa@edu.unige.it

Acknowledgements

I would like to thank Edoardo, Paolo and Rodolfo for the trust you have placed in me

and for your guidance through this long journey. I hope I managed to give you something

back for the help you gave me.

My family, I owe you everything. Thanks for always supporting me in this long work,

for believing in me, and for teaching me what’s really important in life. You’ll always

be my haven.

I thank all the friends who are always there, and who understood me when my businesses

didn’t let me dedicate them all the time I wanted.

I’m also grateful to IVECO for having supported my growth through this journey, the

trust you put on me has been foundamental to live these years happily.

Last but not least, I thank you, Alice, for the immense love you give me everyday, and

for supporting my efforts in such an intense moment of our lives. This work would have

been much harder without you.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures ix

List of Tables xiii

1 Introduction 1

1.1 Contribution . 3

2 Background 7

2.1 Deep Convolutional Neural Networks . 7

2.1.1 Introduction . 7

2.1.2 Main layer types . 9

2.1.2.1 Convolution layers . 9

2.1.2.2 Pooling layers . 11

2.1.2.3 Fully connected layers . 11

2.2 Common feature extraction CNN architectures 12

2.2.1 VGG . 12

2.2.2 ResNet . 13

2.2.3 Inception . 15

2.3 Object detection CNN architectures . 16

2.3.1 Region based detectors . 17

2.3.2 Single shot detectors . 19

3 Embedding Deep Neural Networks 23

3.1 The need for embedded DNNs . 23

3.2 Challenges . 25

3.2.1 Memory requirements . 26

3.2.1.1 Parameters . 26

3.2.1.2 Activations . 27

3.2.1.3 Difference between training and inference 28

v

Contents vi

3.2.2 Computational burden . 29

3.3 Embedding DNNs: Software . 30

3.3.1 Architecture design level . 30

3.3.1.1 Knowledge distillation . 31

3.3.1.2 Neural architecture search 32

Search space . 33

Search strategy . 33

Performance function . 34

3.3.1.3 Feature engineering and application specific design 35

3.3.2 Architecture implementation level 35

3.3.2.1 Pruning . 35

3.3.2.2 Weight sharing . 37

3.3.2.3 Quantization . 38

3.4 Embedding DNNs: Hardware level . 41

3.4.1 HW families . 41

3.4.2 HW Acceleration . 43

3.4.3 Commercial solutions . 44

3.4.3.1 System on Chip: NVIDIA Jetson Series 44

3.4.3.2 Stick: Intel Neural Compute Stick 45

3.4.3.3 CPU Based: STM X-CUBE-AI 46

4 Optimizing speed and accuracy: Fast small object tracking 49

4.1 Introduction . 49

4.2 Tiny Moving Object Detection: State of the Art 52

4.2.1 Single-Image General-Purpose Solutions 52

4.2.2 Background Subtraction and Frame-Difference Solutions 53

4.2.3 Spatio-Temporal Convolutional Neural Networks (CNNs) 54

4.2.4 Summary of Contribution . 54

4.3 Methodology . 55

4.3.1 Step 1: Extracting Motion-Augmented Images 56

4.3.2 Step 2: Feature Extraction . 57

4.3.3 Step 3: Object Detection . 57

4.4 Experimental Setup . 59

4.4.1 Scenarios . 59

4.4.1.1 Aerial Surveillance . 60

4.4.1.2 Civilian Surveillance . 60

4.4.1.3 Tennis Ball Tracking . 61

4.4.2 Deployment . 62

4.5 Results . 63

4.5.1 Aerial Surveillance . 63

4.5.2 Civilian Surveillance . 65

4.5.3 Tennis Ball Tracking . 66

4.5.4 Deployment of T-RexNet on the Jetson Nano 67

4.6 Conclusions . 68

4.7 Appendix: Hyperparameters and training details 68

5 Allowing on-target retraining: Hand image classifier 70

Contents vii

5.1 Introduction . 70

5.2 Method . 73

5.2.1 Model . 73

5.2.2 Deployment to embedded device 75

5.2.3 Use case: grasp classification . 76

5.3 Experiments and results . 77

5.3.1 Experiment 1: Classifier model selection 77

5.3.2 Experiment 2: Accuracy comparison with MobileNetV2 79

5.3.3 Experiment 3: Training on the embedded device 79

5.3.4 Experiment 4: Inference on the embedded device 80

5.4 Conclusions . 81

6 Deploying DNN to microcontroller via manual algorithm design: ob-
ject detection for surveillance 82

6.1 Introduction . 82

6.2 Material and Methods . 84

6.2.1 The edge device: STM32F746NG 85

6.2.2 Object detection on a low cost microcontroller: challenges 85

6.2.3 Design of a very lightweight DNN for object detection 88

6.3 Use case: person detection in outdoor thermal images 91

6.3.1 The dataset . 91

6.3.2 DNN-based model for person detection 93

6.3.3 Deployment on device . 94

6.4 Experiments . 95

6.4.1 DNN implementation, training and deployment on target device . 95

6.4.2 Detection performance and comparison 96

6.5 Conclusions . 98

7 Deploying DNN to microcontroller via Neural Architecture Search:
landing pad detection 99

7.1 Introduction . 99

7.2 Related works . 101

7.2.1 Hardware-Aware NAS . 101

7.2.2 DNNs for the navigation of UAVs 102

7.3 Automated Design of efficient DNNs for landing-pad detection 103

7.3.1 Knowledge distillation . 103

7.3.2 Neural architecture search . 104

7.3.3 Integrated Neural Architecture Search with Knowledge Distillation106

7.4 Deployment of the Landing Pad Detector 107

7.4.1 Edge devices . 107

7.4.2 Hardware-aware landing pad detector 108

7.5 Experiments . 109

7.5.1 Distillation . 109

7.5.2 Generalization performance of the landing pad detector 111

7.5.3 Computational performance . 114

7.6 Conclusions . 116

Contents viii

8 Patent: Lightweight path learning-based algorithm for prediction of
veihicle driving routes 117

8.1 Introduction . 117

8.2 Algorithm . 118

8.2.1 Data structures . 119

8.2.2 Graph update . 121

Update TestNodes . 121

Update CurrentNodes . 121

Update TerminatorNodes 121

8.2.3 Energy prediction . 123

8.3 Conclusion . 123

9 Conclusion 124

Bibliography 127

List of Figures

1.1 Thesis title explanation . 3

2.1 Type of features which the various layers of a CNNs learns to detect, from
low level structures to high level, more abstract, information, according
to the depth of the layer. Figure from [1]. 8

2.2 Schematic representation of the VGG16 CNN. Figure from [2]. 9

2.3 Graphical representation of the computation of a convolution layer. [3] . . 10

2.4 Graphical representation of the computation of a pooling layer. 11

2.5 Graphical representation of the fully connected layers in a CNN. 12

2.6 Bottleneck block and skip connection, as used in ResNet-50 -101 and -152.
The rectangles represent convolutions, and specify the filter size and the
number of output channels. 14

2.7 Conceptual view of an Inception module used in Inception CNNs. The
input is processed in parallel computation paths which apply convolutions
with different kernel size. Then, the outputs are concatenated. 15

2.8 Positioning of the inceptions models with respect to other deep learn-
ing models in terms of accuracy, number of operations and number of
parameters. Figure from [4]. 16

2.9 Diagram of R-CNN, Fast R-CNN and Faster CNN, highlighting the dif-
ferences between the three methods and between the training and testing
(inference) phases. Figure from [5]. 18

2.10 Diagram of YOLO and SSD, highlighting the differences between the two
methods and between the training and testing (inference) phases. Figure
from [5]. 20

2.11 Architecture of the Single Shot Detector (SSD).Figure from [6]. 21

3.1 Example of computation of the number of parameters in a fraction of the
VGG architecture. [7] . 27

3.2 Example of computation of the activation’s memory footprint in a fraction
of the VGG architecture. [7] . 28

3.3 Number three from the training set of the MNIST dataset. 31

3.4 Graphical representation of the teacher-student training model. 32

3.5 Graphical representation of Neural Architecture Search concept. 33

3.6 Neural Architecture Search performed using evolutionary algorithms. . . . 34

3.7 Example of pruning applied to fully connected layers. Both weight and
neuron pruning are shown. 36

3.8 Results obtained applying several pruning techniques to the ResNet-18
network on Imagenet dataset [8]. 37

ix

List of Figures x

3.9 Conceptual representation of the weight sharing technique and of the
update of cluster’s centroids. 38

3.10 Accuracty loss with respect to different DNN compression methods, as a
function of the achieved compression rate. The term quantization refers
to the weight sharing approach explained in this section. SVD stands for
singular value decomposition. 39

3.11 (Left) Comparison between peak throughput for different bit-precision
logic on Titan RTX and A100 GPU. (Right) Comparison of the cor-
responding energy cost and relative area cost for different precision for
45nm technology. As one can see, lower precision provides exponentially
better energy efficiency and higher throughput. [9] 39

3.12 Neural network quantization workflow. [10] 40

3.13 Highly-parallel compute paradigms. [11] 43

3.14 Memory access cost as a function of the memory storage type. [11] 44

3.15 NVIDIA Agx Orin. 45

3.16 Intel Neural Compute Stick 2. 46

3.17 Reference workflow for the deploy of NN on STM32 devices using X-
CUBE-AI. 47

4.1 Three examples of patches which show how easily a small object might
appear similar to other objects. Only the rightmost patch is a tennis ball,
while the other two objects appear similar to it without actually being a
tennis ball. Without a mean to discriminate the real object from potential
false positives, a neural network might fail to learn how to recognise the
sought object. 50

4.2 The left image shows a single frame as it is extracted from the video. The
tennis ball is indicated by the red arrow and is almost undistinguishable.
The right image overlays the position of the tennis ball in the previous and
following frames and shows how the motion information is foundamental
for its detection. 51

4.3 T-RexNet macro architecture, showing the two parallel “Motion-only”
and “Mixed Visual-Motion” MobileNetv2-Based feature extractors. Their
output is concatenated (circled X symbol) and then processed by an SSD
network. 55

4.4 Computation of motion-augmented image M . For visualization purposes,
after the concatenation, each of the three channels is displayed as a single
color channel like in RGB images. Here, with respect to RGB, for visu-
alization purposes the hue of the whole image has been modified. In the
zoomed area of the final M image we can see that a moving car appears
as 3 cars, corresponding to time instants t− 1, t and t + 1. 56

4.5 T-RexNet full architecture and image processing high level view. All the
Conv2D blocks in the motion-only path use a 3 × 3 kernel. C is the
number of output channels, s is the stride. Box locations are encoded
with 4 numbers according to [6]. Bottleneck block [6] is highlighted: C
= 6x means that the first block of the bottleneck is an expansion block
which increments by a factor of 6 the number of channels; C = same
means that the number of output channels is equal to the input ones; Nc
is the number of classes. 58

List of Figures xi

4.6 The three test scenarios considered in this work: (a) aerial surveillance,
WPAFB 2009 dataset; (b) civilian surveillance, CUHK dataset; (c) Ten-
nis ball tracking, custom dataset. In each image a sub-area is zoomed to
highlight the small size of the target objects. 62

4.7 Comparison between the results achieved by our T-RexNet and other
State-of-Art (SoA) approaches in the aerial surveillance (WAMI) scenario. 65

4.8 Comparison between the results achieved by our T-RexNet, SSD and
Faster-RCNN in the civilian surveillance test case using the CUHK square
dataset. Full and Small indicate whether the test has been conducted over
the whole image or the upper half only, where perspective makes people
much smaller and the gap between our approach and others is even more
pronounced. 66

4.9 Comparison between the results achieved by our T-RexNet and SSD in
the tennis ball tracking test case. Due to the motion blur and the small
scale of the ball, it becomes almost undetectable by SSD, since it does
not exploit motion data. 67

5.1 Architecture of the classifier we selected. The input is a series of 22
heatmaps, each corresponding to one of the hand keypoints. The output
is the probability for each of the possible classes: in our experiments pinch
and grasp. 72

5.2 Overview of the steps proposed in our methodology to train our custom
hand image classifier (upper part) and use it for inference (lower part). . . 72

6.1 Our STM32 device (left) vs NVIDIA Jetson Nano (right) footprint com-
parison. 85

6.2 Graphical representation of the computation of the minimum amount
of RAM memory, Mreq, required to run a DNN. Tx are tensors, whose
size depends on network parameters. Skip connections tend to increase
memory usage. 87

6.3 DNN architecture proposed in this work. The segmentation mask is then
postprocessed to get the detections. Bottl. stands for Bottleneck block.
C is the number of output channels, e the expansion, k the kernel size, s
the stride. The red arrows represent memory critical paths. 89

6.4 Preview of the UNIRI-TID dataset for person detection on thermal images. 91

6.5 Example of the annotation conversion we performed on our dataset. . . . 92

6.6 Postprocessing of DNN output for the person detection use case. False
positives, on the right of the image, are filtered out. 93

6.7 Results obtained using our method, and qualitative comparison with the
results obtained on the same dataset using YOLOv3 in [23]. 97

7.1 Block-wise representation of the CNNs with the features maps. On the left
is the Teacher’s backbone which produces two representations (tensors).
On the right is the Student network that aims to provide the same feature
sets, using different building blocks. 104

7.2 Proposed teacher/student learning schemata 105

7.3 Block scheme of the evolutionary algorithm 105

7.4 The integrated design strategy . 106

7.5 Block scheme of the teacher segmentation head [12] 109

List of Figures xii

7.6 Generalization performance of the architectures under analysis: NSE [13],
NAS-1 tiny architecture, NAS-2 balanced architecture 113

7.7 Generalization performance: precision-recall analysis 114

8.1 Graphical representation of the graph of nodes storing habitual routes.
Black dots are the nodes. Arrows connect parent nodes with their chil-
dren. The red cross is the current position. Green dots are the Cur-
rentNodes; yellow dots are TestNodes; dots with a red countour are Ter-
minatorNodes. Numbers in parenthesys represent the TotalConsumption
recorded in that TerminatorNode. 120

8.2 Graph update algorithm. 122

List of Tables

2.1 Comparison between VGG and ResNet in terms of number of parameters,
computational complexity and error rate in the ImageNet dataset. From
ResNet paper. 14

2.2 Comparison of Faster RCNN with YOLO on a combination of the VOC2007
and VOC2012 datasets [14]. 20

4.1 Overview of the test scenarios considered in this work. Object size and
speed are relative to the image frame. Image size is in pixels and measures
the side of a squared image. 59

4.2 Characteristics of the NVIDIA Jetson Nano System-on-Module. 62

4.3 Comparison of F1 scores achieved in the Aerial surveillance scenario.
Numbers in brackets represent the measured speed, in frames per sec-
ond, with the Desktop platform. The asterisk indicates that the number
is retrieved from the original paper. 64

4.4 Comparison of F1 scores achieved in the Civilian surveillance scenario.
Numbers in brackets represent the measured speed, in frames per second,
with the Desktop platform. This scenario is splitted into the sub-cases of
normal and small object size to highlight the results of our method when
objects are particularly small. 64

4.5 Comparison of F1 scores achieved in the Tennis ball tracking scenario.
Numbers in brackets represent the measured speed, in frames per second,
with the Desktop platform. This scenario is splitted into the three videos
we considered, with different camera view, court and environment. The
asterisk indicates that the number is retrieved from the original paper. . . 64

4.6 Inference time measured on the NVIDIA Jetson Nano device for every
combination of image size, power mode and optimization level. 68

5.1 Results achieved during the classifier architecture selection. Numbers
in bold are parameters. On the botton right of the table we have the
results in terms of accuracy in the test set eachieved by each of the 8
configurations. The best result is underlined. 78

5.2 Accuracy of the MobileNetV2 classifier by using the transfer learning (TL)
and transfer learning plus fine tuning (TL + FT), compared to our method. 79

5.3 Number of trainable parameters between MobileNetV2 and our proposed
method. Notice that the hand keypoints feature extractor does not need
to be retrained since it is application independent. 80

5.4 Average inference time in milliseconds on the NVIDIA Jetson Nano for
each part of our complete neural network. 81

xiii

List of Tables xiv

6.1 Comparison between the STM32F746NG used in this project and the
NVIDIA Jetson Nano which outlines the hard resource constraints we
face in this work. 84

6.2 Examples of qualitative impact on network footprint due to changes to
commonly used arameters in convolutional networks. ↑ and ↓ means,
respactively that the footprint increases or decreases when the parameter
increases. 87

7.1 Architecture summary of the first parent architecture in the NAS procedure.110

7.2 Balanced architecture distilled with the proposed method. 111

7.3 Small architecture distilled with the proposed method 111

7.4 Hardware measures . 115

Chapter 1

Introduction

In the recent years, Artificial Intelligence (AI) has been an always increasing research

field, given the game-changing innovations it has shown to be capable of. One of the

most interesting subfields of AI is machine learning, which deals with algorithms able

to automatically learn from high amounts of data. Among machine learning methods,

neural networks have gained particular interest in the last decade, given their ability to

outperforms other approaches in many applications.

Actually, neural networks have not been invented recently. The first prototypes of neural

networks date back to the 1960’s. However, they became increasingly popular only in

the last decade, thanks to the exploding amount of data available (mainly from the

internet) to train them, and thanks to the higher availability of computational resources

at low cost, which are necessary to train and run them. In fact, by mimicking the way

the human brain learns, neural networks exhibit outstanding learning capability, but at

the expense of intensive memory and computational cost. The bigger the network, the

higher the computational burden.

Researchers soon realized that in many tasks, such as Computer Vision (CV) ones, neural

networks perform better when they feature a high number of layers, thus deserving the

title “deep”. The increasing popularity of Deep Neural Networks (DNNs) gave birth

to the Deep Learning (DL) research field. The research for achieving unprecedented

accuracy in tasks such as image classification and object detection, thus making the

impossible possible and aiming to beat human performance, was initially the main driver

in the DL field. For this reason, less attention was put on the memory and computational

footprint of such solutions. DNNs in fact can be easily run and trained on desktop or

server environments featuring all the required computing power.

1

Chapter 1. Introduction 2

More recently, we’re assisting to a growing interest in deploying DL-based solutions on

embedded devices. Some of the main drivers of this interest are:

• The wide availability of compact, affordable, low power and efficient hardware

platforms suitable to run heavier algorithms, although very far from server-like

performance. Smartphones are a great example of these, but in this thesis we

will see how we were able to deploy such solutions also to much more resource

constrained devices such as microcontrollers.

• A rapidly growing market of applications runnable on portable devices (such as

smartphones) delivering DL-powered services and solutions to a wide range of

customers. Among these we have in particular solutions for semi-automatic image

manipulation, picture enhancement and virtual reality.

• The increasing interest in the development of autonomous systems, which make use

of artificial intelligence for sensing the environment. A great example of this are

autonomous cars, which use sensors like cameras to understand the surroundings.

In this case, DNNs for example can be used to process the video from a camera to

detect objects such as other cars or pedestrians.

Deploying DNNs to embedded, resource constrained devices is a challenge both from a

computational and memory point of view.

Computationally, DNNs are intrinsically based on a huge number of computations, or

MACs (multiply and accumulate operations). When targeting real time embedded sys-

tems, the neural network could need to process the input data in a fraction of a second.

A typical example of this is a CV-based pedestrian detection system in autonomous cars.

The need for speed requires designers to reduce the computational cost of the DNN, or

exploit more powerful hardware, which would in turn increase costs, space, and energy

consumption.

From a memory perspective, DNNs require memory both for storing the network’s pa-

rameters (constants) and the layers’ activations (dynamic). If the lack of computational

power can lead to a slower execution of the network, the lack of sufficient memory can

make a DNN not even executable.

To face such challenges, researchers designed several methods aimed at deploying DNNs

on resource constrained devices. These methods are deeply discussed in Chapter 3 of

this thesis and can be splitted in two main categories: hardware-based and software-

based. The first ones are incentrated on HW techniques to accelerate the execution of

AI algorithms speeding up both computations and access to memory. The second ones

Chapter 1. Introduction 3

Research title

Application-aware optimization of Artificial Intelligence
for deployment on resource constrained devices

1 - What’s the context?
AI
DNN – CNN
Computer vision

2 - What do we do?
Reduce memory and
computational burden

3 - Why?
We target embedded systems

4 - How?
Exploiting application-
specific knowledge and
«feature engineering»

Figure 1.1: Thesis title explanation

aim at making the software more lighweight, by reducing the amount of computations,

the number of parameters and the memory required for temporary calculations, such as

to store layers’ activations.

1.1 Contribution

In the above explained context, the contribution of this thesis can be introduced with

reference to the thesis’ title “Application-aware optimization of Artificial Intelligence for

deployment on resource constrained devices”, as shown in Figure 1.1:

1. What’s the context? We’re in the context of AI, with particular focus on DNN

and CNN applied to computer vision.

2. What do we do? We research methods to optimize AI algorithms, mostly based

on DNN, in order to have a low memory and computational burden.

3. Why? We need to do so to allow their deployment on resource constrained devices

such as embedded systems.

4. How? We perform this optimization by exploiting application-specific knowledge

and “feature engineering”.

Point 4 is the main distinguishing element of this thesis. As discussed in Chapter 3,

several software-based methods do already exist in order to reduce the footprint of DNNs.

However, most of the research in the field targets application-independent methods, that

is methods able to compress the neural networks without any knowledge about the target

application. This approach is very valuable, since it allows for greater generalisation.

Commercial as well as free tools exist that take in input a neural network and try to

output a compressed version of the same, with less computations or parameters.

Chapter 1. Introduction 4

However, the great generalization of these solutions comes at the cost of lower optimiza-

tion, with respect to what is achievable with an application-aware design of the solution.

The wide availability of off-the-shelf models (and pretrained networks) to perform com-

mon tasks, such as object detection in CV, tends to devalue the culture for researching

application-specific optimizations, despite the great advantage they can bring in terms

of solution efficiency. In other words, if in the pre-machine learning era computational

problems were mostly approached hand-crafting algorithms according to domain-specific

knowledge (consider edge detectors in CV as an example), now the common trend is to

heavily rely on the self-learning capabilities of neural networks. The first approach is

often referred to as “feature engineering”, while, in the second one, features are learned

from the NN itself.

The goal of this thesis is to show that merging together the learning ability of DNNs

and the contribution from domain specific knowledge, in form of feature engineering, is

of foundamental importance when trying to optimize artificial intelligence solutions for

their deployment on resource constrained devices. In particular, we targeted three main

optimization goals: improve accuracy and speed; allow on-target network retraining;

deploy the DNN on a microcontroller. As outlined in the paragraph below, for each

optimization goal we considered a reference application.

The thesis is divided in the following chapters:

Chapter 2 provides the background of this work. Given the focus we have on Computer

Vision solutions, this Chapter gives an outlook of the major milestones which in the

CV field led to the advent of DL-based techniques, and in particular to Convolutional

Neural Networks (CNNs). Then, the Chapter explains the basics of CNNs, with focus

on the most common types of layers used. Finally, it is shown how CNNs are used in the

CV field, with particular focus on feature extraction and object detection architectures,

since they’ll be widely used in the scope of this work.

In Chapter 3 we provide an analysis of the challenges to deploy DNNs on resource

constrained devices, with focus on what determines their computational and memory

footprint. Moreover, we give an outlook of already existing techniques to overcome the

above challenges, considering both HW and SW-based ones. In this work we make use

of off the shelf HW accelerators to run our tests, while we provide direct contribution

to the category of SW-based solutions by performing optimization at DNN architecture

level (number of layers, hyperparameters, etc.), doing feature engineering, and with

application-aware algorithm design.

Chapter 4 presents the case study we considered for the first optimization goal: opti-

mizing speed and accuracy. As a reference application we used an automatic embedded

Chapter 1. Introduction 5

detector of fast and small moving objects. In the chapter we show how performing

feature engineering on the input image can lead to a dramatic reduction of the com-

putational footprint of the solution, thus leading to achieve much better accuracy and

speed with respect to state-of-the-art methods.

Chapter 5 is dedicated to the second optimization goal, that is allowing retraining of

a NN-based solution directly on the target. Normally, in fact, the computationally

intensive training procedure is carried out on a desktop or server environment, and

then only the trained network is deployed to the edge device. Taking as a reference

application a hand image classifier, we show how preprocessing the raw input image

with an already trained and fixed neural network allows to dramatically reduce the

portion of the network to be trained, thus allowing the procedure to be carried out on

the edge device.

Chapter 6 targets the last optimization goal, which aims at deploying a DNN on a mi-

crocontroller. Differently from microprocessor based architectures, microcontrollers are

designed with focus on low power consumption, reduced cost and weight. Therefore,

microprocessors are extremely resource constrained, in particular with respect to the

avilable memory, thus making the deployment of DNN on them a very challenging task.

The reference application in this case is a person detection system for surveillance ap-

plications. In order to implement the solution on a microcontroller, we deeply analize

the impact of neural network architecture choices on the memory footprint, thus ob-

taining the best compromise in terms of memory footprint and accuracy. Moreover, a

handcrafted postprocessing of the neural network output is used to achieve the detection

goal minimizing the overall computational burden.

In Chapter 7 we approach the same problem as in Chapter 6, but this time the optimized

neural network is obtained with a semi-automatic approach based on Neural Architecture

Search (NAS). In an evolutionary manner, a set of parent models generate, through

small perturbations of the architecture, successor candidates, of which only the most

performing ones are selected to take, in the next iteration, the place of lower performing

parents. Given the target of deploying the solution on an embedded device, the concept

of performance is defined using a custom loss function which considers both accuracy as

well as computational cost of the given architecture.

Chapter 8 concludes our research on optimizing AI for embedded devices describing a

route prediction algorithm for electric vehicles, that we patented, specifically designed

to run on low resources microcontrollers. The algorithm makes use only of the residual

battery energy, of the vehicle status (driving, recharging, standby), and of the vehicle

position to build a graph of the habitual driving routes of the vehicle. This graph is

Chapter 1. Introduction 6

explored at each new driving cycle to identify if the current route corresponds to an ha-

bitual one, in order to provide an estimate of the energy needed until the next recharge,

which would be very beneficial to on-board energy optimization algorithms. This con-

tribution is complementary to the previous ones since considers a form of lightweight AI

not relying on DNNs.

Chapter 2

Background

In this chapter we provide an outlook of the technologies and methods which form the

underlying basis of our work. We will focus on applications of AI to computer vision

since it’s the main application field considered in this work.

First, in Section 2.1, we explain how a Deep CNN works, which are its main building

blocks, and how does the learning mechanism work. In this section we also give an

overview of the broad role of CNN in computer vision.

Following, in Section 2.2, we go through the most important CNN architectures for

image classification, which introduce concepts that have been then reused by object

detection CNNs.

Finally, in Section 2.3, we explain how a CNN can be used to localize and classify at the

same time objects in images, according to two major families of architectures: Region

based and single shot detectors.

2.1 Deep Convolutional Neural Networks

2.1.1 Introduction

As the name suggests, Deep Convolutional Neural Networks are a special type of Arti-

ficial Neural Networks (ANN) with the properties of being:

• Deep: Like in Deep Neural Networks (DNNs), this term refers to the number of

layers between the input and the output of the network. Having a relatively high

number of layers, DNNs are able to learn complex non linearities of the data, but

7

Chapter 2. Background 8

they require a higher amount of computational resources, which made them gain

popularity only in the last 15 years.

• Convolutional: These networks process the input data, typically an image, by

means of a sequence of convolutions with kernels (filters) which get learned during

the training of the network.

Thanks to the convolution mechanism, CNNs preserve the locality of data, which is

what makes them so powerful when applied to image processing. Differently, in classic

ANNs, each neuron takes in input the output of all the neurons of the preceding layer.

Accordingly, at the output of each convolution layer, we get a series of feature maps,

which are image-like tensors resulting from the application of the convolution filters to

the feature maps in input to that layer. The convolution makes each point of the output

feature map a function of the corresponding point in the input feature map and a small

set of its neighbours.

Figure 2.1: Type of features which the various layers of a CNNs learns to detect, from
low level structures to high level, more abstract, information, according to the depth

of the layer. Figure from [1].

CNNs process the image in a hierarchical manner, like shown in Figure 2.1. The first

layers learn to detect low level structures of the image, such as edges; deeper layers

contain neurons which get activated in the presence of higher level structures like textures

or patterns; the last layers are sensitive to contextual information, such as the overall

scene (streets, mountains, etc.). For this reason, CNNs for image processing tend to

have a pyramidal shape, which means that, from the input to the output of the network,

we see a reduction of the resolution of the feature maps (less focus on details) and an

increment in the number of feature maps outputted by each layer (increased diversity of

high level semantic information). Figure 2.2 depicts the CNN VGG16 as an example.

In practical applications, such as object classification or detection, CNNs are normally

composed of two parts:

• A backbone, or feature extraction network, which processes the input image as

explained above, with the aim of extracting relevant data from it;

• A head, which is the final part of the network that elaborates the features extracted

by the backbone to produce the final output, such as a class prediction (in case of

Chapter 2. Background 9

Figure 2.2: Schematic representation of the VGG16 CNN. Figure from [2].

image classification tasks) or object class and position (in case of object detection

tasks).

In the previous VGG16 example, the green part is the classification head, while the rest

of the network is the backbone. In the head, often fully connected layers are used.

In the next session an overview of the main layer types used in the backbone as well as in

the classification head is given. It must be noticed that in this work we will not discuss

topics common to the neural networks in general and which does not have a specific link

with CNNs. As an example, these include activation functions, batch normalization,

regularization methods, how training works, dataset splitting and others.

2.1.2 Main layer types

2.1.2.1 Convolution layers

Convolution layers are the main building block of convolutional neural networks. Given

an input image patch P and a kernel K, both of size (m,n), the convolution of P with

K, in the given context, is performed as:

P ∗K =
m∑
i=1

n∑
j=1

Pi,j ·Ki,j (2.1)

that is the sum of the product of the elements in the corresponding positions in the

patch and kernel.

Chapter 2. Background 10

Normally, the input image I is bigger than the kernel K. In this case, the output image

is computed sliding the kernel along all the positions in the input image and computing,

per each of them, the convolution with the corresponding patch of the same size of the

kernel. This case corresponds to the so called stride set to 1. A stride s greater than

one means that the convolution is computed sliding the kernel every time by s positions

along the image. As a consequence, the output image will be s times smaller than the

input one.

Figure 2.3: Graphical representation of the computation of a convolution layer. [3]

When the input image, or tensor, or feature map (according to the CNN dictionary)

has multiple channels, like RGB channels in colored images, the kernel needs to have an

equivalent number of channels, and the computation described above is simply extended

as follows:

P ∗K =
c∑

k=1

m∑
i=1

n∑
j=1

Pi,j,k ·Ki,j,k (2.2)

where c is the channel number. Following the same approach of classic ANNs, convo-

lutional layers also consider a bias term b to be added to the result of the convolution,

which improves the network’s learning performance. Figure 2.3 shows a graphical rep-

resentation of the explained computation. Notice that, in this case, a padding of zeros

has been added to get an output of the same size (width and height) of the input.

It can be noticed that the so obtained output feature map has only one channel. Nor-

mally, in deep CNN architectures, a single convolution layer applies several different

filters to the input image, thus outputting a multichannel feature map.

