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Abstract 

This thesis investigates pedestrian monitoring using image processing for state-of-the-art real-
time distributed camera-processor architectures. An integrated design and evaluation process is 
proposed, where the surveillance task is analysed into component modules, each corresponding 
to a self-contained vision process. Different approaches to each process are implemented in-
dependently, using Object-oriented design principles to facilitate both system construction and 
module interchange during comparative testing. 

Standard algorithms, from the computer vision literature, together with novel variants are used 
but the scope is restricted to what can be implemented to run in real-time, on a modest image 
processing engine. Comparison is made between median-based and mixture-of-Gaussian based 
methods for background representation, between connected component and boundary follow-
ing approaches to object segmentation and between pixel-based and 2-D model based (PCA 
with cubic splines) methods for object classification. 

Quantitative performance-characterization-data for existing solutions is not generally available, 
in the literature, in the form of bench-mark test-sequences and is time-consuming and costly 
to produce, for novel methods. A substantial test-data-set of real surveillance image-sequences 
has been acquired, to test the system and compare alternative approaches. 

A novel performance-characterization technique is proposed: it offers comparative quantitative 
evaluation of the performance and resource requirements of a system. This approach is applied 
to the different system variants, comprised of the alternative module combinations. 

The results of running the system variants on the test data are compared against manually de-
rived ground-truth data for pedestrian detection. The performance characterization approach 
provided clear comparative data on performance and resource requirements for each variant, 
analysed by scene and event type. From a review of these results, the optimum module com-
bination is chosen: this is a system composed of median-based background representation, 
boundary following object segmentation and model-based object classification. 
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Chapter 1 
Introduction 

"The telescreen received and transmitted simultaneously. Any sound Winston made, 
above the level of a very low whisper, would be picked up by it; moreover so long 
as he remained within the field of vision which the metal plaque commanded, he 
could be seen as well as heard. There was of course no way of knowing whether 
you were being watched at any given moment." [3] 

1.1 Introduction 

1.1.1 Big Brother, the Panopticon and the surveillance society 

In 1998, the author was called to jury service for a case involving assault, obtaining cash using 

threats, detaining individuals against their will and intimidation. The victims of the crime were 

reluctant in the extreme to identify the perpetrators because, as it emerged later, they had been 

threatened with retribution should they do so. There were however, witnesses to the crime 

which could not be intimated in this way and whose testimony served to convict the offender 

even without corroboration by the victims. These witnesses were a series of simple analogue 

surveillance cameras, both pole-mounted above a car park and positioned next to the lifts and 

stairwells of the crime scene. 

1 



Introduction 

Though this is an apparent success of and vindication for routine surveillance of public places, 

the positive nature of the outcome is actually somewhat less certain. The pictures presented 

were low quality, distant images and could not, in the opinion of the author, be confidently 

identified with the accused to the level of accuracy that would be demanded in scientific test-

ing. Combined with the circumstantial evidence the match was close enough that, with the 

suggestive quality that images possess, a sufficientfeeling of proof was given that a conviction 

was secured. 

There is a dichotomy between the use of visual surveillance technology for the protection of 

society and the safeguarding of the rights of the individual. Whatever the uses to which this 

technology is put, however, it is likely that the higher the quality of the visual images and the 

more corroborative surveillance data that can be stored for cross-checking, the less chance there 

should be of errors. It is worth noting that research into recognition of unfamiliar faces suggests 

that people are generally very poor at recognising unfamiliar targets in the particular case of 

poor quality video [4]. 

If the video surveillance system used above had been complex enough to store a high resolution 

image of each individual's face to associate with the existing low resolution footage, a more 

secure conviction or alternatively a vindication of innocence could have been achieved. More 

than this, if the behaviour of the individuals could have been analysed in real-time, a response 

might have been made quickly enough to alleviate the suffering of the victims. 

During the 1990s, the video surveillance industry in the UK experienced growth rates of over 

10% annually ([5])  with installations both in company premises and several hundred city and 

town councils' public areas. The total value of the UK market was estimated in 1999 to be 

in excess of £343 million annually [6], with more than 300,000 cameras in shopping areas, 

housing estates, car parks and public facilities and an estimated 500 new cameras every week 

([7]). The UK now has the largest number of surveillance cameras per capita of any country in 

the world. 

The effectiveness of these cameras not just in detecting crime, but as deterrents, is a subject 

of controversy. Stirling council reported a 75% drop in crime in the three years subsequent to 

installing CCTV and Bournemouth a reduction in vandalism costs from £220,000 to £6,000 

([8]) after installing such cameras along its sea-front. However, a three-year study conducted 

by the Scottish Centre for Criminology found that recorded crime rose by 9% after introduction 
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Figure 1.2: Jeremy Bentham 's Panopticon prison 

of cameras, while detected crime (leading to identification of a suspect) fell by 4% (1191). They 

suggested that the amount of Home Office budget currently expended on the technology was 

out of proportion with the ambiguous outcome. 

As well as dispute over the effectiveness of visual surveillance, concerns as to the ethical pos-

ition have been presented by organisations such as Liberty. The natural rallying call has been 

claims of the onset a dystopian society reminiscent of that depicted in Orwell's '1984', where 

"Big Brother is Watching You" through the contemporary equivalent of the telescreen. Fou-

cault has presented an alternative analysis of the effects of surveillance, referring to Jeremy 

Bentham's plans for the Panopticon prison in 1791 (figure 1.2). This presents a situation where 

all prisoners are segregated into cells around a central tower and where the guards can see 

without being seen, a critique intended to be a metaphor of the surveillance society and inten-

ded: 

to induce in the inmate a state of conscious and permanent visibility that 
assures the automatic fi1nctioning of power So to arrange things that surveillance 
is permanent in its effects, even if it is discontinuous in its action .....[101 

Civil rights campaigners proclaim that the systematic attention of continual surveillance over-

turns the presumption of innocence, creating a situation where all actions are suspect and mon-

itored to ensure compliance with the rules. Oppressive psychological effects are claimed to en-

sue, whereby persons under observation are pressured into conforming to the most conservative 

interpretation of acceptable behaviour. The routine monitoring of the workplace by employers 

has been cited as a particular example of the systematic over-use of the technology. 
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With current advances leading toward the ability to explicitly define 'unusual behaviour' and 

to have systems generate an automatic alarm when it is detected, the potential for abuse by the 

establishment and private interests can only increase. While such ethical considerations should 

not be neglected by the scientist or engineer, it is hard not to fall back on the claim that it is not 

the technology which causes the problem, it is the use to which the technology is put. 

It is important in this area, more than most others, to keep in mind the very direct political 

and social impact of developments in the field when considering design and evaluation of new 

systems. It is important that the development of legal guidelines and protection follows close 

behind the increasing technological capabilities of advanced visual surveillance. 

1.1.2 The history of surveillance 

The importance of surveillance information is a constant which dates back beyond the dawn of 

civilisation. Before what would be man was significantly differentiated from the animal king-

dom, an attribute needed in 'survival of the fittest' was an accurate and timely awareness of 

the surroundings both of the individual and the group. Predators and prey had to be detected 

as efficiently as possible and alarms transmitted to the group to initiate appropriate action. In 

every civilisation and for the whole of recorded history, the posting of guards at the perimet-

ers of settlements and encampments has been vital to the protection of the group. The more 

capable these sentries and the better organised their communication with each other and their 

commanders, the more secure the area under their protection. 

The importance of the rapid communication of surveillance data is portrayed in myth and le-

gend, with the examples of the first Marathon run and Paul Revere's ride as evocative examples 

of their kind. A message of the perils of inadequate surveillance, lax security and poor intelli-

gence is easy to extract from the tale of the Trojan Horse. 

With the gradual but accelerating pace of technological innovation, the patterns of the surveil-

lance methodology began to change incrementally. First the use of mirrors for signalling, then 

the invention of the telescopic lens, in the 13 century, extended the range of human surveil-

lance capabilities. The first application of camera technology to surveillance dates back at least 

as far as 1870, when the French military used aerial photographs captured from a hot air balloon 

to monitor troop movements. 

Much later, in the 'electronic age', the telegraph, burglar alarm, police box, field radio and 
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walkie-talkie all brought ways to enhance communication between sentinels and command 

centres. The first prototype video camera-like product was invented in 1923 but, as with many 

fields, development in the area accelerated significantly significantly during World War II. 

From the 1950s onwards, Closed Circuit TV (CCTV) cameras began to be employed for large, 

private surveillance tasks. Prior to this time, the only practical option for surveillance was 

one or more guards physically traversing the area under observation and manually viewing the 

situation. The communication of alerts had been improved by using electronic devices and 

alarms could be set to assist in detection, but essentially the process was one that would have 

been recognised by an ancient Roman centurion. 

1.1.3 First-generation video-based surveillance 

The surveillance model employed in the first commercial systems is one that did not signific-

antly change for several decades. At its most basic, CCTV is a camera connected to a monitor 

for viewing an area remotely. A collection of such cameras would be placed around the zone of 

interest which could be an industrial complex, a military base, or some other secure premises. 

The cameras would be wired to a central control room by dedicated cabling and the images 

displayed on a corresponding number of monitors at that location. 

Incremental advances in the technology have allowed more efficient usage of hardware and 

alternative viewing possibilities. Automatic camera switches have enabled auto-cycling, where 

the image at the monitor is replaced every few seconds by one from a different camera. Also, 

screens can be split to carry several camera outputs simultaneously, with an operator override 

where one image of interest can be singled out. 

These advances primarily focused on reducing the hardware requirements of the system: in-

stalling CCTV represented a large capital outlay, although the extent of this reduced over time 

as components became cheaper. Assisting the operator was for many years restricted to issues 

of control room design, with viewing ergonomics investigated by, among others, the Police 

Scientific Development Branch (PSDB) in the UK. PSDB work suggested that 1 to 5 monitors 

per operator was the most efficient, with a primary monitor directly in front of the operator for 

incident detection. Secondary monitor banks could give an overview, and if placed just in the 

range of the peripheral vision, movement detection could be used as a cue for follow up. The 

use of auto-cycling and screen splitting was advised against in high risk surveillance as the first 
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negated the use of motion detection and introduced temporal 'blind spots', while the second 

produced unacceptable deterioration in image clarity. 

In this traditional CCTV-augmented surveillance, all analysis would by necessity be carried 

out by the operator, requiring long periods of concentration, split over a potentially very large 

number of screens simultaneously. The ability of the human brain to perform complex visual 

analysis tasks with little apparent effort can not be overstated but, as with all tasks, performance 

tends to reduce over time. The number of operators could be increased, but only subject to re-

maining within the bounds of economic feasibility. "Who watches the watchers" is a pertinent 

query with respect to maintaining operator efficiency in this context. 

Vigilance or sustained attention refers to "the ability of observers to maintain their focus of 

attention and to remain alert to stimuli for prolonged periods of time" [1 l]. This was first 

studied [12] at the request of the Royal Air Force after World War II to investigate the behaviour 

of radar operators watching for German U-boats. The study found that the accuracy of signal 

detections declined by about 10 percent after 30 minutes and continued to decline more slowly 

over a 2-hour session. A key finding of subsequent work was that this decline occurs in any 

situation which involves the need to look for a relatively infrequent stimulus over a continuous 

period of time. Of further relevance to assessing the unaided human monitoring paradigm, 

studies have shown [13] that task performance in an extended overnight period (including the 

period 23:00 to 06:30) drops as low as 30% to 40% below that seen during the daytime when 

the operator was well-rested. 

The goal of first-generation video-based surveillance systems, to present operators with the 

maximum information about the monitored environment, is then constrained by the major lim-

itation of the operator's attentiveness. Advanced Video-based Surveillance (AVS) considers 

second-generation systems which aim to take advantage of the further enhancements available 

from digital computing and communications techniques. 

1.1.4 Computer vision and surveillance 

The idea of feeding visual data to a computer for intelligent analysis dates back at least as far as 

1966 when Marvin Minsky set just such a task for a first year undergraduate. The complexity of 

the task was underestimated then and has been one of the iconic goals of Artificial Intelligence 

up to the end of the millennium and beyond. 
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A complete computational theory of vision was not fully developed until the work of Marr [14] 

in the late 1970s which focused on the processes undertaken in the primate visual cortex. He 

suggested that full description of an observed scene was achieved by constructing a number 

of distinct intermediate representations. First a description of all light intensity discontinuities 

constituted the raw primal sketch, followed by grouping procedures to find primitives (bound-

aries and regions) for the fill primal sketch. The culmination of early visual processing adds 

analysis of depth, motion and shading to build the 2.51) sketch, a viewer centred representation 

of the surrounding environment. He proposed that the higher level process of object recogni-

tion was carried out by matching against stored 3D models of each object, constructed from 

basic 'LEGO brick' elements. Although a useful for defining terms and identifying issues, this 

sole complete framework is now generally considered insufficient as a context for advancing 

computational vision research. 

Vision research has progressed significantly in many areas corresponding to elements of Marr's 

model, including approaches to finding many kinds of primitives (edges, corners, lines etc.), 

automatic segmentation of regions from still images, stereoscopic depth extraction, motion 

analysis and shape-from-shading. The design and implementation of a complete system to 

achieve a human-equivalent understanding of a scene from visual information is still a remote 

goal however. Chapter 5 includes a summary of some recent analyses of the lack of a solid 

characterisation procedure as one constraint on progress. The ideal for such an approach with 

practical and commercial application can be stated as a system which, after an initial installa-

tion, can be simply given a high level command such as "Observe the scene and report any 

interesting behaviour in regions X, Yand Z". The system would then use the resources available 

in the most efficient manner to achieve the desired ends. 

A significant obstacle to the understanding of how complicated the task of visual processing and 

understanding is, is the apparent ease with which we as observers achieve the task ourselves. 

Humans are able to accomplish the processing of signals (visual, acoustic, tactile and olfactory) 

under a wide range of environmental conditions with little or no conscious effort. The very 

conceptualising of how hard the problem may be is difficult when we can observe a two-year 

old child managing the task that we wish to achieve technologically. The initial excitement 

generated by the development of neural nets as ways to potentially model the workings of the 

brain, while not promptly leading to an Asimov robot, served to highlight the complexity of the 

process in computational terms. The current goal of artificial brain construction has reached 
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the level of aiming to achieve a level of complexity equal to that of a kitten's brain [15]. 

Both decomposition of the problem into sub-processes reminiscent of the Man model and con-

straining the vision analysis requirement to more restricted domains are common approaches to 

making the task more tractable. Consider the surveillance example of relevance to the invest-

igation reported in this thesis, specifically the interpretation of the behaviour of pedestrians: a 

split into high, low and mid level processes (see section 2.1) is the usual first stage of differen-

tiation. Research in the area, then, commonly considers the problem as comprised of distinct 

subprocesses, chosen according to the intuitive decomposition of the task (again, see section 

2.1). 