Chapter 2. Background 11

Important hyperparameters of the convolution layer are the kernel size (m and n, nor-

mally equal) and the stride s.

While training a CNN, the values of each filter get learned as well as the bias term.

2.1.2.2 Pooling layers

To optimise the available computational power and speed up the CNN execution, we

need to forward through the network only the dominant features of each feature map.

Pooling layers are designed to this purpose. As shown in Figure 2.4, a pooling layer

reduces the dimension of a feature map by converting a region of adjacent numbers in

the input feature map (orange square) into a single number of the output feature map,

preserving the relative position in the map.

There are two types of pooling layers: Average pooling and Max pooling. In the first

one, the output value is computed as the average of all the input values in the relative

region, while, in the second one, it is computed as the maximum of the same values.

Figure 2.4: Graphical representation of the computation of a pooling layer.

2.1.2.3 Fully connected layers

Fully connected (FC) layers date back to the very origins of ANNs, and are not a

peculiarity of CNNs. In fact, these layer do not perform any form of image manipulation

through filtering, like convolution layers do. Instead, in CNNs they’re normally used to

learn, from the feature maps outputted by the convolutional part of the network, how

to classify the image (in image classification tasks) or an object in the image (in object

detection tasks). Figure 2.5 gives a conceptual representation of the role of FC layers in

a CNN.

In fully connected layers each neuron computes its output as the weighted sum, linear

combination, of all the input values (normally the result of flattening the last feature

map tensor), plus a bias term. All the weights and the biases are trainable parameters.

Chapter 2. Background 12

When fully connected layers shall output an image classification label, they normally

have a number of neurons in the last layer equal to the number of possible classes of the

image. Then, the activation (output value) of each of these last neurons is an indicator

of the likelihood of that class for the given input image.

Figure 2.5: Graphical representation of the fully connected layers in a CNN.

2.2 Common feature extraction CNN architectures

As anticipated, in applications such as image classification and object detection, CNNs

are normally built by two main parts: a backbone, or feature extraction network, and a

head. In this section we give an overview of three of the most common feature extraction

networks based on CNN which can be found in the literature.

The aim of a feature extraction network is to process the input image via a series of NN

layers, most of which are convolutions and pooling layers, to extract meaningful feature

maps which can then be the input of the classification or object detection part of the

network, according to the specific application.

Although many other network do exist which achieve similar targets, the three networks

here explained have been selected since they are recognised by the research community

as important milestones and they introduced concepts which inspired a lot of other

relevant works. Moreover, implementations of these architectures can be easily found

with open access and, therefore, they are often taken as a reference for comparison with

modern works.

2.2.1 VGG

VGG was proposed by K. Simonyan and A. Zisserman from the University of Oxford

in the paper “Very Deep Convolutional Networks for Large-Scale Image Recognition”

[15]. The name is the acronym of Visual Geometry Group, the department the two

Chapter 2. Background 13

researchers worked in. It became famous thanks to the improvement it achieved with

respect to previous CNNs, AlexNet in particular [16], in the image classification compe-

tition ILSVRC-2014, where it achieved 92.7% accuracy in the ImageNet dataset.

The key idea behind VGG was simply to leverage the same strategy that made AlexNet

improve over the previous LeNet: using a deeper and bigger network.

The structure of VGG16 (one of the two variants of the VGG architecture, as proposed

by the authors) is depicted in Figure 2.2. It is composed of several blocks, where each

block has a sequence of convolution layers followed by a max pooling layer. At each

convolution, the output feature map preserves the size of the input one. The resolution

is instead decreased by two at the level of the 2x2 max pooling layer, which uses a stride

of 2.

All the convolutions in the network use a kernel of size 3×3. This choice was the result of

investigations carried out by the authors, which proved that several convolution layers

with smaller kernel size give better results than fewer convolution layers with larger

kernels, such as 5×5. Using 3×3 kernels has become a standard de facto in subsequent

works and is still the preferred choice in CNNs.

Since the network was initially designed for image classification, at the end of the network

it uses a sequence of three fully connected layers to predict the likelyhood of each of the

1000 classes of the ImageNet dataset. However, this part of the network is task specific

and can be considered the head of the feature extraction network which comes before it.

If the main thing which makes VGG so famous is its simplicity and modularity (VGG16

and VGG19 are just two instances of the architecture), on the other side it has the

drawback of being very heavy, not suitable to resource constrained devices, and log to

train. As an example, VGG16 counts 138 M and, at its origin, it took weeks to train it

on ImageNet.

2.2.2 ResNet

Although both AlexNet and VGG successfully adopted the concept of increasing the

number of layers to improve the performance of the CNN, the effectiveness of this tech-

nique saturates when considering architectures even deeper than VGG19. As proven in

[17], simply adding layers may also decrease the performance of the CNN. The simple

explanation relies in the phenomenom of vanishing or exploding gradients due to the

high amount of computations an non linearities between the input and the output of the

network, which make training the neural network less effective.

Chapter 2. Background 14

Figure 2.6: Bottleneck block and skip connection, as used in ResNet-50 -101 and
-152. The rectangles represent convolutions, and specify the filter size and the number

of output channels.

To overcome the problem, Microsoft researchers He et al. in 2015 proposed ResNet [17],

which introduced the concept of skip connections (also known as shortcut connections or

residuals) while building deeper models. Figure 2.6 shows how they are used in ResNet-

50 (one of the versions of ResNet) to form the so called bottleneck block, which will also

be used in our contributions. Skip connections are parallel neural network branches that

let a feature map (input of the bottleneck block) “jump over” convolution layers being

directly added to the feature map in output from the bottleneck block.

These skip connections have a twofold positive effect: first, they contribute to the solu-

tion of the vanishing gradient problem, since they represent an alternate shortcut for the

gradient to pass through; second, they make it easier for the model to learn an identity

function. This ensures that the higher layers of the model do not perform any worse

than the lower layers.

As a result, ResNet, which is composed mainly by a series of these bottleneck blocks,

can be at the same time much deeper than other networks (in particular his ResNet-101

and ResNet-152 variants) while remaining easy to train and respectful of computational

complexity. Moreover, ResNet is efficient from a computational and memory point of

view with respect to VGG, as shown in Table 2.1.

Params Bln FLOPs Top-1 Err Rate [%]

VGG-16 138 M 15.3 28.07

VGG-19 144 M 19.6 28.07

ResNet-34 21.5 M 3.6 24.52

ResNet-50 23.9 M 3.8 22.85

Table 2.1: Comparison between VGG and ResNet in terms of number of parameters,
computational complexity and error rate in the ImageNet dataset. From ResNet paper.

Chapter 2. Background 15

2.2.3 Inception

Rather then being a single CNN, the Inception [18] one is a series of networks designed

by researchers at Google between 2014 and 2016. These networks share the principle of

substituting the approach of building CNN simply stacking convolutions in series with a

more engineered approach aimed at improving the feature extraction capabilities of the

network and its speed.

The main versions of the Inception series are Inception v1, v2, v3, v4 and Inception-

ResNet. Here, we will not go through all the details of these versions, but we will give

an overview of the key ideas behind its success, which is what is also relevant in the

scope of our work.

The key idea the Inception CNN was built on is that the huge variation in the location

of information in an image (target object size variation, for example) makes it hard to

define the right filter size for convolution layers. Although in part the problem can be

overcome by using deeper networks, these are more prone to overfitting, are harder to

train, and are computationally expensive.

The solution of the Inception network to this problem is to make the CNN “wider”

instead of “deeper”. Therefore, the network is built by stacking blocks (Inception mod-

ules) which contain parallel (instead of sequential) convolutions on the same input, and

then concatenate all the results of these operations. The parallel computational paths

process the input in different ways, thus making the network “wider”.

Previous layer

Filter
concatenation

Filter
concatenation

Filter
concatenation

Filter
concatenation

Filter
concatenation

Figure 2.7: Conceptual view of an Inception module used in Inception CNNs. The
input is processed in parallel computation paths which apply convolutions with different

kernel size. Then, the outputs are concatenated.

Figure 2.7 shows how an Inception module works conceptually, with different filter sizes

applied to the same input tensor. In practice in the various versions of the Inception

network, this concept is implemented by exploiting several optimizations, the most im-

portant of which are:

Chapter 2. Background 16

• 1 × 1 convolutions are added in front of convolutions with a kernel bigger than

3 × 3, to reduce the number of channels and improve speed.

• Convolutions with a kernel bigger than 3× 3 are factorized into sequences of 3× 3

convolutions.

• 3 × 3 convolutions are factorized in parallel 1 × 3 and 3 × 1 convolutions.

• Factorized 7 × 7 convolutions are added

• The residual mechanism introduced in ResNet is introduced to improve learning.

Figure 2.8: Positioning of the inceptions models with respect to other deep learning
models in terms of accuracy, number of operations and number of parameters. Figure

from [4].

As we will see in the next chapters of this thesis, the two main lesson we learned from

the Inception series are: (i) the effectiveness of processing the same input with different

convolution layers, each designed to be more sensitive to specific features; (i) the power

of “engineering” neural networks rather than simply stacking convolution layers.

Figure 2.8 gives an overview of the computational complexity, accuracy and number

of parameters of the different versions of Inception, ResNet, VGG and other feature

extraction networks, when applied to the image classification task on the ImageNet

dataset.

2.3 Object detection CNN architectures

In the previous section we have gone through three CNN architectures for feature ex-

traction. As anticipated, these CNNs can be used as backbone architectures for several

Chapter 2. Background 17

computer vision tasks, such as image classification and object detection. The difference

between one task and another is done via the network head, which is the last part of

the CNNs, that processes the extracted features to produce the final output.

In the case of image classification tasks, the classification head is usually made up of

fully connected layers, whose last layer has a number of neurons equal to the number of

possible prediction classes.

In the case of object detection, the network head has to predict the coordinates of the

bounding boxes around the discovered objects, and the object class. To achieve this

task two main approaches exist: Region based (or two-stage) detectors and Single shot

(or single-stage) detectors.

2.3.1 Region based detectors

Region based object detection CNN, also known as Two-Stage Detectors, process the

input image in two steps: in the first step, regions of the image which are likely to

contain an object of interest are relected; in the second step, each of these regions gets

analyzed to produce the final object class and position in the image, as the coordinate

of its bounding box.

The first region based detector was R-CNN , proposed in 2014. R-CNN gave birth to the

R-CNN series, composed by the first R-CNN [19], and the two successors Fast R-CNN

[20] and Faster RCNN [21]. Although other important region based detectors exist, such

as Mask R-CNN [22] and FPN [23], in this section we focus on the R-CNN series, since

it’s a good reference to analyse the mechanism behind region based detectors, and since

they’re often used as a benchmark for object detection algorithms, given their notoriety

in the this research field. Figure 2.9 gives a clear view of the structure of each of the

networks in this family.

R-CNN In R-CNN the input image gets first processed by a “region proposal” algo-

rithm, whose aim is to select regions of the image that could belong to a particular

object. The authors used the selective search algorithm, which works by generating

segmentations of the image which appear to be objects. It does so by looking at shapes,

color and texture, independently from the actual target objects of a specific implemen-

tation of the R-CNN object detector. Selective search generates 2000 region proposals

category-independent.

After this stage, each of the 2000 region proposals is reshaped into 227 x 227 pixels

images, which are then processed independently from each other by an Alex-Net inspired

feature extraction network, thus generating a 4096 dimensional feature vector for each

Chapter 2. Background 18

Figure 2.9: Diagram of R-CNN, Fast R-CNN and Faster CNN, highlighting the dif-
ferences between the three methods and between the training and testing (inference)

phases. Figure from [5].

region. The feature extraction network is first trained on the ILSVRC2012 classification

dataset, and then fine tuned on the specific target object classes. During training. a

classification head is added to the feature extraction network, just for training purposes,

then removed.

The final stage has to output the position on the object in the region (bounding box

regression) and its predicted class.

The bounding box regression is achieved by learning, in a least-squares fashion, the

parameters of the transformation function from the last feature map of the feature

extraction network to the bounding box coordinates, minimizing the error with respect

to the ground-truth bounding box.

The classification is achieved via an individual SVM (Support Vector Machine) classifier

for each class.

Fast R-CNN The main disadvantage of R-CNN is that, a shown in Figure 2.9, each

region passes through the feature extraction network independently. This is highly

inefficient since overlapping patches of the proposed regions gets processed multiple

times in the same way. Fast R-CNN addresses this problem by passing the input image

only once through the feature extraction network, thus producing an unique output

feature map. The region proposals obtained through selective search are mapped from

Chapter 2. Background 19

regions of the source image to the corresponding regions of the computed feature map,

so that no recomputation is needed.

Faster R-CNN Faster R-CNN improves even more by substituting the Selective Search

algorithm with a much faster region proposal network, directly applied on the output of

the once-computed feature map.

Despite all these optimizations, these Region Based Detectors share the need of looping

over the region proposals. Although this aspect in principle might guarantee higher

accuracy, on the other hand it dramatically affects computational time.

2.3.2 Single shot detectors

Single shot (or single stage) object detectors are able to perform object detection passing

the input image only once through the computations of the neural network. In other

words, redundant computations over the same portion of the image (due to regions

overlaps) are avoided. This makes single shot detectors much faster than region based

ones, which is the main reason why they’re of great interest for embedded and real time

systems, such as in the autonomous car field.

Among Single Shot detectors, we have two main families: YOLO [24] and SSD [6], which

will be briefly described here below.

YOLO The first version of YOLO was proposed in 2015 by Redmond et al. Its name

stands for You Only Look Once, underlying its nature of a single stage detector. As

shown in Figure 2.10, the YOLO network processes the input image first using a simple

feature extraction CNN inspired from VGG, which takes the name od Darknet. Consid-

ering a 448x448 input size (according to the original paper), at the output of the feature

extraction network we have a 7x7 feature map with 1024 channels. Since CNNs preserve

data locality, this feature map can be seen as a 7x7 grid, where each cell of the grid

corresponds to a patch in the input image.

Through two fully connected layers, for each cell the network infers the parameters

(position and size) of B bounding boxes, the “objectness” (likelyhood of containing an

object) of each bounding box, and a likelyhood value for each of C possible classes.

Therefore, at the output of the fully connected layers, the network gives a SxSx(5B+C)

tensor, where S is the grid size (7 in the original paper).

Table 2.2 outlines the results obtained in [14] comparing Faster RCNN with YOLO on a

combination of the VOC2007 and VOC2012 datasets. YOLO proved much faster than

previous approaches, thus preserving comparable accuracy (even thou lower on average,

when considering many other datasets).

Chapter 2. Background 20

Figure 2.10: Diagram of YOLO and SSD, highlighting the differences between the
two methods and between the training and testing (inference) phases. Figure from [5].

Method Backbone mAP FPS

Faster RCNN AlexNet 62.1 18

Faster RCNN VGG16 73.2 7

YOLO DarkNet 63.4 45

YOLO VGG16 66.4 21

Table 2.2: Comparison of Faster RCNN with YOLO on a combination of the VOC2007
and VOC2012 datasets [14].

However, as mentioned in the original paper, the first version of YOLO had at least two

important shortcomings:

• Since the bounding box regression and object classification are performed starting

from feature maps taken at the end of the network (where low level details have

been filtered out by the preceeding CNN layers), YOLO does not perform well in

the detection of small objects.

Chapter 2. Background 21

• The network finds it hard to detect objects it has been trained for, when they

appear in the test set with an aspect ratio different from the training set.

Several other versions of YOLO have been designed in the years following its publication.

Relevant versions are YOLOV2 and YOLOV3 [25]. The main improvements to the

original YOLO are:

• Batch normalisation has been added, thus increasing the networks average preci-

sion.

• The anchor box mechanism has been added, thus allowing the network to detect

inside the same cell multiple objects at different scales and aspect ratios.

• A new 106-layers network which makes use of residual blocks is used in YOLOv3,

and features for performing object detection are extracted at multiple levels in the

network, thus capturing both low level details (for detecting small objects) and

high level contextual information.

SSD The Single Shot Multibox Detector was proposed in 2015 by W. Liu et al. Learning

from the shortcomings of its predecessor YOLO (v1), SSD was designed to address

the problem of multireference (detecting multiple objects closed to each other) and

multiresolution (detecting small as well as big objects). As shown in Figure 2.10, the

multiresolution feature was built by using VGG16 (with modified convolutional blocks

in the last layers) as feature extraction network, and performing detection at multiple

levels of the network, using from high to low resolution feature maps.

Figure 2.11: Architecture of the Single Shot Detector (SSD).Figure from [6].

In particular, 6 feature maps at different resolution are selected from the backbone

network. Each of these is then processed by a last convolutional block which works as

a classifier by using a 3 × 3 kernel with a number of output channels equal to BxC + 4,

where (following the same mechanism seen in YOLO) B is the number of anchor boxes

and C is the number of object classes. In other words, as it can be seen in Figure 2.11,

Chapter 2. Background 22

for each feature maps 4 to 6 boxes are computed, and for each of them the likelihood

of each object class is computed. Note that the position of the boxes is inferred as 4

parameters, related to the height, width, horizontal and vertical position of the box with

respect to the cell (position in the feature map) they’re positioned in.

As the reader might have noticed, since the third version of YOLO also implements the

anchor boxes and multi-resolution mechanisms, the differences with SSD are minimal,

and mostly in the backbone network.

The simplicity of SSD made it one of the networks with the highest number of open

source implementations available in the internet, therefore being often used as a reference

for high speed object detectors, together with YOLO. As we will see in this work, one

of its variants uses the lightweight MobileNet backbone network to boost the detection

speed.

Chapter 3

Embedding Deep Neural

Networks

After the presentation given in the previous chapter of the basics of DNN and the main

methods to apply them to image classification and object detection, in this chapter we

move forward exploring the challenges and related methodologies related to the prob-

lem of bringing Deep Learning based CV solutions to resource constrained embedded

systems, which is the focus of the present research work.

The chapter is structured as follows: in the first section, we discuss about the impor-

tance of being able to run Deep Learning based CV algorithms on embedded devices,

limited in weight, space, computational and memory resources, and we give an out-

look of modern applications of these implementations; in the second section we explore

the challenges related to embedding these solutions, analysing their computational and

memory requirements, with respect to the available resources on embedded devices; in

the third section we provide the most common methods used at software level to allow

the execution of DNNs on embedded systems; finally, in the fourth and last section, we

explore the complementary solutions, this time at hardware level, aiming at the same

goal.

3.1 The need for embedded DNNs

As the name suggests, Deep Neural Networks are a form of neural networks characterized

by a relatively high amount of layers. As seen in the previous chapter, they started to

be adopted in applications, such as computer vision, for their superior performance with

respect to previous approaches. Seeking for algorithms capable of solving, for the first

23

Chapter 3. Embedding Deep Neural Networks 24

time, problems such as object recognition with human-comparable accuracy, the research

community did not initially focus on the computational and memory implications of such

DNNs.

Once that works such as AlexNet proved the above mentioned problems to be effectively

approachable by increasing the number of layers of neural networks (“going deep”),

a whole new era started, where researchers in academics mostly focused on achieving

better and better accuracy.

At the same time, the industry started to gain interest in making this kind of DNN

based CV algorithms available on embedded devices. Great examples of fields which

drive this interest are:

• Industry 4.0: In industrial applications embedded computer vision is starting

to be used for example to design collaborative robots, that use vision to identify

and grab objects, or to receive motion commands from the operator. Vision-

enhanced robots can also be used to identify problems in fabrication processes

(visual inspection).

• Autonomous robots: many autonomous robots make use of computer vision to

understand the environment around them and be able to autonomously navigate

it. Modern commerically available drones, for example, exploit computer vision to

avoid obstacles or to recognise and follow a target, such as the operator.

• Healthcare: Computer vision is being implemented in machines for the analysis

of visual data such as ultrasounds images or radiographies. A practical example

is the help these algorithms can give to the medical equipe in identifying tumor

masses.

• Mobile phones: Mobile phones are one of the major fields of application of

embedded CV. Applications range from face recognition for security purposes, to

virtual reality, passing through techniques to intelligently improve the quality of

photographs taken with the device itself. It must be said that although mobile

phones are becoming increasingly powerful, techniques to optimize the execution

of DNNs on these platforms are still crucial, in particular due to the need of

optimizing battery consumption.

• Automotive: The automotive industry is also an important player in this field,

thanks in particular to the search in autonomous driving and, more in general,

in Advanced Driving Assistance Systems (ADAS). These technologies are in fact

based on the ability of the vehicle to see and understand the environment around

it and inside it (for example in the case of driver drowsiness detection systems).

Chapter 3. Embedding Deep Neural Networks 25

Sending the raw vision data to a remote server for processing, and waiting for the output

of the computation, is a solution that an embedded system may adopt to overcome the

lack of computational and memory resources on the device itself. However, this work

targets the applications where executing CV algorithms on the edge device is crucial.

This need may come for several reasons, above which:

• Reliability: Streaming vision data to a remote server requires a reliable commu-

nication channel which cannot always be given for granted. Using for example Wifi

or the cellular network to reach internet servers would not be suitable for critical

applications.

• Low latency: in many applications such as autonomous cars, computations on

the visual data need to be carried out in real time, that is in a few milliseconds.

The additional latency introduced by the need of sending and receiving the data

to and from a remote server would never be acceptable.

• Privacy: vision data might be confidential and transferring it to remote server

might expose to the risk of data leakage.

• Network bandwidth: in particular when processing high resolution videos, the

bandwidth offered by the communication channel might not be sufficient to transfer

the needed data in a reasonable amount of time. Moreover, availability of higher

network bandwidth is normally associated with additional costs.

• Power consumption: transmitting data remotely, in particular using cellular

networks, is power demanding, and for battery powered edge devices using more

power leads to lower autonomy.

3.2 Challenges

Deploying Convoutional Neural Networks on resource constrained embedded devices

represents a challenge in particular due to their high memory requirements and compu-

tational burden. Most microcontrollers for embedded applications, in fact, feature up to

a few hundreds of KBytes of memory, and have a clock speed in the order of the MHz in-

stead of GHz. If on one side lower computational resources lead to longer inference time

(therefore mainly impacting time critical applications, such as autonomous driving), on

the other side the lack of sufficient memory can completely prevent the execution of the

network.

Chapter 3. Embedding Deep Neural Networks 26

In the next two subsections we give an outlook of the reasons behind these two types of

need, whose comprehension at the basis of techniques aimed at making CNNs executable

on edge devices.

3.2.1 Memory requirements

CNNs, and neural networks in general, use memory for two main reasons: storing the

parameters (or weights) of the network, and storing the activations (or feature maps) at

the output of each layer.

Since the main building blocks of CNN, in particular in the CV field, are convolutional

layers and fully connected layers, we put our focus on these.

3.2.1.1 Parameters

The parameters represent the learnable (or trainable) part of the CNN. Considering a

convolutional layer with a kernel of size kxk, Co output channels and applied to an input

feature map of Ci channels, the total number of parameters required for this layer is

PCL = k × k × Ci × Co + Co (3.1)

Notice that the last term added in equation 3.1 comes from the scalar bias added to

the result of the convolution of the input feature maps with the kernel, and is differ-

ent for each output channel (see Section 2.1.2.1). Assuming a 4 Bytes floating point

representation in memory of these parameters, the final memory footprint would be 4P .

It must be noticed that the final number or parameters does not depend on the height

and width of the input and output feature maps.

Figure 3.1 shows an example of computation of memory footprint in a fraction of the

VGG network.

In the case of fully connected layers (refer to Section 2.1.2.3) the number of parameters

is simply given by

PFC = Ci × Co + Co (3.2)

Since fully connected layers are often used at the end of a series of convolution layers,

the last feature map of the convolutional sequence is flattened, so that each element

Chapter 3. Embedding Deep Neural Networks 27

Figure 3.1: Example of computation of the number of parameters in a fraction of the
VGG architecture. [7]

of the feature map gets mapped to one of the Ci input neurons of the following fully

connected layer. Therefore, in this context, the height and width of the final feature

map affect the total number of parameters of these layers.

3.2.1.2 Activations

The activations, or feature maps, require memory to store the output of a layer and make

it available for all the following operations that operate on that feature map. The first

CNNs were often designed with one single data path where a feature map is used only

by the directly following layer. However, modern CNNs usually make use of “shortcuts”,

where a feature map is not only used by the directly succeeding layer, but is also taken

in input by deeper layers. This case requires a feature map to be kept in memory for

longer, thus increasing the total memory footprint.

The amount of memory required to store a feature map can be simply computed from

the size of the feature map itself. Considering a feature map of height H, width W , with

C channels and assuming 4-bytes floating point representation, the required memory, in

bytes, would be

M = 4 ×H ×W × C (3.3)

In the case of fully connected layers, the memory required to store the activations would

be simply equal to 4 times the number of output neurons, always assuming floating point

representation.

Chapter 3. Embedding Deep Neural Networks 28

It is important to note that, differently from the parameters’ case, the amount of memory

in CNNs depends on the width and height of the feature maps, and therefore, on the

resolution of the input image.

Another important difference is that while parameters need to be always kept in memory,

activations store only temporary results, thus allowing the corresponding memory to

be released once these values have been processed by all the succeeding layers. In

practice, this means that the overall memory footprint for the activations depends on

the maximum number of activations that need to be kept in memory at the same time,

rather than on the sum of all the activations’ memory footprint.

Figure 3.2: Example of computation of the activation’s memory footprint in a fraction
of the VGG architecture. [7]

Figure 3.2 shows an example of computation of the memory footprint in a fraction of

the VGG network.

3.2.1.3 Difference between training and inference

In the above calculations we focused on the memory requirements to perform a forward

propagation, that is inference, on a CNN. This is also what matters most in designing

embedded CNN, since the training of the network is normally done only once during

development, and can be performed on a powerful server.

Training a CNN, and a DNN in general, is in fact much more computationally demand-

ing. To train a CNN, in addition to the forward propagation, an additional process called

backward propagation (or backpropagation) is needed. The need for a backprogation

is related to the fact we’re doing supervised learning, that is we train the network to

produce, given a training set of images, outputs whose true value (for example the image

Chapter 3. Embedding Deep Neural Networks 29

label) is known. While training the network, the error in the CNN’s output resulting

from a forward pass on the train dataset is used by this backpropagation step to update

the weights and biases of the network to improve the prediction, or “to learn”.

Since, starting from a prediction error, all the weights which contributed to this error are

updated according to their “contribution” to the error, that is according to the partial

derivative of the error (loss) function with respect to that weight, partial derivatives for

all the weights need also to be stored in memory during network training, and this dra-

matically increases the memory requirements. Moreover, to compute these derivatives,

also all the activations computed in the forward pass need to be kept in memory.

The usage of training optimizers like ADAM, further increse the memory requirements,

requiring previous gradients to be kept in memory.

Finally, effective training requires batches, which means performing the forward propa-

gation on a set of images (usually 32) at the same time. Therefore, the batch size is an

additional factor which has implications on the total memory footprint for training.

As will be explained in the next chapters, in this work we have also experimented training

a neural network on a resource constrained embedded device for specific applications.

3.2.2 Computational burden

A practical way to get an idea of the time a neural network needs to perform an inference

is to count the number of computations it has to perform and compare it with the

capabilities of the HW platform it will run on. The number of computations is typically

counted as FLOP or MACCs. FLOP stands for floating point operations, and is more

commonly used with a final S (FLOPS) indicating “per second” when referred to the HW

computational power. MACC instead stands for multiply-and-accumulate operations.

MACC is a unit frequently used in the neural network field, since most computations

in a neural network are actually dot products and therefore implemented as a series of

multiply and accumulation operations. For simplicity, it is usually considered a dot

product between two vectors of size n to use n MACCs, which are equivalent to 2n− 1

FLOPs, since there are n multiplications and n− 1 additions.

Considering for example the case of a fully connected layer with Ci input neurons and

Co output neurons, the computation that this neuron performs can be written as in

equation 3.4.

y = Wx + b (3.4)

Chapter 3. Embedding Deep Neural Networks 30

being y ∈ RCo the output array, W ∈ RCi×Co the matrix of weights, x ∈ RCi the input

array and b ∈ RCo the array of biases. Following the above definition, the total number

of MACCs for the fully connected layer is Ci × Co. Conveniently, the final addition of

the bias is not considered since actually the dot product “misses” one addition.

In the case of a convolutional layer, the input and output are not arrays, but three-

dimensional feature maps. Considering a square kernel of size K, and assuming Ci

input channels and an output feature map of size Ho ×Wo with Co channels, the total

number of MACCs would be K ×K × Ci ×Ho ×Wo × Co. Interestingly, this number

does not depend on the spatial (height and width) of the input feature map, but only on

that of the output. For this reason, using a stride higher than one, thus compressing the

resolution of the feature map by the same amount, dramatically decreases the number

of MACC for the layer.

Although convolutional and fully connected layers are not the only parts of the network

which require computations. Batch normalizations and activations functions do also use

computing power. However, convolutional and fully connected layers account for the very

majority of the MACCs. Therefore, the parameters involved in the above computations

must be considered to design lightweight neural networks suitable for deployment on

resource constrained devices.

3.3 Embedding DNNs: Software

Given the challenges explained in the previous section, in the recent years many re-

searchers focused on methods to make Deep CNNs executable on embedded devices.

In practice, the goal is to make them lighter in terms of memory and computational

burden. Solutions have been identified both working at software and hardware level. In

this section, we focus on software level, while the hardware level is treated in section 3.4

We splitted techniques at software level into two subcategories: Architecture design level

and Architecture implementation level.

3.3.1 Architecture design level

Optimizing CNNs at architectural level means trying to find different, lighter, config-

urations of the CNN (in terms of number of layers, types of layers, hyperparameters)

while trying to preserve as much as possible the performance of a heavier parent CNN

which meets the application needs.

Chapter 3. Embedding Deep Neural Networks 31

Three main methods are considered in this context: Knowledge distillation, Neural

Architecture Search and Feature engineering.

3.3.1.1 Knowledge distillation

First introduced by Bucilua et al. [26] in 2006 and later generalized by Hinton et al. [27]

in 2015, Knowledge distillation is a method to compress DNN (including Deep CNNs)

where a smaller model gets trained to mimic a pre-trained larger model. This method is

also called the “teacher-student”, where the larger model is the teacher and the smaller

one is the student.

The idea behind this concept relies on the fact that in order to be able to learn hard

non linearities (such as, in the image classification task, the function mapping an input

image into its class) while training we need to use much deeper neural networks than

what would be actually required to implement the function that the neural network has

learnt in the end. One of the reasons of this phenomenon is that a DNN is intrinsically

capable of learning a generalisation of the knowledge extracted from a training set, thus

being able to apply it to unknown samples. However, considering for example the image

classification task, while training, samples which are similar to each other, but belong

to different classes, are “taught” to the network like if they where completely different,

thus requiring higher effort for the network to learn it.

As an example, Figure 3.3 shows the number 3 from the MNIST dataset. In training

data, the number three is encoded in a one-hot-vector as 0001000000, thus loosing the

information about its similarity with the number 8.

Figure 3.3: Number three from the training set of the MNIST dataset.