The ultimate goal of pure research in the area can still be considered to be Minsky's desire for 

a fully automated system for understanding the presented scenes. Systems which implement 

very restricted versions of this ability have reached the stage where they have been tested in 

real surveillance environments (see section 2.9). Such systems are currently able to deal with 

recognising a handful of pre-specified behaviours and this only after prolonged learning or 

manual calibration phases. 

At the current stage of development, the optimum use of available image processing and under-

standing technologies is not then to replace human operators, but to augment their abilities and 

overall performance. As noted in section 1.1.3, a limiting factor in the ability of human centred 

systems is the degradation in their vigilance over prolonged periods of time. A restatement of a 

key goal of AVS then, could be the use of applicable computer vision processing techniques to 

assist in directing the attention of human operators, leaving them able to concentrate on critical 

high-level interpretation and decision making. 

1.1.5 Industry resistance to new technology 

A wide gap exists between the highly complex prototype systems developed in the academic 

community and the systems commonly employed in industrial contexts. To explain the slow 

uptake of new technology, Pavlidis et al [16] cite some significant characteristics of the security 

industry. 

. Low Profit Margin is cited as the primary restricting factor: with a constant struggle just 

to break even in the profit and loss account and a strategic planning horizon commonly 
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restricted to six months, anything beyond the provision of the basic acceptable service 

will generate considerable additional business risk. Security is commonly a low priority 

in commercial budgeting, except for brief periods after a security lapse, and is considered 

to add nothing to the (financially) important numbers. 

Resistance to change and low-tech culture are both ascribed as due to the nature of 

the managers in the industry. Their training and experience is usually from within the 

business after an introduction as operatives and they are more comfortable with the low 

tech status quo. An atmosphere of suspicion of higher technical innovation generally is 

exacerbated by the fear of consequential job losses. 

Hardware bias is reflected in the 'tunnel vision' seen in many camera manufacturers, 

the principal proponents of technological advance in the industry. Although pushing 

the development of hardware solutions, the out-fitting of these cameras with appropriate 

software is commonly neglected. 

In addition to these points highlighted in that paper, there is a general cynicism held by many 

industry decision makers in respect of the claims made by academic researchers. 

1.1.6 Second-generation video-based surveillance 

As discussed in section 1.1.3, surveillance systems have until recently been developed accord-

ing to a single basic architectural model: a collection of cameras placed around an area to be 

monitored, connected to a central control location using dedicated, hard-wired links. Transmis-

sion of images would be along copper cables (although latterly with the option of optical fibre) 

using standard analogue image formats, often of quite low quality. Such a security system was 

a major investment for a company both in monetary terms and in terms of the hours of set-up 

time and inconvenience of installation. 

An advent which mitigates some of these considerations is the development of digital systems 

which can interface with an entity's existing computer network structure. Although digital 

systems have been available to the CCTV industry for more than a decade, there has been con-

siderable reluctance to accept such a radical change in the technology basis. This has been due 

in part to a lack of understanding of the technology and the benefits it offers as well as gen-

eral suspicion of any such a relatively new developments. Consequently, a large shift towards 

we 
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the use of digital platforms has only begun over the last three years, despite the considerable 

benefits it offers. 

Each camera is connected to a local hardware package that enables both interface into the 

network via a standard Ethernet link and the option of local processing. In its most basic oper-

ation, such a system allows the transmission of compressed video streams along the network to 

be decoded and decompressed at the central control location. Using this architecture, the initial 

capital outlay can be much reduced and the inconvenience of laying dedicated cabling can be 

almost entirely eliminated. The systems are much more flexible and adaptable as new cameras 

can be installed and existing ones moved with corresponding ease. 

A potential downside of the basic operation mode noted above is the continuous use of the 

finite transmission bandwidth resources of the network by default transmission of all video 

data. Furthermore, the amount of data to be processed at the central location (usually by hu-

man operators, as noted above) is unchanged, although the picture quality may be significantly 

enhanced. 

Both problems can be addressed by the next logical step in the approach: remote processing 

of video data. If the on-camera processing is extended beyond digitisation, compression and 

transmission to allow some degree of image analysis, video data can be transmitted only when 

pre-specified alarm criteria are met. Resource availability on-camera will inevitably be some-

what restricted due to the physical limitations on the hardware. It will be necessary to de-

velop/adapt existing methods to suit such a digital camera based network so it uses the most 

efficient approach available for the task at hand. 

1.1.7 Evaluation of computer vision processing techniques 

A common feature of most of the full analysis systems described in Chapter 2 is the use of com-

plex models in predicting/evaluating object behaviours. Considering the Integrated Traffic and 

Pedestrian Model-Based Vision System (section 2.3) in particular, the steps required include 

simple frame differencing, boundary extraction, fitting of a spline and Principal Components 

Analysis (PCA) to build models off-line. These models must then be used by a Kalman filter on 

live footage (again processed by frame differencing, boundary extraction and fitting of a spline) 

for the matching/tracking of objects. 

While the use of such a complex modelling approach can provide good results and may be im 
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portant in enhancing their quality and reliability, they do impose a considerable computational 

overhead. Although the cost of computational power continues to fall, in practical applications 

it is wise to remain prudent with resources, most especially in a commercial context. In some 

situations (for example safety critical applications) a cost versus benefit evaluation of the ap-

proach would be most likely to endorse the use of such an approach whereas in others (for 

example low level security) a simpler, less resource-hungry method may be more suitable. 

The first step in performing such a cost versus benefit analysis is to derive a clear, quantitative 

assessment of the costs (such as cpu time and memory requirement, hardware and software 

costs, installation and maintenance) and benefits (such as positive/negative failure rates, speed 

of operation, complex scene handling, flexibility) for representative approaches. In a system 

where processing may be limited to that possible at a relatively low-specification processor, the 

choice between excellent results with prohibitive resource requirements and adequate results 

with feasible demands is very significant. Such analysis is not common within the computer 

vision literature and the data to use for choosing optimal solutions is not generally available. 

It is not efficient to design a system for practical usage, to implement it on the desired platform 

and to then conduct an analysis of the performance and resource requirements. At this stage it 

is likely be too late to conduct significant revisions, at least until the next release of the system 

should there be one. To develop a suitable system, some consideration of the performance 

characterisation issues should be taken into account from the very beginning of the design 

phase. 

Following the principles of Marr's theory, the general pattern in vision research and the prin-

ciples of object oriented design, it is best to consider the system in terms of the component 

processes. If these components are chosen to correspond to the usual decomposition of the 

problem (section 2.1), they will also correspond to sub-problems for which published work 

exists in the vision literature. Any published results from previous work will then assist in the 

selection of the approaches to adopt in the construction of a new system. 

Ideally, the results available on performance of extant systems, combined with detailed per-

formance characterisation of each individual new algorithm could be used to nominate the best 

overall construction of a system to work on a specified platform. However, as discussed in 

Chapter 5, detailed performance characterisation results are not generally available in the lit-

erature. Furthermore, the resources required to obtain such results from each new module are 
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restrictive within the context both of research projects and most commercial developments. An 

alternative approach to such a design problem is needed. 

Any evaluation requires a context in terms of the anticipated usage and the platform upon which 

the system is to run. In the case to be considered, the usage is as a surveillance system, primarily 

designed to detect pedestrians in scenes. This task was chosen as it is one of the smallest self-

contained practical applications constituted from discrete sequential vision processes. Using 

this as the specified application will simplify the evaluation task in this pilot implementation. 

The platform on which the system is to run is a version of the remote processing based system 

described in section 1.1.6. The procedures are to run at the remote processor without any initial 

recourse to central processing facilities. The platform details are described in full in Chapter 3. 

As discussed in full in Chapter 4, the chosen approach for system evaluation is to apply Object 

Oriented design principles to the problem to develop a modular solution to the surveillance 

problem under consideration. Each module will correspond to one of the sub-problems noted 

above and will initially be implemented separately. Using the available results in the literature 

for pre-selection, a range of algorithm solutions will be implemented for each module. 

Performance characterisation will not be at the module level, but will be upon the combina-

tions of modules comprising alternative system variants. Testing will be on real surveillance 

sequences which embody a range of environmental and behavioural attributes. These scenes 

will be stored for use by each system variant and will be made available to third parties for inde-

pendent testing. Performance against manually acquired ground truth and resource requirement 

measures will be combined to give an overall evaluation for the suitability for the final platform. 

Full per-module performance characterisation including failure modes and error propagation 

would offer greater generalisation and usefulness to third parties, but this must be balanced 

against the resources such comprehensive testing demands. 

1.2 Motivation and contributions 

The motivation behind this project has two principal aspects. 

First, a review of the literature underlying the development of new surveillance solutions (see 

chapter 2) indicates that a gap exists between the needs of the surveillance industry and the 

results generally available in that literature. The industry looks for a precise quantitative char- 
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acterisation of the abilities, limitations and error profiles of vision processing units to assist 

in constructing systems to meet customer specifications. Vision research primarily focuses 

on pushing the boundaries of system performance and exploring interesting technical aven-

ues to investigate novel approaches. Results are commonly presented in image-like formats or 

'demos' and/or using limited test data. 

Unless and until the two communities become more aligned, it would be of great value to 

provide a framework within which a compromise solution is possible. A principal contribution 

of this project is to develop and evaluate a methodology intended to constitute such a frame-

work. 

Second, the original problem in relation to which the need for such a methodology became 

apparent was the design and characterisation of a surveillance application to run on a state-

of-the-art, distributed processing smart camera network. Applying the methodology to this 

problem should provide a recommendation of the best selection between candidate approaches 

to achieving the surveillance goal. 

A further contribution is that a qualitative evaluation of the comparative performances of the 

individual approaches implemented in the system will also be obtained. The final principal 

contribution is the beginning of a data base of real surveillance test sequences, available to 

third parties for use in future design problems. 

1.3 Thesis goals 

This thesis proposes that an integrated design and characterisation methodology 
for the construction of vision systems for a specified application, based on object 
oriented design principles, can efficiently provide a recommendation as to an ap-
propriate implementation. Such a methodology can also contribute to an evolving 
database of test sequences and comparative performance information of more gen-
eral use to third parties. 

The overall goals of this project then, are as follows: 

To survey existing work in the fields of vision system performance characterisation and 

those areas of vision research relevant to the application to be designed. 

13 
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. The creation and evaluation of a new methodology for the integrated design and charac-

terisation of an appropriate practical solution to a specified vision processing problem. 

. Using this methodology, to design a modular surveillance application to run on a distrib-

uted processing architecture and to use object oriented design principles to implement a 

selection of standard algorithms and novel approaches. 

To characterise the performance of the different system variants which these modules 

constitute on real surveillance image sequences. 

. To compare these performances against manually acquired ground truth and review re-

source requirements to achieve a relative analysis of the performance of the candidate 

solutions. 

. To initialise a data base of real surveillance test sequences to be available to third parties. 

. To draw conclusions from the investigations and recommend an appropriate system van-

ant to migrate to the intended platform plus improvements to the design methodology. 

1.4 Thesis structure 

Chapter 2 is a survey of existing work in the fields of vision system performance characterisa-

tion and those areas of vision research relevant to the application to be designed. 

Chapter 3 describes the particular platform upon which the final system variant is to run and 

presents the general design considerations for the implementation phase. This, in parallel with 

consideration of the literature in Chapter 2 provides the specifications of the application under 

design. 

Chapter 4 goes into the detail of the candidate solutions to be implemented for evaluation 

towards designing the most appropriate system variant. 

Chapter 5 discusses the position in respect of performance characterisation in the vision com-

munity in the past, recent new initiatives to the process and describes the motivation for the 

current approach. 

Chapter 6 presents the results of the performance characterisation tests, offers explanations 

for unanticipated patterns and draws initial conclusions as to the effectiveness of the candidate 
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solutions. 

Chapter 7 draws conclusions from the work as to the most appropriate choice for the system 

variant to migrate to the intended platform and an evaluation of the combined performance 

characterisation/design process. It also discusses possible improvements for each, limitations 

to the current versions and suggests avenues for future work. 
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Chapter 2 
Background 

2.1 Introduction 

There are two main areas which must be investigated to provide an adequate background for the 

work undertaken in this project. The first is the relatively small body of work which has been 

undertaken in the field of performance characterisation as applied to vision research, considered 

in section 2.2. The balance of the chapter considers the research into approaches to the task of 

visual surveillance, primarily the automated surveillance of pedestrians (see section 3.3). 

To provide a structure for the investigation of the surveillance topics, it is useful to consider 

the processes involved in the interpretation of the behaviour of pedestrians in a scene split into 

three levels (as in [17]): 

. Low level processes which implement algorithms primarily at the pixel level to produce 

primitives such as edge strength maps, corner maps and segmented object maps, which 

are still primarily within the image-like domain. 

. High level processes such as semantic behaviour analysis, 3D shape inference and iden-

tity hypothesising which simulate intelligent processing of the data. 

. Mid level processes such as model fitting, tracking and object classification which bridge 

the gap between the other two levels. 

Most of the design, implementation and evaluation approaches which constitute the bulk of 

this work are focused on low and mid level processing but it is also important to consider 

some developments in high level analysis. This will provide a context for the current work and 

suggest some of the possibilities for future extension. 

There is a substantial amount of research (see sections 2.7 and 2.8) in the area of pedestrian 

detection and tracking, and systems for achieving this task are almost universally considered as 

constituted from the following distinct subprocesses: 
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Initialisation and camera calibration 

Image capture 

(Optional) Image preprocessing 

Background estimation 

Foreground segmentation 

Object growing and labelling 

Object classification 

Object tracking 

(Optional) Higher level processing 

Apart from the section relating to performance characterisation (see above), the investigations 

in this chapter will be structured in line with this decomposition. Research endeavours which 

only extend to a certain subprocess will be considered in the section relating to that level. The 

approaches applied in earlier subprocess steps will be considered and discussed within that 

context. In each section, methods will be grouped according to the similarity of the approaches 

employed at the highest subprocess level. 

In addition to the overall system design and characterisation approach, a principal area for novel 

work within the current context is in investigation of the performance of model-based tech-

niques for detection and tracking as compared to less computationally intensive approaches 

in deducing object behaviour. An additional area for interesting qualitative comparison ex-

ists between the traditional long-term average based uni-modal background representation ap-

proaches and the more complex multi-modal options. 

One key approach, which provided motivation for several of the module candidate solutions 

is described first (section 2.3), followed by systems which implement some or all of the sub-

processes of interest. The investigated systems are presented ordered in terms of the ultimate 

processing step investigated in the published work, in the terms of the above noted subpro-

cesses. 
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2.2 	Performance characterisation in computer vision 

The approaches emerging to correct the deficiency in empirical testing have several strands, all 

of which have contributions to offer to the advancement of the field. 

Bowyer [18] considers the experimental evaluation of individual vision algorithms (primar-

ily edge detectors) using real images. He notes that substantial research effort is required in 

constructing image sets (input data), developing meaningful evaluation metrics, ascertaining 

ground truth and constructing supporting software tools. In his examples a wide range of eval-

uation processes are employed, including human visual ratings, piping output to an independent 

and invariant structure from motion algorithm and the use of Receiver Operating (ROC) curves 

(see section 5.5.6). Emphasis is made that the latter two approaches require "truly enormous 

amounts of computer time". 

As referred to below in section 5.2.2, Courtney [19] uses comparisons with other fields to derive 

six axioms for developing working vision systems: 

Encourage modularity, emphasising reuse of existing modules to spread evaluation costs. 

Define module characteristics using data sheets to give generic expressions of usage para-

meters. 

Develop standard design guidelines, test environments and evaluation tools. 

Give quantified 'safety margins' in design specifications. 

Investigate and record system failure modes. 

Investigate and record limits of use and build in reactions to these being exceeded. 

Courtney and Thacker [20] discuss some of the issues involved in good practice for algorithmic 

testing. They note that the amount of data is a critical issue, with robust algorithms requiring 

"huge quantities of data": for 99% reliability, hundreds of test images may be required. The 

range of the test data is very important too and should be arranged to be representative of the 

range over which the algorithm is intended to function. They note that test metrics should be 

quantitative and objective and that it is useful to associate them with an algorithm's failure 

modes. Again, ROC curves are proposed as useful metrics for feature detection algorithms. 
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In the second part of their paper, they discuss algorithm design principles and discuss how an 

understanding of the statistical properties of data and algorithmic operations is important. They 

emphasise that a thorough understanding of each algorithm's theoretical basis is important in 

constructing a stable system where errors propagate in a known and manageable form. 

In [21], the FERET program, designed to set up a large database of facial images and in parallel 

a testing procedure to evaluate face recognition systems is presented. It is specified that the goal 

of the project is not to measure the effectiveness of performance of individual modules but to 

assess the performance of each system as a whole on a large data base. The central issue is that 

fully comparative evaluation is only possible using a common test database. In this example 

the construction of the database is performed independently of the systems' developers, as are 

the actual test procedures. 

It is worth noting that although the database did cover a range of variables including different 

backgrounds, expressions, hair styles, augmentations (hats, glasses) ages etc. it focused on 

Caucasian subjects. In this respect the global usefulness of the study is somewhat impaired. 

Clark and Courtney [22] too state that the best approach to characterising performance in the 

field as things stand, is the application of candidate vision techniques to a common set of data 

and go on to conduct a survey of the use of databases in this context (the ECVnet Survey). They 

emphasise that the databases must be representative of the problem in terms of overall size and 

the constituencies sampled. They also state that experimental design is of key importance, again 

recommending the use of ROC curves when assessing techniques. 

They are careful to note that simple objective measures do not necessarily measure a useful 

quantity and so it is important that such metrics be chosen carefully. 

In [23], Marik brings out the point that even a 'simple' computer vision task generates a com-

plex algorithm-wise performance analysis problem. He draws on an analogy to a production 

line process comprised of multiple processing stages. From this idea he suggests the application 

of the theory of Quality from manufacturing analysis as a top-level framework for performance 

characterisation. This introduces the concepts of true product performance which is only meas-

urable by the end user 'in the field' and substitute performance which is what is assessed during 

pre-release testing. A framework is presented where the correspondence between the two per-

formances can be analysed at system and algorithm levels. 
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An evaluation strategy which has been developed specifically for surveillance applications is 

presented in [24]. The general surveillance problem is split into Image Processing, working 

with images to give a set of metrics and Image Understanding, which performs interpretation 

on the IP output to give semantically meaningful information. Image processing is further sub-

divided into Low Level Image Processing (LLIP) which attempts application-oriented filtering 

of noisy sequences plus a background representation and High Level Image Processing (BLIP) 

to give synthetic descriptions of image content. 

The evaluation approach focuses on BLIP, which is subdivided into blob detection, feature 

detection, blob tracking and feature tracking sub-modules, all of which are parametrised. The 

optimisation problem for BLIP overall is considered as a search for the parameter configuration 

which will provide the best overall results. A formal definition of the optimisation criterion is 

given for the blob detection task in terms of comparison of results with ground truth evaluated 

by a human operator. 

A distance measure between the ground truth and observed results is defined proportional to 

false alarm and missed detection probabilities as evaluated from the amount of overlap between 

images segmented automatically and images segmented by humans. The two distance compon-

ents are plotted over 500 frames for a limited range of the four parameters which effect blob 

detection, using discrete steps 'depending on the parameter itself'. The result allows the choice 

of best parameter selection for optimising false alarm/missed detection independently and al-

lows a trade-off to be made in parameter choice between the two metrics. 

2.3 	The 'Integrated Traffic and Pedestrian Model-Based Vision Sys- 

tem' 

A full surveillance system which has shown great abilities in the current problem domain, that 

of pedestrian detection, tracking and behaviour analysis is the Integrated Traffic and Pedestrian 

Model-Based Vision System (ITPMJ3VS) [25]. The system uses two integrated subsystems to 

monitor a car park scene, one to locate rigid objects (primarily cars) using a 3-D model and the 

other to track flexible objects (primarily people) using a 2-D model. Pedestrians are modelled 

using a flexible 2D model which is automatically learned using image sequences containing 

representative shapes [26] [27]. The latter inspired several component modules in the system 

under design and so the relevant components are described in detail in Chapter 4, but a summary 
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review is included here. 

The background of the scene is represented using a time-averaged median approximation [28] 

(see section 4.4.2), with moving objects segmented by frame differencing between this and the 

current frame. After blurring and thresholding to remove noise, the boundary of each object is 

represented using a cubic B-spline, upon a sequence of which boundaries Principal Components 

Analysis (PCA) is performed to give the characteristic eigenvalues and eigenvectors. These 

correspond to the characteristic shape variations of the pedestrian motion and the model is 

constituted of the mean shape from the sequence and a subset of these eigenvalues and vectors. 

This model is matched against moving objects in new scenes to classify as pedestrian/not-

pedestrian. Each pedestrian object is specified by a group of parameters: its centroid, scale, 

orientation and a set of weighting parameters for the eigenshapes of the model. The parameters 

are used to correlate each object between frames with tracking implemented using a Kalman 

filter [29] [30] [31]. 

An object's trajectory is described using a series of flow vectors. A competitive learning net-

work is used to model Probability Density Functions for these vectors. In this network, the 

trajectory points constitute input to the system where each image point is associated with a 

particular node. Using the learning rules with this input, a model is built up automatically over 

time which specifies typical trajectories for a scene against which new trajectories can be clas-

sified as typical or atypical [32] [33].  This representation includes information on interaction 

with mapped stationary objects (e.g. cars) and is amenable to construction of a spatiotemporal 

model for prediction [34]. 

2.4 	Camera and platform issues 

Overall hardware, system design and platform specific considerations are important in design-

ing an approach which can take advantage of their full potential and recognise their limitations. 

As hardware and platform abilities and complexity increase, the impact on system design and 

control feedback is likely to become ever more significant. 
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2.4.1 Passive camera systems 

Calibration is necessary to relate camera data to the real world using a projective transformation 

of world points to image points. Several of the systems considered require scene knowledge to 

be incorporated into the model to assist control, interpretation and other high level processes 

and manual calibration of the camera is currently a required step. 

Work in the area has progressed to the level where it is possible to obtain calibration with no 

reference object for the increasingly difficult cases of pure translation with camera intrinsic 

parameters variable (e.g. zooming) [35], pure rotation with invariant camera intrinsic paramet-

ers [36] and pure rotation with variable camera intrinsic parameters [37]. 

As such camera calibration is considered as a preprocessing step and will not be implemented as 

a module in the system under consideration, details of the approaches used will not be presented 

here. 

2.4.2 Multiple camera issues 

In a distributed camera network it is advantageous to be able to combine information from 

different cameras to track an object as it moves from the view of one to that of another. Looking 

at the case of two cameras specifically, [38] presents a method whereby moving objects can 

themselves provide the information to enable this. 

First, moving objects are segmented by subtraction of an adaptive background model, and their 

centroids are calculated and tracked over multiple frames. The two cameras each then have a 

list corresponding to a moving object's trajectory from their viewpoint. A estimation of a planar 

mapping between the two is given by a least median of squares measure and the coplanar points 

take the form of a homography from which the rough alignment of the ground plane can be 

calculated. This alignment given is sufficient to apply robust estimation techniques for planar 

alignment to give the fine alignment for the ground plane. Using the tracked object coordinates 

again, the epipolar geometry (the cameras' relative translation) can be calculated to finally align 

the data. 

In [39], the point is made that more is needed from surveillance solutions to assist the oper-

ator by reducing the 'flood of images' generated by multiple cameras. The paper notes that 

operators in metro station control centres not only need to monitor multiple alternating im- 
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ages but can have a multitude of secondary tasks assigned. Intelligent surveillance systems, 

which themselves act like an operator by giving pre-selection of possibly interesting images are 

recommended as the solution. 

2.4.3 Current 'Remote Intelligent Surveillance Camera Systems' 

An example of a current application of a remote intelligent surveillance camera system is given 

in [40], in operation at the Port of Savona in Italy. 24 cameras with PC board-based remote 

processing units (Video Servers) are sited over 65 hectares, linked to a central location using 

the port's existing telecommunication and information network. The video servers are inter-

faced using standard ethernet connectors and transmit data in compressed form using TCP/IP 

protocols, to be viewed and/or stored to hard disk. The system does not employ any signific-

ant image analysis remotely, the distributed processing being limited to video compression and 

transmission. 

In [41], A system is presented where analogue TV signals are captured at remote locations 

and then digitised and compressed for transmission as MJPEG via an ethernet interface. In 

this application, the sequences are transmitted using an existing cable TV network to a central 

location where a high performance computing network independently performs the analysis of 

the sequences to detect interesting events. 

2.4.4 Enhanced remote processing 

The distributed processing concept is taken a significant step further in [42] which implements 

processing locally at the remote camera locations. At each remote surveillance point, the local 

processing task is subdivided into modules, each implementing a discrete image processing 

step. The modules implemented in the example system, used for registering abandoned objects 

in unattended railway stations, are: Image capture/digitisation, change detection (detection 

of pixels not due to background which have remained stationary for long periods), attention 

focusing (noise removal using morphological operators), sub-region extraction, classification 

(using a neural net to classify the cause) and transmission. 

Information is transmitted along the network in an alarm instance i.e. where the neural net 

classifies an event as relating to an abandoned object. In this case the transmitted data is the 

background image, the extracted sub-image and the coordinates of the detected object. The 
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transmission system is based on Direct Sequence Code Division Multiple Access (DS/CDMA) 

techniques allowing simultaneous transmission of the components of the alert bundle. In tests 

on sequences obtained from two Italian railway stations, a false positive rate of 1.8% and missed 

detection rate of 3.5% were obtained. 

Smart cameras as part of an integrated surveillance system are also used in a limited capacity in 

[43], employing information fusion with data from traffic flow ground loop sensors and traffic 

light control systems. In this application, the initial alarm data is sent to the camera from the 

ground loop system and causes the camera to send to storage a five minute interval of scene 

footage bracketing the incident. The default behaviour in the absence of such an alarm is that 

the images are recorded over to maximise the efficiency of usage of recording resources. 

2.4.5 Network design 

The design of systems incorporating such 'smart cameras' is addressed in [44], where simula-

tions are presented for a variety of patterns of network topology, traffic and interactions. The 

work assumes an asynchronous transfer mode (ATM) network protocol used to carry constant 

bit-rate text from cameras in normal situations and high bit-rate video and message data in 

alarm situations. Control data is sent to the cameras by human operators reacting to alarms by 

directing PTZ (Pan Tilt Zoom) response and/or manually overriding the alarm. 

The work is currently at the stage of providing a foundation for more realistic simulation studies 

to allow recommendations as to suitable algorithms and network topologies to give maximum 

service. 

The issue of design of real time systems itself has been addressed in papers such as [45],  where 

the importance of composing large systems from small, reusable modules has been stressed. 

To compose a system with efficient real-time results, the modular arrangement must exhibit 

interruptability and should manage allocation of computation time optimally between the com-

ponent modules. 

From the basis of a modular system design, the components can be implemented using anytime 

algorithms which allow computation time to be traded for decision quality by incorporating 

progressive refinement techniques (to give interruptability) and knowledge concerning their 

performance/resource relationship. In this project design in a modular format and qualitative 

performance appraisal will facilitate ths format as a future development option. 
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2.5 	Background modelling 

A background modelling approach which captures a robust and dynamically updated repres-

entation of the scene's permanent and semi-permanent features/attributes is a key component 

of most surveillance systems. Although moving objects can be detected without such a repres-

entation, by ongoing differencing between consecutive frames for example, such processes fail 

if an object pauses or is simply too slow moving. 

Most traditional background representation approaches in some way approximate the long term 

average of values observed at a pixel point. Some weighted average of the values observed, 

sometimes supplemented by a measure of the variance of these values is still the most common 

approach. 

2.5.1 Extensions of uni-modal background representation 

An adaptation of the mean background approximation is presented in [46],  which distinguishes 

between persistent and transient intensity variations. Persistent variations are characterised 

by a finite set of intensity values reoccuring over a period at a pixel position (oscillatory leaf 

motion etc.). Transient variations are characterised by the momentary appearance of intensity 

values that have not occurred in the recent past at such a point (an example being an moving 

object point). 

The function which is compared to a threshold value, is the output of a motion detection filter, 

Yn, given by: 

Xn - Mn  
Yn =  

n + 
(2.1) 

where: 

Xn is the current observed value 

E is a small scalar constant to avoid possible division by zero 

'Mn and i are estimates temporal mean and difference respectively: 

Mn  = cEx n  + (1 - 	 (2.2) 

= cIx - m + (1 - c)l.. i 	 (2.3) 

where: 
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U is a weighting factor to control the sensitivity of the filter. 

i acts as a normalisation factor such that, with steady-state or occilliatory variation, the contri-

butions of the variations will tend to cancel out. A transient variation will be lower by a factor 

of ü in the numerator of equation 2.1 (compared with the denominator) and so a response will 

be given. 