In Knowledge distillation, the simpler student model is directly trained on the “soft

predictions” (that in this training context work as labels) learnt by the more complex

teacher model on the training dataset. Soft predictions are more effective than the

original hard predictions (like one hot encoding in the MNIST dataset) of the original

dataset, since they preserve the information about similarity of data, as learned by the

teacher DNN. In practice, these soft predictions are obtained via a variant of the softmax

layer, which, through a parameter T called temperature, sets the balance between a one-

hot like output, and a more equally distributed output among classes. In other words,

Chapter 3. Embedding Deep Neural Networks 32

when the temperature is set to T = 1, we get a standard softmax function which tends to

increase the probability difference between the correctly predicted class and the others,

while when the temperature is set to higher value, the distribution of the predicted

probabilities for each class gets increasingly flattened, thus better preserving the learnt

similarities between the classes.

Figure 3.4 shows a graphical representation of the concept. According to the original

paper, as shown, the student model is actually trained considering an overall loss function

which takes into account, in a weighted manner, both the teacher’s soft output and the

original dataset.

Figure 3.4: Graphical representation of the teacher-student training model.

3.3.1.2 Neural architecture search

Designing an effective DNN architecture for a given task requires a mixture of application

specific knowledge and experience with the many options this design activity involves.

However, predicting the performance of a DNN architecture without a test campaign is

still very hard also for experienced people. For this reason, trial and error is still a widely

used approach, even when it’s driven by experience. Since evaluating the performance

of a new architecture trial is a computationally demanding task which might require up

to days or weeks, the recent increase of need for application specific high performing

(in accuracy and/or efficiency, like in embedded scenarios) DNNs has encouraged the

research for automated neural architecture search methods (NAS). NAS date back to

2016, when Zoph and Le used reinforcement learning algorithms to successfully achieve

state-of-the-art architectures for image recognition and language modeling [28].

The NAS domain comprises of a set of tools and methods that will test and evaluate

a large number of architectures across a search space using a search strategy and select

Chapter 3. Embedding Deep Neural Networks 33

the one that best meets the objectives of a given problem by maximizing a performance

function. Figure 3.5 gives a graphical representation of the concept.

Figure 3.5: Graphical representation of Neural Architecture Search concept.

Search space The search space represents the set of possible architectures that the

NAS can consider along its research. The search spaces is defined by the degrees of free-

dom of the architecture, over which the NAS can scan. The search space might involve,

at higher level, the number of layers and the way they’re connected (skip connections

or branching architectures for example), while, at lower level, it might include also the

hyperparameters of each single layer. It is strightforward that the bigger is the search

space, the higher the potential performance outcome, the longer the research could be-

come. In order to limit the dimensionality of the search space, it can be restricted to

assembling pre-defined submodules (portions of DNNs) which are known to be well per-

forming. When restricting the search space to a single architecture with different sets

of hyperparameters, NAS crosses over to hyperparameter optimisation.

Search strategy The search strategy is the mechanism used to navigate the search

space according to the results obtained by previous trials, with the goal of converging

to a local or global optimum. Among the most common strategies we find (i) grid

search, (ii) random search, (iii) evolutionary algorithms and (iv) reiforcement learning

algorithms.

Grid search consists in systematically screening the search space. In random search,

instead, architectures to be tested are randomly extracted from the search space. Nat-

urally, these two search strategies can be adopted only in case of small search spaces.

Evolutionary algorithms work according to the following process: first, a pseudo-random

set of architecture candidates is selected from the search spaces and evaluated; secondly,

the lower performing architectures are deleted from the candidate pools and substituted

Chapter 3. Embedding Deep Neural Networks 34

with mutations of the surviving ones; then, the new candidates are evaluated and the

whole process continues in an evolutionary manner, as shown in Figure 3.6. Mutations

include modifications in the number of layers, their connections or hyperparameters,

such as changing the size of a kernel. Also hyperparameters of the training phase can

be the subject of the search space. The evaluation of each candidate is performed via

network training and test. Given the computational cost of training many networks, as

explained below, early stopping criteria are used to limit the training time.

Figure 3.6: Neural Architecture Search performed using evolutionary algorithms.

Reinforcement learning algorithms started to be developed also for NAS only in the

recent years. In this case, the candidate DNN is sampled from the search space according

to a certain probability distribution given by an additional controller network, usually

a recurrent neural network (RNN). The sampled architecture is trained and evaluated

using the performance estimation strategy. According to the obtained performance, the

controller network is updated. This process is iterated until convergence or timeout.

Performance function Every NAS approach requires a method to evaluate the

goodness of a candidate DNN. A commonly used method consists simply in training the

candidate network on the training set and then evaluating its accuracy on the test set.

However, especially when the number of candidates increases, performing this procedure

in a complete form for all the candidates could easily become too much time consuming.

For this reason, methods are used to estimate, instead of fully evaluate, the performance

of a candidate via approximations such as reduced training time (via early stopping),

reduced training and validation data, weight initialization from previous well performing

models or learning curve extrapolation.

According to the specific application, the performance function could also take into

account measures such as the computational and memory footprint of a candidate. As

Chapter 3. Embedding Deep Neural Networks 35

will be shown in the present work, this becomes particularly important when applying

NAS to find embedded systems-compatible DNNs.

3.3.1.3 Feature engineering and application specific design

Before the neural network era, a common trend in the computer vision field was to try to

design algorithms able to extract from the images the features considered as meaningful

from experts in the field. The simplest example of this are edge detectors, since edges

are considered relevant features for the understanding of an image. The advent of neural

networks dramatically revolutionised traditional approaches, since neural networks are

intrinsically capable of learning which are the important features of an image for a

given task. The increasing ability of Depp CNNs, in particular, to learn in an end-

to-end fashion (from the raw input image to the final output, such as a classification

label) weakened the importance of feature engineering, that is the process of manually

designing the rules to process an input.

However, as will be seen in this work, when targeting algorithms suitable for execution

on resource constrained devices, combining feature engineering with the self-learning

ability of Deep CNN is of fundamental importance. For example, in the task of tracking

a moving object on a video recorded by a fixed camera, giving in input to a CNN the

pixel-wise difference between two consecutive frames might be helpful for the network

to identify the moving object.

Proving the effectiveness, in terms of optimization, of combining application-aware fea-

ture engineering with CNNs is one of the major drivers of this work. We will investigate

how domain-specific knowledge can be effectively used not only to pre-process the CNN’s

input, like in the previous example, but also in the design of the CNN architecture itself.

3.3.2 Architecture implementation level

Given a DNN architecture, techniques exist to implement it in compressed ways to reduce

its computational and memory footprint while minimizing the impact on its accuracy.

In this section, we give an overview of three of the most used methods, namely Pruning,

Weight Sharing and Quantization.

3.3.2.1 Pruning

Pruning weights is one of the most commonly used techniques to reduce the number of

parameters in a pretrained DNN. Through pruning it is possible to dramatically reduce

Chapter 3. Embedding Deep Neural Networks 36

the memory footprint of the network and its execution time. Network pruning consists

in removing from a DNN the connections which provide minimum contribution to the

NN function. This process is similar to what has been found to happen in the human

brain during the first years of life: the number of neurons and connections among them

at birth is at its maximum, and then decreases while the life experience determines which

are the useful connections to keep and those to discard, thus shaping our brain. In the

same way, when pruning a network, weights are removed and the network is retrained

iteratively, looking for the desired network size and accuracy tradeoff. In fact, retraining

the pruned network is a form of fine tuning which affects only the weights which have

already proved to be the impacting ones. Although the most common pruning method is

at weight level, pruning can be performed also at neuron level, where a complete neuron

is removed including all its ingoing and outgoing connections, or at layer level, where a

whole layer is removed from the network. Figure 3.7 shows an example of pruning at

weight and neuron level, applied on a network of fully connected layers. However, the

same concept can be extended to CNNs.

Figure 3.7: Example of pruning applied to fully connected layers. Both weight and
neuron pruning are shown.

Pruning requires a method for the selection of the weights to prune. Although random

pruning might also be applied, this technique has a higher probability of negatively

impacting the network performance and requires extensive retraining after pruning [29].

Commonly used methods are in the cathegory of magnitude-based pruning (MBP),

which means that the “importance” of a weight is determined according to its magnitude,

as it is straightforward to infer from the basics of neural network computing. A simple yet

effective pruning strategy consists in discarding weights lower than a defined threshold.

When pruning is applied to neurons, the threshold can be set on the sum of the incoming

weights of the neuron [30].

Chapter 3. Embedding Deep Neural Networks 37

Thresholds can be set per layer, according to the distribution of the magnitude of the

weights of that layer, or can be set once for the whole network. Other methods [31] pro-

pose instead to prune the weights with lowest absolute value of the normalized gradient

multiplied by the weight magnitude, given a set of mini-batch inputs. Also in this case,

the method can be applied globally or on a layer-wise manner.

Instead of setting a threshold, one can predefine a percentage of weights to be pruned

based on their magnitude, layer-wise or globally.

As an example, Figure 3.8 shows the results obtained applying several pruning techniques

to the ResNet-18 network on Imagenet dataset. It can be seen how the accuracy gets

preserved even with a compression ratio of 4, using a pruning technique based on a

global threshold.

Figure 3.8: Results obtained applying several pruning techniques to the ResNet-18
network on Imagenet dataset [8].

3.3.2.2 Weight sharing

If the main goal of network pruning is reducing the number of parameters, the weight

sharing technique aims at reducing the number of bits needed to store the weights.

The idea behind weight sharing is that weights that are very close to each other (in

terms of magnitude) can be grouped together in a cluster and substituted with a sin-

gle weight representative of all of them, computed for example as the centroid of the

weights. Then, each weight in memory can be replaced with a number indicating which

cluster the original weight belongs to. A “code book” is generated, containing a map

of correspondence between the cluster number and the reference weight for that cluster.

The upper-left part of Figure 3.9 gives a conceptual representation of the concept: 16

Chapter 3. Embedding Deep Neural Networks 38

weights of 32 bits each (assuming floating point representation) are grouped into 4 clus-

ters; this allows them to be replaced by 2 bit pointers to the corresponding cluster; the

amount of memory required to store the parameters decreased from 16 × 32 = 512 bits

to 16 × 2 + 4 × 32 = 160 bits.

Figure 3.9: Conceptual representation of the weight sharing technique and of the
update of cluster’s centroids.

While training, centroids need to be updated. According to the Stochastic Gradient

Descent (SGD) method, while training, the gradient of each weight is computed. As

shown in the lower part of Figure 3.9, the gradients of the weights belonging to the same

cluster are grouped together and summed up. Then, after multiplication by the learning

rate, the centroids are updated. This process is repeated at every iteration of the SGD.

Figure 3.10 from [32] shows the potential of combining weight sharing and pruning to

achieve model compression of AlexNet on the ImageNet dataset. In the original figure

the term quantization is used indicating weight sharing.

To achieve high compression rates, weight sharing can be integrated with Huffman Cod-

ing to choose the number of bits to represent each cluster: according to it, frequent

clusters can be represented using a lower number of bits, while a higher number of bits

are used to represent in-frequent clusters.

3.3.2.3 Quantization

As shown in Figure 3.11, the computational speed, energy demand and area cost of

running neural networks strongly depends on the data types involved, even in the case

of HW specifically designed for neural network acceleration. In particular, decreasing

Chapter 3. Embedding Deep Neural Networks 39

Figure 3.10: Accuracty loss with respect to different DNN compression methods, as
a function of the achieved compression rate. The term quantization refers to the weight
sharing approach explained in this section. SVD stands for singular value decomposi-

tion.

Figure 3.11: (Left) Comparison between peak throughput for different bit-precision
logic on Titan RTX and A100 GPU. (Right) Comparison of the corresponding energy
cost and relative area cost for different precision for 45nm technology. As one can see,
lower precision provides exponentially better energy efficiency and higher throughput.

[9]

the number of bits of datatypes leads to exponentially better energy efficiency and higher

throughput.

For this reason, quantization is a widely adopted method in compressing neural networks,

especially when targeting embedded devices. The goal of quantization is to substitute

32-bit floating point operations with lower-bits operations, such as using 8-bit fixed point

representations.

Although several variants of the technique exist, a common workflow consists in the

following operations. First, the NN is trained using floating point representations. After

training, according to the statistical distribution of weights and activations (the latter

computer on a batch of input data), an appropriate scaling factor S is chosen to represent

the data using a lower number of bits. As an example, given r the real value which a

set of activations or weights might have, we can choose S as

Chapter 3. Embedding Deep Neural Networks 40

S =
max(|r|)
2n − 1

(3.5)

where n is the number of bits of the target representation (8 in INT8 for example).

The quantization factor can be chosen with different levels of granularity, such as per

network, per layer or per filter in CNNs. Moreover, several methods exist for defining the

quantization factor, such as uniform and non-uniform quantization. The above formula

refers to the widely adopted uniform quantization scheme.

Figure 3.12: Neural network quantization workflow. [10]

A variant of the quantization approach just described is called “quantization aware

training” and consists in performing, while training, the forward propagation step using

quantized data and updating the quantization factor, while the backward propagation

step is performed in floating point.

Chapter 3. Embedding Deep Neural Networks 41

3.4 Embedding DNNs: Hardware level

Despite their high potential DNNs are a composition of basic computational operations

such as multiplications, sums and data accesses, which make them executable, in princi-

ple, on any type of computing platform. However, if on one side the limited computing

power of a hardware device may dramatically increase the processing time, in case of in-

sufficient memory the DNN could not even be executable. For this reason, HW platforms

play an important role in the challenge of embedding DNNs.

In the following section, we give an overview of the HW families that can be used for

execution of DNNs in embedded environments. Then, in Section 3.4.2 we highlight

the most important factors involved in the design of hardware accelerators. Finally,

in Section 3.4.3 we provide some commercial examples of HW accelerators for DNNs,

frequently used in the research community.

3.4.1 HW families

When deploying DNNs to embedded HW, we can consider 4 main types of HW families,

grouped as follows:

• General purpose: Comprises the HW platforms designed in an application in-

dependent manner. They’re normally less optimized but more flexible. Are useful

to minimize time to market and for fast prototyping.

– CPU: Central Processing Unit. In this cathegory we include common micro-

processors and microcontrollers. Although they can be used for the scope,

these devices are normally not specifically designed for running neural net-

works. Microprocessors are used in computing architectures where they can

benefit from an external, potentially large, memory, and therefore the main

difficulties in using them for running DNN relies in their slow computation

and memory access speed. On the other sude, microcontrollers are more suit-

able for resource constrained embedded systems and are optimized in space

and power consumption. They feature a very small (roughly up to 1 MB)

internal memory, which requires using extensive SW Techniques (like those

presented in Section 3.3) to compress a DNN and make it runnable on these

devices.

– GPU: Graphic processing units. As the name suggests, GPUs where initially

designed to accelerate graphic computations, with particular attention to the

very demanding field of gaming and animation. However, they soon became

Chapter 3. Embedding Deep Neural Networks 42

of interest for DNN applications, and CNN in particular, given the similarities

between the two tasks, which are both strongly based on operations between

matrices. With respect to CPUs, which have a few cores (typically 4 or 8) each

of which can perform a variety of complex tasks, GPUs are characterized by

thousands of cores, optimized for the execution of relatively simple operations

in parallel. To feed all these cores with the needed data, GPUs feature a

high amount (several GB) of high speed local memory, and several caching

levels. As presented in Section 3.4.3, GPUs are being readapted also for

embedded applications, with designs that focus more on reducing their size

and power consumption. Despite this, their power consumption still remains

much higher than that of a microcontroller.

• Specialized: Comprises the HW platform designed and optimized for a specific

task or set of tasks. Require more design effort, but can provide higher energy and

space efficiency.

– FPGA: Field Programmable Gate Array. FPGAs are HW platforms which

can be configured to implement a specific set of operations on the input

data, with focus on latency and power consumption minimization. FPGAs

consist of an array of programmable circuits that can each individually do a

small amount of computation, as well as a programmable interconnect that

connects these circuits together. The large number of programmable gates in

the FPGA makes it a naturally highly parallel device. FPGAs can therefore

be used to implement DNNs, as an intermediate solution between the power

demanding GPUs and the ASICs, which have the characteristics explained

here below.

– ASIC: Application specific integrated circuit. As the name suggests, ASICs

are HW boards designed for a specific task. The reduced need for general-

ization, enables a higher optimization of the design of the device, given the

target application and performance. However, these gains comes at a high

cost: the time to market of a ASICs is much longer that that of the other

solutions already presented; moreover, the design of an ASIC is a very costly

complex task. The optimum design of ASICs allows to reduce piece price

cost in series production, therefore leading to an economic gain in case of

high production quantities. However, as per the authors knowledge, the fast

evolving sector of artificial intelligence tends to discourage HW makers from

committing on long-term ASICs projects for very specific applications, while

preferring more flexible GPUs and FPGA based platforms.

Chapter 3. Embedding Deep Neural Networks 43

3.4.2 HW Acceleration

In the context of DNNs, HW accelerators are devices which implement techniques aimed

at improving the performance, typically in terms of latency and throughput, in the exe-

cution of DNN. Although GPUs, FPGAs and ASICs can all be used as HW accelerators

both for DNN inferencing and training, GPUs are nowadays the most common form of

hardware accelerator. In the last years, Google proposed the Tensor Processing Unit

(TPU) as a new type of high performing hardware accelerator.

Hardware accelerators have to face two challenges: optimizing computations and mem-

ory access.

From the computational point of view, most of the operations of a DNN are Multiply

and Accumulate (MAC), which are at the basis of matrix multiplication. Computations

are accelerated by mean of two main approaches: (i) making use of several parallel

Arithmetic Logic Units (ALUs); (ii) speeding up each ALU with hardware optimized for

the MAC operation. In devices such as the Google’s TPU, the second point gets also

advantages from using an 8 bit quantization, as shown in Figure 3.11.

Figure 3.13: Highly-parallel compute paradigms. [11]

From the memory access point of view, two main parallel compute paradigms exist,

depicted in Figure 3.13:

• Temporal architecture: in this paradigm all the ALUs are controlled by a cen-

tral controller and exchange data with a common register file, which then commu-

nicates with the DRAM. Therefore, data is exchanged between the ALUs always

passing through the register file. This paradigm is typical of Single Instruction

Multiple Data (SIMD) or Single Instruction Multiple Thread (SIMT) devices, such

as CPUs and GPUs respectively.

Chapter 3. Embedding Deep Neural Networks 44

• Spatial architecture: in this paradigm each ALU has its own register file and

controller, forming the so called Processing Element (PE). This architecture al-

lows implementing a dataflow among the several PEs and enables the usage of a

more sophisticated and optimized memory structure which guarantees much higher

speedup with respect to the temporal architecture case. In fact, as shown in Figure

3.14, fetching the data from the local register file (for example to reuse the same

weights for multiple convolutions) or an adjacent PE (for example to read the

activations it computed) is much faster than accessing the DRAM or the global

buffer. Of course, in case the spatial architecture is used, a proper design of the

dataflow needs to be carried out to maximize “close data” reuse.

Figure 3.14: Memory access cost as a function of the memory storage type. [11]

3.4.3 Commercial solutions

In this section we give a brief overview of three popular general purpose commercial solu-

tions for running DNN on Embedded systems. They’re widely used both in the industry

as well as in academics. Each of them represents one of the three main cathegories that

we have identified, namely: System on Chip, Stick, CPU Based.

3.4.3.1 System on Chip: NVIDIA Jetson Series

A system-on-chip (SoC) is an integrated circuit which integrates most of the electronics

of a complete computer. Alongside the CPU, a SoC includes input/output interfaces,

volatile as well as non-volatile memories, power management units as well as other

custom units for example for digital signal processing, wireless communications and

more. SoC have the advantage ob being extremely compact and of dramatically reducing

the development costs and time to market of the final application, since they’re normally

Chapter 3. Embedding Deep Neural Networks 45

designed by silicon manufacturers in high quantities and adaptable to many different

applications.

The NVIDIA Jetson is a series of SoC HW platforms including an operative system and

a complete SW framework to accelerate the development and execution of AI solutions

on embedded systems. The HW platform range from more compact devices such as

the Jetson Nano, suitable for example for drone applications, to high performance units

targeting autonomous machines such as the Jetson AGX Orin.

Just as an example, the Jetson Nano is a compact device which consumes 5 to 10W, able

to compute up to 472 GFLOPS, equipped with a Quad-core ARM Cortex-A57 MPCore

with a clock frequency up to 1.43 GHz.

The AGX Orin, on the other side, is capable of performing up to 275 TOPS by exploiting

an integrated 2048 core GPU, also featuring 64 tensor cores, specifically designed to

accelerate DNN. It has a 64-bit CPU ARM Cortex-A78AE with a clock frequency up to

2.2 GHz.

Figure 3.15: NVIDIA Agx Orin.

3.4.3.2 Stick: Intel Neural Compute Stick

In some cases, developers might need to update an already existing embedded solution

to allow execution of neural networks. For these cases, AI HW accelerators in the form

of USB sticks exists. These solutions minimize development cost and time-to-market, in

particular when upgrading already existing systems. The USB stick can be connected

to an existing host computer (also embeeded ones, like a Raspberry Pi) and receive

Chapter 3. Embedding Deep Neural Networks 46

from a running application computation-intensive tasks to perform. Once the stick has

computed the output, it is sent back to the application.

Intel’s Neural Compute Stick 2 (NCS2), shown in Figure 3.16, is an example of these

kind of accelerators.

Figure 3.16: Intel Neural Compute Stick 2.

Intel offers the NCS2 coupled with the Open VINO SW framework, which simplifies

the development of applications exploiting its potential. The NCS2 is equipped with

the Intel’s Movidius Myriad X Vision Processing Unit (VPU), featuring 700 MHz of

base frequency and capable of reaching 4 TOPS of processing power, while keeping

power consumption as low as 2 Watts. Open VINO is also compatible with common

frameworks such as Caffè and TensorFlow for DNN design.

3.4.3.3 CPU Based: STM X-CUBE-AI

As previously stated, also standalone CPUs, equipped with internal or external memory,

can be used to execute DNNs. In these cases, the device might also not be provided

with a dedicated HW acceleration. Of course, the limited computing power significantly

increases execution time with respect to other solutions, and the low amount of memory

can also undermine the possibility of executing the network. On the other hand, these

solution can fit very small devices and require less then 1 Watt of energy.

ST Microelectronics provides to its users a software framework named X-CUBE-AI that,

working as an add-on of the STM32CUBE toolchain, simplifies the deploy of neural

networks on the STM32 family of microcontrollers. X-CUBE-AI offers an engine for the

automatic generation of optimized C code for the execution of neural networks, as well

as a set of tools to analize and configure the memory usage of the implementation. Since

the tool works independently from the specific microcontroller choice, the designer can

select the HW device most suitable for the desired application. Figure 3.17 depicts the

reference workflow for developers given by ST. As will be seen in the nect chapters, this

Chapter 3. Embedding Deep Neural Networks 47

workflow has also been used in the context of this work to deploy a NN to an STM32

microcontroller.

Figure 3.17: Reference workflow for the deploy of NN on STM32 devices using X-
CUBE-AI.

Applications

In the next chapters we present some reference applications we considered in order to

investigate the potential of application-aware neural network design and optimization,

in particular when targeting resource constrained embedded devices.

Most of the research on the deplyment of AI solutions to embedded systems targets very

general purpose methods, like those presented in Chapter 3, which can often be applied in

an application independent manner. Our intent is to contribute in a complementary way:

we want to underline that, although the indoubtedly powerful self-learning capability

of many AI algorithms, the contribution of the so called “feature engineering” and

application-specific design is still crucial when it is needed to push the peformance of

the system (also in terms of reduced memory and computational burden) to the limit.

Each of the works presented in the next chapters focuses on a different optimization

target. In Chapter 4 we focus on fast and accurate DNN inference; in Chapter 5 we

focus on making an image classifier retrainable directly on an embedded target device;

in Chapter 6 we focus on making an object detector implementable on a microcontroller

without HW acceleration; in Chapter 7 we present an alternative method of the previous

chapter, using Neural Architecture Search; finally, Chapter 8 presents a lightweight

optimized AI algorithm that we patented to let electric vehicles learn habitual routes,

with the goal of predicting and optimizing the energy consumption.

48

Chapter 4

Optimizing speed and accuracy:

Fast small object tracking

4.1 Introduction

The recent growth of industrial applications for object detection stimulates the research

community toward novel solutions. Intelligent video analysis is the core of several indus-

try applications such as transportation [33], sentiment analysis [34], and sport [35, 36].

As shown in Chapter 2, Deep Learning lies today at the core of state-of-the-art tech-

niques for object detection, such as Faster RCNN[21], YOLO[25] and SSD[6]. Thanks to

GPUs, object detection solutions based on deep learning can support real time applica-

tions; the edge-computing market now offers a variety of relatively inexpensive devices

for Artificial-Intelligence (AI): microprocessors [37], hardware accelerators [38], up to

complete Systems on Module (SoM), such as the Jetson series by NVIDIA [39], and ma-

chine vision cameras such as the JeVois A33 and Sipeed Maix Bit, used in [40]. These

tools rely on GPUs and a collection of software optimisations to deploy computationally

intensive tasks, such as AI inference, on resource-constrained hardware. Real-time ob-

ject detection on embedded devices still represents a major issue, as that goal involves

quite complex architectures for deep learning. In practice, one needs a trade-off between

accuracy and latency to tune each method to the target scenario.

In this work we search for a method to perform fast and accurate detection of small

moving objects, which typically take up a few tens of pixels, by using fixed cameras.

State-of-the-art approaches often exhibit poor performances when dealing with very

small objects, due to the apparent difficulty in discriminating these features from one

another and from the background [41]. Figure 4.1 presents an example, including three

49

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 50

candidate sub-regions extracted from as many frames in a tennis-match video. While

the rightmost frame actually includes the ball, the other patches do resemble a tennis

ball but represent misclassification errors.

Human observers face a similar challenge when looking for tiny objects in a wide scene.

The detection task, in fact, gets simpler if the target moves with respect to a still

background, since the human vision system can combine motion information with the

visual aspect of the object. Figure 4.2 clarifies this concept: the image on the left is the

frame (at time tn) drawn from the tennis video. The image on the right merges the frames

from time tn−5 up to tn+3. In the former case, the ball is hardly distinguishable even

by a human viewer, not just for its small size, but also because motion blur hinders the

detection of fast-moving objects. In the rightmost image, instead, motion information

makes the tennis ball clearly detectable.

Figure 4.1: Three examples of patches which show how easily a small object might
appear similar to other objects. Only the rightmost patch is a tennis ball, while the
other two objects appear similar to it without actually being a tennis ball. Without
a mean to discriminate the real object from potential false positives, a neural network

might fail to learn how to recognise the sought object.

The approach presented here deploys the detection of tiny moving objects in wide scenes

on limited hardware resources and using fixed cameras. The method adjusts the basic

building blocks of resource-constrained computer vision, and proposes a custom deep

neural network for the recognition task called T-RexNet. The T-RexNet framework

improves over generic hardware-aware detectors, which only rely on visual features,

and combines those features with motion information. The framework processes three

consecutive frames from the video source, and prompts a set of bounding boxes around

the detected objects. The overall architecture includes two stacked blocks, for feature

extraction and subsequent object detection.

The dedicated pair of parallel convolutional paths in the network support that image/-

motion fusion process. As compared to generic object detectors, the computational

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 51

Figure 4.2: The left image shows a single frame as it is extracted from the video. The
tennis ball is indicated by the red arrow and is almost undistinguishable. The right
image overlays the position of the tennis ball in the previous and following frames and

shows how the motion information is foundamental for its detection.

overhead brought about by the two-tiered feature-extraction network is mitigated by

reducing the network depth. As a matter of fact, focusing on tiny objects allows to leave

out the deep layers operating at low resolution.

Single-Shot-Detector (SSD) architectures are quite popular for resource-constrained ob-

ject detection. The custom feature-extraction module overcomes the well-known limi-

tations of SSD in detecting tiny objects. The resulting feature-extraction architecture

is quite shallow, and the object detection block relies on one of the least demanding

available State-of-Art (SoA) solutions. In summary, the integration of these two fea-

tures yields a viable solution for the real-time detection of small objects by constrained

devices.

Experimental results prove that, in that context, T-RexNet improves significantly over

state-of-the-art methods for generic object detection. As compared to application-

specific solutions, T-RexNet exhibits a satisfactory accuracy vs/speed balance in several

complex scenarios such as aerial and/or civilian surveillance and high-speed detection,

tackling medium-sized to tiny objects, and varying target densities. In other words, it

manages to achieve high detection rates without sacrificing accuracy too much.

The following is organised as follows. Section 4.2 overviews the state-of-the-art in object

detection, moving-object detection, and in the specific domains used for testing. Section

4.3 presents the T-RexNet approach in detail. Section 4.4 discusses the test scenarios

considered, whereas Section 4.5 makes some concluding remarks. .

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 52

4.2 Tiny Moving Object Detection: State of the Art

The identification of small moving objects is a subset of a wider research field in object

detection. Existing solutions and techniques can be arranged into three main groups,

namely, Single-image solutions, Background-subtraction solutions, and Spatio-temporal

CNNs .

4.2.1 Single-Image General-Purpose Solutions

Typical object-detection models handle one image at a time, even when spatio-temporal

information might be available. FOllowing the cathegorization done in 2 State-of-the art

approaches, relying on deep learning, can be divided into region-based and single-shot

detectors.

In the former models, such as R-FCN [42] and Faster R-CNN [21], a dedicated algorithm

first extracts a set of Regions-of-Interest (ROIs), that is, sub-portions of the image that

are likely to contain an object; then fine-detection and classification modules analyze

each ROI. Single-shot detectors such as YOLOv3 [25], SSD [6] and DSSD [43], instead,

avoid looping over several ROIs, and tackle the input image in a single shot. These

methods apply a library of predefined bounding boxes (anchor boxes), which have various

shapes and sizes and cover the likely locations of objects in the image. The inference

phase takes care of fine tuning each anchor box in terms of size and position.

Region-based detectors usually prove more accurate that single-shot detectors, but are

computationally demanding, as they require a loop for each single ROI [44]. In the case

of small objects at low resolutions, both region-based detectors and single shot detectors

tend to exhibit poor performances. Several techniques have been proposed recently to

overcome that issue [45]:

• Multi-scale representation: high- and low- resolution feature maps stem from

different levels of a feature-extraction network; after super-sampling low-resolution

maps, features fuse together by applying either element-wise sum (Multi-scale de-

convolutional single shot detector (MDSSD) [46]) or concatenation (Diverse region-

based CNN (DR-CNN), [47]).

• Contextual information: the network takes into account explicitly the contex-

tual information around a candidate object. For example, ContextNet [48] applies

a custom region-proposal network specifically aimed to small objects, and for each

candidate region an enlarged region is used to process contextual information.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 53

• Super resolution: generative adversarial networks generate a higher-resolution

version of the candidate object, thus improving accuracy in the detection of small

objects (Perceptual generative adversarial networks (PGAN)) [49]).

• Mixed methods: features with distinct scales are extracted from different layers

of a convolutional neural network; they are concatenated together, and then used

to generate a series of pyramid features [50].

These methods all exhibit an increase in both computational and memory load. This

brings about lower update frequency, higher latency, and ultimately might compromise

implementations on resource-constrained devices for embedded applications.

4.2.2 Background Subtraction and Frame-Difference Solutions

In complex applications such as aerial surveillance, camera views can cover wide areas.