An alternative for background representation involves using a Kalman filtering approach as in 

[47], with the state of the filter at each pixel corresponding to the intensity of the background 

image at that point. Each new frame's values are used as the measurements for the system, with 

the updated background generated as the predicted states for each pixel. 

2.5.2 Multi-modal background representations 

Using a simple average over time is not robust with respect to multiple moving objects and peri-

odic oscillations in a scene (a typical example being a tree's movements in the wind). Simple 

averaging techniques are also prone to erroneously including shadows of objects and further-

more, slow moving objects can corrupt the background approximation as their values are par-

tially incorporated. 

A more complex approach [48] models each image pixel as a mixture of Gaussians. This 

method is implemented in the current system design and so is described in full in Section 4.4.4. 

In this approach, individual Gaussians are assigned to correspond to background or foreground 

at each pixel point based on persistence and variance measures. A pixel is classified dependent 

on whether the distribution which best represents it is considered to be part of the background 

model. This type of background can cope well with lighting variation, slow-moving objects, 

clutter and repetitive motion. 

Deficiencies of this approach including a slow initialisation rate and difficulties in distinguish-

ing shadows have recently been addressed in [49] by using different update equations at dif-

ferent phases and use of a shadow detection scheme based on a computational colour space. 

Improved segmentation results and an increased update speed are possible using these improve-

ments. 

Another method using a mixture-of-Gaussians classification model to building an adaptable 

background is presented in [50]. In this approach, distributions at each point represent either 
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background, shadowed background or object. A new pixel value is classified in these terms 

and used to update the corresponding distribution using an incremental form of the expectation 

maximisation algorithm. 

2.5.3 Coping with slow moving and disguised intruders 

Special considerations required to handle the case of very remote cameras and individuals mov-

ing slowly to escape detection can be addressed by implementing very slow temporal integ-

ration as employed in [51]. The background model uses a standard mean weighted average 

update, but the proportion of change due to the current values at every adaptation step is set 

quite low (e.g. 	and only carried out every Ntz  frame, with the default set at N = 64). Also, 32 

for areas with a currently identified foreground object, the update rate is reduced by a factor of 

four to further mitigate the effects of objects' blending with the background. 

This system too uses multiple backgrounds at each pixel, which here explicitly try to model 

motion-based dislocations. In the current implementation, the secondary background is de-

veloped in a supervised batch learning procedure, such that false alarm detection values at 

a point (with respect to the primary background) are used for initialisation of the secondary 

background. Where a false alarm occurs in respect of both backgrounds in this phase, the sec-

ondary background is replaced by the new value. A third background is built as a copy of an 

old (5-10 minutes age) image, with objects labelled as such: this old-image is not temporally 

updated and is only used in a cleaning phase (below). 

To explain the uses of the multiple backgrounds in this approach, the segmentation step must 

be considered. As well as a general global threshold, employed to remove camera gain noise, 

a per-pixel threshold is used to account for differing spatial variability at pixels (e.g. greater at 

edge pixels than central object pixels). The sum of the two thresholds constitute a low threshold 

at a point, with a high threshold set at 4 times this. To be classed as foreground, a pixel must 

be above the low threshold and 'connected' to at least one other above the high threshold. 

In the context of vision research, 'connected' has a very specific meaning, which is discussed 

in detail in section 4.5.1 

Threshold adaption is applied to each individual pixel. Where a pixel is above the current 

threshold but, due to the connectivity constraint above, is not classified as foreground its 

threshold is incremented for subsequent frames. For pixels with a value below current threshold, 
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this threshold is decremented by a smaller amount for subsequent frames. The net effect of these 

processes is that, at each pixel position, the threshold will be adjusted to reflect the observed 

noise variance at that point. 

A standard difference image is constructed using these variant techniques applied to the primary 

and secondary backgrounds and simultaneously a low-resolution difference image (reduced in 

size by a factor of 4 in each direction) is built. The area of a region is calculated using the 

standard image, but the connected component algorithm (CCA) used to label objects uniquely 

is applied only to the low-resolution image, to increase speed. Size thresholding is then ap-

plied followed by two processes which look at the intensity for each region normalised using 

the average of the current image, primary background and the old-image background. The 

first process involves thresholding each region using the normalised background to remove the 

effects of local lighting variations, the second process involves doing the same using the norm-

alised old-image to remove 'ghost image' regions due to dis-occluded background. 

This approach is a good example of the improvement of a standard approach using a multitude 

of enhancements which refine the system's abilities and remove specific limitations. Such 

enhancements could be applied as modules to improve the performance of a well designed 

object oriented system. 

2.5.4 Coping with fast illumination changes 

All background modelling approaches which use dynamic updating approaches to react to 

gradual illumination changes tend to exhibit problems in situations of relatively fast light 

changes. Where a cloud passes in front of the sun or artificial lighting is activated, the fast 

global change can result in a large region of the frame being incorrectly classified as a fore-

ground object. 

[52] tackles this problem from a physics-based viewpoint, considering the light from any sur-

face point as charactensable by the surface's illumination and its reflection properties. The work 

shows that, using an assumption for the chromatic average of ambient objects in a scene, the 

RGB colour channels can be normalised to separate the variation of illumination from that of 

surface reflection. Using this normalised RGB colour space, a Gaussian mixture model robust 

to fast illumination changes is constructed. 
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2.5.5 Error analysis of background representations 

An error analysis of background modelling approaches in isolation is given in [53]. Error 

properties are analysed in terms of labelling as foreground or background with a false alarm 

being an incorrect labelling as foreground, and a missed detection being an incorrect labelling 

as background. Rather than running a large number of tests, the work uses expectation max-

imisation and equilibrium analysis within the context of a Markov model labeller to estimate 

the probabilities of the two incorrect labellings for a particular background representation. The 

probabilities are plotted against each other to constitute a Receiver Operating Characteristic 

(ROC) graph which can be used to set system parameters. 

As part of the results, it was illustrated that, for the scenes considered, a single Gaussian per 

pixel model was not a good representation but that a static mixture of gaussians approach gave 

significantly better results. Further, problems due to noise were reduced by using a dynamic 

mixture of gauss ians model. 

2.6 Segmentation 

Segmentation, the extraction of moving or otherwise significant objects from a scene, is closely 

linked to background modelling in those systems which employ such a representation. In many 

systems, some form of differencing/thresholding is used, either simple (as in [25] [46] dis-

cussed above) or complex (as in [51] discussed above). In these, the difference between current 

and background images is compared with a pre-set value to determine significance. In other 

approaches (as in [48] [50] discussed above) the segmentation and background representation 

steps are fully integrated. 

2.6.1 Optical flow 

An approach which is very useful and common for the case of rigid objects involves the cal-

culation of optical flow vectors for a regions. This may be in terms of the observed vector dis-

placements at a point or the estimated velocities: points with similar vector values are directly 

segmented out as corresponding to a single object. This approach is generally less useful for 

flexible objects such as pedestrians, whose internal movement can confuse the measure. Recent 

work [54] has presented a voting method where consistent optical flow data are accumulated 
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over time to detect humans. This data is integrated with edge, depth and uniform brightness 

region data using ad hoc heuristic rules to disambiguate between object and background motion 

and to assist in tracking. 

However, the approach to tracking boundaries of non-rigid objects using snakes ([55], [56], 

[57], which served as the inspiration for the B-spline fitting approach used in [25] has been 

extended to real-time tracking in combined spatio-velocity space [58].  Using image intensity 

gradient and opticalfiow as system measurements at the contour, robust tracking in the presence 

of occlusions and clutter is possible using a robust Kalman filter to detect and reject spurious 

measurements and occlusion effects [59]. 

Another method which aims to mitigate the limitations of direct motion segmentation for flex-

ible objects is presented in [60]. Similar to the background approximation in [46], discussed 

above, this method distinguishes between motion with a coherent direction (e.g. a pedestrian 

crossing the scene) from that with a random or periodic pattern (extremity oscillation, veget-

ation in the wind, water specularity etc.). A measure of motion salience is defined which is 

based upon the extent to which a coherent motion dominates a local area in the spatiotemporal 

domain. 

The input sequence of images is convolved with spatiotemporal gradient filters in both direc-

tions in each of two spatial dimensions and the results are squared to give scalar image-like 

representations of the energy due to coherent motion at each point. Separately for each of the 

two dimensions, the absolute value of the ratio (difference:sum) for the results for the two dir-

ections gives two salience maps, one up-down, one left-right. The final overall salience is the 

result of applying a max operation and Gaussian blurring to these two. Thresholding of the 

image gives a low-noise motion difference result. 

2.6.2 Adaptive change detection 

An alternative approach to segmentation is presented in [61] which illustrates a method com-

bining aspects of temporal differencing (at its simplest the differencing between consecutive 

frames to give Lf) and background subtraction to give what is termed adaptive change de-

tection. Temporal change is detected based on the difference image Afj and a weighted ac-

cumulation of the last N such difference images. Accumulating the two gives a measure of 

the changes due to moving objects and lighting changes which is then thresholded to specify 
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regions of temporal change. This is augmented by background subtraction to isolate objects 

which are not currently moving but which are also not part of background. 

The background is modelled simply, using the mean observed value with the standard deviation 

used as the threshold value to specify the allowed range. The background is adapted using a 

weighted accumulation of the mean and variances over the last N frames. To avoid corruption 

of the estimate by known objects' values, this adaptation is only implemented for the region 

which has not corresponded to an identified foreground object for a specified number of frames. 

2.7 	Pedestrian detection 

Pedestrian detection is the most basic stand-alone goal of a normal surveillance system. After 

the previous steps have been carried out, this is the classification of detected objects as 'pedes-

trian' or 'not-pedestrian'. Classification approaches may be model-based where a pre-learned 

pedestrian model, usually built from an example sequence, is matched to each detected ob-

ject. Alternatively, it may be model-free (a.k.a. pixel-based) where lower level object attributes 

are used according to some set of approximations and assumptions about common pedestrian 

characteristics. 

The approaches considered, like the system under development, are targeted at remote pedes-

trian detection. The camera is mounted on a building or pole at a distance from the subject 

pedestrian area which is relatively high compared to the focal length of the camera. The range 

of anticipated pedestrian heights in such applications for a VGA format image (640 x 480 

pixels) will be in the region of 50 to 300 pixels. 

2.7.1 Block-based detection 

In this pixel-based approach [62], waiting pedestrians are detected by a pole-mounted camera 

using frame differencing against an average background image, followed by simply checking 

that the detected pedestrian does not move for a minimum N frames. To allow processing in 

real time using a single DSP and to reduce spatial sensitivity to noise, each frame is divided into 

blocks with subsampling applied to each block. Blocks which do not correspond to a specified 

waiting area can be 'turned off' manually to further reduce processing requirements. 

Detection is performed by thresholding the difference between block averages for the current 
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image and a mean average background, using an adaptive threshold which is governed by the 

degree of light at the waiting area. The result is a map of active blocks, a pre-specified sized 

grouping of which corresponds to a pedestrian object. 

Block size, subsampling rate, threshold update factor and number of blocks per pedestrian need 

to be manually specified during a calibration phase taking several hours, which represents a 

relatively large investment of time for the simple results offered. Testing the program (written 

in DSP assembly language) on 23 minutes of video signals at 3-3.5 fps showed that the system 

consistently over-estimated the presence of waiting pedestrians. 

This is an example of a quite simplistic approach to detection, which is only capable of function 

in a very constrained and pre-specified environment. 

2.7.2 Blob features 

The use of simple features derived from segmentation is a common pixel-based object classific-

ation approach. Pfinder [63] uses a more flexible and complex approach, modelling pedestrians 

using a grouping of 2D gaussian blobs, augmented by a pixel-wise support map. Pedestrian 

components are represented by individual blob-like objects, specifically using the blob's spatial 

(x, y) and colour (YUV) values, each of the originating pixels having had sufficiently similar 

such properties to be classed together. A priori knowledge about classes (e.g. normalised skin 

colour) is used to assist in updating a spatial model associated with each blob to predict its 

distribution in each new frame using a Kalman gain matrix. 

The log likelihood of pixels in new frames combined with spatial priors and connectivity con-

straints allow pixels to be assigned to existing blob classes or initialise new ones as appropri-

ate by comparing the computed class membership likelihoods. This exemplifies the use of a 

semi-complex model where the distribution and inter-relationship between body components 

detected as blobs are used as classifier attributes. 

Another approach which includes the use of blob features directly in detecting pedestrians is 

given in [64]. A common background modelling approach is used, taking the pixel-wise mean 

and variance for each colour channel, with foreground segmentation of the current image by 

differencing and thresholding at values proportional to the standard deviation. Morphological 

operations reduce noise and a 4-neighbour CCA is used to label moving objects above threshold 

size as blobs. The background is not initially updated at areas where a blob is currently located, 
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but to allow eventual incorporation of stationary objects, if a low velocity is recorded for a 

specified number of frames, the blob can be explicitly re-classified as background. 

The blob features which are extracted are centroid (cr , cu), second-order moments 

S, S) and, for confirmed objects, velocity (u). Second order moments are equivalent 

to the statistical attributes variance (in the x or y direction) and covariance (in the xy direc-

tion). A measure of dissimilarity d between blobs in the five dimensional feature space defined 

by (cr, c, S, S, S) is specified so that matching can be implemented using a 'greedy' 

search procedure, with matches chosen below a pre-specified threshold on a 'first best' basis. 

As blobs can correspond to either a single real object, part of one or a group of them, alternative 

hypotheses are generated for blob/object matches in local clusters and these are maintained as 

part of the internal state of the tracker. The most likely hypotheses are output at each frame and 

evidence from subsequent frames used to update the alternative hypotheses, allowing a revision 

process which can efficiently cope with objects merging and splitting. 

The performance of this approach is very well presented, with all parameter settings listed 

and results including error rates provided. Good tracking results are shown for a real test data 

sequence with occlusions. 

2.7.3 Complex classifiers 

The distinction between pixel-based and model-based approaches is not always straightforward. 

An approach to pedestrian detection which works on individual images without the need for a 

background model is presented in [65]. This is a trainable object detection system, which learns 

how to detect classes of objects in unconstrained still scenes. The object representation uses 

projections of object images onto a dense Haar wavelet [66] basis which encodes structural 

features at multiple scales. The Haar wavelet transform finds multi-scale edges resulting in a 

three sets of coefficients (one corresponding to each of vertical, horizontal and diagonal edges) 

that indicate response over the whole image. 

The representative features are chosen as a small subset of N of these coefficients which are 

consistently strong or weak across the training patterns. The N-dimensional feature vectors are 

used to train a Support Vector Machine (SVM) [67] classifier for each component of a pedestrian 

(arms, legs and head). The individual SVMs are used to detect pedestrian components in a new 

image. The detection is performed on incrementally resized versions of the image to implement 
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multi-scale detection. 

An Adaptive Combination of Classifiers approach is used such that the highest score for each 

component is used as input to a further linear SVM classifier which gives the final decision as 

to the object's classification. ROC curves for the approach show that it can detect pedestrians in 

single frames including occlusion and clutter with a false detection rate of less than one every 

796,904 patterns. There was, however, no information available on the time resource required 

for this level of performance. 

This approach illustrates the use of a system wherein the characteristic attributes of a pedestrian 

are stored as inherent attributes of the model, without recourse to specifying/modelling directly 

observable attributes. 

Pedestrian detection is often the penultimate processing step in a tracking application and more 

approaches to detection in that context will be examined in the following section. 

2.8 	Object tracking 

Although pedestrian detection is in itself a possible ultimate goal for a surveillance system, most 

work in the area is focussed on taking the scene analysis at least one step further to implement 

tracking of such objects over time. 

Approaches employ a variety of background representation, segmentation and pedestrian de-

tection techniques followed by methods which relate the results found in one frame to those 

in the previous one. The most significant step in the preprocessing is the choice of pedestrian 

detection approach, primarily between pixel-based and model-based methods, as the results of 

this step most directly affect the choices for inter-frame tracking. 

2.8.1 Flow vector tracking 

The tracking problem is generally simpler for fixed shape objects, where approaches based on 

flow-vector segmentation methods are more suitable. An example of this type of approach suit-

able for real-time tracking of moving objects (against a background which may exhibit motion 

relative to the camera) has been developed in [68]. A list of 2D corners is extracted from a frame 

using the SUSAN corner detector and initial tracking is accomplished by matching against the 
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previous frame's corner list using a vector description of the feature based on intensity and 

the (x,y) coordinate of the centre of gravity. A Kalman filter is initialised for each feature to 

maintain tracking. 

Individual flow vectors are calculated using displacement over the past N frames and the res-

ulting set of vectors is processed to extract clusters hypothesised as each corresponding to a 

distinct object. Based on the weighted vector similarity for each of these, the centroid, bound-

ing box and motion model (using a Kalman filter again) are calculated and matched with the 

previous frame for tracking. Each object has an associated radial shape map which is used 

in matching and prediction. Occlusion is managed by fixing the shape where overlap occurs, 

using any observed points to predict shape changes in unseen parts. 

2.8.2 Disturbances 

The approach taken in [69] dispenses with explicit object segmentation in the tracking of mov-

ing bodies entirely. A background is constructed using a standard approach, as the weighted 

temporal average of recent frames. 

The background is linearly subtracted from the current frame to give a difference image, here 

termed as a disturbance field. An analogy to time-lapse photography is useful to help envisage 

that local motion is characterised by a 'wave-like' disturbance. Each disturbance has a head 

point which corresponds to the hypothesised current location of a moving object and a sequence 

of fainter (oppositely signed) tail points which correspond to the object's recent positions. 

Tracking particle objects are defined, which contain data of their current position, current state 

(inactive, active, holding), time spent in current state and, if currently associated with an object, 

its contrast compared to background and position/velocity history. 

For each frame, inactive tracking particles are scattered at evenly spread 'grid points' in the 

disturbance field and are designed to be attracted to the head of a disturbance if, and only if, 

they originally lie in its tail. This restriction helps to give good separation for multiple complex 

trajectories in a scene and can cope with occlusions and collisions by extrapolating the historical 

path described by the tail. If the head where a tracking particle comes to rest does not yet have 

an associated tracking particle, the current particle becomes active there and is then associated 

with that head. 
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This approach has been shown to be effective in tracking not only pedestrians, but also columns 

of ants and flowing water. The approach is thus very flexible, due to the absence of complex 

assumptions as to object attributes and provides an interesting alternative avenue for tracking 

research generally. 

2.8.3 Single blobs 

A more common, model-free approach to tracking pedestrians relies on considering 'blobs', 

obtained by frame differencing and CCA labelling. Although these approaches do not use an 

explicit learned model of a pedestrian, simple geometric (or other) features of such blobs, which 

are taken as characteristic of pedestrians are used in detection and tracking, do constitute a kind 

of simple model. 

Such a blob-based approach is presented in [70],  which combines low-level image processing 

methods with mid-level trajectory estimation to deal with occlusion handling. A statistical 

background model is constructed using the mean and variance values from the image over time, 

from which moving objects are segmented by computing a distance measure for each pixel 

in the current frame using a log-likelihood measure. Regions evaluated at above a threshold 

dissimilarity are marked on a binary interest map and labelled using a CCA algorithm to give 

segmented blobs. 

An Extended Kalman Filter (EKF) is used to predict objects' future positions using assumptions 

as to trajectory continuity. If a collision is predicted, an occlusion reasoning mechanism is 

brought into action for a potential event. If the relevant blobs then merge, an occlusion event 

is recorded, the EKF prediction system is used to update anticipated position/velocity and a 

future blob split is predicted. Division of the merged blob signals the end of an occlusion and 

the most likely continuing trajectory for an object as predicted by the EKF is assumed. 

Another system which uses a single blob representation of a pedestrian and which is particularly 

suitable for the distributed processing platform domain is described in [71]. The system im-

plements the tracking of pedestrians 'end-to-end' throughout a system comprised of distributed 

cameras. After frame differencing-based segmentation is used to detect moving blobs, moment 

invariants are extracted to be the characterising shape features. PCA is used for dimensionality 

reduction to represent the shape compactly. 

Six points on the middle line of the upper body (according to a course 2D human model) 
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are used for tracking between frames and for specifying three pedestrian features: (x,y) po-

sition (location feature), the average value of neighbourhood pixels (intensity feature) and 

image:height ratio between consecutive frames (geometric feature) are recorded to specify the 

pedestrian's state. A Bayesian classifier is used to locate the best match between frames us-

ing velocity, intensity and position as metrics, requiring that the Mahalanobis distance for the 

features be below a pre-set threshold to give a match. 

To track between cameras, similar features are used, omitting only the geometrical inform-

ation which does not translate between angles, then projecting the location feature into the 

same camera coordinates (camera calibration having been carried out as part of an initialisation 

process). The Bayesian classifier is used for tracking again, using both spatial matching and 

spatial-temporal matching. Based upon the pre-calibrated camera relationships, an automatic 

hand-off off the tracking task to the appropriate camera unit is achieved. 

[72] specifically considers the case of a large field of view (and so small objects) of routinely 

crowded areas where segmentation of individual objects may not be possible, rendering both 

shape and model-based approaches unhelpful. Without such clues, pedestrians are distin-

guished based purely on a priori scene knowledge of their allowed origin points and directions. 

The background is modelled from a sequence of 30 frames sampled at 3 fps, with pixels show-

ing a stable intensity over two frames or more used to calculate the variance at that point, 

updated periodically to adjust for illumination changes. 

Initial detection is of all current values which exceed the background variance measure, giving 

potential object blobs, but this is then supplemented by evaluating the texture in the area. For 

each blob the region is accepted as an object if the texture value too deviates significantly 

from that of the background. The texture operator is insensitive to incoherent motion and so is 

intended to eliminate irrelevant signals. 

Morphological operators and CCA are applied to generate a list of accepted objects, para-

metrised by centroid, area, elongation, and mean average grey level. A three step algorithm 

assuming smoothness of these parameters' frame-wise variations is used for tracking, based on 

a distance metric in the feature space. This employs a combination of fuzzy logic and Kalman 

filter update to avoid unreliable associations due to shape variation and occlusion. The first step 

associates objects moving with uniform predictable motion, the second associates those which 

do not have such motion, but do have stable parameter values and the third reconnects others 
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which have had a large deviation in some parameter. 

The procedure gave lower false detection rates than the previous blob-based methods, but was 

unable to track pedestrians well on their merging with other objects. Also, a processing time of 

1.7 seconds per frame was noted to be outside the limits of the smooth movement condition. 

2.8.4 Blob clusters 

A variant approach, already considered for simple detection for [63] above, is to consider cer-

tain groups of blobs as comprising single pedestrian objects. Focusing on tracking for an in-

telligent environment, [73] uses stereo cameras calibrated to the known ground plane of a 'test 

room'. A segmentation module fuses depth and colour information to achieve a more robust 

result to shadowing and illumination changes. The resultant maps of foreground blobs are 

grouped into 'people-shaped' clusters starting with a minimum spanning tree with blob dis-

tances defined as the Euclidean distances between blobs' 3D centroids. PCA is used to evaluate 

the eigenvalues of the covariance matrix of hypothesised blobs to give a measure of shape using 

the first two eigenvalues (A1  and A2). 

Each hypothesised blob grouping is thresholded for size (using A1.A2  as the measure) and 

is tested against a person-model (which is the expected height/width ratio of a person). The 

centroids of confirmed persons are projected onto the ground plane for tracking. A coarsely 

quantised (64-bin) colour histogram is calculated for each person by both cameras to assist in 

distinguishing between individuals during matches. 

The person tracker maintains a list of past locations for each person which is used to compute an 

(assumed constant) average velocity for predicting the next position. One colour histogram is 

stored for the tracked person corresponding to their passage through any of 10x l0 square cells 

on the ground plane (which decomposition allows for spatially varying illumination). A local 

search for current blobs in the area of a prediction is carried out with the best match ascertained 

based on histogram matching. 

The system reports good tracking for up to 3 people in the room with results at 3.5 Hz. The 

system's usefulness however is restricted to a very constrained and well known environment 

and a similar approach is only likely to be useful in internal, high risk area surveillance. 

A more complex and flexible approach to blob clustering is given in [74], which relies on colour 
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segmentation of an object into regions in a 21  dimensional colour space. Based on the observa-

tion that same colour objects tend to form clusters in RGB space oriented toward the origin, pro-

jection of 3D clusters onto the chromatic plane (IntensityR, = IntensityG = IntensityB) is 

used to give good unimodal clusters with approximately parallel axes. A subsequent 1D cluster-

ing of each 2D cluster can be performed to retrieve any residual colour information, completing 

the 21  clustering. 

CCA is used for unique labelling and a region adjacency graph (RAG) is built to describe the 

relation of the constituent colour blobs. This is matched against extracted RAGs in areas around 

the predicted location in subsequent frames to achieve good tracking at about one frame per 

second. The RAG description is not affected by the shape variation seen in pedestrian objects, 

and is robust to illumination effects but no occlusion handling procedure is described as yet. 

2.8.5 Explicit models 

One example of a system which uses a more explicit pedestrian model is the ITPIVIBVS system 

described in section 2.3 above and developed in more detail in Chapter 4. 

W 4  [75] employs a combination of global shape analysis and local correlation techniques 

to track robustly with respect to occlusion and pedestrian interactions. The background for 

each point is estimated using three variables recorded over a specified time window: the min-

imum intensity [M (x, y)],  the maximum intensity [N (x, y)] and the maximum observed change 

between two consecutive frames[D (x, y)]. This background is updated periodically, but only 

where no foreground object is currently observed. 

The segmentation criterion used then is: 

I(x,y) - M(x,y) I > D(x,y) 	 (2.4) 

or: 

jN(x,y) -I(x,y)I > D(x,y) 	 (2.5) 

where I(x, y) is the current intensity value of the pixel. 

A combination of morphological operations, size thresholding and CCA generates uniquely 
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labelled objects for each of which centroid, median and bounding box are registered. 

In simple cases, the system uses a second order motion model for each object's bounding box 

to predict its future position, and the predictions are matched with actual object bounding boxes 

which overlap with a prediction in the next frame. Here, the system updates object position in 

the motion model using the median coordinate as an initial estimate, which is more robust to 

the effects of extremity movements. Binary edge correlation is performed between current and 

previous shape's edge profiles to improve long term accuracy. 

Simultaneously with this basic tracking, the system creates two sorts of appearance model for 

each isolated object. The first is a temporal texture template, 'IJ (x, y), given in the paper by: 

Wt(x,y) = I(x, y) + wt_1(x, y)W'(x, y) 
1,t_1(x, y) + 1 

(2.6) 

where: 

I(x, y) is the current intensity value of point (x, y) where position is given relative to the 

median of the region. 

(x, y) is the weight at time t, incremented from 0 in line with the number of times that a 

pixel is detected as part of the foreground. 

The second is a cardboard model [76] which is used to represent the relative position and 

size of body components (head, hands, torso, legs etc.). The model assumes people will be 

in a standing pose and assigns the model height to be the size of the bounding box. Pre-set 

height divisions are used for head/torso/legs ( : : with overlaps) and widths are set using 

the median width of each component inside it's initial bounding box. The positions of each 

component are refined using their own temporal texture templates. 

In instances where objects merge and separate, the first solution is that temporal texture tem-

plates of the original objects are compared with the separated ones to decide the best match. 

If pose changes sufficiently, this method can fail and a second option is that average intensity 

values for separate parts of the body can be used. To deal with object splitting, a split is only 

recognised if it persists for a pre-specified number of frames. Incorporation of a real-time stereo 

computation into the system [77] has enabled the system to handle relatively fast illumination 

changes, shadows and more severe occlusions. 
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2.8.6 Active blobs 

An approach which has not as yet been applied to pedestrian tracking, but which offers interest-

ing potential in the area is presented in [78, and models objects for general non-rigid motion 

tracking using a deformable triangular mesh to capture shape, along with a colour texture map 

to capture appearance. When the object has been segmented and its boundary ascertained, tex-

ture mapping hardware using a modified Delaunay triangular meshing algorithm can be used 

to build the 2D active blob model. Non-rigid deformation of the resulting mesh can be defined 

using a variety of parametric functions, which will implement deformation of the model. 

An RGB colour texture map is captured, Gaussian blurred and mapped directly to the triangu-

lated model to capture the object's appearance. Tracking between frames is now a matter of 

active blob registration to minimise priors on shape and appearance, minimising the squared 

error for all pixels within the blob. Two tracking examples are presented in the paper, with 

visually impressive image-like results for regions approximately 2500 pixels in size. 

2.9 Behaviour analysis 

Whereas pedestrian detection and tracking has been the ultimate level of output for many sys-

tems developed over the past decade, more recent research has aimed to take scene analysis a 

significant step further. 

To give the most useful analysis of surveillance footage and to generate the most usefully se-

lective alerts, systems can implement Image Understanding approaches to augment the existing 

Image Processing steps. Such systems can take the raw information on pedestrian attributes 

(tracked trajectories, shape variations etc.) and perform higher level analysis intended to inter-

pret the represented behaviour. 