Target objects (e.g., pedestrians and cars) usually span just a few tens of pixels, and

the detection techniques discussed above [51] are ineffective. At the same time, in those

applications the majority of input images are quasi-static and only target objects move

in the scene, hence conventional background-subtraction approaches are widely adopted,

even in the era of deep learning. The basic idea consists in working out the difference

between a frame and the background model of the scene acquired by the same camera;

the time-difference information highlights the changes caused by moving objects.

Methods differ in terms of computational cost, robustness and accuracy—Mixture of

Gaussians (MOG) [52] approaches model each pixel as a random variable with a gaus-

sian mixture model; mean-filtering [53] techniques extract the background by averaging

the values of each pixel over the last N frames, whereas methods for frame-difference

background subtraction [53] only consider the pixel differences between the current frame

and the previous one. The latter approach is very fast but possibly less robust to noise;

moreover, by disregarding any sequence of past frames, frame differences only apply

when the camera is slowly moving.

Since these methods typically process gray-scale (or even B/W after threshold) images

that highlight changes at a given time, the actual detection of moving objects requires

some post-processing. This might possibly include morphological transformations, blob

detection [54], or more complex computations [55–57], to the detriment of detection

speed.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 54

4.2.3 Spatio-Temporal Convolutional Neural Networks (CNNs)

The literature witnesses the growth of spatio-temporal CNNs, which take into account

both visual and motion data. In MODNet [58], the authors proposed a two-stream

neural network that processed input RGB images and optical flows, thus learning object

detection and motion segmentation at the same time. The research presented in [59]

adopted an end-to-end approach for video classification. A pseudo-3D neural network

learned spatio-temporal information by considering multiple consecutive frames, which

were processed by a series of convolutional filters in both the spatial (1× 3 × 3) and

the temporal (3 × 1 × 1) domains. The 3D neural networks virtually replaced explicit

image pre-processing steps such as background subtraction or optical-flow computation.

A spatio-temporal CNN supported the detection of vehicles in Wide Area Motion Im-

agery (WAMI) [60]. In the 2-stage approach, a CNN first handled 5 consecutive images

(taken by an aerial surveillance system) and highlighted promising regions. The second

stage completed fine detection within each region. The TrackNet approach [35] applied

spatio-temporal CNNs to track small fast-moving objects in sport applications; a fully

convolutional neural network could accurately track a tennis ball by processing 3 con-

secutive video frames (taken by a steady camera). The CNN prompted a heatmap of the

possible positions of the ball, subsequent blob detection eventually yielded the predicted

location.

Spatio-temporal CNNs for object detection can prove effective, but also exhibit some

drawbacks: they are often computationally heavy; the various approaches are normally

tailored to specific applications, and application-independent detection of small objects

has not been proved yet.

4.2.4 Summary of Contribution

The methods discussed above all exhibit some features that make them unsuitable to

support the Real-Time detection of small moving objects on resource-constrained de-

vices; specific shortcomings possibly include the inability to recognize tiny objects, im-

practical computational loads, or lack of general applicability. The approach described

in this work can perform detection of small moving objects by maintaining some crucial

features: it is lightweight and suitable for embedded devices, accuracy keeps comparable

to SoA approaches and improves over them in particularly challenging conditions, the

system is end-to-end trainable, and finally the method is application independent, as it

performs satisfactorily in different scenarios.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 55

4.3 Methodology

T-RexNet combines several of the techniques mentioned above to detect small moving

objects in a fast, lightweight manner, by using a fixed camera. The system benefits

from the versatility of an end-to-end fully convolutional neural network, it processes

differences between frames to involve motion information, and relies on the efficiency of

MobileNet-based convolutions to integrate visual and motion data. Single-shot detectors

attain real-time performances. Thus T-RexNet can be regarded as a spatio-temporal,

single-shot, fully convolutional deep neural network, as per Section 4.2. With only 2.38

M parameters, T-RexNet turns out to be one of the most lightweight networks in the

object detection field (the SoA lightweight MobileNetV2 has 3.4 M parameters).

Figure 4.3 outlines the three-step structure of T-RexNet. Three time-consecutive gray-

scale images It−1, It, It+1 make up the system input, where I{·} denotes the 2D matrixes

of pixel intensities at different time steps. The algorithm first works out a pair of motion-

augmented pictures, M and K, which undergo a feature-extraction process based on two

separate parallel convolutional paths. The actual object-detection results stem from the

third SSD-based step.

CNN CNN

CNN

CAR
CAR

CAR

CAR

CAR

Fe
at

u
re

ex
tr

ac
ti

o
n

O
b

je
ct

 d
et

e
ct

io
n

Preprocessing Preprocessing

M
o

ti
o

n
-a

u
gm

e
n

te
d

im
ag

e
s

MK

It+1
It

It-1

Figure 4.3: T-RexNet macro architecture, showing the two parallel “Motion-only”
and “Mixed Visual-Motion” MobileNetv2-Based feature extractors. Their output is

concatenated (circled X symbol) and then processed by an SSD network.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 56

4.3.1 Step 1: Extracting Motion-Augmented Images

This module received in input three gray-scale input frames, It−1, It, It+1. Since gray-

scale images are represented as matrices of size [height × width × 1], stacking three of

them we obtain a [height × width × 3] matrix, which is equivalent to the size of a single

colored image. In other words, compared to traditional object detection methods, we

substituted color with temporal data. The input of the network is processed in order to

generate the pair {M , K} of motion-augmented images, as explained in the following.

The image M includes three channels that are worked out as:

M1
t = |It+1 − It|, M2

t = It, M3
t = |It − It−1|,

where the superscripts (1, 2, 3) refer to the channel number and the | · | is the absolute-

value operator. Figure 4.4 illustrates the overall process in a graphic form. Channel M2

preserves visual features, while channels M1 and M3 bring in motion information via

frame differencing, which proves much faster than conventional background-subtraction

techniques. It must be noted that preserving single-frame visual features in one of the

three channels of the image makes the network able to detect, in principle, also non-

moving object.

Fr
am

e
 d

if
f.

Fr
am

e
 d

if
f.

C
o

n
ca

t
3

It

It−1

It+1

Mt

Figure 4.4: Computation of motion-augmented image M . For visualization purposes,
after the concatenation, each of the three channels is displayed as a single color channel
like in RGB images. Here, with respect to RGB, for visualization purposes the hue of
the whole image has been modified. In the zoomed area of the final M image we can
see that a moving car appears as 3 cars, corresponding to time instants t − 1, t and

t + 1.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 57

The image K is the concatenation of the first and the last channels of M , hence it only

holds motion data without any visual feature.

4.3.2 Step 2: Feature Extraction

Feature-extraction networks typically include stacks of convolutional layers and pooling

layers, in which lower layers involve the details of the image, whereas the topmost layers

extract object-related information [61]. From a spatial point of view, the deeper is the

feature map in the network, the larger is the receptive field of each of its “pixels”.

T-RexNet aims to detect small objects, hence high level information can be disregarded,

and the number of stacked layers in the feature extraction network reduces accordingly.

This feature also entails a beneficial effect on latency. In principle, high-level features

might provide context information and therefore help localise small objects; at the same

time, reducing contextual information makes the feature extractor more independent of

any specific scenario and therefore maximally flexible. Feature extraction in T-RexNet

involves two convolutional paths that process visual-motion mixed data (image M), and

only motion-related data (image K), respectively.

The rightmost path in Figure 4.3 processes image M and relies on a custom network

drawn from the MobileNet [62] model. This is a family of Neural-Networks (NN) archi-

tectures specifically designed for low-latency execution on mobile devices, and yields a

promising balance between computational cost and accuracy. T-RexNet inherits from

MobileNet the use of bottleneck residual block as a main building block, as shown

in Figure 4.5, to limit the sensitivity to high-level, context-dependent information.

The leftmost path in Figure 4.3 takes into account the motion-related data held in image

K. The architecture features a stack of several 2D convolutions, as per Figure 4.5. The

stride is set to 2, hence the input image is downsampled to match the output resolution

of the parallel convolutional path.

Finally, the outputs of the two paths are concatenated channel-wise.

4.3.3 Step 3: Object Detection

The object detection block relies on SSD [6], which mitigates computational costs as

compared with region-based approaches and better fits real-time applications. Since,

in the inference phase, the method prompts predictions for the whole list of predefined

anchors, execution time turns out to be image independent.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 58

Frame t - 1 Frame t Frame t + 1

Frame diff. Frame diff.

Concat 3Concat 2

Conv2D, C = 32, s = 2

Bottl., C = 16, s = 1

Bottl., C = 24, s = 2

Bottl., C = 24, s = 1

Bottl., C = 32, s = 2

Bottl., C = 32, s = 1

Bottl., C = 32, s = 1

Bottl., C = 64, s = 2

Bottl., C = 64, s = 1

Bottl., C = 64, s = 1

Bottl., C = 64, s = 1

Bottl., C = 96, s = 1

Bottl., C = 96, s = 1

Bottl., C = 96, s = 1

Bottl., C = 160, s = 2

Conv2D, C = 32, s = 2

Conv2D, C = 32, s = 2

Conv2D, C = 32, s = 2

Conv2D, C = 32, s = 2

Conv2D, C = 32, s = 2

M
ix

ed
 V

is
u

al
-m

o
ti

o
n

p
at

h

M
o

ti
o

n
-o

n
ly

p
at

h

Concat

1x1 Conv2D, C = Nc, s = 11x1 Conv2D, C = 4, s = 1

Box location Class confidence

Single shot detection stage

1x1 Conv2D, C = 6x

Conv2D, C = same

1x1 Conv2D, C = C

Bottleneck

Figure 4.5: T-RexNet full architecture and image processing high level view. All the
Conv2D blocks in the motion-only path use a 3 × 3 kernel. C is the number of output
channels, s is the stride. Box locations are encoded with 4 numbers according to [6].
Bottleneck block [6] is highlighted: C = 6x means that the first block of the bottleneck
is an expansion block which increments by a factor of 6 the number of channels; C =
same means that the number of output channels is equal to the input ones; Nc is the

number of classes.

Detection in the basic SSD involves several feature maps that are extracted at different

levels of the feature-extraction network (the base network in [6]). This technique im-

proves the robustness to different object scales. Since T-RexNet is targeted at detecting

small objects, the output of the first stage just involves one feature map to contain

computational costs.

T-RexNet associates each element of the feature map (i.e., each position in the map grid)

with the dimension/position information and the classification (car/pedestrian/back-

ground etc.) of the corresponding anchors. The anchor size is set to 0.2 · size(I), where

I is a squared input image and size(·) is a function which returns the height and width

of the image. The anchor’s aspect ratios depend on the shapes of the target objects.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 59

Scenario # of obj. Obj. size Obj. Speed Im. size

Aerial surv. High Small Mid 2000

Civilian surv. Medium
Med. &

small
Low 512

Fast obj. track. Single Small High 300

Table 4.1: Overview of the test scenarios considered in this work. Object size and
speed are relative to the image frame. Image size is in pixels and measures the side of

a squared image.

The standard values are {0.5, 1, 2}, which correspond, respectively, to horizontal shape,

squared shape and vertical shape.

4.4 Experimental Setup

4.4.1 Scenarios

Three heterogeneous scenarios formed the test-bench for assessing the performances of

T-RexNet, namely, aerial surveillance, civilian surveillance, and fast object tracking.

Table 4.1 summarises the characteristics of the three scenarios and gives four quantities:

the number of objects to be detected, the target object size, the speed of objects, and

the overall image size in pixels.

To ensure fair tests, comparisons included methods with the following features:

1. the research community proved the comparison’s effectiveness in object detection

and its implementation on embedded devices; the experiments focused on each

method’s ability to detect small moving objects;

2. the various methods had been targeted to their specific test scenario, hence com-

parisons with T-RexNet could highlight the latter’s balance between accuracy

and speed.

The Appendix 4.7 gives details about the training procedures adopted for T-RexNet,

whereas the actual experimental outcomes are discussed in Section 4.5.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 60

4.4.1.1 Aerial Surveillance

Aerial-surveillance tests addressed the Wright-Patterson Air Force Base (WPAFB) 2009

dataset, which is a well-established benchmark in Wide-Area-Motion-Imagery (WAMI).

Surveillance relies on powerful camera set-ups (and software) to detect and track hun-

dreds of targets, usually people and vehicles, possibly over areas of several squared kilo-

metres. This typically calls for airborne systems. Targets can be so small that motion

information is required to distinguish them from the background or noise. Background-

subtraction techniques are therefore popular for object detection in this field [63].

The WPAFB dataset holds images taken by an airborne system and focuses on moving

vehicles. Each frame roughly includes 315 million pixels and merges the shots by six,

partially overlapping, gray-scale camera sensors [60]. The total area covered by each

frame is around 19 squared km and the frame rate is about 1.25 Hz. On average, each

target vehicle covers a region of about 100 pixels. Due to the considerable size of each

raw image, state-of-the-art methods address a set of Areas of Interest (AOI); this allows

fair comparisons between the various approaches [63].

The tests presented in this work involved AOI 1, 2 and 3, as they covered a variety of

layouts with different intensities of traffic. The size of each AOI was 2000 × 2000 pixels.

The WPAFB dataset gave the position of a vehicle within an AOI by means of the target

coordinates, (x, y); the position was mapped into a squared bounding box of 31 × 31

pixels. Stationary vehicles were not taken into account to focus on moving targets; thus

cars whose positions changed less than 15 pixels between two consequent frames were

removed.

T-RexNet was trained on AOIs 1 and 3, which covered high-intensity and low-intensity

traffic situations, respectively. The images were taken from a moving camera, and the

test phase involved the remaining set, AOI 2. To ensure fair comparisons with other

approaches, time-consecutive images were recorded to support frame differencing. Due

to the excessive size of input images (for T-RexNet as well as other object detectors),

in compliance with the approach [64] each 2000 × 2000 image was split into a set of

16 partially overlapping pictures, each holding 512 × 512 pixels. To be consistent with

the literature [63], true positives were only considered when the center positions of the

detected boxes lied within a 20-pixel distance from the ground-truth location.

4.4.1.2 Civilian Surveillance

The CUHK Square dataset [65] addressed people detection, and included videos recorded

(@30 Frames-Per-Second, FPS) by a surveillance camera monitoring a square and a road

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 61

crossing. Spatial resolution was 720 × 576 pixels. Since the original dataset featured

some misdetections [33], the proper labels were manually added. The overall set of

videos included 2105 detections for training and 593 detections for testing.

The quasi-horizontal inclination of the camera affected the depth of the scene and the

perspective; as a consequence, people close to the camera appeared much bigger than

people on the background. Thus CUHK also allowed to test the effectiveness of T-

RexNet in detecting medium-sized objects.

At 30 FPS, the slow advance of walking people resulted in minimal changes between time-

consecutive frames, hence the input videos were downsampled to 1 Frame-Per-Second

(FPS), and the spatial resolution was resized to 512 × 512 pixels. That downsampling

factor set the trade-off between the amount of motion data captured and the update

frequency of the detections.

The experiments only considered valid detections when an IoU exceeded the 50% thresh-

old with respect to the ground truth. Whenever a bounding box was associated with

multiple ground truth points, the tests only considered one candidate, on a minimum-

distance basis.

4.4.1.3 Tennis Ball Tracking

This setup only included one target object per frame. The example presented in

Figure 4.2 points out the difficulty of tennis ball tracking in real-time detection: the

small size of the ball and the motion blur caused by its fast movement made it almost

undetectable even by human observers without the aid by motion data.

Tennis ball tracking lacks publicly available benchmarks, hence the training set collected

18,220 labeled frames extracted from videos of various matches and recorded at 30 FPS.

To avoid overfitting, the test set included 5160 frames taken from three videos taken in

different courts and with the camera placed at different heights, as per Figure 4.6c. In

the following, we will refer to these videos as Court A, Court B, and Court C. In both

the training and test set, the ground-truth labels were generated by using TrackNet

[35], whose precision, according to the authors and to our observations, exceeded 95%.

The result of such an automatic labelling method was anyway checked manually for

correctness.

This scenario aimed to assess the suitability of T-RexNet for fast, real-time detections;

in both the training and the test set, the frames were downsampled to 300 × 300 pixels.

Only the detected boxes whose center was closer than 16 pixels to the ground truth

location were considered as true positives.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 62

Figure 4.6: The three test scenarios considered in this work: (a) aerial surveillance,
WPAFB 2009 dataset; (b) civilian surveillance, CUHK dataset; (c) Tennis ball tracking,
custom dataset. In each image a sub-area is zoomed to highlight the small size of the

target objects.

4.4.2 Deployment

To allow a fair comparison with other methods in the literature and make the repeati-

bility of our experiments easier, we first performed our tests on a Desktop PC provided

with an NVIDIA GTX 1080 Ti graphic card.

Then, to prove the suitability of our method to embedded edge-AI devices, we deployed it

on an NVIDIA Jetson Nano [66], using its development board. This is the more resource

constrained device of the NVIDIA Jetson series, a suite of hardware platforms specifically

designed for bringing Artificial Intelligence to the edge. It is a System-On-Module (SoM)

which features HW acceleration for deep learning and runs a proprietary modified version

of Ubuntu 18.04. Basic characteristics of the SoM (not including development board)

are reported in Table 4.2.

AI Performance 472 GFLOPs

GPU 128-core NVIDIA Maxwell GPU

CPU Quad-Core ARM Cortex-A57 MPCore

Memory 4 GB 64-bit LPDDR4 25.6GB/s

Storage 16 GB eMMC 5.1

Power 5W / 10W

Mechanical 69.6 mm x 45 mm 260-pin SO-DIMM connector

Table 4.2: Characteristics of the NVIDIA Jetson Nano System-on-Module.

Users can set hardware utilization using a software interface. Two optimized configura-

tions called 5W and Max-N are available. The first one limits power consumption setting

a clock frequency of CPU and GPU to 0.90 and 0.64 GHz, respectively. In addition, two

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 63

cores of the CPU are turned off. In Max-N configuration all the hardware resources are

set to maximize performance, at the expense of power consumption.

NVIDIA provides a toolchain based on TensorTRT. This tool provides an optimized

implementation of common deep learning layers for Jetson devices. For the case of TF

models, the output of TensorTRT is again a TF frozen graph where the computed layers

are replaced with optimized versions. TensorTRT can adopt different data sizes when de-

ploying a network: standard floating-point representation (FP32), half-precision floating

point (FP16) and 8-bit integer representation (INT8). The experiments were conducted

with the FP16 format since this provides a good trade-off between accuracy and power

consumption [67]. In addition, the results proved that FP16 is indeed sufficient to reach

good frame rates using Jetson Nano.

The code was developed in Python using the CV2 module and TensorFlow. The com-

puted latency considered only network processing. Each frame was elaborated in real-

time when acquired without the use of any batching strategy. The measures involved

100 images. The tests involved two versions of T-RexNet, one with input size 300 × 300

and another with input size 512 × 512. The networks were optimized using tensorRT

with FP16 representation. The results measured the average inference time for opti-

mized and non-optimized models, using the Jetson Nano with different power settings

and different input sizes.

4.5 Results

This section illustrates the results of the experiments performed in the three test sce-

narios. According to our previous findings [67] we observed that moving the same

architecture from the Desktop to the embedded platform has negligible impact on the

detection accuracy, while it mostly affects speed and memory footprint. Therefore, in

Sections 4.5.1–4.5.3 we first illustrate, for each scenario, our achievements using the

Desktop platform and, then, in Section 4.5.4, we analyze the impact of deploying T-

RexNet on the Jetson Nano.

Tables 4.3–4.5 give an overview of the comparisons, in terms of F1 scores, with existing

methods in the literature.

4.5.1 Aerial Surveillance

Figure 4.7 shows the ROC curves achieved by T-RexNet and other state-of-the-art algo-

rithms on the AOI 2 test set. The ROC curve for T-RexNet was added to the original

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 64

Aerial surveillance

T-RexNet 0.91 (3)

ClusterNet 0.95* (0.3*)

Median BG+N 0.89*

Table 4.3: Comparison of F1 scores achieved in the Aerial surveillance scenario.
Numbers in brackets represent the measured speed, in frames per second, with the
Desktop platform. The asterisk indicates that the number is retrieved from the original

paper.

Civilian surveillance

Normal Small

T-RexNet 0.77 (44) 0.79 (44)

Faster R-CNN 0.69 (23) 0.5 (23)

SSD512 0.73 (41) 0.59 (41)

Table 4.4: Comparison of F1 scores achieved in the Civilian surveillance scenario.
Numbers in brackets represent the measured speed, in frames per second, with the
Desktop platform. This scenario is splitted into the sub-cases of normal and small
object size to highlight the results of our method when objects are particularly small.

Tennis ball tracking

A B C

T-RexNet 0.78 (47) 0.84 (47) 0.67 (47)

SSD300 0.34 (43) <0.2 (43) 0.23 (43)

TrackNet >0.84* (2.2) >0.84* (2.2) >0.84* (2.2)

Table 4.5: Comparison of F1 scores achieved in the Tennis ball tracking scenario.
Numbers in brackets represent the measured speed, in frames per second, with the
Desktop platform. This scenario is splitted into the three videos we considered, with
different camera view, court and environment. The asterisk indicates that the number

is retrieved from the original paper.

plot reported in [60]. To assess the balance between recall and precision the exper-

iments applied various threshold values on the detection confidence. We remind the

reader that Recall = TP/(TP +FN); Precision = TP/(TP +FP); where TP , FP , FN

are True/False Positives/Negatives.

T-RexNet outperformed the other comparisons in terms of accuracy, with the exception

of ClusterNet [60], which scored near-optimal performances. As reported in [60], how-

ever, ClusterNet required 2–3 s per image on a Titan X GPU board, depending on the

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 65

number of selected regions; a time span of 3 s covered the inference phase to inspect the

whole image for fine detection. By contrast, the inference time for T-RexNet was 310 ms

per image on our Desktop platform featuring an NVIDIA GTX 1080 Ti board, which is

similar to a Titan X in terms of hardware resources and computational performances.

50 60 70 80 90 100

Recall

50

60

70

80

90

100

P
re

ci
si

o
n

Results on WPAFB 2009 Dataset

Clusternet
2-frame
3-frame
3-frame +BF
3-frame + N
Median BG
Median BG + GMS
Median BG + GMT
Median BG +N
Mean BG
IGMM
Inpaint
HawkNetT-RexNet

Figure 4.7: Comparison between the results achieved by our T-RexNet and other
State-of-Art (SoA) approaches in the aerial surveillance (WAMI) scenario.

We took the comparison in [60] and added the results of using T-RexNet. Despite
Clusternet has better performance, our T-RexNet is ∼10 times faster. For information

about the other methods we compare with refer to [60].

4.5.2 Civilian Surveillance

Figure 4.8 gives the ROC curve scored by T-RexNet in object detection within one

image. The obtained results are compared with the corresponding curves attained by

SSD [6] (with MobileNetv2 [62] as backbone network) and Faster R-CNN [21] (with

ResNet50 [17] as backbone network). The Figure gives two curves for each comparison:

the Full mark refers to experiments on whole images, whereas Small curves refer to tests

only performed on the upper halves of images, where perspective made people appear

smaller.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 66

50 55 60 65 70 75 80 85 90 95 100

Recall

30

40

50

60

70

80

90

100

P
re

c
is

io
n

Results on CUHK Square dataset

Faster R-CNN (Full)

Faster R-CNN (Small)

SSD (Full)

SSD (Small)

T-RexNet (Full)

T-RexNet (Small)

Figure 4.8: Comparison between the results achieved by our T-RexNet, SSD and
Faster-RCNN in the civilian surveillance test case using the CUHK square dataset.
Full and Small indicate whether the test has been conducted over the whole image or
the upper half only, where perspective makes people much smaller and the gap between

our approach and others is even more pronounced.

The ROC curves in Figure 4.8 witness that motion information greatly helped T-RexNet

achieve the best performance. More, T-RexNet was the only architecture that attained

satisfactory results when focusing on tiny objects.

4.5.3 Tennis Ball Tracking

Figure 4.9 shows the ROC curves measured by applying T-RexNet on the test sets

Court A, Court B, and Court C. The graph also give the associate ROC curves obtained

by MobileNetv2-SSD, which represented the single-image architecture from which T-

RexNet evolved. The comparison pointed out the significant impact of involving motion

data in the detection of the target object.

Experimental outcomes prove that T-RexNet featured a remarkable improvement over

State-of-the-Art, application-independent approaches. When considering application-

specific solutions, TrackNet [35] had generated our ground-truth labels and proved more

accurate than T-RexNet in tennis-ball tracking. As reported in the original paper,

TrackNet attained on average higher F1 scores than 0.84, which was consistent with the

test performed in this research. At the same time, TrackNet proved significantly heavier

than T-RexNet: Python implementations of both, running on the Desktop platform,

resulted in 2.2 FPS for TrackNet and 47 fps for T-RexNet, that is ∼21 times faster.

The limited resolution of input images allowed to increase the batch size in the inference

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 67

phase up to 10 consecutive frames, while still fitting the memory of the test GPU. This

batch approach allowed T-RexNet to run at 96 fps, at the price of an increased latency

from 21 ms to 104 ms.

0 10 20 30 40 50 60 70 80 90 100

Recall

0

10

20

30

40

50

60

70

80

90

100
P

re
ci

si
on

Results on tennis ball tracking

Court A - SSD
Court B - SSD
Court C - SSD
Court A - HawkNet
Court B - HawkNet
Court C - HawkNet

Figure 4.9: Comparison between the results achieved by our T-RexNet and SSD in
the tennis ball tracking test case. Due to the motion blur and the small scale of the

ball, it becomes almost undetectable by SSD, since it does not exploit motion data.

4.5.4 Deployment of T-RexNet on the Jetson Nano

This section presents the results of the deployment on Jetson Nano. Table 4.6 shows on

the rows the power setting of the board. Columns are divided into couples. The first

pair reports the result for input size 512 × 512, the second refers to 300 × 300. The

first column of each pair refers to an optimized model with FP16 representation. The

second column indicates the original TF model.

The results reveal that T-RexNet can be deployed in embedded systems with real-time

performances. In Max-N configuration, the network can process a frame in 70.28 ms.

In other words, the device could elaborate 13 FPS, which is acceptable for many appli-

cations. The comparison with native TensorFlow solutions highlights the importance of

optimization combined with FP16. A similar observation holds for 5W power mode.

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 68

Power mode 512x512 300x300

TRT(ms) TF(ms) TRT(ms) TF(ms)

Max-N 70.28 437.15 65.45 431.28

5W 108.77 616.74 98.28 661.14

Table 4.6: Inference time measured on the NVIDIA Jetson Nano device for every
combination of image size, power mode and optimization level.

Memory requirements for this network are quite limited. The pb file, that is the Ten-

sorFlow’s ProtoBuf file containing the description of the network, measures around 3.0

MB. The memory strategy implemented on Jetson Nano allocates a large amount of

memory that is not directly dependent on the model size. Accordingly, a direct measure

would yield biased results. Indeed, literature proves that similar models can be deployed

in devices using a smaller memory footprint [67].

4.6 Conclusions

The T-RexNet approach involves a deep neural network for the detection of small mov-

ing objects. Using a fixed camera, it exploits motion data as a discriminant contribution

whenever visual-only information is limited due to the small target sizes. The T-RexNet

architecture includes a two-path network, while keeping computational costs low. The

method’s relevant features consist in limiting computational and memory costs, allowing

real-time execution, ensuring reuse in several applications with an end-to-end approach,

and yielding remarkable accuracy performances that favourably compare with SoA ap-

proaches. T-RexNet was tested in three real-world scenarios covering a wide range of

applications. Accuracy results confirmed that the proposed method outperformed most

of SoA approaches; conversely, when considering execution speed, T-RexNet improved

over the most accurate methods. Tests performed on an NVIDIA Jetson Nano proved

that our solution is suitable for deployment on embedded edge devices. In conclusion, we

believe T-RexNet can be regarded as an easy-to-use alternative, suitable for embedded

to high-end devices, to deal with tiny moving targets observer through a fixed camera.

4.7 Appendix: Hyperparameters and training details

In this section we use S1, S2, S3 to denote our three scenarios: aerial surveillance, civilian

surveillance, tennis ball tracking.

T-RexNet has been implemented in Python, version 3.6.9, using the TensorFlow library,

Chapter 4. Optimizing speed and accuracy: Fast small object tracking 69

version 1.14. All the models have been trained from scratch using an NVIDIA GTX

1080 Ti graphic card. The batch size has been set to 32, and the number of training

steps to 20.000 in S1 and S2, and 60.000 in S3. RMSprop optimizer has been used,

with a learning rate of 0.004, momentum and decay equal to 0.9. Hard negative mining

was used to balance positive vs negative (background) classes, with a maximum of 3

negative per positive examples. All the convolutions use L2 regularization with a weight

of 0.00004. No dropout has been implemented. The default size of the anchor boxes has

been set to 0.2 times the size of the image, while the aspect ratio has been choosen on

a scenario basis: 1 in S1 and S3, 2 in S2. Training time lasted approximately 10 hours

per scenario.

Chapter 5

Allowing on-target retraining:

Hand image classifier

In this Chapter our AI optimization goal has moved from focusing on speed and accu-

racy, like in Chapter 4, to allowing on-target retraining. As a reference application, we

considered a hand image classifier.

State of the Art solutions for image classification are nowadays mostly based on Convo-

lutional Neural Networks (CNNs). With respect to running them for inference, training

CNNs is a much more resource demanding job. For this reason, embedded devices de-

signed to execute neural networks are normally not suitable to train the same networks.

Hand image classification is becoming increasingly popular in several application areas,

by empowering embedded systems with the ability to recognise hand gestures or grasp

types. In this field, making it possible to retrain the hand image classifier directly on

the embedded device would allow an easy customization of classification task according

to application specific needs. In this Chapter we present a method based on transfer

learning which approaches this problem by first extracting hand keypoints, using with a

dedicated neural network, and then applying on the resulting data a lightweight classi-

fier, easily retrainable directly on the target embedded system. The proposal has been

validated on a new dataset collected by the authors, outperforming state of the art

solutions in the specific task.

5.1 Introduction

State of the Art techniques for image classification typically rely on Convolutional Neu-

ral Networks. For each specific classification task, CNNs need to be trained by using

70

Chapter 5. Allowing on-target retraining: Hand image classifier 71

relatively large datasets of labelled images. Even when the final classifier is designed to

be deployed on an embedded device, the network training normally needs to be run on

a desktop or server environment, given the higher amount of computational resources

needed. In many applications, this limitation does not represent an issue, since the

classification task is not supposed to change over the product lifetime and can therefore

be learned only once. However, there are fields where making the user able to customise

the image classification task directly on the target embedded device would be benefi-

cial. Among these, in this work we consider the always growing field of prostheses and

rehabilitation technologies empowered with computer vision to perform classification of

hand images. In upper limb amputees, robotized prostheses enhanced with computer

vision can be made aware of visual information of the good hand in order to perform

autonomous context dependent actions and enable bi-manual interaction [68, 69]. For

example, the user could use the good hand to control the robotic one via gestures, or

the robotized hand could reshape itself according to the type of grasp the good hand is

doing [70].