Although the system to be designed will not implement this level of processing and assumes 

direct output to a human operator, its modular construction (see Chapter 3) allows for future 

extensions incorporating Image Understanding abilities and it is important to consider it in this 

context. 
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2.9.1 Learning and classifying trajectories using neural nets 

Several approaches implement the automatic learning of normal trajectories in a scene, using a 

variety of methods. In an alternative approach to Kalman filter based tracking in the ITPMBVS 

system described above, a neural net can be used to learn the spatio-temporal variations exhib-

ited by the contours of an object [79] and to predict the subsequent values. A compact state 

vector is constructed using the first five shape vectors and the two position variables. A state 

vector sequence comprised of the five most recent frames is used to train seven neural networks 

(one for each parameter) using back propagation. The output of the network is a prediction of 

the subsequent state. 

In [80], a neural network is trained off-line on the raw motion vector patterns after background 

removal and inter-frame differencing to recognise/predict 'usual' motion patterns from a partic-

ular camera viewpoint. The system is applied to monitor a scene where motion vectors are used 

to segment objects on the basis of direction, speed and position. Predictions are compared with 

actual observations to calculate an error measurement for each moving object in the scene. The 

error level is a measure of how unusual the motion is and after sufficient confidence is gained 

(by comparison with an operator-set threshold), an alarm is triggered. Where false alarms oc-

cur, operator feedback is used to continue learning by updating network weights to ignore such 

events in the future. 

A neural network, specifically a Self-Organising Feature Map (SOFM) is also used in [81] to 

learn the characteristics of normal trajectories in a scene and detect novel ones. The approach 

uses no explicit behaviour models, works in 2D image coordinates and can function on-line for 

partially complete trajectories. Objects are detected by frame differencing against an adaptive 

background and labelled using a CCA. The system uses just size and aspect ratio thresholding 

to eliminate non-pedestrian objects which are then tracked using a simple Kalman filter. 

The centroid points corresponding to trajectory are combined with a 'short term memory' of re-

cent position, implemented using a moving average window in a smoothing operation. Instant-

aneous velocity and acceleration measurements based on the smoothed position are calculated 

and these measures are together taken as a feature vector, F. Such feature vectors were used to 

train an SOFM using 206 normal trajectories and tested on a set of 23 unusual and 16 normal 

trajectories. A trajectory was classified as unusual if two or more points were so classified. All 

of the unusual trajectories were correctly classified, with 19% of the usual trajectories incor- 
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rectly classified as unusual. This shows a weakness in that the system will incorrectly react to 

normal behaviour where it is not sufficiently represented in the training set. 

2.9.2 Probabilistic models of behaviour 

[82] uses probabilistic models (Hidden Markov Models: HMMs) to model spatio-temporal reg-

ularities, from ground plane object trajectories. A HIVIM represents these patterns as a network 

of temporally dependent belief hypotheses which are updated by adjusting in line with observed 

visual evidence. The resultant Visually Augmented Hidden Markov Model can be used to model 

and produce dynamic expectations for moving objects and are used in the paper used to direct 

attention in the image. 

In [83], when an object of interest is located, it is assigned an agent, which is a piece of modular 

software often used in Artificial Intelligence (AT). Using Al techniques, the agents perform 

semantic inference from data, interact by exchanging relevant information and analyse global 

scene evolution trends. 

Objects are identified by position, velocity and acceleration and a B-spline is used to approxim-

ate the local trajectory segment. A Baysian network is used to reason over these characteristics 

to produce the most probable textual description of the instantaneous behaviour. When two ob-

jects come within a threshold Euclidean distance, another Baysian network is used to analyse 

their interaction. 

At scene level, HIVIMs are used to analyse trends of object dynamics. All observed behaviours 

are combined to build a set of Markov models which constitute a scene history in terms of pre-

defined activities. Although not yet implemented, the models should be able to detect unusual 

activity when no allowed modelled behaviour provides a plausible explanation of the scene 

dynamics. Further, such models provide a means of predicting scene dynamics. 

Extensive work on interpretation of behaviours using Baysian Belief Networks (BBN5) has 

been carried out in [84], [85].  The objective of the work is to use the nets to model depend-

encies between conceptual knowledge relating to a scene and the specific task in hand. The 

Maximum Likelihood Hypotheses (MLHs) of behaviour from the BBN are used to dynamic-

ally vary parameters of low level processing operations to improve segmentation and tracking 

of objects. The behaviour estimate can also be output explicitly via the medium of state-based 

activity interpretations in the form of semantic descriptions. 
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The work is based around a fixed, calibrated camera and requires that a mapping between im-

age coordinates and ground-plane geometry/topology be ascertained in advance. Also, models 

describing both specified objects and 'interesting' behaviours need to be defined manually. The 

objects are represented with a generalised cylinder form of volumetric model and cellular de-

composition in both space and time is employed to help encode scene information and simplify 

the behaviour description task. 

While the work carried out is of great interest and the integration of the system at multiple 

levels to allow feedback/control from the BBN is appealing, the requirement for a detailed 

ground-plane representation is somewhat restrictive and the ability to describe behaviour is 

quite limited to well known, pre-specified domains. 

The ITPMBVS system, [32] [33] noted above, implements a similar approach to pedestrian 

behaviour analysis. It is combined with work on tracking rigid objects (cars) using a 3D geo-

metric model and then uses BBNs to produce high level descriptions of the behaviour of objects 

within the scene [86]. 

2.9.3 Explicit behaviour models 

Domain-specific behaviour analysis is possible by explicitly building models of behaviours and 

classifying observations within this context. [87] builds on the Image Processing output of [24], 

described above, to perform a domain-specific Image Understanding task. The inputs to this 

system are the object tracks along with information on object features. The system must be 

pre-calibrated with scene context information including a geometric mapping of image plane to 

the scene coordinates and a known ground plane. Functional context data is built in to associate 

labels with scene areas that help to define expected behaviour. 

The trajectories are interpreted as collections of primitive events incorporating the contextual 

knowledge of the scene to derive proximities, speeds and spatial locations. These primitives 

are classified in terms of a library of pre-specified scenarios which correspond to anticipated 

behaviours. If the matched behaviour represents a forbidden action, an alarm may be generated. 

Although interesting work, the paper only gave two image-like representations of trajectory 

analysis, which did not allow a good evaluation of the system's capabilities. 

[88] too uses predefined scenarios, here defined by a state model and the transition between 
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these states. A configuration phase is again required where the security operator provides in-

formation on scene context for each camera. This includes geometrical data specifying interest-

ing areas and their relationships plus semantic information on equipment (type, function, name, 

characteristics, normal distance and normal time for usage). 

Events are defined as spatio-temporal nodes which represent a significant change in the state 

of objects (person, area or equipment) in the scene. The state of the scene is represented by an 

n-ary tree containing objects, descriptors, operators and classifiers, with 8 states predefined for 

the current system. Events correspond to changes between these, with 18 defined in this case, 

some associated with alarm conditions. 

The trajectory of pedestrians is analysed within the known scene in terms of area, proximity to 

equipment and time spent to define state and event classification. 

2.9.4 State machine behaviour models 

Another approach to extracting behaviour from a scene is using a state machine model to hy-

pothesise human actions [89].  The system requires prior knowledge of the scene to determine 

regions (entrances/exits), locations of objects of interest and how an object is used. The low 

level processes used to give input to the state machine model are colour-based skin detection at 

entrances, skin tracking (using colour space distance) of people and objects and scene change 

detection in areas where change is not expected. 

A similar self-learning prototype system is presented in [90] where objects are tracked using 

an extension of the condensation algorithm to give a state vector representation of temporal 

trajectories. An off-line learning process is used whereby the trajectories are clustered into 

prototype curves for the scene which can be used to assess all new behaviours observed in 

terms of position, velocity and time spent stationery. 

Combining data on the distances of people and objects gives initial indications as to interac-

tions and changes in this and measures such as y-position (for sitting/standing) give the final 

hypotheses as to behaviour. A log of textual descriptions of recognised actions is constructed 

and alarms generated if prohibited event/location/time combinations occur. A series of 'key 

frames' concisely capturing important actions is recorded reducing storage space and transmis-

sion times plus facilitating operator analysis. 
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2.9.5 Modelling body parts 

applies a volumetric model of the human body (here using 14 cylinders) with behaviour 

judged using models of body part relationship variations over time. Once a person is detected, 

a sub-image is extracted and edge detection applied, followed by line fitting to the edge pixels. 

A 2D projection of the model is matched with the scene lines, minimising the Mahalanobis dis-

tances and then the pose is estimated using a linear constraint minimisation method previously 

developed for camera calibration. A Kalman filter can give 2D projections over time for each 

activity which can then be compared with observation to classify the actual behaviour. 

uses the pedestrian detection system described in [75] to spot moving people and their 

body parts. Their activity is specified using a vector of measurements of the body part po-

sitions/orientations over a temporal axis. PCA is applied directly to exemplars of specified 

activities and the models so generated used for activity recognition. The approach requires a 

separate PCA model for each activity and further for a limited range of viewpoints. The system 

was shown to perform acceptably in the limited case of differentiating between four variants of 

walking. 

2.9.6 Alternative approaches 

As an alternative to modelling trajectories or body part relationships, in [93], after segmenting 

moving objects, two motion representations are extracted: Motion Energy Images which indic-

ate where and how much motion has occurred and Motion History Images which indicate how 

recently (temporally) that motion occurred. The two image-like entities are high dimensional 

representations of pedestrian movement to which dimensionality reduction is applied. The 7 

Hu Moments are extracted which give a statistical description upon which PCA is then applied 

to further reduce dimensionality. 

In this work, seven eigenvectors are used to capture 90% of the variance for each movement. 

Three different classifiers (K-nearest neighbour, Gaussian and Gaussian mixture) were tested 

for categorising new movement data between eight pre-modelled actions with the 1st-nearest 

neighbour classifier found to be optimal here. 

The evaluation of pedestrians' behaviours does not always require the explicit detection of 

individuals as a pre-processing step. In [94], scenes are considered where the behaviour of a 

crowd as an entity is analysing using several methods. A variant of the DCT algorithm, the 
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Linear Area Transform can be applied to a crowd image to evaluate the frequency of head 

oscillations. These stop when a crowd is too dense for free movement and a simple threshold 

can be used to signal a warning to operators. 

A linear Kalman filter can be used to combine measurements based on crowd area and peri-

meter to give an optimal estimate of crowd numbers to signal unusual gatherings. Optical flow 

calculations based on block differencing can be used to give a polar plot which clearly illus-

trates crowd direction and velocity to again signal dangerous variations and also potentially 

assist in concourse design. 

Another approach, based on the use of low-level image features and local statistical models for 

the recognition of complex patterns is evaluated in [95]. The scene is decomposed into regions 

where local models of 'normality' are built in terms of the amount of motion appropriate on a 

region-wise and overall basis. 

2.9.7 General event detection 

Moving away from considerations entirely specific to pedestrian surveillance, [96] proposes 

an intermediate representation of video data to assist in general event detection problems. A 

three-layer algorithm is used to detect events: first motion blobs are detected and colour and 

texture information are used to extract 76 low-level features for each. Second, a multi-layer 

perceptron classifies regions based on the extracted features as corresponding to (here) animal, 

grass, tree, rock or sky. 

At the same time shot summaries are generated which summarise the current scene context 

in terms of detected objects, location/size relationships between them and their temporal rela-

tionships. Third, a set of heuristic rules about the nature of events in terms of shot summary 

characteristics is used to infer the nature of events occurring in the sequence. 

The approach was tested for detection of a single specified event type on 45 minutes of footage 

and correctly detected 95% of the instances manually classified. 

47 



Background 

2.10 Summary 

The papers surveyed span camera and system configuration and evaluation, background repres-

entation, segmentation, pedestrian detection, tracking and image understanding. 

The papers examined, except where noted, follow the generally accepted procedure of illus-

trating the performance of an approach on a relatively small data set. The results provided 

are primarily qualitative and often in the form of image-like entities. As there is no common 

data set, nor agreed standards for specifying one, any quantitative results are not amenable to 

making comparative analyses of performance. 

These drawbacks are principal motivating factors behind the desire to develop a design and 

evaluation approach which allows some degree of comparative evaluation of approaches. 

The evaluation work will, as noted, be within the context of full system variant solutions for 

the overall problem, comprised of modules corresponding to candidate solutions selected from 

the above and from novel variant approaches. The evaluation context will be used in a remote 

distributed processing unit with limited resources, designed to generate alarms when particular 

events are detected. The details of this system will be discussed in the following chapter, along 

with the detailed rationale motivating the choice of candidate solutions. 
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Chapter 3 
Platform specification and system 

design 

3.1 Introduction 

The overall aim of the design and characterisation methodology proposed is the recommend-

ation of the optimum practical solution to a vision processing problem from a set of potential 

solutions. The context in which this methodology is tested is one where there is an absence 

of quantitative and comparable performance characterisation data available on the algorithms 

which could form components of the solution. Further, deriving such data for every extant or 

new procedure individually requires a level of resource input which is not generally available 

within the context of a single research project nor a commercial development (See Chapter 5). 

In summary, the initial problem which is to be solved is the development of a pedestrian detec-

tion and location system to run on a distributed processing system with limited local resource 

availability. The output is to be information sufficient to decide if an alarm should be gener-

ated to signal to a remote user that an interesting event has occurred, which will trigger video 

transmission across the network. The incidence of false alarms is to be minimised to optimise 

bandwidth usage and operator efficiency. The system is to be used in a semi-automated context 

and so should focus on human-readable output but should be flexible enough to allow input to 

additional processing modules. 

A primary contention of this thesis is that there is a need for an alternative approach to the 

evaluation of potential solutions to such a problem and a design approach which promotes such 

considerations as an intrinsic component from the initial stages. An approach is presented 

which can be considered in two parts, the choice of appropriate candidate solutions for sub-

divisions of the task (this chapter and Chapter 4) and the subsequent evaluation of a subset of 

possible combinations of these solutions (Chapters 5 and 6). 

This chapter considers the first stage of the process of candidate solution selection, the analysis 

of the problem and its domain to ascertain the subdivisions to be considered and the criteria for 
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selecting appropriate approaches. The second stage of the process, the choice of the candidate 

solutions given this analysis is addressed in Chapter 4. 

The analysis task demands knowledge of the platform on which the final instance of the applic-

ation is to be run, the details of the functionality required, and information as to the environment 

in which it is to be used. Using this knowledge, an analysis and planning procedure modelled on 

that used in general object oriented (00) software design problems will be applied to this do-

main to construct a modular system suitable for applying a novel performance characterisation 

approach. 

3.2 Intended platform specification 

The platform upon which the final version of the application is designed to run is one in the 

suite of VideoBridgeTM  platforms developed by IndigoVision beginning in 1994 [97].  The 

VideoBridgeTM  units are embedded video processing hardware platforms which, in their most 

basic operation, perform real-time video compression/decompression and communication over 

IP (Internet Protocol) networks. 