Clearly, in these fields, users would greatly benefit from the possibility to customise by

themselves the hand classification task to adapt it to application specific usages, by per-

forming a semi-automated training procedure. This requires the neural network based

classifier to be trainable on the target embedded device. Training deep learning models

on single edge devices is a relatively new topic because most work is still spent on the

implementation and optimization of the inference phase [71]. The most active research

line for training on constrained environment envisions an edge server that coordinates

the training process with multiple edge devices [72]. Each device performs part of the

global computation and the results are sent back to the server and combined. Other

interesting options to share the work load on different nodes came from distributed train-

ing strategies inspired by online distillation [73]. However, all these solutions assume a

sufficient support from hardware resources. This assumption is rarely meet by most of

the constrained devices typically employed in real-world applications.

In fact, making it possible to let the user collect a new custom dataset and train a CNN

in a reasonable amount of time on an embedded device, one has to overcome two main

issues:

• The memory and computational complexity required for training the neural net-

work must be contained.

• The amount of data (labelled images) the user has to manually collect to train the

network has to be reasonably low.

• The neural network must be able to learn relevant features even in case of a bad

dataset, for example avoiding overfitting on the image background or illumination.

Chapter 5. Allowing on-target retraining: Hand image classifier 72

Figure 5.1: Architecture of the classifier we selected. The input is a series of 22
heatmaps, each corresponding to one of the hand keypoints. The output is the proba-

bility for each of the possible classes: in our experiments pinch and grasp.

Label A
Label B

Label C

Label A
Label B
Label C

Trained classifier

Randomly initialized
classifier

Label A
Label B

Label C

Hand keypoints extraction network

Hand keypoints extraction network

2 - Pose extraction 3 - Classifier training

4 - Online inference

1 - Training set

Figure 5.2: Overview of the steps proposed in our methodology to train our custom
hand image classifier (upper part) and use it for inference (lower part).

Considering the use cases of classification of hand images already cited, in this work

we focus on retraining a classifier of grasp types. Relevant work in this field is rep-

resented by [74] and [75], where CNNs are used for hand detection and then grasp

classification. Focusing on embedded systems, [76] introduced a novel framework for

video-based grasping classification on an edge device. In [77] an automatic hand pose

annotation system is used to enhance the grasp classification task on embedded devices.

However, to the best of the author’s knowledge, no study has been conducted on the

possibility to customize a grasp classifier by retraining the neural network directly on

the embedded system. We propose a method which addresses this task overcoming the

above explained issues and being able to: (i) be trained directly on the embedded target

device and (ii) learn the classification task from only a few hundreds of video frames.

To validate our solution, we created a dataset for grasp type classification. Although

the literature recognises several types of grasp [78], in this work we distinguished only

between power grasp (used to lift a heavy object) and pinch grasp (used for example

to hold a pen). Since the previously cited [76] and [77] prove that MobileNetV2 [79] is

a valuable backbone CNN for grasp classification in resource constrained environments,

Chapter 5. Allowing on-target retraining: Hand image classifier 73

we considered it as our reference. In the specific case of challenging image background

and low amount of training data, which represent a realistic scenario in the context of

this work, our solution proved to be able to outperform a MobileNetV2-based classifier.

Moreover, we proved that our classifier, differently from MobileNetV2, can be trained

in a few minutes on an NVIDIA Jetson Nano, that is a resource constrained embedded

device for deep learning applications.

5.2 Method

The focus of this work is the design of an hand image classifier that can be hosted on

embedded devices. Actually, the design of the classifier should allow also the training

process to be run directly on the device, i.e., without exploiting computational resources

provided by other devices. To this purpose, the proposed research relies both on the

setup of a lightweight architecture and on the adoption of a learning process that reduces

the amount of training samples.

In this section, we present our method in detail. For clarity, the section is divided into

three parts: in a first subsection, we explain the algorithmic foundations of our method;

in the second subsection we show how it can be deployed on an embedded device; in

the last subsection we discuss the particular use case we considered for validating the

proposed idea.

5.2.1 Model

Our method is based on the key idea that in most applications one of the most im-

portant sources of information when classifying images of hands is the hand pose. The

classification of hand gestures or grasp types provide two good examples: such problems

may be tackled focusing on the shape of the hand, rather than on the specific object the

hand is using or on the background. This approach seems indeed convenient when the

goal is to limit the amount of training samples required to achieve a reliable classifier. In

fact, one can discard unuseful features such as those characterizing the hand color tone

or the background, which only increase the risk of overfitting in the training process.

In the proposed design, a lightweight architecture is obtained by exploiting transfer

learning. Thus, a hand pose estimator is utilised as feature extractor; on top of it a

custom lightweight classifier represents the only trainable part of the neural network.

Figure 5.2 gives an overview of the complete framework we propose. The upper part

of the figure refers to the training process; the lower part of the figure refers to online

inference exploiting the trained model. Here we summarise all the steps involved:

Chapter 5. Allowing on-target retraining: Hand image classifier 74

1. Training set: a set of images centred and focused on a single hand is acquired;

each image shall be assigned a custom label corresponding to the action, gesture,

or grasp type the hand is performing.

2. Pose extraction: the input image is processed by a CNN-based pose estimator

to get the hand pose tensors and filter out unuseful information such as the back-

ground. The details on the pose estimator adopted in this research are discussed

later in this section.

3. Classifier training: A classifier is trained to infer the image label starting from

the hand pose tensor. Optionally, model selection can be performed running this

task for several classifier configuration trials and then selecting the one with the

best performance. The classifier is discussed in more detail later in this section.

4. Online inference: in the online inference phase, the trained system classifies in

real time the input images. Again, the input image is first processed by the pose

extractor; then, the trained classifier provides the prediction on the extracted hand

pose.

The two main blocks of the proposed model are the pose estimator and the classifier. In

the following we give more details about the architecture supporting those blocks.

The hand pose estimation network adopted in this research is taken from the work of

Gouidis et al. [80]. It is based on an encoder-decoder network: the first layers of

the network take in input a 224x224x3 colored image and perform encoding using the

same feature extractor of MobileNetV2 with minimal changes; the final decoding layers

compute the 22 output heatmaps following an approach inspired by [81]. Each heatmap

is 56x56 pixels wide and corresponds to the probability of having in that point of the

image one of 21 identified hand joints. One additional heatmap represents the likelihood

of the background. This pose estimation network is particularly lightweight and suitable

for execution on embedded devices, including smartphones [80].

The classifier network takes in input the 56x56x22 tensor computed by the pose esti-

mator and gives as output the likelihood of each label for the given input. The detailed

architecture of the classifier is depicted in Figure 5.1. It is composed by a series of three

pairs of 2D Convolution and max pooling layers, followed by a fully connected layer with

dropout, and then a last fully connected layer to get one output per class. On the final

output, a softmax function is applied to get the final likelihood per each class. The final

classifier architecture was the result of a model selection procedure we performed on our

specific use case; details will be discussed in Section 5.3. Actually, model selection is an

optional step that the user can perform to increase the classifier performance at the cost

Chapter 5. Allowing on-target retraining: Hand image classifier 75

(a) Development board (b) Production board

Figure 5.3: NVIDIA Jetson Nano board. Figure (a) shows the development kit we
used, where the core board is integrated with additional HW to enable the usage of all
the provided interfaces. Figure (b) shows only the core board ready for integration in

custom embedded systems for production purposes.

of a longer training time. Training different models in series, in fact, does not increase

the hardware requirements of the embedded device.

Overall, the key feature of the proposed model is the structure of the pipeline, where

only the classifier is subject to training. In fact, the hand pose estimator can be trained

offline only once by exploiting high-end computing platforms with a dataset large enough

to achieve robustness. Thus, by exploiting transfer learning one can design a model that

is at the same time fast on edge devices -both in training and inference- and suitable for

the specific hand image classification task. In this sense, such architecture is expected

to be more effective than a state-of-the-art, general- purpose image classifier such as

MobileNetV2. The experimental results presented in 5.3 will confirm such statement.

One may observe that transfer learning can be applied also to MobileNetV2; in this case,

one would train only its classifier. Section 5.3.1 will address this aspect by comparing

the performance of the proposed architecture with that of a MobileNetV2.

5.2.2 Deployment to embedded device

The complete pipeline described above can be implemented on an edge device suit-

able for deep learning applications. In this research we adopted the Jetson Nano, from

NVIDIA [39]. Figure 5.3 shows both the development kit and the production board,

which is only the core of the device, suitable for integration in custom embedded devices

for production. The Jetson Nano features a Quad Core ARM A57 CPU, 4 GB of RAM,

a dedicated GPU, several interfaces, and can host non volatile data on a SSD card.

When deploying our method to the embedded device, the dataset acquisition was com-

pleted by using a camera directly connected as an input peripheral to the device; the

Chapter 5. Allowing on-target retraining: Hand image classifier 76

whole dataset was stored in the SD card of the board. Details of the dataset and use

case we choose are given in Section 5.2.3. In general, by using a portable embedded

device, the user would be allowed to collect his custom training dataset by wearing the

camera in such a way to have the desired hand in the camera’s field of view. Through

an automatic routine running on the embedded device, the user can be guided through

the collection of the dataset by simply performing with the hand the actions or gestures

in the scope of the custom classification task he wants to achieve.

In the training phase, pose extraction and classifier training are executed in series on the

device; intermediate data are stored in the non volatile memory. The resulting trained

classifier is also stored in the non volatile memory.

Online inference is executed in real time by acquiring the hand images directly from the

peripheral camera.

5.2.3 Use case: grasp classification

Although our method can be in general applied to the classification of actions and

gestures performed by hands, in this work we considered the use case of grasp type

classification. [78] presents a detailed categorisation of human grasp types: 33 different

grasp types are identified and categorised on the basis of the “strength” (precision vs

power) of the grasp, the position of the thumb and other features. In the present case, we

got inspired by the above classification and we considered only the coarser classification

into “power” grasp, used for holding heavy or big objects, and “pinch” grasp, suitable

for precision. To this aim, we collected a dataset whose details are reported here below.

Using a camera mounted on the head of a person, we collected a total of 4.000 pictures

of his left hand holding an object. 40 of the 80 considered objects were held in a “power”

manner, that is with a considerable part of the hand around the object, due to his size

or high weight; the other 40 object were held in a “pinch” manner, that is, like in the

case of a pen, to have more precision. “Power” and “pinch” were the target classes of

our classification task. A total of 50 images per object have been taken, covering many

possible camera frame angles with respect to the hand. In order to challenge the classifier

to be robust to learning only the meaningful content of the image, the backgrounds have

intentionally been chosen particularly different from one object to another. Figure 5.4

shows 4 samples, 2 per grasp type, of our dataset. In order to get images well centred

on the desired hand, we did manual cropping of the original images. In applications

where the camera is embedded in a wearable device mounted, for example, to have an

egocentric view, this task shall be automatised by mean of a hand detector. However,

state of the art solutions for this task already exist in the literature and are not in the

interests of this work [82].

Chapter 5. Allowing on-target retraining: Hand image classifier 77

(a) Power 1 (b) Power 2

(c) Pinch 1 (d) Pinch 2

Figure 5.4: Samples from our dataset of grasp types. For each of the Power and Pinch
classes of grasp type we considered 40 object, and for each object we shot 50 images at

different angles, getting a total of 4000 images.

5.3 Experiments and results

In this section we describe the experiments we performed and comment the results.

Notice that all the experiments have been conducted on the grasp classification use case

and related dataset, described in 5.2.3.

5.3.1 Experiment 1: Classifier model selection

As outlined in Figure 5.2, the proposed solution consists of a feature extraction part,

where the hand pose is detected, and a classifier network. To choose the specific ar-

chitecture of our classifier network, we tested 8 different variations of the architecture

depicted in Figure 5.1, by changing only (α) the number of convolution-max polling

consecutive pairs, (β) the number of channels in each convolution-max pooling pair, and

(γ) the number of neurons in the first fully connected layer. To get a meaningful result,

each variant has been tested on the dataset 10 times in a leave-one-out manner: in each

Chapter 5. Allowing on-target retraining: Hand image classifier 78

of the 10 trials, the dataset was split to have, for each of the two labels (“power” and

“pinch”) 36 objects for training, 2 for validation and 2 for testing. Objects left out

from the training fold were changed in the 10 trials in order to cover the whole dataset

uniformly. Since the classifier is trained on the features extracted by the pose detection

network, the dataset has first been preprocessed to get these features (step 2 in Figure

5.2) and then the classifier has been trained (step 3 in Figure 5.2).

The network was implemented in Python 3.8 using Keras 2.4.3.; the batch size was set

to 32; the learning rate was fixed to 0.001. An early stopping strategy has been used

to avoid overfitting the training set: the training was automatically stopped in case the

best achieved validation accuracy had not been improved in any of the last 10 epochs

(training patience). Since these tests were only intended to select the best classifier

architecture and measure its classification accuracy, they were ran on a desktop environ-

ment. Results achieved training directly on the embedded device are exposed in Section

5.3.3.

Table 5.1 summarises the results. The average accuracy over the 10 trials has been

considered.

Interpreting the table, we can see that the best result is achieved by using the classifier

depicted in Figure 5.1, where a total of three 2D Convolution layers are used, each with

16,32 and 64 filters respectively, and having 64 nodes in the fully connected layer. Table

5.1 also shows that a much lighter network which uses a sequence of 3 2D convolu-

tion layers with only 8 filter each and 32 nodes in the fully connected layer is still able

to achieve 0.68 of accuracy, thus allowing the user to select the appropriate classifier

configuration according to the available hardware resources.

of filters in fully

connected layers

of convol / max

pool layers pairs

of filters per convol /

max pool layer pair
32 64

4,8,16 0.67 0.68

8,8,8 0.68 0.673

16,32,64 0.68 0.71

4 4,8,16,32 0.67 0.69

Table 5.1: Results achieved during the classifier architecture selection. Numbers in
bold are parameters. On the botton right of the table we have the results in terms of
accuracy in the test set eachieved by each of the 8 configurations. The best result is

underlined.

Chapter 5. Allowing on-target retraining: Hand image classifier 79

5.3.2 Experiment 2: Accuracy comparison with MobileNetV2

To get confirmation that the advantages of our method do not come at the expense of

accuracy, we ran the same 10 trials using MobileNetV2 as classification network, given

its proven suitability for grasp classification on embedded devices [76][77]. Hyperpa-

rameters of the training were not changed compared to the previous test. MobileNetV2

can be trained (i) from scratch, (ii) by transfer learning, (iii) by transfer learning and

fine tuning. Considering the network composed by a feature extraction and a classifier

subparts, the three methods differ in the way the network is initialized before training,

and in which parts of it are trainable. In the first case, the network is randomly initial-

ized and all its layers are trained; in the second case a pretrained network is taken, and

only the classifier part gets retrained; in the third case also the feature extraction gets

retrained. Following common practices in image classification, we did not take into ac-

count training the network from scratch, which would also be out of scope for our work.

We started from MobileNetV2 pretrained on the ImageNet dataset, then we performed

first transfer learning only, and finally we applied fine tuning.

The results are reported in Table 5.2 and compared with our method. Given the widely

recognition in the literature of MobileNetV2 as a well performing architecture in the

generic image classification task, the reason of our better results must be found in our

adoption of a preprocessing strategy specifically designed for the case of images con-

taining hands, which resulted able to filter out unrelevant information, such as the

background. In case of a limited number of training samples, in fact, a generic clas-

sifier like MobileNetV2, may easily tend to overfit the training data, possibly learning

background features instead of hand features.

MobileNetV2

TL TL + FT Our method

Accuracy 0.62 0.65 0.71

Table 5.2: Accuracy of the MobileNetV2 classifier by using the transfer learning (TL)
and transfer learning plus fine tuning (TL + FT), compared to our method.

5.3.3 Experiment 3: Training on the embedded device

To prove the suitability of our method for training on an embedded device, we imple-

mented this procedure on an NVIDIA Jetson Nano board. On this device, we repeated

the training procedure done in Experiment 1 (step 3 in Figure 5.2), but, instead of per-

forming model selection on the classifier, we considered the classifier architecture which

Chapter 5. Allowing on-target retraining: Hand image classifier 80

gave the best accuracy (0.71) in Experiment 1, depicted in Figure 5.1.

Results showed a training time of roughly 9 seconds per epoch. Due to our patience-

based early stopping criteria explained in Section 5.3.1, trainings stopped on average

after 20 epochs, that is a total average training time of 3 minutes. Although here model

selection has not been considered, it is possible to implement it simply at the cost of

higher training time. It must be noticed that the total training time shall include, in

addition, the time taken to extract the hand pose from the raw image. This step cor-

responds to step 2 in Figure 5.2 and is executed both for the training as well as for the

inference phase (step 4). Its execution time is assessed in Experiment 4. As already men-

tioned, trying to train MobileNetV2 on the embedded device as an alternative solution,

turned out to be impossible due to its higher memory demand. To give a quantitative

idea of the “training effort”, Table 5.3 summarises the number of trainable parameters

for the two solutions. Our proposal has roughly 10 times less trainable parameters than

MobileNetV2. It must be noticed that training MobileNetV2 with transfer learning only

(without feature extraction fine tuning) would lead to have only the 1.281 parameters

of the classifier to train. However, as already highlighted in Table 5.2, in this way the

neural network does not manage to learn the task robustly.

MobileNetV2 Our proposal

Feature extraction 2,225,153 0

Classifier 1,281 246,602

Table 5.3: Number of trainable parameters between MobileNetV2 and our proposed
method. Notice that the hand keypoints feature extractor does not need to be retrained

since it is application independent.

5.3.4 Experiment 4: Inference on the embedded device

Once the classifier is trained, it is ready for online use on the embedded device. This step

corresponds to number 4 in Figure 5.2. Like we did for the training part, two substeps

are needed: extraction of hand keypoints through a dedicated Neural Netowrk (feature

extraction), and classification through our custom trained classifier. In this test, the

Jetson Nano was set in performance mode. Table 5.4 reports the inference time for each

substep and the total time. With 72.8 ms of average inference time, corresponding to

13.7 frames per second, our method proved to be suitable for real time execution. Since

our classification is based on the pose of the hand, which normally is not supposed to

change at very high frequency, we consider the achieved speed as sufficient for most

online applications of our method.

Chapter 5. Allowing on-target retraining: Hand image classifier 81

Feature extraction Classifier Total

56.9 ms 15.9 ms 72.8 ms

Table 5.4: Average inference time in milliseconds on the NVIDIA Jetson Nano for
each part of our complete neural network.

5.4 Conclusions

Training an image classifier on a resource constrained device is nowadays still considered

a challenging task. The problem is even more difficult When the training dataset has to

be collected by the end user, thus being reduced in number of samples and quality. In

this work we showed how, in the specific case of hand image classification, this task can

be made possible by first extracting from the hand image a representation of the hand

keypoints, and then training the classifier only on this more compacted and meaningful

representation. Results confirmed that (i) our method has better accuracy compared to

other approaches used in the literature for the specific task; (ii) it can be trained in a

few minutes on an embedded device; (iii) it requires a relatively low amount of training

samples; (iv) it can be executed in real time.

Chapter 6

Deploying DNN to

microcontroller via manual

algorithm design: object

detection for surveillance

In this Chapter we face the challenge of deploying a DNN to a microcontroller, which

represents an extreme scenario given the very low resources that typical microcontrollers

exhibit. As a use case, we considered an object detection system for surveillance appli-

cations.

Using object detection techniques, nowadays mostly based on deep neural networks,

new intelligent camera-based surveillance systems can be designed, capable of generating

alerts only in the presence of specific objects, like persons, in the camera field of view.

However the memory and computational load required by these techniques makes it

challenging to use them on low power, miniaturised and resource constrained surveillance

devices designed for harsh environments. In this Chapter, we show an efficient method

to detect the presence of a specific object in surveillance video frames using deep neural

networks on an STM32 microcontroller, suitable for harsh environments. Our solution

achieved 97% precision and 93% recall, while consuming less than 400 mW.

6.1 Introduction

In many cases computer vision models, often realized via DNNs, are expected to run on

resource-constrained embedded systems. Drones [83], wearables [84], (semi-)autonomous

82

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 83

robots and vehicles [85] are examples of applications where one should deal with con-

straints on power, size, costs and computational performance of the embedded system

entitled to run DL models. Accordingly, the market has started to provide embedded

devices designed to host DL architectures; the Jetson series from NVIDIA [39] and hard-

ware accelerators such as Google Coral [86] and Intel Movidius [87] are good examples

of such devices. At the same time, software frameworks have been developed for the

design of lightweight versions of state-of-the-art DL architectures (e.g., TensorFlow Lite

[88]). In this case, techniques such as binarization and quantization are exploited to

make feasible the deployment of a given architecture on a resource-constrained device.

Furthermore, novel DL architectures are being proposed that specifically aim at the

minimisation of both the memory footprint and the computational load.

The present research focuses on DL architectures for object detection. On the one hand,

state-of-the-art architectures can attain very good performance on object detection. On

the other hand, resource-constrained embedded systems in general struggle in adopting

such solutions. This issue emerges in particular when targeting very low-resources edge

devices. This work tackles such issue by proposing a DL-based solution for object

detection that can be deployed on the STM32 family of 32-bit microcontrollers. The

target device features 1 Mbyte of program memory and 320 Kbyte of RAM. Hence, the

goal is to show that DL solutions for object detection can be customised to match the

constraints of low-cost edge devices, even without sacrificing target object generalisation

as in face detection systems. Such outcome obviously can have a significant impact when

looking at the applications of computer vision.

The use case analysed in this work is a semi-autonomous battery-operated video surveil-

lance device. The device is expected to periodically grab a frame from the video captured

by the camera to the purpose of triggering an alarm whenever specific events happen

(e.g., an object that enters the camera’s field of view). In the envisioned scenario, the

device must a) be as small as possible, and b) suit very low-power applications to en-

able its utilisation in harsh environments or as on board system in drones. Indeed, a

relaxation of timing constraints is allowed to meet power constraints.

This work shows that in applications where the object detection task is aimed more

at revealing the presence of an object in the camera’s field of view rather than object

counting or defining bounding boxes, an approach based on segmentation Deep Neural

Networks (DNNs) helps to dramatically decrease the memory footprint of the algorithm.

As a major result, the inference process can be executed on a very resource constrained

device. We implemented the proposed method on an STM32 microcontroller, achieving

97% precision and 93% recall on a video surveillance dataset for person detection. Our

implementation requires only the selected microcontroller, an external SDRAM and the

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 84

camera, thus being extremely compact, lightweight and cost-effective. It does not exceed

400mW of power consumption when working at maximum performance. To the best of

the author’s knowledge, this is the first implementation of this kind of object detector

in such resource constrained conditions.

The rest of the Chapter is organized as follows: Section 6.2 describes our work starting

from the selected HW platform, then moving to an analysis of the challenges of deploying

DNNs for object detection on embedded systems, and finally giving the details of our

method; Section 6.3 provides details on our dataset and person detection use case; finally,

in Section 6.4 we describe our experiments and results.

6.2 Material and Methods

The present research focuses on the design of a DL-based model for object detection

that can be hosted on a low-power low-memory edge device. In this work, the target

device is a 32-bit microcontroller of the STM32 family: the STM32F746NG. Thus, the

envisioned solution does not exploit any DL-oriented hardware accelerator.

STM32F746NG Jetson Nano

Type Microcontroller System-On-Chip

Unit price 17$ 129 $

Data bus 32 bit 64 bit

Max frequency 216 MHz 1479 MHz

Core Arm Cortex M7 Arm Cortex A57

Floating point unit Yes Yes

Program memory 1024 KByte SD Card

RAM 320 KByte 4 GByte

Operating temp. -40 , +105°C 0 , +60°C

Size 13,15 x 13,15 mm 69,6 mm x 45 mm

Interfaces
SPI, I2C, USB,

USART and more

SPI, I2C, USB, USART,

HDMI, HD cam. and more

Power (RUN mode) 345 mW 5.000 - 10.000 mW

Power (STOP mode) 7 - 891 uW NA

Table 6.1: Comparison between the STM32F746NG used in this project and the
NVIDIA Jetson Nano which outlines the hard resource constraints we face in this work.

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 85

13,5 mm

1
3

,5
 m

m

69,6 mm

4
5

 m
m

Figure 6.1: Our STM32 device (left) vs NVIDIA Jetson Nano (right) footprint com-
parison.

6.2.1 The edge device: STM32F746NG

The STM32F746NG microcontroller is based on the ARM Cortex-M7 32-bit RISC core,

which operates at up to 216 MHz and is designed for high performance applications in

environments from -40 to +105 °C. The Cortex-M7 core features a single floating point

unit precision which supports all ARM®single-precision data-processing instructions

and data types. It incorporates a 1 Mbyte Flash memory, 320 Kbytes of SRAM and

an extensive range of enhanced I/Os and peripherals. It also supports external mem-

ory access, which can be efficiently used via a Flexible Memory Controller (FMC) and

standard as well as advanced communication channels. In terms of sizing, this device

extends on an area of 13.15mm x 13.15mm.

The STM32F746NG must be supplied with a voltage between 1.8V and 3.6V, and fea-

tures several low power modes which ease the development of energy constrained ap-

plications. In stop mode, where the device can be woken up by an internal real time

clock or external interrupt, it can use as low as 7 µW, making it suitable also for non

continuous operation in battery powered conditions. Table 6.1 outlines the differences

between our device and the NVIDIA Jetson Nano, a well known embedded platform

for implementing artificial intelligence at the edge: at the cost of reduced memory and

computational resources, our device is smaller, requires less power, is more suitable for

harsh external environments, and comes at a cheaper price.

6.2.2 Object detection on a low cost microcontroller: challenges

The deployment of DNN-based object detection on low-power, general purpose micro-

controllers involves a few challenges. The memory footprint of the DNN in particular

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 86

plays a major role, as one should deal with a very limited amount of flash memory and

RAM:

• Flash memory - program: in the case on DNN execution, this memory stores

the actual code which implements the inference function, i.e., the sequence of

operations which process the DNN input down to the output. Since most DNNs

perform repeated operations from a limited set of known layer types, this part

can easily be arranged in reusable functions, and therefore does not represent a

significant contribution to the overall memory footprint.

• Flash memory - data: this segment of memory should store all the parameters

of the DNN, i.e., a very critical factor for a DL architecture.

• RAM: this memory is exploited to store temporary data (mostly tensors at the

output of a layer) while executing the inference function.

The size of the required data segment in the flash memory and the size of the required

RAM memory strongly depend on the specific DNN architecture. In particular, for

convolutional DNN, the amount of parameters to be stored in the flash memory is

mostly influenced by the number of channels and size of the different kernels involved

in each single layer.

The RAM memory should store temporary data. In the case of the most simple imple-

mentation of a DNN inference process, the RAM should mainly store the intermediate

tensors. Assuming that a feedforward network is implemented and no pipelining mech-

anism are involved, each intermediate tensor is stored in RAM from the moment it gets

computed to when all the following layers which take that tensor in input have been

executed. Figure 6.2 gives a graphical representation of this concept. According to it,

the total RAM requirement Mreq depends on the sum of the size of all the tensors Tx

that need to be kept in memory at the same time, due to data dependency. In prac-

tice, skip connections (T3b in the figure) will increase the usage of RAM, while in a

network without skip connections the total RAM requirement would depend only on the

largest tensor along the network. Table 6.2 summarizes in a qualitative way the effects

of network parameter changes on Program Memory, RAM, and number of operations.

One can refer to MobileNetV3 for object detection for a quantitative example. This

DNN is one of the most lightweight architectures for the task. According to its authors,

the “small” version uses 1.77 M parameters, which would need 7.08 MBytes of data

segment in the flash memory. This amount of memory is not available in common

microcontrollers. Although one could consider adding an external Read-Only-Memory

(ROM) just to store the DNN parameters, this choice would have several drawbacks: it

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 87

Impact

Network parameter Program mem. RAM # of oper.

Input tensor dim - ↑ ↑

channels in conv ↑ ↑ ↑

Kernel size in conv ↑ - ↑

Stride in conv - ↓ ↓

Skip connections - ↑ ↑

Table 6.2: Examples of qualitative impact on network footprint due to changes to
commonly used arameters in convolutional networks. ↑ and ↓ means, respactively that

the footprint increases or decreases when the parameter increases.

La
ye

r
1

La
ye

r
3

b

La
ye

r
2

La
ye

r
3

a

La
ye

r
4

La
ye

r
5

La
ye

r
3

a

La
ye

r
4

La
ye

r
5

T0

T1 T2 T3a
T4 T5

T3b

RAM
Usage

T0 T1 T2 T3a

T3b

T4 T5

M
re
q

Figure 6.2: Graphical representation of the computation of the minimum amount of
RAM memory, Mreq, required to run a DNN. Tx are tensors, whose size depends on

network parameters. Skip connections tend to increase memory usage.

would increase (i) the overall PCB size, (ii) complexity, and (iii) costs. When looking

for an extremely lightweight, compact and cost effective solutions, all these elements are

of interest.

A similar issue concerns RAM usage. This lightweight version of MobileNetv3 requires

at least 1.6 MBytes of RAM just to compute the first bottleneck block, which is much

higher, for example, than the 320 KBytes available in the STM32F746NG. Again, one

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 88

can address this issue by adding an external RAM. In fact, one would face the same

drawbacks discussed above.

Overall, it is clear that the deployment of state-of-the-art DNNs for object detection on

a general purpose, low cost microcontroller involves major challenges. The next section

discusses and analyses the procedures adopted in this research to deploy a lightweight

DNN on the STM32F746NG.

6.2.3 Design of a very lightweight DNN for object detection

Memory constraints are a major obstacle when targeting the deployment of a DNN

on the STM32F746NG device. The first goal to achieve is to design an architecture

with a limited amount of parameters. The lightweight MobileNetv3 DNN represents the

starting point for the design of such architecture.

In its original paper, the MobileNetV3 architecture was used as backbone network to

target two different applications: object detection and semantic segmentation. In gen-

eral, a DNN designed to target object detection give as output a number of bounding

boxes, with each box associated to a given class. Conversely, a DNN designed to target

semantic segmentation gives as outputs bit-wise classification of the pixels in the form

of masks. Although the segmentation task might look more complex than object de-

tection, the paper shows that semantic segmentation can be implemented with a DNN

that features much less parameters. The two DNNs for detection and segmentation used

MobileNetV3-Small as backbone and differed only in the topmost block, as obviously

the feature map provided by the backbone should be processed in a different manner

according to the target (semantic segmentation or object detection). Eventually, the

DNN targeting semantic segmentation featured a total of 0.47 M parameters, while the

object detector featured a total of 1.77 M parameters. A possible explanation is that

the output of the segmentation head is basically a heatmap indicating for each class

the probability density of the presence of that object. Hence, such representation has a

high semantic connection to the feature maps provided by the backbone network. Differ-

ently, the detection head has to convert the feature maps into bounding box coordinates,

passing through the anchor box mechanism described in [89].

For these reasons, in this work, MobileNetV3-Small for semantic segmentation has been

used as starting point for the backbone. In Section 6.3 we will explain how the segmen-

tation mask has been exploited for detection. The segmentation DNN has been further

customised to meet the constraints set by the target device. Figure 6.3 shows the final

architecture. In particular, the following action has been executed:

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 89

Video frame [224 x 224]

Conv2D, C=16, k=3, s=1

Bottl., C=16, k=3 ,s=2, e=16

Bottl., C=24, k=3 ,s=1, e=72

Bottl., C=24, k=3 ,s=1, e=88

Bottl., C=40, k=5 ,s=2, e=96

Bottl., C=40, k=5 ,s=1, e=240

M
o

b
ile

N
et

v3
-S

m
al

l m
o

d
if

ie
d

Avg-Pool, 49x49, s=[16,20]

Conv2D, C=112, k=1, s=1

Sigmoid

Bilinear upsampling

Conv2D, C=112, k=1, s=1

Batch Normalization

ReLu

X

Bilinear upsampling

Conv2D, C=2, k=1, s=1Conv2D, C=2, k=1, s=1

+

Segmentation mask [112 x 112]

Se
gm

en
ta

ti
o

n
H

ea
d

Figure 6.3: DNN architecture proposed in this work. The segmentation mask is
then postprocessed to get the detections. Bottl. stands for Bottleneck block. C is the
number of output channels, e the expansion, k the kernel size, s the stride. The red

arrows represent memory critical paths.

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 90

• the size of the input image has been reduced from 1024 x 2048 pixels to 224 x 224

pixels. A high resolution allows accurate object segmentation, but it also impacts

on execution speed and RAM usage. In our case, accurate object segmentation is

not required, since we target the more generic detection of a given object.

• The stride of the first convolution layer and second bottleneck layer have been

decreased from 2 to 1. In fact, the stride acts as a compression factor on the image

size. Since a 224 x 224 pixels input image was adopted, one should avoid a harsh

compression.

• The feature maps feeding the segmentation head have been changed with respect

to the architecture provided in the original paper. Again, the goal was to not

loose information due to network compression. Hence, in the proposed DNN the

output of the 2nd and 5th bottleneck blocks become the inputs to segmentation

head. Originally, the 9th bottleneck block and the last 2D convolution fed the

segmentation head [12]. This means that the layers from the 5th bottleneck block

to the end of the backbone network do not need to be computed anymore, thus

improving execution speed and reducing the total number of parameters.

The resulting network featured a total of 191K parameters, which correspond to 764

KByte; such outcome fitted the 1024 KBytes available on the selected STM32F746NG

microcontroller. The actual RAM memory required for running the network on the

microcontroller was assessed by exploiting the STM32Cube development environment

distributed by ST Microelectronics. That quantity was estimated in 8.7 MByte, i.e.,

an amount of memory significantly larger than the available 320 KBytes. According

to the discussion provided in 6.2.2, it is easy to show that the 8.7 MByte are due to

the parallelism of the computational paths shown in red in Figure 6.3, which carry

memory-heavy tensors. On the other hand, fitting the 320 KBytes of RAM (with our

or any other performing DNN for the task) would require an excessive downsizing of

network parameters, thus undermining the whole DNN architecture performance. Hence,

the only available solution to address a convenient trade-off among costs, size, and

performance was to include an external SDRAM in the eventual device. Reducing from

128 to 112 the number of channels in the tensors involved in the two mentioned red

paths made us achieve a final footprint of 764 KByte of Program Data and 7.2 MByte

of RAM, which eventually require a 8 Mbyte SDRAM.

The final output of the designed DNN is a heatmap H of size 112 x 112 x Nc, where

Nc is the number of detection classes. A softmax layer has been added at the very end

of the network; as a result, all the values of the heatmap H are in the range [0, 1] and,

for a given pixel and a given class, correspond to the probability of having that class

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 91

Figure 6.4: Preview of the UNIRI-TID dataset for person detection on thermal im-
ages.

in the corresponding position of the network input image. The softmax layer ensures

that, for each pixel, the sum of the probabilities of each class is equal to one, that is∑
k=1..Nc

Hi,j,k = 1 ∀i, j.

6.3 Use case: person detection in outdoor thermal images

The use case addressed in this work is a semi-autonomous battery-operated video surveil-

lance device. The device is designed to periodically grab a frame from the video captured

by the camera to the purpose of triggering an alarm whenever specific events happen.

In this research, the event to be detected is the presence of people in protected areas. In

the following, Sec. 6.3.1 describes the dataset adopted to implement and test the device

on the use case.

6.3.1 The dataset

The device has been tested by using the “Thermal image dataset for person detection

(UNIRI-TID)” openly distributed by the University of Rijeka [90]. The dataset, a pre-

view of which is shown in Figure 6.4, is comprised of a set of thermal images that

simulate illegal movements of people around the border and in protected areas. The

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 92

Annotation
conversion

Bounding Boxes Segmentation mask

Figure 6.5: Example of the annotation conversion we performed on our dataset.

images are taken from the frames of a thermal camera. The videos are recorded in areas

around the forest, at night, in different weather conditions – in the clear weather, in the

rain, and in the fog, and with people in different body positions (upright, hunched) and

movement speeds (regular walking, running) at different distances from the camera. In

addition to using standard camera lenses, the authors used also telephoto lenses to test

their impact on the quality of thermal images and person detection in different weather

conditions and distance from the camera. The dataset comprises a total of 7412 images

extracted from video frames captured in the long-wave infrared (LWIR) a segment of

the electromagnetic (EM) spectrum. For each image, the position of people in the image

is annotated in the form of bounding boxes, provided on separated files.

On the original dataset we performed the following operations:

• Augmentation: we flipped all the images horizontally to double the size of the

dataset while maintaining realism.

• Resize: we resized the images to our DNN input size of 224 x 224 pixels.

• Annotation conversion: since our method exploits a segmentation DNN, for

training, annotations (groundtruths) must be provided in the form of pixel-wise

input image classification instead of bounding boxes. To achieve this conversion,

we simply considered all the pixels inside a given bounding box as person-classified

pixels. All the remaining pixels were marked as background. An example is shown

in Figure 6.5.

One might observe that, due to our label conversion, discrimination between more people

whose bounding boxes are adjacent or partially overlapping could be lost, since all the

included pixels would result in a contiguous region of “person” classified pixels, with no

information on the actual number of people involved. However, this does not represent

an issue for our purpose, since in our application we’re not interested into counting the

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 93

Threshold T

Compression

Expansion

H

𝛽2

𝛽0

𝛽4
Figure 6.6: Postprocessing of DNN output for the person detection use case. False

positives, on the right of the image, are filtered out.

number of people, but just on detecting their presence in the camera’s field of view.

6.3.2 DNN-based model for person detection

The architecture designed in Sec. 6.2.3 has been further customised to tackle the use

case. Accordingly, the final output of the designed DNN was a heatmap H of size 112

x 112 x 2, as the goal is to detect a person over a background.

However, in our application the final output must be a boolean signal which indicates

the presence, or not, of the object O in the camera’s field of view. This means we need to

process the output heatmap H to compute the boolean value. To this end, we perform

the steps described hereafter and depicted in Figure 6.6.

First, we considered a threshold T on the 112 x 112 heatmap H·,·,ko , where ko is the

channel corresponding to the target object (person) O. After applying this threshold, we

get a bitmap β0 where 1 corresponds to the detection of the object and 0 to background.

Then, to filter out detections (bits set to 1) which are likely false positives, we apply on

the bitmap β0 the following operations, divided into a compression stage (steps 1 and

2) and expansion stage (steps 2 and 4):

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 94

1. We apply on β0 a 2D convolutional filter using a n×m pixels all-ones kernel K1:

K1 = ones(n,m) =

1 . . . 1
...

. . .
...

1 . . . 1

This is a rectangular filter of height m and width n designed to highlight, at the

output of the convolution, contiguous regions of pixels set to 1. We call the output

β1.

2. We set to 1 all the pixels whose value equals n ·m. Given the convolution in step

1, this means that only the points that in β0 were at the center of an all 1 area of

at least n × m pixels are set to 1. The other pixels are set to zero. We call the

resulting bitmap β2. In our use case we set n = 15 and m = 7.

3. Detections (1s in the bitmap) which survived to steps 1 and 2, at this stage extend

over a smaller area with respect to their original size. In order to compensate this

loss, we compute β3 by applying on β2 again a 2D convolutional filter using the

same kernel K1. This step works as an expansion filter.

4. Finally, we set to 1 all the non zero values, thus obtaining the final bitmap β4.

The algoritm described is efficiently implemented with two convolution operations (cor-

responding to steps 1 and 3), each with a condition on the output of every convolution

step (corresponding to steps 2 and 4). Therefore, the computational and memory impact

on the overall DNN execution is negligible.

The final boolean value indicating the presence or not of the specific object in the video

frame would simply be true only if β4 contains at least one 1. This step can be efficiently

included in the computation of step 4 above, thus not impacting the total execution time.

6.3.3 Deployment on device

The final DNN-based solution for person detection has been tested on the development

board 32F746GDISCOVERY, which mounts the STM32F746NG including the necessary

circuitry to power it up, connect a debugger and test many of its features. The board also

mounts an external high speed SDRAM, MT48LC4M32B2B5-6A from Micron, which

provides 16 MBytes of additional memory (only 8 MBytes accessible) that can be directly

accessed from the microcontroller. The size of the package of the SDRAM is 13mm x

8mm.

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 95

Even if the development board contains many integrated circuits, to run our specific

application only the microcontroller and the external memory, including the minimum

circuitry for their power supply and communication, are needed. We computed that a

dedicated PCB would require an area of about 2 x 2 cm only.

Our target application would also require an external camera. However, our contribution

focuses on the detection of objects on a given video frame, which is a task independent

from the specific embedded camera used. Therefore, we did not mount a camera, and

we used USART communication with our laptop to stream to the board the input image

data.

6.4 Experiments

6.4.1 DNN implementation, training and deployment on target device

The DNN has been first implemented by using target independent tools and then has

been trained on a workstation. Finally, the trained network has been deployed on the

STM32 device by using a target specific toolchain.

• Implementation: we implemented our DNN using the TensorFlow framework for

Python. We used TensorFlow 2.7.0 and Python 3.8. In particular, we used the

Keras library of TensorFlow, which is particularly handy for custom DNN design.

Our implementation started on the base of an existing implementation of Mo-

bileNet V3 for segmentation and detection freely available on GitHub [91], which

we checked and modified according to our needs and following the steps described

in 6.2.3.

• Training: we trained our DNN from scratch on the dataset described in Section

6.3.1, which has been randomly split into a training (60%) set, a validation set

(20%) and a test set (20%). We used again the TensorFlow framework. We set the

batch size to 32, number of epochs to 30, loss function to categorical crossentropy,

and we used the Adam optimizer with a learning rate of 0.001. We trained the

network using only the training set. We considered as our final trained model, the

one with the highest accuracy on the validation set, after each epoch.

• Deployment: the trained DNN has been deployed using the X-Cube-AI expansion

package for the STM32Cube development environment, distributed by ST Micro-

electronics to ease the deployment of Neural Networks on STM32 products. This

tool can import the trained NN and generate a template application code, in C,

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 96

which includes the code necessary for the NN inference. We set this tool in order to

allocate the DNN weights in the microcontroller internal Program Data Memory,

while, as anticipated in Section 6.2.3 we used the external SDRAM as the memory

for all the internal DNN partial results, that are mainly the intermediate tensors

between the layers. In order to minimize RAM usage, whenever possible X-Cube-

AI reuses the allocated RAM, thus resulting in a total memory consumption which

is in line with the theoretical considerations discussed in Section 6.2.2, that are at

the basis of our DNN design. For further optimization, we set the tool to include

in this shared memory mechanism also the input and output buffers of our DNN,

that are the very first and very last tensors. We manually added the code for the

output filtering described in Section 6.3.2, and the necessary code to configure and

initialize the external SDRAM.

According to the SW build report, our final application used a total of 791 KBytes of

internal Program Data Memory (77%), 164 KBytes of internal RAM (51%) and 7.207

KBytes of external SDRAM (85%).

To verify the correctness of the DNN execution on the embedded device, we used a

validation tool included in X-Cube-AI, which automatically compares the output of the

DNN execution on the STM32 with the output obtained running the same DNN in

Python, when both the networks are fed with the same set of random input tensors.

Results running inference on the test dataset are discussed in Section 6.4.2.

Setting the device to maximum performance (216 MHz clock) performing inference on

one single video frame took 33 seconds. This result is acceptable in non time critical

surveillance applications, such as the use case at hand, when large areas are in the

camera’s field of view.

In terms of power consumption, during the inference our microcontroller used about 356

mW, to which we need to add an average power consumption of 1 mW for the camera

(considering for example the OV7670 camera and taking one picture every 33 seconds).

6.4.2 Detection performance and comparison

Object detection algorithms are conventionally evaluated by standard metrics such as the

Precision-Recall curve, where, for binary classification like in our case, each is computed

as:

P =
TP

TP + FP
R =

TP

TP + FN

with TP , FP and FN being, respectively, True Positives, False Positives and False

Negatives.

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 97

0.75 0.8 0.85 0.9 0.95

Recall

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

P
re

ci
si

on

Precision-Recall detection results

Our method
YOLOv3 [23]

Figure 6.7: Results obtained using our method, and qualitative comparison with the
results obtained on the same dataset using YOLOv3 in [23].

Since our system is designed to output only a boolean signal which indicates if a specific

object is seen in the surveillance camera’s field of view, such a metric cannot be directly

applied. In fact, these metrics assume detections in the form of bounding boxes, which

is out of scope for our work.

However, considering that at the output of our segmentation DNN (just before the con-

version step to a single boolean value, explained in Section 6.3.2) we have a detection

bitmap, segmentation mask, which preserves the object position information, we could

compute the Precision-Recall curve of the detection capabilities of our system by using

SOTA segmentation metrics. That is, we considered a detection as: true positive when

its intersection over union (IoU) with any of the groundtruth bounding box was greater

than a threshold tIOU , that we set to 30%; false positive when its IoU was lower than

tIOU with everyone of the groundtruth bounding boxes. All the remaining groundtruth

boxes, not covered by the true positive detections, were considered as false negatives.

Since the execution of our DNN on the target device is equivalent, in terms of input/out-

put relation, to its execution on a desktop environment (equivalence verified in Section

6.4.1), we tested its performance on the test set of our dataset, running the DNN on a

laptop. Figure 6.7 shows the resulting Precision-Recall curve. Each point of the map is

obtained by varying the detection threshold T explained in Section 6.3.2.

As a qualitative comparison, we show in red an approximation of the results achieved

Chapter 6. Deploying DNN to microcontroller via manual network optimization: object
detection for surveillance 98

in [92] doing object detection on our same dataset using the YOLOv3 DNN [93] for

object detection. The comparison is qualitative since YOLOv3 is also able to count

the number of objects in the image. Although YOLOv3 achieves slightly better results

(1-2% improved precision) it requires 65M parameters, which is 85 times more than the

766k parameters used by our network.

6.5 Conclusions

In this work we have shown an approach to enable the execution of DNN-based object

detection on a cost-effective, lightweight, small, low-power and resource constrained edge

device. As a use case, we considered the case of person detection in video-frames for non

real-time critical surveillance applications. Results demostrate that relaxing the need

of getting precise bounding boxes for detected objects and adopting a more presence

detection approach, it is possible to design a DNN to perform object detection on a

STM32 microcontroller, using only an external 8 MByte RAM. Our final system has

the following features: requires only (i) 791 KBytes of internal Program Data Memory,

(ii) 164 KBytes of internal RAM, (iii) 7.207 KBytes of external SDRAM, (iv) can be

implemented on a 2 x 2 cm board, (v) is relatively cheap, (vi) can be used in harsh

environments, (vii) requires less than 400 mW doing inference and (viii) is accurate.

We believe that this example and our analysis of the correlation between DNN parame-

ters and their memory and computational footprint might inspire future research focused

on adapting SOTA DNN for their execution on edge devices.

Chapter 7

Deploying DNN to

microcontroller via Neural

Architecture Search: landing pad

detection

In this Chapter we present an alternative approach to design DNN-based solutions suit-

able to be deployed on a resource constrained device. Differently from the previous

Chapter, in this case the Deep Neural Network is found through the use of Neural Ar-

chitecture Search (NAS), that is, a semi-automated way to generate Neural Networks

with the aim of minimizing a cost function. Given the target of having a lightweight

DNN, we designed the search algorithm in order to take into account not only the net-

work’s performance, but also its computational cost. As a reference application, we

considered landing pad detection.

7.1 Introduction

Landing pad detection is a crucial problem in the operation of Unmanned Aerial Vehicles

(UAV)s [94]. Detecting safe landing areas by using simple passive tags can be critical

for many applications[95–97], including smart farm monitoring, rescue operations, home

delivery, and autonomous guidance.

The development of a framework for landing pad detection in UAVs poses two major

issues. The first issue concerns the localization of small, colored patterns within a

possibly complex background. Even if the target has a basic pattern and is very visible,

99

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 100

the operation environment can make the detection goal quite challenging. Secondly,

UAVs can typically only host compact, low-power computing platforms, featuring limited

computational resources. Cloud-based approaches might not represent a viable solution

due to the energy consumption for data transmission and the requirement of a stable

connection.

In this application we approach landing-pad detection as a computer vision problem

and exploits the effectiveness of deep neural networks (DNNs). The main contribu-

tion is a design strategy for the development of lightweight neural architectures, that

can fit the operational constraints set by low-power micro-controllers. As a result,

the inference (forward) phase of the detector can run on on-board edge devices with-

out energy-demanding hardware accelerators. In this work, the target platform is the

STM32F746NG 1 micro-controller, which embeds an ARM Cortex-M7 32-bit RISC core.

In this Chapter we present a novel design strategy for lightweight DNNs, which com-

bines knowledge distillation [98] and Neural Architecture Search (NAS) [99]. A genetic-

algorithm procedure spawns a generation of candidate architectures (the Students). The

neural training makes each Student adhere to a reference feature representation, pro-

vided by the Teacher. Students compete in terms of both recognition accuracy and

compliance to hardware constraints; the most promising device-compatible architecture

is the seed for the next generation of Students. This cyclic process progressively con-

verges to an effective, hardware-compatible neural system. The competing architectures,

generated via NAS, include Bottleneck Residual Blocks[100] as the network core com-

ponents. The lightweight, yet powerful DNN MobileNetV3 [100] architecture supports

the Teacher model, thanks to its known effectiveness in computer vision applications.

The experimental session aimed to assess the design capability of effective architectures,

applied to landing-pad detection supported by an STM32F746NG micro-controller. The

tests involved a dataset of aerial-like images. Experimental outcomes confirmed that the

design strategy compared favourably with state-of-the-art solutions, yet featuring lower

computing requirements.

The contribution of the work presented in this Chapter can be summarized as follows:

• an automatic strategy for designing lightweight neural networks for landing pad

detection;

• a strategy for real-time inference phase supported by arm cortex, avoiding any

hardware accelerator for deep learning;

1https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html

https://www.st.com/en/microcontrollers-microprocessors/stm32f746ng.html

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 101

• a tiny architecture supported by a micro-controller yielding a considerably energy-

efficient inference phase;

• deployment of the deep neural network inference phase with real-time performance

on a commercial microcontroller;

7.2 Related works

7.2.1 Hardware-Aware NAS

Naural Architecture Search has already been introduced in Chapter 3. With Hardware-

Aware NAS, HW-NAS, we identify NAS-based approaches which take into account, as

an optimization goal, the memory and computational footprint of the target architec-

ture. Three main features characterize HW-NAS strategies [101]. The search space is

the first issue, spanning the set of eligible networks, i.e. the set of all admissible archi-

tectures. From among the several proposals in the literature, Mobile (M)NAS space is

a popular solution [102] designed on the blocks of MobileNet, hence the resulting can-

didate architectures only include computationally efficient building blocks. Secondly,

The actual search algorithm adopted is another crucial aspect, which considers the var-

ious hypothesis by selecting architectures from the search space. Finally, the choice

of an effective evaluation criteria is of paramount importance, since hardware devices

can vary in latency performances even when they support the same number of FLOPS

and parameters [99]. Furthermore, software implementations can heavily affect speed,

as the same device can score quite differently when it relies on either general-purpose

solutions (such as TfLite and TfMicro) or optimized libraries [103, 104]. For that rea-

son, the MCUnet solution [105] integrates both the selection of the architecture and the

setup of the computing layer in one optimization procedure, thus attaining excellent

performances at the expense of a ’closed’ system [106].

Large-scale benchmarks offer a pre-computed evaluation of huge search spaces in the

presence of different hardware setups. For example, the research presented in [107] com-

pares 46k architectures deployed in 6 devices. A major issue in the NAS paradigm lies

in the cost of architecture search; a popular approach consists in picking candidate net-

works from a unique ’super’ network, which contains all possible architectures spanned

by the search space at hand[108]. That strategy sharply reduces training time at the

expense of a bias in the search procedure.

As compared with the approach presented in [109], the design strategy presented in this

work introduces a teacher network that simplifies the overall procedure, while measure-

ments of FLOPS drive the architecture-selection process.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 102

7.2.2 DNNs for the navigation of UAVs

Bringing intelligence to UAVs is a challenging task due to the limited hardware resources

[110]. Popular, cloud-based solutions delegate expensive computations to remote servers

[111]; the literature offers cloud-based, object-detecting neural systems for UAVs [112,

113].

When one cannot rely on stable connections or is subject to low-latency inference

timings, a platform featuring on-board intelligent behaviour seems the preferred ap-

proach. Embedded solutions hosting hardware accelerators, such as the Jetson TX2

board [114, 115] or Raspberry SBCs, have been presented [116], but physical occupa-

tion, energy consumption, and timing constraints still remain crucial issues in the overall

design process. This is even more important in the presence of multiple smart sensors

[117, 118].

Cameras represent the primary input sources to support the autonomous navigation of

UAVs [119–122], also including the detection of a safe landing area. The method de-

scribed in [116, 123] applies conventional computer vision algorithms to extract relevant

features and feed Deep Neural Networks (DNN) accordingly. In [124], a Convolutional

Neural Network cooperates with a Kalman filter to control landing operations.

In the specific landing-pad detection context [13], the application domain and a simpli-

fied version of MobileNetV3 [100] allowed to overcome the (otherwise) computationally

demanding requirements of the network. That research confirmed that the adoption of

a segmentation network for the detection problem could sharply reduce computational

costs.

Several approaches tackled the landing-pad detection either by using a variety of addi-

tional sensors or by adopting specific landing pads. The method recently described in

[125] relied on a custom landing pad containing specific RGB colors. That paper also

reviewed a variety of landing systems based on traditional computer vision techniques,

including edge detection [126] and geometry-based template matching [127]. That com-

parative analysis confirmed that the use of DNNs for landing-pad detection could deserve

further investigation.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 103

7.3 Automated Design of efficient DNNs for landing-pad

detection

The design approach presented in this work yields a lighweight DNN architecture, which

processes the frames captured by the UAV’s on board camera and prompts the coor-

dinates of the landing pad in the image plane. The iterative design strategy embeds

the Knowledge Distillation paradigm within a Neural Architecture Search process. The

idea is to start from a reference “Teacher” model, which is indeed best performing but

typically proves cumbersome to implement on low-performance microcontrollers. The

method progressively searches for the best “Student” architecture that replicates the

Teacher behaviour and, at the same time, satisfies computational constraints.

The search space is a refined version of MNAS. The overall process relies on a straight-

forward evolutionary algorithm, which combines simplicity and effectiveness. Empirical

evidence justifies the adoption of FLOPS as the basic evaluation parameter. Indeed, the

target device exhibits a quasi-linear correlation between FLOPS and run-time inference

timings, possibly due to the single computing core within the device, which forces a

sequential flow of operations.

7.3.1 Knowledge distillation

In knowledge distillation, a ’Student’ architecture is optimized to replicate the behaviour

of a ’Teacher’ model. In the target application, a Teacher’s architecture includes a

backbone to carry out feature extraction, and a head.

In the specific case of landing-pad detection, the head component processes those features

and prompts the coordinates of the object of interest. The Teacher model actually looks

for a simple pattern, and high-level semantic information (usually residing in the head

section) is less critical. As a consequence, the intermediate layers in the backbone may

already work out the relevant features. The overall strategy, therefore, is to select the

Student that best replicates the behaviour of the Teacher’s backbone.

To optimize the weights of the Student one measures the discrepancy between the

Teacher’s and the Student’s responses to the same input. The associate cost com-

pares the internal feature representations of the Teacher and of the Student at selected

corresponding locations of the networks. The Teacher’s backbone relies on a fixed ar-

chitecture; one denotes, for the i − th input, as FT
Ii and FT

Hi the representations at

some intermediate level and at the higher level, respectively. Those values are compared

with the corresponding feature values, FS
Ii and FS

Hi in the Student model. Figure 7.1

exemplifies the comparative approach.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 104

Figure 7.1: Block-wise representation of the CNNs with the features maps. On the
left is the Teacher’s backbone which produces two representations (tensors). On the
right is the Student network that aims to provide the same feature sets, using different

building blocks.

The following notation helps formalize the cost D:

• X i ∈ RH×W×3 is the tensor representation of the i-th input image (having size

H ×W).

• F li ∈ RHl×Wl×Cl is the tensor that holds the output feature representations at

the l-th layer of the neural network, where Hl,Wl, Cl are the height, width and

number of channels of the tensor, respectively.

• V= {(X i, yi); i = 1, .., Z} is the validation set, i.e., a collection of images and labels

that are never involved in the training of both the Teacher and the Students.

The overall distillation loss, LD, is the expected discrepancy value, measured at the

selected positions in the networks:

LD = AV (|FT
Ii −FS

Ii| + |FT
Hi −FS

Hi|) (7.1)

where AV () denotes the average over a validation set. Figure 7.2 outlines the knowledge-

distillation approach. The distillation loss function (7.1) makes the Student’s interme-

diate representation match the Teacher model’s backbone.

7.3.2 Neural architecture search

The NAS process gathers a set of lightweight, candidate architectures that should replace

the Teacher’s backbone. For its definition, one should consider the search space, the

search strategy, and the selection criteria.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 105

Figure 7.2: Proposed teacher/student learning schemata

The search space is in fact vast, as one (mild) constraint simply admits any architecture

that includes a pair of main blocks (i.e., lower and upper layers, respectively). To shrink

that space, the design strategy only considers a sequential combination of parametric

building blocks, made by single-branch neural networks. This conventional setup [99],

however, cannot by itself support an extensive search, since typical building blocks

involve up to 6 parameters.

The search strategy selects the best Student architecture, and embeds a basic evolu-

tionary algorithm (Figure 7.3). Given a ’parent’ architecture, the process yields a set of

N ’child’ networks by applying random mutations to the parent. Admissible mutations

include changes in the parameters of the blocks or in the number of blocks itself. Child

architectures all undergo a distillation-based training procedure. The selection criteria

highlights the best Student from among the N children. The selected candidate now

plays as the new parent architecture, and the whole selection strategy iterates until a

stop condition is fulfilled (that condition will be detailed in the following).

Figure 7.3: Block scheme of the evolutionary algorithm

The adoption of a straightforward evolutionary algorithm stems from several reasons.

First, the training of a child network is fast as lightweight models are involved. Secondly,

an evolutionary algorithm supports any kind of mutation in the network architecture

and is not subject to the optimization procedure. In addition, random mutations allow

a wider, unbiased exploration of the search space as compared with other NAS ap-

proaches [128]. Fourth, the evolutionary algorithm can admit a non-differentiable cost

criterion for the child-comparison task. This is a major advantage when considering that

formalizing hardware constraints explicitly may prove quite difficult: for instance, the

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 106

relationship between the network architecture and the corresponding RAM occupation

might also depend on the optimization tool used to deploy the overall architecture itself.

Finally, an independent selection process can indirectly help the children-training proce-

dure. Common practice suggests that child networks are trained for a limited number of

epochs, mostly to speed up the search procedure; widening the search area in the space

of architectures can actually integrate the basic weight-adjustment process.

The selection criteria is the last issue to consider to define the overall NAS process. It

relies on a cost function that integrates the Teacher-Student representation mismatch

and the associate computational cost, measured in Floating Point Operations per Second

(FLOPS). The resulting overall cost function, S, for the n−th model is therefore written

as:

Sn = LDn,+βCn (7.2)

where LDn measures the discrepancy between the Teacher and the n-th candidate Stu-

dent as per (7.1), Cn is the computational cost in FLOPS associated with that candidate,

and β is a parameter that rules the relative weights of the two terms.

Measuring the computational cost in FLOPS might appear, in general, insufficient to

characterize the hardware awareness of a Student model. In the present context, how-

ever, it is a significant indicator when considering the architectures of basic micro-

controllers, which support limited or null parallel computation.

7.3.3 Integrated Neural Architecture Search with Knowledge Distil-

lation

A cyclic process combines the paradigms discussed above, and supports the progressive

performance-driven neural architecture search; the overall approach is depicted in figure

7.4 and evolves as follows:

Figure 7.4: The integrated design strategy

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 107

1. The next generation block generates a set of candidate children networks intro-

ducing mutation into a parent architecture;

2. In compliance with the Knowledge-Distillation paradigm, the set of candidate Stu-

dent architectures are trained (as per function 7.1) to approximate the Teacher’s

behaviour; in figure 7.4 the dashed boxes identifies the training procedures of the

children;

3. The trained children are compared, by also taking onto account the computational

complexity of each candidate as per expression 7.2 by the selection block;

4. The resulting ’best’ child architecture is used to spawn a next generation of can-

didates as per step 1, which undergo the same selection process.

For simplicity, the stopping condition in the above cyclic procedure just relies a preset

number of iterations. The procedure yields a lightweight backbone that can work out

similar features with respect to those extracted by a large network. The backbone is

finally retrained in an end-to-end fashion together with a head on the target landing-pad

detection problem.

7.4 Deployment of the Landing Pad Detector

7.4.1 Edge devices

The reference platform for the deployment of the landing pad detector is the STM32F746NG

microcontroller, which features an ARM® Cortex-M7 32-bit RISC core. The microcon-

troller unit (MCU) operates at up to 216 MHz and includes a single-precision floating

point unit that supports all ARM® single-precision data-processing instructions. It

holds 1 Mbyte of Flash memory and 320 Kbytes of SRAM. The device also supports

external memory access, which can be efficiently used via a Flexible Memory Controller

(FMC) and either standard or advanced communication channels. The device extends

on an area of 13.15mm x 13.15mm. To cope with memory requirements, an 8 Mbyte

SDRAM was added.

The ARM® Cortex-M7 is a member of the energy-efficient Cortex-M processor family.

Cortex-M targets low-power applications featuring reduced clock frequencies (up to a

few hundreds of MHz) and supporting the indexing of small-size memories (up to a few

MB). Hence, the deployment of DNN-based computer-vision solutions on such processors

represented a challenge. ST’s software tool to optimize artificial neural networks on

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 108

STM32 (STM32 X-Cube-AI) only supports the deployment of very tiny architectures;

this also holds true in the case of TensorFlow Lite for microcontrollers.

In the experimental session (Sec. 7.5) the landing pad detector was also deployed on

a processor of the ARM® Cortex-A family, to provide a baseline for comparison. The

processors of the A (Application level) family feature high clock frequencies and support

the indexing of large memories in the range of GB. Those processors are typically hosted

in microcomputers and smartphones. The specific device used for the experiments was

the 1.5 GHz quad-core Arm® Cortex®-A72 CPU that supports the Raspberry Pi 4.