The VideoBridgeTM  hardware platforms have an on-board DSP (Digital Signal Processor) and 

allow real-time encoding and decoding of high-quality video at rates which currently extend 

from 8 Kbps(kilobits per second) to 2 Mbps(megabits per second), dependent on the particular 

release and upon user specification. As well as the VideoBridgeTM  hardware, which can be in 

the form of boxed or PC-integral codecs the platforms are available as pre-compiled software 

objects which can be programmed into Flash memory or linked with user-interface software for 

embedded applications. 

Whichever the format of the VideoBridgeTM  platform, the basic functionality is similar and 

can be illustrated using the example of the VP400 board shown in figure 3.1. In this release 

the central processor, the video processing unit (VPU), was a 32-bit reduced instruction set 

computer (RISC) with specific extensions for processing video data. The processor runs the 

proprietary CamOS operating system and its applications which handle routines including task 

scheduling, memory and device management, timing and network interface. 

CamOS applications are embedded i.e. compiled and linked with the operating system to give 

a single executable. The applications can be run from non-volatile flash memory (access time 
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Figure 3.1: An overview of the VideoBridgeTM  VP400 board 

time 120 nanoseconds) or from main SRAM (static random access memory), which is faster 

(access time 15 nanoseconds) but takes up memory which would otherwise be available during 

the running of the applications. 

In the VP400, the memory specifications were: 

. 1M x 32-bit SRAM 

. 1M x 32-bit Flash 

. 512k 32-bit fast page mode DRAM 

Captured frames and intermediate processed images are generally stored in the two dimensional 

DRAM (dynamic random access memory) reference memory, which supports access times of 

about 40 nanoseconds. 

The functionality which the VideoBridgeTM  offers is, at its most basic level, that an interface is 

provided through which digital and analogue cameras can be interfaced with an IP network at 

multiple points on one or many LANs. Data can be sent along the network and received at PCs 

or analogue monitors on any LAN connected via the internet globally or via wireless transmis-

sion, on a mobile device. An example of a networked CCTV application using VideoBridgeTM  

51 



Platform specification and system design 

is given in figure 3.2. 

Up to six cameras are connected to the network using each unit of VideoBridgeTM  hardware 

in one of its forms, configured to be a video server for the system. The video input from the 

camera can be YUV 4:2:2 digital video or NTSC/PAL analogue (which is digitised by the video 

server as an initial step). The video is compressed, typically in the ratio 80 : 1, applying a user-

defined compression standard selected from options including Motion JPEG, H.261, G.711 and 

G.728. 

The compressed data is prepared in an ethernet packet for transmission along the ethernet net-

work using TCP/IP network protocols. This allows a simple 100 Mbps ethernet network to 

carry more than 200 such video/audio streams (over 2000 if an internet switch is used). The 

video server can also transmit serial control data (RS232/485) for features such as PTZ camera 

control and 16 TTL alarm data. The use of TCP/IP protocols for packetising and transmitting 

data is a key feature of the platform, allowing use on all internet capable systems and transmis-

sion of data to all such systems at any remove globally. 

One or more PCs are used for real-time administration and control and can also be used for 

viewing the output using windows-based software applications. Viewing is via a VideoBridgeTM  

codec, configured to be a video client, which implements the decoding and decompression re-

quired to allow the footage to be viewed via PC software and/or analogue monitors. The im-

age resolution is user defined (CIF, STE or QCIF) allowing a dynamic balance to be achieved 

between resolution and band width usage. Using an additional software add-on, a PC can be 

used to record up to 50 video and audio streams at up to 30 frames per second with simultan-

eous playback during recording available. The recording can be continuous or may be triggered 

by events in the scene via transmitted alarm signals. 

Using digital CCTV connected by video-over-IP in this way instead of the traditional analogue 

systems with dedicated wiring can give reductions in capital investment of 70% and in operating 

costs of 90% [98]. Furthermore, the scenes can be viewed anywhere in the world and with the 

latest developments can be delivered over wireless networks to hand-held units. This latter 

advance would allow security guards to view camera output while mobile in a surveillance 

location, rather than being tied to a central monitoring suite. 

The CCTV system can be enhanced by applying additional processing at the video servers so 

that, for example, video is only transmitted along the network when some event of interest is 
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Figure 3.2: A networked CCTV example using VideoBridgeTM  technology 
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detected in the incoming video stream. At the outset of the project, a simple motion detection 

system was used in this respect to assess the stream content. In this case, a video client signals 

to a motion detection server (a special case of a video server set up to perform the detection 

task instead of constant video generation) that it is interested in any motion detected at one or 

more cameras. When the server detects motion, a message is sent to the client which makes a 

decision as to whether to request video. 

The benefit of this is that video is not transmitted when there is nothing of interest in the scene, 

which saves bandwidth usage in the network. As the network is a shared resource with the 

entity's other linked applications, this is is a significant factor. Also, where there is a human 

monitor, their attention can be improved by eliminating irrelevant data (see section 3.4). 

The use of motion detection as the measure of interest in a scene is the most basic level of 

processing which is useful in this respect. It was a particularly appropriate development for the 

VideoBridgeTM system as it was able to reuse some of the processing abilities already provided 

as part of the compression system. The motion detection used a frequency-based analysis where 

the discrete cosine transform (DCT) is applied to compare between 8x8 blocks in the the current 

and previous frames. If blockwise significant differences indicate a moving object of suitable 

size and shape, a motion detection event is signalled [99] [100]. 

A significant goal of the current project (see section 1.3) was to design a suitable application for 

registering interest in this manner to be used on a future release of the VideoBridgeTM  series. 

The two key general criteria are that a more complex analysis of the current level of interest at 

a camera is desired and that the resources required to achieve this are constrained within those 

available at a remote video server. This resource consideration must include an estimate of 

the detection rate given the computing resources as an integral evaluative element. A closely 

associated requirement is that the level of actual video transmission along the system should 

be kept to a minimum which means false alarms must be considered to be very costly in the 

evaluation. 

Apart from the general challenges inherent in this task and as detailed in the following sections, 

there was an additional complicating factor in this specific instance. The rate of development 

of the VideoBridgeTM  system is particularly high and at the outset, no confident estimate was 

available to specify resource requirements which would be available for the final application. 

As the current research task was conducted apart from the overall development process, a more 
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general criterion for estimating resource costs was chosen. 

On the basis that it was desirable that the video server be able to run additional processing 

tasks simultaneously if possible (task-based multitasking being implemented in CamOS), the 

resource requirement was treated as a minimisation problem. A quantitative analysis of the 

resources demanded would be performed on the test platform to allow comparative review of the 

options and a qualitative cost/benefit review conducted. The final evaluation of the application 

after the main testing was to be on the final platform itself (but see section 3.8). 

3.3 	Application profile 

3.3.1 User context 

To complete the general statement of the problem, consideration needs to be given to the context 

in which the system is likely to be used and thus what will constitute an interesting event. The 

application area considered, CCTV, is primarily used for a variety of surveillance purposes 

including the general monitoring public places, people counting, single-camera home security, 

retail security, secure establishment surveillance networks and speed cameras. 

In choosing a particular focus for the task, it was desired to find an application which offered 

both significant real-world usefulness and potential that individual results could be of research 

interest in and of themselves. 

A prima facie goal of any application to run distributed at the individual video servers, as 

stated above, is that transmission along the system should be kept to a minimum. It is assumed 

that after a real interesting event is detected, there will be such a transmission to the video 

client, where additional processing of some kind will occur. This processing may be a further 

automated procedure or a manual (i.e. human) review of the alarm. Whichever is the case, this 

high level processing can initially be considered to be separate from the distributed processing 

carried out at the server. 

Chapters 1 and 2 introduce the range of surveillance approaches from the traditional all-manual 

version through to fully automated systems utilising complex high-level behaviour analysis 

methods. Although interesting in a pure research context, fully automated surveillance outside 

the realm of science fiction always at some point refers a decision to a human operator. Even if 

the central processing were carried out automatically within the entity, a final action will be to 
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alert the police, security or possibly the fire service. 

Where, as in this case, the goal is to implement a distributed processing solution to give an 

initial alarm, the area where this factor is most significant is in considering the use to which 

the results will be put and the nature of the user. If high level automated processing is used, 

it can be considered as an additional 'layer' between the system under consideration and the 

final, human, user. In current commercial applications, the high level processor used is almost 

universally the human brain, constituting a semi-automated surveillance approach. 

For our design purposes, it is most reasonable to assume the existence of a central human user, 

as this bears out in current practice, there is no general format required by diverse high level 

processing alternatives and, as noted, the final user is always human. The human user may be 

monitoring the system in real-time and/or may require stored footage along with the relevant 

alarm/event information to review off-line 

To briefly recap the earlier points made in section 1.1.3 in respect of purely human surveil-

lance, two major difficulties are information overload (in situations where all scene analysis 

is the central user's responsibility) and reduction in attentiveness over time (which is exacer-

bated by a continual, intense monitoring load). If the information is pre-filtered, initially to 

save transmission bandwidth, then the information that is received should be sparser and more 

relevant. The attentiveness of a human operator should be maintained at a considerably higher 

level. Thus the distributed processing paradigm which applies to the VideoBndgeTM  system is 

very appropriate for the construction of effective semi-automated surveillance systems. 

3.3.2 Pedestrian detection 

The majority of the surveillance applications noted in section 3.3.1 focus on moving human 

objects, pedestrians and their behaviour in a scene. The task then, will be to develop an ap-

proach for generating alarms based on some aspect of pedestrian behaviour, which will then 

allow on-line human review or storage of image sequences and alarm/event information. 

The range of options for analysis of pedestrians in surveillance scenes is extensive (see Chapter 

2) and ranges from basic pedestrian detection, through tracking and trajectory analysis to indi-

vidual identification, Baysian approaches to behaviour analysis and spatio-temporal modelling. 

As the problem domain has been specified as semi-automated surveillance, consideration of 
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possible analysis tasks will be limited to exclude high level processing approaches. These 

generally duplicate or approximate the high level processing abilities already on hand in the 

human observers. Also, such procedures would probably need to be implemented at the central 

processing point rather than the resource-scarce distributed level and so are outwith the scope 

of the current problem. 

Again drawing on the knowledge that the high level processing ability of the human user is on 

hand, and that some stimulus in the form of possible alerts is likely to increase attentiveness, it is 

possible to focus on the simplest approaches. The initial goal of any such system is the detection 

of a pedestrian in the scene, and the estimation of their position. The simplest extension of this 

(and so the one which uses minimum resources) is to use this result in combination with the 

existing functionality in the motion detection application which generates alarms when motion 

is detected in a pre-specified image area. 

3.3.3 Application scope and extensibility 

This enhancement of the processing would allow a greatly improved selectivity in terms of 

the events which cause alarms. For a signal to be sent along the network, an object must be 

segmented from a background representation, classified as a pedestrian and located within the 

specified area. If the human monitors are signalled only in such circumstances, and further can 

be signalled remotely rather than at a central location, they can potentially undertake additional 

tasks simultaneously, giving a more efficient use of manpower. 

While this level of functionality is appropriate for the initial investigations, it would be prudent 

to consider ease and range of extensibility as an important attribute. This is important in two 

specific areas: first, the processing power available at the distributed processing sites will con-

tinue to be increased, allowing greater flexibility for the processing performed there. While 

wise to be prudent in the initial development, the ability to enhance functionality in line with 

resources would be very valuable. Such extensions could include tracking, individual identific-

ation (by capturing face images or gait characteristics) and additional behaviour analysis (using 

trajectory modelling or outline spatiotemporal models). 

Secondly the system should allow for the previously noted possibility of additional processing 

at the central location, as an intermediate step prior to notification of the human observer. In 

this situation, there would be a two-level alarm procedure: the first would be between the video 
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server and the video client as described, signalling interest in the scene in question. A level 

of additional processing using the central resources could then be brought on-line on either the 

live video stream or the stored data which caused the original alarm. The result of this second 

level of processing would be a decision as to whether or not to generate a second stage alarm 

to alert the human operatives. 

This additional processing would be higher level analysis of the scene, perhaps using inform-

ation fusion, spatiotemporal models, face recognition or Baysian statistics to generate more 

complex hypotheses as to the likely nature of the scene events. Such processing would move 

the overall approach closer to a fully automated status, although still relying on the human for 

the final processing step. 

It is important then to design a system such that the output is not exclusively geared to direct 

human interpretation, but which is amenable to future modification to providing input to further 

modules within the CamOS framework. 

3.4 	Problem specifications 

Now that the general problem has been defined, it is necessary to methodically summarise and 

to provide additional details on the points stated and define some further specific parameters. 

Scene specificity In the anticipated CCTV context for the application overall, a complex sur-

veillance task over multiple scenes/viewpoints is envisioned (see figure 3.2). The central 

processing station (here one or more human operators) must be capable of dealing with 

data from all of these scenes simultaneously. The application under design, however, is 

intended to run at one of the distributed processing nodes and so can be configured to 

process the data from a single scene in isolation. Any decisions based on data from other 

scenes/sources can be assumed to be handled centrally. 

Camera parameters Cameras used in the system may be fixed, stationary units or may have 

PTZ (pan, tilt, zoom) capabilities. Within the CCTV context, camera translation is less 

likely, although still a possibility. If the problem is configured to allow for automated 

PTZ (or translation) scanning, the problem becomes considerably more complex. The 

platform's existing motion detection procedures assume fixed, stationary units in the spe-

cification of regions of interest in the image plane and the cameras in most applications 
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Resolution size (pixels) 
CIF 352 x 288 
SIF 352 x 240 

QCIF 176 x 144 

Table 3.1: Resolutions available from VideoBridgeTM  codecs 

are hypothesised as being such units. 

Accordingly, the problem is configured to operate on such fixed, stationary units: as-

sumptions will be made during algorithm design which rely on this specification. In the 

VideoBridgeTM system, video servers for PTZ cameras can accept control input from the 

central location to redefine the cameras internal parameters. In these instances, where dy-

namic PTZ behaviour is occurring, the event detection system will not function correctly. 

It is a reasonable assumption, though, that where the PTZ parameters are being dynamic-

ally varied, it will be because monitoring is in progress by a higher level processing unit 

(here, a human operator) and so the loss of signalling data should not be a problem. 

When the high-level intervention ceases and the PTZ characteristics become stable, the 

event detection approach will begin to function correctly again at the restored or new 

settings. It is important to note at the outset that many approaches will exhibit a latency 

(equivalent to system re-initialisation at new settings) before the output results can be 

considered to be reliable. 