7.4.2 Hardware-aware landing pad detector

To cope with the tight constraints imposed by ARM® Cortex-M7 MCUs the Teacher

model was inherited from [13]. In [13], the detection task was suitably approached as a

pixel-wise problem. The network’s output was a mask that marked the pixels belonging

to the landing pad. That approach allowed to rely on the lightweight LR-ASPP head for

image segmentation, and to avoid the popular, yet computationally hungry single-shot

detectors (SSDs). Eventually, applying simple heuristics on the output mask provided

the coordinates of the landing pad [13].

The ablation study presented in [13] showed that, given the small set of bottleneck layers,

the squeeze and excite layers could be removed without significant loss in accuracy.

The landing pad detector [13] was implemented with a network with 60,612 parameters

that required 1.289 GFlops to process an input image of size 320 × 320 pixels. In

the approach presented here, the candidate Student models only involved Bottleneck

Residual Blocks, which admitted different settings for the number of filters, the kernel

size, the expansion value, the stride, and the non-linear component. The loss function

7.2 drove the distillation process.

The severe constraints set by the STM32F746NG microcontroller imposed to customize

also the segmentation head of the final detector, which in principle should inherit the

LR-ASSP architecture. This simple segmentation head involved a few convolutional

layers and upper sampling layers. The overall architecture is presented in Fig. 7.5:

green blocks refer to the input tensors coming from the backbone, while the red block

refers to the output mask. Input images have size 320x320. From a computational

viewpoint, the scheme highlights three main bottlenecks:

• The number of filters in the lowest convolutional layers (marked in red); this

quantity not only sets the number of parameters and operations for the two layers,

but also impacts on the size of tensors in the following layer.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 109

• The size of the output mask (marked in yellow), which in the original implementa-

tion halves the size of the input image. In principle, one can use a smaller output

mask to cut the number of operations.

• The size of the input image, which heavily affects the number of floating point

operations.

Figure 7.5: Block scheme of the teacher segmentation head [12]

In the proposed implementation, input images held 160 × 160 pixels; the number of

filters was set to 8 (instead of 128), as the landing pad had a simple shape. The size of

the output mask was four times smaller than the size of the input image.

7.5 Experiments

The experimental dataset included 21 videos of landing pads and featured a total of

29,415 frames. The videos were grabbed at two different heights, approximately 4 and

8 meters. The dataset covered three possible landing pads, two in color (orange and

blue), and one in grayscale, all with a black ’H’ mark printed on a standard A4 sheet. A

collection of 9,200 frames (drawn from 9 of those videos) formed the training sets. The

images from the remaining 12 videos composed the test set.

7.5.1 Distillation

The distillation procedure was implemented by using Keras. The Teacher network was

trained on the dataset for 20 epochs. The candidate children networks were trained for

4 epochs, following the early stopping paradigm to speed up NAS procedure [102]; batch

size was set to 4, and the learning rate was 1e-4. Every pool of child networks included

6 candidates; each candidate stemmed from two mutations of the parent network. The

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 110

Input size Kernel size Filters Expsize Act. stride

320x320x3 3x3 24 72 Relu 2
160x160x24 5x5 40 96 h-swish 2

Table 7.1: Architecture summary of the first parent architecture in the NAS proce-
dure.

distillation procedure was performed considering images having size 320× 320; the orig-

inal segmentation head of the teacher networks that relied on a 160× 160 segmentation

mask. The number of filters was 128 as per the original implementation.

The first parent network featured a tiny architecture holding a pair of Bottleneck Resid-

ual Blocks. Table 7.1 gives the settings of the two layers; the columns give, for each

layer, the size of the input tensor, the kernel size, the number of filters, the expansion

factor (Expsize), the activation function, and the stride. Using a tiny architecture at the

beginning of the procedure is a popular approach called hot start [129]. In practice, the

search process is expected to progressively increase the complexity of the architecture

while targeting a higher accuracy.

The parameter β trades off the quantities Dn and Cn in the cost function 7.2. Those

terms typically differ significantly in their orders of magnitude: Dn varies in the order

of units, whereas Cn may range from millions to billions. In the experiments, β was set

using the following equation:

β =
D0

C0
βE (7.3)

where βE sets the actual trade-off between the two terms in eq. 7.2, D0 and C0 are

two normalization terms: when β = D0
C0

the contributions of the two terms are equal.

The values D0 and C0 are the respective cost terms in 7.2 worked out for the Teacher

architecture computed after 4 epochs of training, i.e. the training epochs used for

Students architectures.

Two distillation experiments were conducted for as many different settings of the pa-

rameter βE :

• Balanced configuration (βE = 1). In this experiment, the stopping criterion for

the distillation process was set to 50 iterations. Therefore, a total of 300 children

architectures were evaluated. Eventually, the selected Student network included

three Bottleneck Residual Blocks; the number of parameters of the resulting net-

work composed of backbone and segmentation head (LR-ASSP) was 39,012, while

an inference required 648 MFlops. Table 7.2 gives all the details about the selected

architecture (denoted as BAL BB) by adopting the same format of Table 7.1. In

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 111

Input size Kernel size Filters Expsize Act. stride

320×320x3 2x2 24 72 Relu 2
160×160x24 5x5 46 96 Relu 2
80×80x46 5x5 40 128 Relu 1

Table 7.2: Balanced architecture distilled with the proposed method.

Input size Kernel size Filters Expsize Act. stride

320×320x3 1x1 24 10 Relu 2
160×160X24 5x5 40 40 Relu 2

80×80x40 6x6 40 56 Relu 1

Table 7.3: Small architecture distilled with the proposed method

practice, starting from a parent network with two blocks, a block was added to find

a trade-off between the discrepancy D and the computation cost C (since βE = 1).

• Small architecture (βE = 10). This experiment privileged the minimization of the

computation component, C. The number of iterations in the distillation process

was set to 100 because the child networks were smaller in size and the training

phases were faster. A total of 600 architectures were evaluated. Again, the se-

lected Student network involved three Bottleneck Residual Blocks; in this case,

the number of parameters of the resulting network composed of backbone and seg-

mentation head (LR-ASSP) amounted to 23,232 and one inference step required

283 MFlops. Table 7.3 gives the architecture details and adopts the same format

of Table 7.1. Notably, the first block uses a kernel of size 1 × 1, while in general

low-level kernels have larger sizes in standard architectures [130]. In the following,

this architecture will be referenced to as SMALL BB.

7.5.2 Generalization performance of the landing pad detector

The experiment assessed the generalization performance of the architectures embedding

the two Student networks discussed above. In total, four architectures for landing pad

detection were tested:

1. BALANCED : this architecture stacked the original segmentation head (LR-ASSP,

as per Fig. 7.5) on the BAL BB backbone.

2. SMALL: this architecture stacked the original segmentation head (LR-ASSP) on

the SMALL BB backbone.

3. STM32 : this architecture stacked the customized version of the segmentation head

described in Sec. 7.4 on the SMALL BB backbone.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 112

4. STM32 TINY : this architecture stacked the customized version of the segmen-

tation head described in Sec. 7.4 on a customized version of the SMALL BB

backbone, where the expansion factor has been divided by 2. In this way, the

number of floating point operations has been reduced without changing the size of

the tensors propagated through the architecture.

The input size for the two latter architectures was set to 160 × 160 pixels instead of

320 × 320 pixels. The images of size 160 × 160 were obtained by zooming the original

images not to lose definition of the target landing pad in the image. All the networks

were trained for 20 epochs; performance analysis involved a test set of 20,215 images

never used in the training process.

The four networks were compared with three recent baselines suitable for solving the

same task. The first baseline was the architecture adopted as the Teacher model [13].

The second baseline was the network proposed in [116], which supports recognition and

classification of the landing pad on an edge device embedded in the drone. Finally, the

third baseline was the SSD-lite MobileNetV3 architecture, i.e., a general-purpose object

detector that suits an edge paradigm [112, 113]. The Teacher network was trained using

the aforementioned settings. The detection method proposed in [116] was replicated

following the setup of the original paper. The SSD-lite MobileNetV3 architecture pre-

trained on coco-dataset was fine-tuned for 20 epochs with a learning rate 10−3 and

ADAM optimizer. Hyper-parameters were set using a subset of the training data as a

validation set.

The landing pad detectors supported by the four architectures listed above extracted a

probability mask, i.e., a mask containing for each pixel the probability of being a landing

pad. The mask was converted into a box using a blob search algorithm. In general, a

mask can generate multiple boxes. Here, only the largest box was considered. This

setup corresponded to a worst-case analysis.

Figure 7.6 gives the results of the experiments involving the seven different implementa-

tions of the landing pad detector. On the x-axis the plot gives the confidence threshold,

i.e., the minimum probability level for a pixel to be classified as a landing pad. The

y-axis gives the percentage of true positives (TPs), i.e., images where the Intersection

over Union (IoU) between prediction and ground truth was higher than 0. Threshold 0

was set because landing pads covers a small portion of the image therefore even small

values of IoU identify valid detections. In this plot, the two baseline methods that did

not exploit a pixel-wise classification are obviously characterized only in terms of TP

percentage.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 113

0 0.2 0.4 0.6 0.8 1

Confidence

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P STM32_TINY

STM32

SMALL

BALANCED

[43]

[30,31]

[34]

Figure 7.6: Generalization performance of the architectures under analysis: NSE [13],
NAS-1 tiny architecture, NAS-2 balanced architecture

The results confirmed that a general purpose object detector with backbones for general

purpose computer vision represents a valuable option to obtain very high accuracy.

Similarly, traditional computer vision pipelines, even being more convenient in term of

computing cost, features lower generalization capabilities with respect to DNNs. The

teacher network [13], for intermediate values of confidence, confirm to be a suitable

option to extract effective features. The four distilled network shows two trends. The

BALANCED network improves monotonically its performances when the confidence

threshold value grows. With high levels of confidence, the network becomes the most

accurate among all the predictions. The results suggest that using a smaller set of

parameters acted as a regularizer. The three versions based on the small backbone

exhibit a similar trend. Interestingly, the difference with respect to the teacher becomes

very high for low or high confidence levels, but for intermediate values, the drop in

accuracy remains low.

Figure 7.7 shows the standard precision-recall plot obtained by varying the confidence

levels. Here, an image was considered a false negative (FN) when the detector did not

identify any landing pad and was considered a false positive (FP) when IoU was zero, i.e.

the network identified the landing pad in a wrong position. In this plot, the x-axis gives

the recall while the y-axis gives the precision. The chart focuses on a specific portion

of the plot, i.e., precision and recall greater than 0.95. The color scheme is the same as

figure 7.6.

The results confirm that all the deep learning-based solutions yield a high level of preci-

sion and recall for at least one confidence value confirming the suitability of the proposed

methodology to detect landing pads from medium distances.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 114

0.95 0.96 0.97 0.98 0.99 1

Recall

0.95

0.96

0.97

0.98

0.99

1

P
re

c
is

io
n

STM32_TINY

STM32

SMALL

BALANCED

[43]

[30,31]

Figure 7.7: Generalization performance: precision-recall analysis

7.5.3 Computational performance

The computational performances of the four proposed implementations of a landing

pad detector have been evaluated by using as reference the Cortex A and Cortex M

platforms, as anticipated in Sec. 7.4.

Two commercial tools supported the deployment of the architectures on the two plat-

forms. The deployment on RaspberryPi 4 (featuring a Cortex A core) was obtained

using the TFLite suit, which actually admits only the 32-bit floating-point data type for

run-time operations. In fact, quantizations with a 16-bit floating point or 8-bit integer

only impacts memory storage.

The deployment on the STM32 microcontroller (featuring a Cortex M core) was per-

formed in two steps. First, the network was converted via TFLite; then, the STM32

X-Cube-AI suit was exploited to optimize the model. Eventually, the memory indexing

was tuned to use the external memory, when necessary, to host the tensors during the

propagation along the layers of the network. Data representation was set to 32-bit be-

cause STM32 X-Cube-AI supports 8-bit representation only for fully connected layers,

but the architectures tested don’t use these operators. Eventually, one can consider

the performance measured as a worst-case analysis considering that quantization can

improve performance in terms of latency.

Table 7.4 summarizes the outcome of the experiments. The first two columns (in red)

give, respectively, the network name and the input size (in pixel). The third and fourth

columns (in yellow) show the computational features of the network that are independent

of the implementation, i.e., respectively, the FLOPS and the number of parameters.

Columns from fifth to seventh (in blue) refer to the implementation on the STM32

microcontroller. These columns give, respectively, the latency in seconds (per frame),

the amount of flash memory required to store the parameters, and the peak of RAM

usage. Finally, the last column (in green) refers to the implementation on RaspberryPi.

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 115

Model Input FLOPS PAR.S STM32 Flash Ram RASP
Name Size (M) (K) Lat. (s) (KiB) (MiB) Lat. (ms)

BALANCED 320 564 33 NaN 121,57 29,54 305,36
160 141 33 8,4 121,57 7,4 106,5

SMALL 320 283 23 NaN 83,81 17,19 189,2
160 70 23 4,2 83,81 4,3 58,4

STM32 320 203 12 11,2 44,44 7,52 135,3
160 50 12 2,7 44,44 1,88 34,2

STM32 320 110 6 6,3 22,12 5,57 108,2
TINY 160 27 6 1,5 22,12 1,39 32,5

Teacher [13] 320 1289 60 NaN 216,27 21,3 453,1
160 322 60 17,5 216,27 5,22 164,9

SSD [112, 113] 320 3758 2760 - - - -

Table 7.4: Hardware measures

This column shows the latency in milliseconds (per frame). Since the available memory in

the RaspberryPi platform was definitely abundant with respect to the networks involved

in the experiment, the table does not provide any information about memory usage.

The table compares the four proposed implementations (BALANCED, SMALL, STM32,

STM32 TINY) with the model proposed in [13]. In addition, as a reference, the last

row gives the FLOPS and the number of parameters of the SSD architecture for object

detection. SSD was not deployed on the devices; here, the table refers to the original

implementation available in Tensorflow v1 object detection API model zoo 2. Eventually

the deployment would have led to biased results due to the different implementation. In

addition, one can easily see that both the number of flops and parameters are slightly

larger than the other network involved in the experiments therefore hardware require-

ments are likely to be significantly larger.

The trend shown by the yellow indicators remarks that the proposed architectures can

save parameters and flops operations. In particular, the STM32TINY network is the

smallest one among the proposed ones uses one-tenth of the parameters with respect to

the teacher model and around 0.08 of the flops for both the input sizes. As expected

raspberry can support real-time landing pad detection using the proposed architectures.

Even the balanced model with the largest size achieves more than 3 FPS which is a very

interesting result when considering that these devices don’t feature dedicated accelera-

tors. The indicators about STM32 report the hardest benchmark. As for the number

of FLOPS, the peak RAM usage is a direct function of the input size because the size

of this memory is roughly set by the size of the largest tensor propagated along the

architecture. The most important indicator is the latency which is very related to the

2https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/

tf1_detection_zoo.md

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf1_detection_zoo.md

Chapter 7. Deploying DNN to microcontroller via Neural Architecture Search: landing
pad detection 116

ram occupation. The lowest latency, as obvious, has been achieved by STM32TINY

which supports the inference phase in 1.5 seconds. This latency on a commercial mi-

crocontroller is a major result for a computer vision task. This observation is further

strengthen by the recently proposed [106] that uses the NAS procedure directly aiming

toward MCU real-time inference. As shown in the software release, a tiny object detector

runs on cortex A, but no one is supported by serie M.

The pipeline proposed in [116] envision a deep CNN to perform the final classification of

the landing pad. This model was not included in the table because refers to a different

pipeline. MobileNetV2 was one of the architecture tested in [116] for the classification

stage. As notorious, classification architecture are significantly expensive in terms of

hardware resources. In fact, the lone MobileNetV2 with input size 100x100 uses 3538 K

parameters and 156 M floating point operations, that is far away from the performance

of the tested models.

All the frame-rates measured on STM32 are lower than 1 frame per second failing the

constraints of real-time control but can be sufficient to implement a very low power core

that awaken a powerful unit that executes predictions in real time. For example, one can

think to a system equipped with two computing modules. A low power core equipped

with the STM32 micro-controller monitor the ground. When a landing pad is retrieved

the UAVs switch the inference operation to a middle/high performance unit like the

raspberry 4 to perform high speed operations only for the amount of time required.

7.6 Conclusions

The work presented a design strategy for landing pad detection on ARM cortex based mi-

croprocessors. The strategy uses an automatic procedure to extract the neural network

architecture that balances, in the best way, hardware requirements and generalization

performance. The results confirmed the suitability of the proposed approach leading to

real time deployment on STM32 microcontrollers.

Chapter 8

Patent: Lightweight path

learning-based algorithm for

prediction of veihicle driving

routes

8.1 Introduction

This chapter is dedicated to a final example of application-aware optimized AI, which

differentiates from the others since it does not make use of DNNs, but relies solely on

a hand-crafted algorithm. Also in this case, we target resource constrained embedded

devices, microcontrollers in particular. The present work has been proposed as a patent,

and it has already received a positive research report, so it will be soon officially pub-

lished. The activity has been carried out in cooperation with IVECO S.p.A., an italian

company specialized in the production of commercial, military, industrial vehicles and

buses.

The context of this work is the electrified mobility. Although their constantly increasing

popularity in the automotive market, electric vehicles still have to face two important

challenges: the relatively low availability of recharging points and the high amount of

time needed to recharge them, which is still orders of magnitude higher than the time

required to refill a thermal vehicle with fossil fuel. These challenges translates into the

commonly called “range anxiety”, which is the fear of the driver to run out of battery

while driving. For this reasons, modern electric cars are starting to be equipped with

smart systems designed to prevent this fear by providing to the driver informations like

117

Chapter 8. Patent: Lightweight path learning-based algorithm for prediction of veihicle
driving routes 118

the estimated residual range, the availability of nearby charging spots, and alerts in case

of risk of running out of battery. These systems are normally embedded into the vehicle

infotainment system and can make use of informations about the status of the vehicle,

such as the battery residual energy, the vehicle speed and position. At the same time, car

manufacturers have the need to design intelligent control systems aimed at minimizing

the vehicle energy consumption. Among these we have logics for energy recuperation

from braking and smart thermal management of the cabin and vehicle electronics. In the

case of hybrid vehicles, the vehicle control system is also responsible for managing the

power split between the thermal engine and the electric motor, as well as strategies to

turn one of them fully off. Obviously, the more the data the control system can use, the

better the achievable optimization result. As one can easily understand, being able to

predict the future power needs while driving would dramatically the energy minimization

strategies. For example, knowing that the residual energy needed to reach the target

destination is lower than the available battery energy could lead the control system

to automatically shut off auxiliary power demanding systems, such as air conditioning.

Such predictions may come from the navigation system in case the user would set the

destination on it. However, navigations systems are normally not used on habitual

routes.

In this work we propose a method to predict the future energy consumption of the vehicle

up to the next charging point, by exploiting hystorical data about habitual driving

routes. In the context of this thesis, the proposed method represents an alternative form

of Artificial Intelligence which relies on manual algorithmic design instead of machine

learning-based solutions. As in previous works, our focus is the optimization of the

method in terms of effectiveness versus computational and memory requirements. Our

proposal, in fact, has the peculiarity of being particularly lightweight with respect to

pattern (in this case driving route pattern) recognition solutions, like Markov-chain

based ones. The algorithm can be easily run on a very resource constrained device, like

a microcontroller on a vehicle’s electronic control unit, and is designed with parameters

allowing to adapt it to the amount of available resources. The output of our algorithm

is intended to be used by an energy optimization strategy.

8.2 Algorithm

The proposed algorithm works by building a graph of connected nodes, representing the

habitual routes that the vehicle does, and storing for each route the energy it required.

A route starts when the vehicle leaves a recharging point, after charging, and ends when

the vehicle connects to a charging point (which can also be the starting one). At any

Chapter 8. Patent: Lightweight path learning-based algorithm for prediction of veihicle
driving routes 119

point in time, while driving, the graph can be explored to get if the vehicle is driving

on a habitual route and, in that case, to get an estimate of the residual energy needed

to complete that route, based on past observations.

The proposed algorithm is supposed to run on an embedded device on the vehicle, and

requires, at each iteration, only three informations:

1. Vehicle position

2. Vehicle status (recharging or not)

3. Residual battery energy

Therefore, no street map is needed. The algorithm is flexible to whatever place it is used

in. The low amount of data required is one of the main strength points of the solution.

8.2.1 Data structures

The proposed method is designed to use the least possible amount of memory. To achieve

this goal, it makes use of a graph of connected nodes to store all its data. Each node

represents a point on a route, and has the following properties:

1. Position: possibly taken from the vehicle’s GPS, stores the geographical position

(2D coordinates) of the point on the route.

2. Age: used in case of lack of memory, to remove non-habitual routes from the

memory.

3. TotalConsumption: is the energy consumption needed to reach that node from

its eldest parent (which represents the start of the driving route from the last

recharge). The total consumption is stored only in the TerminatorNode, at the

end of a route.

Each node is connected with zero or one parent node and with zero or many children

nodes. By plotting the nodes according to their position and connecting them with

arrows from the parent to the children, like shown in Figure 8.1, we get an intuitive

view of the routes stored in our graph.

In addition to the nodes, four arrays of nodes are used:

1. StartNodes: stores pointers to the nodes that represent the starting point of a

route, that is when the vehicle leaves a recharging point.

Chapter 8. Patent: Lightweight path learning-based algorithm for prediction of veihicle
driving routes 120

Figure 8.1: Graphical representation of the graph of nodes storing habitual routes.
Black dots are the nodes. Arrows connect parent nodes with their children. The
red cross is the current position. Green dots are the CurrentNodes; yellow dots are
TestNodes; dots with a red countour are TerminatorNodes. Numbers in parenthesys

represent the TotalConsumption recorded in that TerminatorNode.

2. CurrentNodes: stores pointers to the nodes representing the current vehicle posi-

tion. They can be nodes already existing in the graph (from previous routes), thus

representing the current position of the vehicle along an already existing route; or

newly added points, when the vehicle is outside an already stored route.

3. DevelidatedNodes: stores pointers to the nodes which have just been removed from

the CurrentNodes since the vehicle has moved far from their position.

4. TestNodes: stores pointers to nodes belonging to routes already present in the

graph (from hystorical data) and which are candidates to become CurrentNodes

in case their position is close to the current vehicle position.

5. TerminatorNodes: stores pointers to the nodes which represent the termination

point of a route, that is the point where the vehicle gets connected to a recharging

point.

The next section will help in the comprehension of these arrays.

Chapter 8. Patent: Lightweight path learning-based algorithm for prediction of veihicle
driving routes 121

8.2.2 Graph update

Figure 8.2 supports the explanation of the algorithm which updates the graph.

The three arrays of nodes are initialized empty.

Provided that the vehicle position, status, and residual battery energy are available, the

graph update algorithm can be executed on a time-base or according to an event. In

this case, we considered the event of “incoming GPS position signal”.

From a high level view, the algorithm is divided into three steps: update TestNodes,

update CurrentNodes and update TerminatorNodes

Update TestNodes Whenever the vehicle starts a new driving cycle (VehiclePre-

viousStatus was RECHARGING and VehicleCurrentStatus is not RECHARGING) the

TestNodes are selected as the StartNodes already present in the graph. For improved

robustness to GPS errors, we add to the TestNodes list also the successors of the StartN-

odes, down to a configurable N -th level, for example N = 2. If the vehicle was already

driving, instead, we do the same process but taking from the CurrentNodes instead of

the StartNodes.

Update CurrentNodes First, we remove from CurrentNodes, the nodes which have

a position further than a parameter K1 from the current position of the vehicle. The

removed nodes are temporarily added to DevalidatedNodes list. Then, for each TestNode,

we make it a CurrentNode if its distance from the current vehicle position is lower than

a parameter K3, while we remove it from the TestNodes if it is greater than K2. In

case after this procedure the CurrentNodes list is empty, we have to add a new node

to the graph, in the current position. In case of a new driving cycle, the newly added

node is placed into StartNodes, otherwise it is set as a successor of the DevalidatedNode

closer to the current position. As shown in Figure 8.2, in case no memory is available

for a new node, space is obtained by removing from the graph the old (not habitual)

route branches. Note that the above mentioned parameters adjust the balance between

creating a new graph branch in case of deviations from already existing routes and

considering the vehicle still on an existing route, without the need to create a new one.

Update TerminatorNodes When the vehicle is connected to a charging point, add

the CurrentNodes to the TerminatorNodes, and set its TotalConsumption property equal

to the energy consumption from the last recharge. In case the same TerminatorNodes is

Chapter 8. Patent: Lightweight path learning-based algorithm for prediction of veihicle
driving routes 122

Initialize the graph as empty.
Initialize CurrentNodes, DevalidatedNodes, TestNodes to

empty.
Initialize VehiclePreviousStatus to RECHARGING

Wait for new GPS
signal

NO

YES

New valid
signal

arrived?

NO

YES

VehiclePreviousStatus
== RECHARGING?

NOVehicleCurrentStatus ==
RECHARGING?

For each node in
CurrentNodes, delete it from
this list if its Position property

is further than K1 from
CurrentPosition.

Add deleted nodes to
DevalidatedNodes

YES
NO

Is CurrentNodes
empty?

Delete the
TerminatorNode with the

highest age, and,
recursively, all the nodes

in his ancestor chain,
until an ancestor with

more than one successor
is met.

NO

SI

Is there memory
available for a

new node in the
graph?

From
DevalidatedNodes, take

the node closer to
CurrentPosition, and

add a successor node
with property Position
set to CurrentPosition

Add all the StartNodes to
TestNodes, including their
successors down to the

N-th level.

YES

VehicleCurrentStatus ==
RECHARGING?

Set newly added node as a
TerminatorNode. Set its

TotalConsumption property
equal to the energy

consumption from the last
recharge. Set its age

property to 0.

For each node in TestNodes,
compute the distance

between its Position property
and CurrentPosition.

If it is greater than K2,
remove the node from

TestNodes.
If it is lower than K3, move
the node to CurrentNodes.

Set CurrentPosition equal to
vehicle position.

Empty DevalidatedNodes
Set NewDrivingCycle = False

NO

YES

NewDrivingCycle
= True?

Add a new node, without ancestors,
to the graph, with property Position

set to CurrentPosition.
Insert it in StartNodes and

CurrentNodes

Set NewDrivingCycle = True

NO

For each node
in CurrentNodes, add all
its successors down to

the N-th level
to TestNodes

Increase by 1 the age
of all the

TerminatorNodes

Figure 8.2: Graph update algorithm.

reached several times, the corresponding energy consumption can be updated simply av-

eraging all the recorded consumptions. The TerminatorNodes also stores an occurrency

variable, which stores the number of times it has actually been reached.

It must be notices that by setting the above mentioned parameters one can adjust the

computational burden of the algorithm. The TestNodes selection mechanism allows not

to have the need to explore the whole graph at every iteration looking for CurrentNodes

Chapter 8. Patent: Lightweight path learning-based algorithm for prediction of veihicle
driving routes 123

close to the current position. This solution makes the algorithm very robust to extended

graphs.

8.2.3 Energy prediction

At any point in time, the graph can be explored looking for an estimate of the energy

needed to complete the driving cycle. Starting from the CurrentNode, passing through all

its successors and down to the TerminatorNodes, it is possible to get if we’re driving on

one or many habitual routes, where all of these end, and how much energy they require

to complete. The occurrency and TotalConsumption of all the reachable terminator

nodes can be for example used to create a statistical distribution of the possible future

energy consumption. The exact method used is out from the scope of this work, which

aims only at providing the above mentioned data and store it in an efficient way.

8.3 Conclusion

In this chapter we illustrated a very lightweight algorithm to estimate the residual en-

ergy needed to drive a vehicle along a habitual route, according to the previous routes

abservations. The method is specifically designed for resource constrained devices, thus

being deployable on an embedded microcontroller, and avoiding the need for connection

to an external server. The algorithm makes use of very few information from the vehicle,

therefore being extremely easy to implement in real world scenarios.

This work complements what has been presented in the previous chapters by representing

a form of artificial intelligence not relying on machine learning, but on pure algorithmic

design, following a more traditional approach. In particular, the exposed method wants

to stress one of the main messages we want to communicate in this thesis: although

the undoubtedly great power of modern machine learning-based approaches, solution

designers shall avoid excessive bias toward their application, and, in particular when

targeting edge devices, they should always consider the added value that application-

specific algorithm design can bring, even in the development of Artificial Intelligence

solutions.

Chapter 9

Conclusion

In this thesis we analyzed the problem of deploying Artificial Intelligence solutions on

resource constrained devices, an increasingly important topic in the modern world of

smart battery powered devices and autonomous machines. Although also HW based

approaches exists, in this thesis the challenge has been faced from a SW perspective,

aiming at optimizing the computational and memory footprint of AI algorithms, thus

speeding up computation and allowing their execution down to tiny microcontrollers for

edge devices.

One of the main peculiarities of this work is the “Application-aware” approach to AI

optimization, which wants to be complementary to the several already existing methods

for Application-independent neural network acceleration. We showed that, if on one

side end-to-end-machine learning-based solutions can be extremely powerful in solving

problems such as image classification or object detection, on the other side mixing ma-

chine learning with application-specific knowledge in the form of feature engineering and

manual algorithm design enables much higher optimization, and becomes crucial when

targeting deployment on embedded devices.

As a first contribution, we performed a structured survey of the methods used nowadays

to accelerate neural networks on embedded devices. We grouped these methods into two

main categories, HW- and SW-based, highlighting for each of them the corresponding

subcathegories, weak and strength points. According to this classification, we placed our

work in the subcathegory of SW-based solutions which operate at architecture design

level, thus providing a clear contextualization of our contribution with respect to other

works.

Secondly, taking as a reference an object detection application, we have seen the great

potential that feature engineering can have in boosting the performance of a neural

124

Chapter 9. Conclusion 125

network. Preprocessing the input image, in our case performing a form of frame differ-

encing which highlights moving objects, highlights important features to be learnt by

the neural network. In this context, we’ve also seen how beneficial can be having parallel

branches in the same network to process different types of information and merging their

outputs along the network. In our work, applying these methods dramatically improved

the performance that general purpose object detection algorithms achieved, and made

it possible to deploy the solution on an embedded device to run in real time.

As a third contribution we’ve shown how the same principles expressed above can be used

to dramatically simplify the portion of a neural network which needs to be retrained for

application-specific needs, thus making it also possible to perform the training directly

on an embedded device in a reasonable time. In a reference hand pose classification

application, we achieved this result by splitting the network in a hand keypoint detection

part, which doesn’t require retraining, and a classification head. Differently from the

previous contribution, in this case the relevant features (the hand keypoints) are not

extracted with an handcrafted algorithm but by using a dedicated pretrained and fixed

neural network. However, also in this case, an application-aware choice of these features,

on paper, was crucial to minimize the classifier size, training time, and the overall

performance of the solution.

Then, in this thesis we addressed the problem of implementing deep neural networks on

a microcontroller featuring very limited computational and memory resources. Taking

as a reference an object detection application, to fit the constraints of such a resource

limited device we had to put together a lightweight object segmentation network with

handcrafted postprocessing of its output. Moreover, we conducted a deteailed analysis

of the impact of each architectural choice and hyperparameters on the memory footprint

of the solution in order to apply the chirurgical changes needed to reduce the memory re-

quirements without impacting the overall accuracy. The final solution was implemented

on an STM32 microcontroller. As an alternative approach, we also experimented the

use of Neural Architecture Search to design an extremely lightweight neural network

for object detection on a microcontroller. We’ve demonstrated how NAS can be used in

conjunction with a cost function which takes into account not only the network accuracy,

but also its weight, to generate a resource-aware network.

Finally, we presented an algorithm that we patented, which is a great example of empow-

ering resource constrained devices with a form of artificial intelligence obtained through

very lightweight algorithms designed in a more traditional approach instead of using

machine learning.

We believe that our work will inspire future researchers and engineers, promoting a way

of approaching the design of artificial intelligence for embedded systems which is more

Chapter 9. Conclusion 126

aware of the consequences of each design choice on the memory and computational foot-

print of the solution, and which emphatizes the importance of performing optimization

not only by using general purpose off-the-shelf methods, but also in an application-aware

fashion following the principles illustrated in our work.

Bibliography

[1] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization.

Distill, 2(11):e7, 2017.

[2] Max Ferguson, Ronay ak, Yung-Tsun Lee, and Kincho Law. Automatic localiza-

tion of casting defects with convolutional neural networks. pages 1726–1735, 12

2017.

[3] A comprehensive guide to convolutional neural networks. https://

towardsdatascience.com, 2022. Accessed: 2022-10-30.

[4] A. Canziani, Adam Paszke, and Eugenio Culurciello. An analysis of deep neural

network models for practical applications. ArXiv, abs/1605.07678, 2016.

[5] Xiao Youzi, Zhiqiang Tian, Jiachen Yu, Yinshu Zhang, Shuai Liu, Shaoyi Du, and

Xuguang Lan. A review of object detection based on deep learning. Multimedia

Tools and Applications, 79, 09 2020. doi: 10.1007/s11042-020-08976-6.

[6] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[7] Frank Denneman. Training vs inference, memory consumption by neural networks.

https://frankdenneman.nl, 2022. Accessed: 2022-06-08.

[8] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag.

What is the state of neural network pruning? Proceedings of machine learning

and systems, 2:129–146, 2020.

[9] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and

Kurt Keutzer. A survey of quantization methods for efficient neural network in-

ference. arXiv preprint arXiv:2103.13630, 2021.

[10] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng

Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper with embed-

ded fpga platform for convolutional neural network. In Proceedings of the 2016

127

https://towardsdatascience.com
https://towardsdatascience.com
https://frankdenneman.nl

Bibliography 128

ACM/SIGDA international symposium on field-programmable gate arrays, pages

26–35, 2016.

[11] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing

of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 2017.

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V.

Le, and Hartwig Adam. Searching for mobilenetv3. CoRR, abs/1905.02244, 2019.

URL http://arxiv.org/abs/1905.02244.

[13] Andrea Albanese, Tommaso Taccioli, Tommaso Apicella, Davide Brunelli, and

Edoardo Ragusa. Design and deployment of an efficient landing pad detector.

In International Conference on System-Integrated Intelligence, pages 137–147.

Springer, 2023.

[14] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7263–

7271, 2017.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information process-

ing systems, 25:1097–1105, 2012.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-

novich. Going deeper with convolutions. CoRR, abs/1409.4842, 2014. URL

http://arxiv.org/abs/1409.4842.

[19] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hi-

erarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 580–587,

2014.

[20] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on

computer vision, pages 1440–1448, 2015.

http://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1409.4842

Bibliography 129

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE international conference on computer vision, pages

2961–2969, 2017.

[23] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and

Serge Belongie. Feature pyramid networks for object detection. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 2117–2125,

2017.

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look

once: Unified, real-time object detection. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 779–788, 2016.

[25] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[26] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model com-

pression. In Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 535–541, 2006.

[27] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a

neural network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

[28] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learn-

ing. arXiv preprint arXiv:1611.01578, 2016.

[29] Shimeng Yu. Neuro-inspired computing with emerging nonvolatile memorys. Pro-

ceedings of the IEEE, 106(2):260–285, 2018.

[30] Masafumi Hagiwara. Removal of hidden units and weights for back propagation

networks. In Proceedings of 1993 International Conference on Neural Networks

(IJCNN-93-Nagoya, Japan), volume 1, pages 351–354. IEEE, 1993.

[31] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot

network pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340,

2018.

[32] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and huffman coding. arXiv

preprint arXiv:1510.00149, 2015.

Bibliography 130

[33] Ala Mhalla, Thierry Chateau, Sami Gazzah, and Najoua Essoukri Ben Amara.

An embedded computer-vision system for multi-object detection in traffic surveil-

lance. IEEE Transactions on Intelligent Transportation Systems, 20(11):4006–

4018, 2018.

[34] Edoardo Ragusa, Christian Gianoglio, Rodolfo Zunino, and Paolo Gastaldo. Image

polarity detection on resource-constrained devices. IEEE Intelligent Systems, 2020.

[35] Yu-Chuan Huang, I-No Liao, Ching-Hsuan Chen, Ts̀ı-Uı́ İk, and Wen-Chih Peng.

Tracknet: A deep learning network for tracking high-speed and tiny objects in

sports applications. In 2019 16th IEEE International Conference on Advanced

Video and Signal Based Surveillance (AVSS), pages 1–8. IEEE, 2019.

[36] HawkEye Innovations Ltd. Hawkeye system. http://www.hawkeyeinnovations.

com, 2022. Accessed: 2020-06-08.

[37] ST Microelectronics NV. Stm32 32bit arm cortex mcus. https://www.st.com/en/

microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html

todo, 2022. Accessed: 2020-06-08.

[38] Intel Corporation. Intel movidius neural compute stick. https:

//software.intel.com/content/www/us/en/develop/articles/

intel-movidius-neural-compute-stick.html, 2022. Accessed: 2020-06-

08.

[39] NVIDIA Corporation. Nvidia autonomous machines. https://www.nvidia.com/

autonomous-machines/embedded-systems/, 2022. Accessed: 2020-06-08.

[40] Deebul Nair, Amirhossein Pakdaman, and Paul G Plöger. Performance evalua-

tion of low-cost machine vision cameras for image-based grasp verification. arXiv

preprint arXiv:2003.10167, 2020.

[41] Yang Liu, Peng Sun, Nickolas Wergeles, and Yi Shang. A survey and performance

evaluation of deep learning methods for small object detection. Expert Systems

with Applications, page 114602, 2022.

[42] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-

based fully convolutional networks. In Advances in neural information processing

systems, pages 379–387, 2016.

[43] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C Berg.

Dssd: Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659,

2017.

http://www.hawkeyeinnovations.com
http://www.hawkeyeinnovations.com
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://software.intel.com/content/www/us/en/develop/articles/intel-movidius-neural-compute-stick.html
https://software.intel.com/content/www/us/en/develop/articles/intel-movidius-neural-compute-stick.html
https://software.intel.com/content/www/us/en/develop/articles/intel-movidius-neural-compute-stick.html
https://www.nvidia.com/autonomous-machines/embedded-systems/
https://www.nvidia.com/autonomous-machines/embedded-systems/

Bibliography 131

[44] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu,

and Matti Pietikäinen. Deep learning for generic object detection: A survey.

International journal of computer vision, 128(2):261–318, 2020.

[45] Guang Chen, Haitao Wang, Kai Chen, Zhijun Li, Zida Song, Yinlong Liu, Wenkai

Chen, and Alois Knoll. A survey of the four pillars for small object detection:

Multiscale representation, contextual information, super-resolution, and region

proposal. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020.

[46] Lisha Cui, Rui Ma, Pei Lv, Xiaoheng Jiang, Zhimin Gao, Bing Zhou, and Min-

gliang Xu. Mdssd: Multi-scale deconvolutional single shot detector for small ob-

jects. arXiv preprint arXiv:1805.07009, 2018.

[47] Mengmeng Zhang, Wei Li, and Qian Du. Diverse region-based cnn for hyperspec-

tral image classification. IEEE Transactions on Image Processing, 27(6):2623–

2634, 2018.

[48] Chenyi Chen, Ming-Yu Liu, Oncel Tuzel, and Jianxiong Xiao. R-cnn for small

object detection. In Asian conference on computer vision, pages 214–230. Springer,

2016.

[49] Jianan Li, Xiaodan Liang, Yunchao Wei, Tingfa Xu, Jiashi Feng, and Shuicheng

Yan. Perceptual generative adversarial networks for small object detection. In

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 1222–1230, 2017.

[50] Hu Lin, Jingkai Zhou, Yanfen Gan, Chi-Man Vong, and Qiong Liu. Novel up-scale

feature aggregation for object detection in aerial images. Neurocomputing, 411:

364–374, 2020.

[51] Kinjal A Joshi and Darshak G Thakore. A survey on moving object detection and

tracking in video surveillance system. International Journal of Soft Computing

and Engineering, 2(3):44–48, 2012.

[52] Pakorn KaewTraKulPong and Richard Bowden. An improved adaptive back-

ground mixture model for real-time tracking with shadow detection. In Video-based

surveillance systems, pages 135–144. Springer, 2002.

[53] Massimo Piccardi. Background subtraction techniques: a review. In 2004 IEEE

International Conference on Systems, Man and Cybernetics (IEEE Cat. No.

04CH37583), volume 4, pages 3099–3104. IEEE, 2004.

[54] Gábor Váraljai and Sándor Szénási. Projectile detection and avoidance using

computer vision. In 2020 IEEE 20th International Symposium on Computational

Intelligence and Informatics (CINTI), pages 000157–000160. IEEE, 2020.

Bibliography 132

[55] Rupali S Rakibe and Bharati D Patil. Background subtraction algorithm based

human motion detection. International Journal of scientific and research publica-

tions, 3(5):2250–3153, 2013.

[56] Thanarat Horprasert, David Harwood, and Larry S Davis. A statistical approach

for real-time robust background subtraction and shadow detection. In Ieee iccv,

volume 99, pages 1–19. Citeseer, 1999.

[57] ZuWhan Kim. Real time object tracking based on dynamic feature grouping

with background subtraction. In 2008 IEEE Conference on Computer Vision and

Pattern Recognition, pages 1–8. IEEE, 2008.

[58] Mennatullah Siam, Heba Mahgoub, Mohamed Zahran, Senthil Yogamani, Martin

Jagersand, and Ahmad El-Sallab. Modnet: Moving object detection network with

motion and appearance for autonomous driving. arXiv preprint arXiv:1709.04821,

2017.

[59] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation

with pseudo-3d residual networks. In proceedings of the IEEE International Con-

ference on Computer Vision, pages 5533–5541, 2017.

[60] Rodney LaLonde, Dong Zhang, and Mubarak Shah. Clusternet: Detecting small

objects in large scenes by exploiting spatio-temporal information. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, pages 4003–

4012, 2018.

[61] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer,

2014.

[62] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

4510–4520, 2018.

[63] Lars Wilko Sommer, Michael Teutsch, Tobias Schuchert, and Jürgen Beyerer.

A survey on moving object detection for wide area motion imagery. In 2016

IEEE Winter Conference on Applications of Computer Vision (WACV), pages

1–9. IEEE, 2016.

[64] Yun Liu, Krishna Gadepalli, Mohammad Norouzi, George E Dahl, Timo

Kohlberger, Aleksey Boyko, Subhashini Venugopalan, Aleksei Timofeev, Philip Q

Nelson, Greg S Corrado, et al. Detecting cancer metastases on gigapixel pathology

images. arXiv preprint arXiv:1703.02442, 2017.

Bibliography 133

[65] Meng Wang, Wei Li, and Xiaogang Wang. Transferring a generic pedestrian de-

tector towards specific scenes. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3274–3281. IEEE, 2012.

[66] NVIDIA Corporation. Jetson nano. https://developer.nvidia.com/embedded/

jetson-nano, 2022. Accessed: 2020-06-08.

[67] Edoardo Ragusa, Tommaso Apicella, Christian Gianoglio, Rodolfo Zunino, and

Paolo Gastaldo. Design and deployment of an image polarity detector with visual

attention. Cognitive Computation, Available Online, 10.1007/s12559-021-09829-6.

[68] Marko Markovic, Strahinja Dosen, Dejan Popovic, Bernhard Graimann, and Dario

Farina. Sensor fusion and computer vision for context-aware control of a multi

degree-of-freedom prosthesis. Journal of neural engineering, 12(6):066022, 2015.

[69] Ghazal Ghazaei, Ali Alameer, Patrick Degenaar, Graham Morgan, and Kianoush

Nazarpour. Deep learning-based artificial vision for grasp classification in myo-

electric hands. Journal of neural engineering, 14(3):036025, 2017.

[70] Taiqian Wang, Yande Li, Junfeng Hu, Aamir Khan, Li Liu, Caihong Li, Ammarah

Hashmi, and Mengyuan Ran. A survey on vision-based hand gesture recognition.

In International Conference on Smart Multimedia, pages 219–231. Springer, 2018.

[71] Mário P Véstias, Rui Policarpo Duarte, José T de Sousa, and Horácio C Neto.

Moving deep learning to the edge. Algorithms, 13(5):125, 2020.

[72] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Pro-

ceedings of the IEEE, 107(8):1655–1674, 2019.

[73] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi, George E Dahl,

and Geoffrey E Hinton. Large scale distributed neural network training through

online distillation. arXiv preprint arXiv:1804.03235, 2018.

[74] Yezhou Yang, Cornelia Fermuller, Yi Li, and Yiannis Aloimonos. Grasp type

revisited: A modern perspective on a classical feature for vision. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 400–

408, 2015.

[75] Minjie Cai, Kris M Kitani, and Yoichi Sato. An ego-vision system for hand grasp

analysis. IEEE Transactions on Human-Machine Systems, 47(4):524–535, 2017.

[76] Edoardo Ragusa, Christian Gianoglio, Rodolfo Zunino, and Paolo Gastaldo. Data-

driven video grasping classification for low-power embedded system. In 2019 26th

IEEE International Conference on Electronics, Circuits and Systems (ICECS),

pages 871–874. IEEE, 2019.

https://developer.nvidia.com/embedded/jetson-nano
https://developer.nvidia.com/embedded/jetson-nano

Bibliography 134

[77] Edoardo Ragusa, Christian Gianoglio, Filippo Dalmonte, and Paolo Gastaldo.

Video grasping classification enhanced with automatic annotations. In Interna-

tional Conference on Applications in Electronics Pervading Industry, Environment

and Society, pages 23–29. Springer, 2020.

[78] Thomas Feix, Javier Romero, Heinz-Bodo Schmiedmayer, Aaron M Dollar, and

Danica Kragic. The grasp taxonomy of human grasp types. IEEE Transactions

on human-machine systems, 46(1):66–77, 2015.

[79] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition, pages

4510–4520, 2018.

[80] Filippos Gouidis, Paschalis Panteleris, Iason Oikonomidis, and Antonis Argyros.

Accurate hand keypoint localization on mobile devices. In 2019 16th International

Conference on Machine Vision Applications (MVA), pages 1–6. IEEE, 2019.

[81] Dushyant Mehta, Srinath Sridhar, Oleksandr Sotnychenko, Helge Rhodin, Moham-

mad Shafiei, Hans-Peter Seidel, Weipeng Xu, Dan Casas, and Christian Theobalt.

Vnect: Real-time 3d human pose estimation with a single rgb camera. ACM

Transactions on Graphics (TOG), 36(4):1–14, 2017.

[82] Andrea Bandini and José Zariffa. Analysis of the hands in egocentric vision: A

survey. IEEE transactions on pattern analysis and machine intelligence, 2020.

[83] Daniele Palossi, Antonio Loquercio, Francesco Conti, Eric Flamand, Davide Scara-

muzza, and Luca Benini. Ultra low power deep-learning-powered autonomous nano

drones. In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2018). ETH Zurich, 2018.

[84] Edoardo Ragusa, Christian Gianoglio, Strahinja Dosen, and Paolo Gastaldo.

Hardware-aware affordance detection for application in portable embedded sys-

tems. IEEE Access, 9:123178–123193, 2021.

[85] Shahrokh Paravarzar and Belqes Mohammad. Motion prediction on self-driving

cars: A review. arXiv preprint arXiv:2011.03635, 2020.

[86] Google LLC. Coral. https://coral.ai, 2022. Accessed: 2022-01-22.

[87] Intel Corporation. Intel movidius vision processing units. https:

//www.intel.co.uk/content/www/uk/en/products/details/processors/

movidius-vpu.html, 2022. Accessed: 2022-01-22.

https://coral.ai
https://www.intel.co.uk/content/www/uk/en/products/details/processors/movidius-vpu.html
https://www.intel.co.uk/content/www/uk/en/products/details/processors/movidius-vpu.html
https://www.intel.co.uk/content/www/uk/en/products/details/processors/movidius-vpu.html

Bibliography 135

[88] Google LLC. Tensorflow lite. https://www.tensorflow.org/lite, 2022. Ac-

cessed: 2022-01-22.

[89] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,

Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In

European conference on computer vision, pages 21–37. Springer, 2016.

[90] Mate Krǐsto, Marina Ivasic-Kos, and Miran Pobar. Thermal object detection in

difficult weather conditions using yolo. IEEE Access, 8:125459–125476, 2020.

[91] GitHub user xiaochus. Mobilenetv3 segmentation implementation. https://

github.com/xiaochus/MobileNetV3, 2022. Accessed: 2022-01-22.

[92] Mate Krǐsto, Marina Ivasic-Kos, and Miran Pobar. Thermal object detection in

difficult weather conditions using yolo. IEEE Access, 8:125459–125476, 2020.

[93] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv

preprint arXiv:1804.02767, 2018.

[94] Carlo Giorgio Grlj, Nino Krznar, and Marko Pranjić. A decade of uav docking

stations: A brief overview of mobile and fixed landing platforms. Drones, 6(1):17,

2022.

[95] Abdul Hafeez, Mohammed Aslam Husain, SP Singh, Anurag Chauhan,

Mohd Tauseef Khan, Navneet Kumar, Abhishek Chauhan, and SK Soni. Im-

plementation of drone technology for farm monitoring & pesticide spraying: A

review. Information Processing in Agriculture, 2022.

[96] Linjie Xing, Xiaoyan Fan, Yaxin Dong, Zenghui Xiong, Lin Xing, Yang Yang,

Haicheng Bai, and Chengjiang Zhou. Multi-uav cooperative system for search

and rescue based on yolov5. International Journal of Disaster Risk Reduction, 76:

102972, 2022.

[97] Lucas Prado Osco, José Marcato Junior, Ana Paula Marques Ramos, Lúcio André

de Castro Jorge, Sarah Narges Fatholahi, Jonathan de Andrade Silva, Ed-

son Takashi Matsubara, Hemerson Pistori, Wesley Nunes Gonçalves, and Jonathan

Li. A review on deep learning in uav remote sensing. International Journal of Ap-

plied Earth Observation and Geoinformation, 102:102456, 2021.

[98] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge

distillation: A survey. International Journal of Computer Vision, 129(6):1789–

1819, 2021.

https://www.tensorflow.org/lite
https://github.com/xiaochus/MobileNetV3
https://github.com/xiaochus/MobileNetV3

Bibliography 136

[99] Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. Fast

hardware-aware neural architecture search. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition Workshops, pages 692–693,

2020.

[100] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingx-

ing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al.

Searching for mobilenetv3. In Proceedings of the IEEE International Conference

on Computer Vision, pages 1314–1324, 2019.

[101] Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Mar-

tin Wistuba, and Naigang Wang. A comprehensive survey on hardware-aware

neural architecture search. arXiv preprint arXiv:2101.09336, 2021.

[102] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search for

mobile. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 2820–2828, 2019.

[103] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn: Efficient neural

network kernels for arm cortex-m cpus. arXiv preprint arXiv:1801.06601, 2018.

[104] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang,

Zhongzhi Luan, Lin Gan, Guangwen Yang, and Depei Qian. The deep learning

compiler: A comprehensive survey. IEEE Transactions on Parallel and Distributed

Systems, 32(3):708–727, 2020.

[105] Ji Lin, Wei-Ming Chen, Yujun Lin, Chuang Gan, Song Han, et al. Mcunet: Tiny

deep learning on iot devices. Advances in Neural Information Processing Systems,

33:11711–11722, 2020.

[106] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,

Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul Whatmough.

Micronets: Neural network architectures for deploying tinyml applications on

commodity microcontrollers. Proceedings of Machine Learning and Systems, 3:

517–532, 2021.

[107] Chaojian Li, Zhongzhi Yu, Yonggan Fu, Yongan Zhang, Yang Zhao, Haoran You,

Qixuan Yu, Yue Wang, and Yingyan Lin. Hw-nas-bench: Hardware-aware neural

architecture search benchmark. arXiv preprint arXiv:2103.10584, 2021.

[108] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei,

and Jian Sun. Single path one-shot neural architecture search with uniform sam-

pling. In European conference on computer vision, pages 544–560. Springer, 2020.

Bibliography 137

[109] Albert Shaw, Daniel Hunter, Forrest Landola, and Sammy Sidhu. Squeezenas:

Fast neural architecture search for faster semantic segmentation. In Proceedings of

the IEEE/CVF International Conference on Computer Vision Workshops, pages

0–0, 2019.

[110] Su Yeon Choi and Dowan Cha. Unmanned aerial vehicles using machine learning

for autonomous flight; state-of-the-art. Advanced Robotics, 33(6):265–277, 2019.

[111] Laith Abualigah, Ali Diabat, Putra Sumari, and Amir H Gandomi. Applications,

deployments, and integration of internet of drones (iod): a review. IEEE Sensors

Journal, 2021.

[112] Jangwon Lee, Jingya Wang, David Crandall, Selma Šabanović, and Geoffrey Fox.

Real-time, cloud-based object detection for unmanned aerial vehicles. In 2017

First IEEE International Conference on Robotic Computing (IRC), pages 36–43.

IEEE, 2017.

[113] Anis Koubâa and Basit Qureshi. Dronetrack: Cloud-based real-time object track-

ing using unmanned aerial vehicles over the internet. IEEE Access, 6:13810–13824,

2018.

[114] Sunggoo Jung, Sunyou Hwang, Heemin Shin, and David Hyunchul Shim. Per-

ception, guidance, and navigation for indoor autonomous drone racing using deep

learning. IEEE Robotics and Automation Letters, 3(3):2539–2544, 2018.

[115] Nils Tijtgat, Wiebe Van Ranst, Toon Goedeme, Bruno Volckaert, and Filip

De Turck. Embedded real-time object detection for a uav warning system. In

Proceedings of the IEEE international conference on computer vision workshops,

pages 2110–2118, 2017.

[116] Andrea Albanese, Matteo Nardello, and Davide Brunelli. Low-power deep learn-

ing edge computing platform for resource constrained lightweight compact uavs.

Sustainable Computing: Informatics and Systems, page 100725, 2022.

[117] Mohamad Hazwan Mohd Ghazali and Wan Rahiman. Vibration-based fault detec-

tion in drone using artificial intelligence. IEEE Sensors Journal, 22(9):8439–8448,

2022.

[118] Siddharth Gupta, Prabhat Kumar Rai, Abhinav Kumar, Phaneendra K

Yalavarthy, and Linga Reddy Cenkeramaddi. Target classification by mmwave

fmcw radars using machine learning on range-angle images. IEEE Sensors Jour-

nal, 21(18):19993–20001, 2021.

Bibliography 138

[119] Muhammad Hafidz Fazli Md Fauadi, Suriati Akmal, Mahasan Mat Ali, Nurul Izah

Anuar, Samad Ramlan, Ahamad Zaki Mohd Noor, and Nurfadzylah Awang. In-

telligent vision-based navigation system for mobile robot: A technological review.

Periodicals of Engineering and Natural Sciences, 6(2):47–57, 2018.

[120] Shuo Li, Michaël MOI Ozo, Christophe De Wagter, and Guido CHE de Croon.

Autonomous drone race: A computationally efficient vision-based navigation and

control strategy. Robotics and Autonomous Systems, 133:103621, 2020.

[121] Ranzhen Ren, Lichuan Zhang, Lu Liu, and Yijie Yuan. Two auvs guidance method

for self-reconfiguration mission based on monocular vision. IEEE Sensors Journal,

21(8):10082–10090, 2021.

[122] Bedada Endale, Abera Tullu, Hayoung Shi, and Beom-Soo Kang. Robust approach

to supervised deep neural network training for real-time object classification in

cluttered indoor environment. Applied Sciences, 11(15):7148, 2021.

[123] Marcin Paszkuta, Jakub Rosner, Damian Peszor, Marcin Szender, Marzena Woj-

ciechowska, Konrad Wojciechowski, and Jerzy Pawe l Nowacki. Uav on-board emer-

gency safe landing spot detection system combining classical and deep learning-

based segmentation methods. In Asian Conference on Intelligent Information and

Database Systems, pages 467–478. Springer, 2021.

[124] Pranay Mathur, Yash Jangir, and Neena Goveas. A generalized kalman filter

augmented deep-learning based approach for autonomous landing in mavs. In 2021

International Symposium of Asian Control Association on Intelligent Robotics and

Industrial Automation (IRIA), pages 1–6. IEEE, 2021.

[125] JA Garćıa-Pulido, G Pajares, and S Dormido. Uav landing platform recognition

using cognitive computation combining geometric analysis and computer vision

techniques. Cognitive Computation, pages 1–21, 2022.

[126] Miguel Saavedra Ruiz, Ana Maria Pinto Vargas, and Victor Romero Cano. De-

tection and tracking of a landing platform for aerial robotics applications. In 2018

IEEE 2nd Colombian Conference on Robotics and Automation (CCRA), pages

1–6. IEEE, 2018.

[127] Phong Ha Nguyen, Ki Wan Kim, Young Won Lee, and Kang Ryoung Park. Remote

marker-based tracking for uav landing using visible-light camera sensor. Sensors,

17(9):1987, 2017.

[128] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning trans-

ferable architectures for scalable image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 8697–8710, 2018.

Bibliography 139

[129] Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi.

Standing on the shoulders of giants: Hardware and neural architecture co-search

with hot start. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 39(11):4154–4165, 2020.

[130] Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and Ten-

sorFlow: Concepts, tools, and techniques to build intelligent systems. ” O’Reilly

Media, Inc.”, 2019.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contribution

	2 Background
	2.1 Deep Convolutional Neural Networks
	2.1.1 Introduction
	2.1.2 Main layer types
	2.1.2.1 Convolution layers
	2.1.2.2 Pooling layers
	2.1.2.3 Fully connected layers

	2.2 Common feature extraction CNN architectures
	2.2.1 VGG
	2.2.2 ResNet
	2.2.3 Inception

	2.3 Object detection CNN architectures
	2.3.1 Region based detectors
	2.3.2 Single shot detectors

	3 Embedding Deep Neural Networks
	3.1 The need for embedded DNNs
	3.2 Challenges
	3.2.1 Memory requirements
	3.2.1.1 Parameters
	3.2.1.2 Activations
	3.2.1.3 Difference between training and inference

	3.2.2 Computational burden

	3.3 Embedding DNNs: Software
	3.3.1 Architecture design level
	3.3.1.1 Knowledge distillation
	3.3.1.2 Neural architecture search
	Search space
	Search strategy
	Performance function

	3.3.1.3 Feature engineering and application specific design

	3.3.2 Architecture implementation level
	3.3.2.1 Pruning
	3.3.2.2 Weight sharing
	3.3.2.3 Quantization

	3.4 Embedding DNNs: Hardware level
	3.4.1 HW families
	3.4.2 HW Acceleration
	3.4.3 Commercial solutions
	3.4.3.1 System on Chip: NVIDIA Jetson Series
	3.4.3.2 Stick: Intel Neural Compute Stick
	3.4.3.3 CPU Based: STM X-CUBE-AI

	4 Optimizing speed and accuracy: Fast small object tracking
	4.1 Introduction
	4.2 Tiny Moving Object Detection: State of the Art
	4.2.1 Single-Image General-Purpose Solutions
	4.2.2 Background Subtraction and Frame-Difference Solutions
	4.2.3 Spatio-Temporal Convolutional Neural Networks (CNNs)
	4.2.4 Summary of Contribution

	4.3 Methodology
	4.3.1 Step 1: Extracting Motion-Augmented Images
	4.3.2 Step 2: Feature Extraction
	4.3.3 Step 3: Object Detection

	4.4 Experimental Setup
	4.4.1 Scenarios
	4.4.1.1 Aerial Surveillance
	4.4.1.2 Civilian Surveillance
	4.4.1.3 Tennis Ball Tracking

	4.4.2 Deployment

	4.5 Results
	4.5.1 Aerial Surveillance
	4.5.2 Civilian Surveillance
	4.5.3 Tennis Ball Tracking
	4.5.4 Deployment of T-RexNet on the Jetson Nano

	4.6 Conclusions
	4.7 Appendix: Hyperparameters and training details

	5 Allowing on-target retraining: Hand image classifier
	5.1 Introduction
	5.2 Method
	5.2.1 Model
	5.2.2 Deployment to embedded device
	5.2.3 Use case: grasp classification

	5.3 Experiments and results
	5.3.1 Experiment 1: Classifier model selection
	5.3.2 Experiment 2: Accuracy comparison with MobileNetV2
	5.3.3 Experiment 3: Training on the embedded device
	5.3.4 Experiment 4: Inference on the embedded device

	5.4 Conclusions

	6 Deploying DNN to microcontroller via manual algorithm design: object detection for surveillance
	6.1 Introduction
	6.2 Material and Methods
	6.2.1 The edge device: STM32F746NG
	6.2.2 Object detection on a low cost microcontroller: challenges
	6.2.3 Design of a very lightweight DNN for object detection

	6.3 Use case: person detection in outdoor thermal images
	6.3.1 The dataset
	6.3.2 DNN-based model for person detection
	6.3.3 Deployment on device

	6.4 Experiments
	6.4.1 DNN implementation, training and deployment on target device
	6.4.2 Detection performance and comparison

	6.5 Conclusions

	7 Deploying DNN to microcontroller via Neural Architecture Search: landing pad detection
	7.1 Introduction
	7.2 Related works
	7.2.1 Hardware-Aware NAS
	7.2.2 DNNs for the navigation of UAVs

	7.3 Automated Design of efficient DNNs for landing-pad detection
	7.3.1 Knowledge distillation
	7.3.2 Neural architecture search
	7.3.3 Integrated Neural Architecture Search with Knowledge Distillation

	7.4 Deployment of the Landing Pad Detector
	7.4.1 Edge devices
	7.4.2 Hardware-aware landing pad detector

	7.5 Experiments
	7.5.1 Distillation
	7.5.2 Generalization performance of the landing pad detector
	7.5.3 Computational performance

	7.6 Conclusions

	8 Patent: Lightweight path learning-based algorithm for prediction of veihicle driving routes
	8.1 Introduction
	8.2 Algorithm
	8.2.1 Data structures
	8.2.2 Graph update
	Update TestNodes
	Update CurrentNodes
	Update TerminatorNodes

	8.2.3 Energy prediction

	8.3 Conclusion

	9 Conclusion
	Bibliography