Input The input data to the system will be a sequence of uncompressed digital images. The 

system should be able to handle single-channel (monochrome) and multi channel (colour) 

images and process each appropriately. The CamOS routines which capture a frame can 

accept direct digital input or convert analogue NTSC/PAL input to a video image, with 

user specified resolution. The resolutions supported are scaled from NTSC/PAL by the 

hardware and are listed in table 3.1 and are specified by the user at the beginning of a 

capture session. Thus the system must be capable of accepting and processing different 

image frame sizes but need not be able to adjust to the size varying dynamically in a 

single run. 

Output The output of the system should be information sufficient to make a decision concern-

ing whether an alarm is to be sent to signal an interesting event. The procedure for the 

alarming itself was already available from the CamOS routine used in the motion de- 
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tection server. To allow for easy extensibility, the information available should, where 

possible be maximised subject to acceptable resource demands. As object oriented (00) 

principles are to be employed, the chosen option is to develop towards creating an 'event' 

object which contains all the information required to make the alarm decision. These ob-

jects will then be used in making the alarm decision at each frame. 

False alarm rate The alarm signals are to be transmitted along a computer network which 

may be used in common by many related and unrelated applications. Although the initial 

alarm signal will occupy negligible bandwidth, the anticipated reaction will be the trans-

mission of a live video stream along the network for immediate analysis and/or long term 

storage. It is vital then, from the point of view of bandwidth utilisation, to minimise the 

number of false alarms generated by the system. When selecting candidate solutions and 

evaluating performance, this requirement must be considered. 

Human monitoring The application context is semi-automated surveillance, i.e. the alarm 

and subsequent data will be analysed by a human operator. The system is essentially 

implementing a filter on scene information to select that which will be of most interest to 

the operator. As such, performance can be judged in comparison with a human's image 

analysis capabilities, with the best performance taken as an individual monitoring a single 

image for a short length of time. 

The efficiency of human vision analysis reduces where there are multiple scenes to attend 

and where attention must be maintained over a long period. The ground truth derived 

using human consideration should thus ideally be built in stages from review of single 

scenes for short periods containing numerous interesting events. 

System extent The system will first be developed to detect pedestrians in a scene and specify 

their position. A simple tracking facility will be included as this assists in detection in 

later scenes. The system should be open to extension, with interest in face extraction and 

trajectory analysis as significant areas for development in the short term. 

Environmental robustness The application may be run in a wide range of environments. An 

indoor scene with constant lighting is likely to be the simplest scene encountered, but the 

application may be required to run externally in an environment subject to a wide range 

of variation. The minimum variation externally will be the diurnal lighting changes and 

these are likely to be supplemented with meteorological changes such as rain and/or snow 

fall, rapid light changes due to occlusion of the sun by clouds, background movement 
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due to wind and rapid changes due to artificial lighting. The system must be sufficiently 

robust to cope with such changes. 

Resource restrictions The resources available in terms of processing power and memory to 

be available at each distributed node are not quantitatively specified. The development 

rate of the VideoBridgeTM  technology is very high and brings discontinuous increments 

in the resource availability with each release. 

Irrespective of the absolute level of processing which will be available, however, it is 

qualitatively specified that resources will be scarce. Other applications could be run 

at the node using CamOS' task management protocols and so the minimum resource 

utilisation is to be aspired to. It is sufficient then to attempt to minimise resource usage 

in the pre-selection and construction process and to present a comparative analysis of the 

resource requirements of potential solutions. 

3.5 	Research goal 

3.5.1 Goal summary 

As indicated in section 1.3, a core aim of this research endeavour, is to create and evaluate a 

methodology for the analysis of a vision processing problem to run according to user specific-

ations and the design and characterisation of an appropriate practical solution to that problem. 

As part of this procedure, novel system components and novel extensions/adaptations of extant 

approaches will be constructed and their evaluation in this context will provide further results 

of research interest. 

The methodology will be tested using the VideoBridgeTM  design example as a pilot problem, 

but is intended for general application to vision processing tasks generally. 

3.5.2 Current development and evaluation paradigms 

As developed in full in Chapter 5, the ideal starting point for the development of a solution to 

a vision processing problem would be where the range of vision process algorithms presented 

in the literature had full quantitative performance characterisation data available. In this ideal 

situation, there would be information on the performance on standard test data sets, the ranges 

over which it operates, the failure modes of the algorithm and its resource requirements on 
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common platforms/processors. These results could be put into arbitrary combinatorial chains, 

using error propagation to ascertain the predicted performance and resource requirements of 

the composite system. 

This is not the situation which a current developer is faced with: most results available on 

previous work are relatively qualitative and with little to allow comparability between them 

or prediction of performance in a novel setting. Performing such algorithm-wise perform-

ance characterisation on new or re-implemented solutions would require a vast investment of 

resources (see Chapter 5) and can be safely assumed to be outside the budget both of most 

commercial design programs and individual academic research projects. 

The standard approach in an industrial research and development context starts with system 

specification by a user/customer. The requirements are translated into an initial systems design 

by the engineer and validated with the user to ensure that the requirements are adequately 

fulfilled. 

The system specification will include details of the operating conditions, sensor type, accuracy 

requirements (in terms of detection and false alarm rates) and resource levels (in terms of speed 

of operation and computational/memory resources available). There is currently no systematic 

approach for translating the specification into a detailed design. A common 'ad hoc' approach 

is to assess the qualitative results presented in the literature to make an evaluation as to the al-

gorithms which will best combine to give the desired results on the system. The best theoretical 

combination is then implemented and the performance of the application overall is evaluated 

against the desired system attributes. 

The choice of the overall system architecture and the specific modules to implement to accom-

plish the task relies on the engineers' experience to achieve an acceptable system. A systematic 

engineering methodology for the design and subsequent validation has been presented in [101] 

which relies on algorithm level performance characterisation and error propagation. Until de-

tailed algorithmic performance characterisation data becomes commonly available, increment-

ally over time, a compromise approach is needed between the rigorous ideal and the single 

monolithic implementation alternative. 

It is worth noting that the design problem becomes more complex in respect of distributed pro 

cessing systems, as noted in [102], consideration must be given to the allocation of processing 

between the distributed units and the central 'hub' processor, scheduling of tasks, bandwidth 
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constraints and subsystem independence/cooperation issues. 

3.5.3 A novel development and evaluation paradigm 

Again, detail of the suggested approach is given in Chapter 5, but the general procedure follows 

the principles of objected oriented modular design, albeit at a slightly higher level. As in 

00 design, the first step is the analysis of the overall problem into n components but here 

the components correspond to sub-problems which have been the subject of previous research 

endeavour in the vision community. A review is then conducted of extant approaches and 

solutions to the sub-problems available in the literature. Their results are evaluated in the 

context of the current problem domain and knowledge of the system specifications. This is 

essentially a formalisation of the first step of the current ad hoc approach, applying the results 

of the analyses conducted in sections 3.2 and 3.4 above. 

Based on both this analysis and an evaluation of any novel approaches conceived for solving 

sub-problems, m optimal methods for each of the n components are selected as candidate 

solutions. Together, these allow the specification of (ii x m) system variants which can be 

implemented to solve the overall problem. The decision as to the value of m used will involve 

careful consideration of the resources required to implement the candidate solutions, balanced 

against the importance of performance optimisation in each project. 

A key assumption here is that the module performances are not independent of each other 

within a planned composite system. This assumption is supported by the work on algorithm-

level performance characterisation of vision processes as presented in section 2.2. In this work 

([181 [19] [1031), the effects of error propagation due to the results from early modules being 

used as input for later ones are detailed. The overall performance and failure modes of the sys-

tern cannot be extrapolated from the result profiles of individual components, without extensive 

and complex statistical modelling. 

There will be a total of p proposed modules: 

(3.1) 

where mi is the number of candidate solutions selected for module i. Each of the p modules 

is implemented using 00 design principles as a self-contained unit with interfaces designed to 
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allow subsequent combination into an overall system. Each module is tested independently to 

ascertain correct functionality as described in prior work being re-implemented/developed or 

as projected in the design process for novel approaches. The set of possible combinations of 

theses modules constitutes the system variants for the problem. 

After the modules are individually validated on small test data sets, each system variant is 

rigorously tested on a large real data set including examples of all situations over which the 

final system is to perform. The results must be quantitative in nature and suitable for making a 

comparative analysis of the suitability of the system variants to solving the specified problem. 

Both the results and the test data should be made available to third parties to assist in solving 

similar problems, providing a quantitative performance characterisation specific to the current 

problem but from which more general results may be extrapolated. The greater the volume of 

data used and the range of environments represented within it, the more general applicability 

the results are likely to have. 

3.6 Design considerations 

The first step of the evaluation process is the analysis of the overall vision task to be performed 

into components suitable for implementation as modules. As noted, the process closely mirrors 

that used in general object oriented design, sharing as it does several of its key goals. In 00 

design, the aim is to build software in component form, in a manner that has been likened to the 

use of standardised primitive components to construct complex and varied systems in electrical 

engineering. Accordingly the desire is to construct reusable components which serve specific 

and clearly specified purposes and which can be built and tested individually prior to use in 

a range of composite systems. It should be possible to interchange corresponding component 

options in a system without redesign as long as they share common interfaces with neighbouring 

components. Key attributes of good object oriented design can be summarised as follows: 

Modularity: Logically related data and the functions to act upon it should be collected into 

a discrete unit with a stable interface with other such units. These units correspond to 

classes in C++, a specific instance of any class being an object of that particular type. 

These objects are the basic building blocks from which 00 applications are constructed. 

Functional abstraction: Units can perform the required processing on their input to give res- 
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ults in a specified format without the details of the processing being known. This inform-

ation hiding implements the requirement that modules performing the same overall oper-

ations using contrasting algorithmic approaches may be interchanged within the body of 

the system without the need for redesign. It is important that such comparable modules 

be designed with a common interface structure to facilitate this option. 

Encapsulation and data abstraction: The data structure of an object and the operations which 

are allowed upon it are defined together within the appropriate class structure. This im-

plements protection against inappropriate operations being applied to objects which may 

give undefined results and errors. 

Hierarchy and inheritance: Objects which hold significant properties in common should be 

grouped together. A class is defined for objects which posses only these common attrib-

utes and which is referred to as the parent class. A group of secondary classes can then 

be defined as subclasses of this one, each of which extends the core object definition in 

different 'directions' by adding attributes for each subclass which are not shared in com-

mon. An object inherits the properties of the parent class and supplements these with 

those of a specified subclass to give an entity with all requisite attributes. 

Polymorphism Where suitable, operations should be defined to function on objects of a parent 

class: when an object of one of the subclasses is passed to the operation dynamic binding 

(i.e. at the program's run time) should select the appropriate processing options for the 

specific subclass. 

These principles will be applied in the 'bottom-up' design process at the individual object level 

(section 3.8). The benefits of such an approach include the relative ease with which 'off-the-

shelf' solutions to individual processing problems can be integrated with in-house developed 

solutions where they share an 00 design structure. 

At the candidate solutions module level a subset of the 00 design considerations will be ap-

plied. Each such module will be comprised of one or more 00 objects together constituting the 

identified vision process. Modularity is implicit in this structure and functional abstraction is 

important to achieve mutual compatibility between candidate solutions for successive modules. 

Encapsulation/data abstraction is implemented in as far as it is in the constituent 00 objects. 

Hierarchy/inheritance and polymorphism are less significant at this level but could be used to 

facilitate module interchange by defining the module solution for each component in terms of 
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a parent superclass. The alternative solutions would be subclasses of this, which could save 

development resource in as far as the alternatives share common attributes. 

3.7 Top-down design 

As noted, the specific choices of module definition for the current system are motivated by its 

decomposition into sub-processes corresponding to recognised discrete vision problems. It is 

in these areas that previous research efforts have been focused, leading to a proliferation of 

approaches for which qualitative performance results may be found in the literature (Chapter 

2). 

A review of the literature in each discrete area provides the initial criterion using which can-

didate solutions for implementing each module can be pre-selected. The pre-selection process 

is considered in detail in section 4.2, but in summary includes available performance results in 

similar applications and estimated resource requirements. 

For the current system, these general considerations are supplemented by an evaluation of how 

interesting from a pure research perspective certain solutions would be. This could be by virtue 

of the creation of a novel version of an extant approach which has been extensively modified 

to work on the final platform. It could also be that a quantitative comparison between certain 

alternative methods to a solving particular problem has not been previously recorded and so 

would be of interest. 

The stated vision problem then is the development of a pedestrian detection and location system. 

This can be decomposed into the key modules as illustrated in figure 3.3. 

Image capture and preprocessing: Conversion of input digital video into frame Se-

quences suitable for processing. This is carried out by extant CamOS applications in 

the VideoBridgeTM  system, but must be implemented on the test platform as the initial 

module. 

Background estimation: Construction of a representation of the underlying scene back-

ground. This should be capable of dynamic variation over time as the scene environment 

parameters change. 

Foreground segmentation: The extraction of significant objects in the current frame 
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Digital video 
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Figure 3.3: Component modules comprising the vision system 

which do not correspond to the scene background. 

Object growing and labelling: Processing the segmented foreground representation to 

uniquely label discrete objects composed of connected points. 

Object classification: Considering each uniquely labelled object to classify it as being 

pedestrian or non-pedestrian. 

Object tracking: Updating a pedestrian object's position and predicting its position in 

the next frame. 

(Trajectory classification): An optional extension module: analysing a pedestrian ob-

ject's trajectory to evaluate its 'normalcy' and make predictions. 

(Face capture): An optional extension module: capturing a sub-image containing a ped-

estrian object's face to store for subsequent identification. 

Alarming: Using data from pedestrian objects (which correspond to the event objects 

discussed in section 3.4) to initiate an alarm. This is carried out by an extant CamOS 

routine on the final platform and is not implemented on the test platform. 

As detailed in section 3.6, the system should be implemented so that, as far as possible, the 

selection of each module candidate solution may be made independently. However, the control 

flow of the latter part of the system is unavoidably affected by the choices made in respect of 

the object classification approach (see section 4.6). The alternatives can be broadly classified as 
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Figure 3.4: Pixel based object classification and tracking 

model-based and pixel-based methods: the control flow variations after that point are illustrated 

in figures 3.4 and 3.5. 

38 Bottom-up design 

After the specification of the key modules in the top-down phase of the design process, it is 

necessary to go below the level of these modules, defined as a key part of the current evaluation 

process, to consider the 00 design specified objects themselves. 

The context for this process is the Vision Systems Code Library of the Department of Elec-

tronics and Electrical Engineering at the University of Edinburgh. This a repository of code 

and utilities shared between members of the Vision Systems Activity of the Integrated Systems 

Group of that department. To enable effective code sharing, a uniform coding style has been 

adopted and certain commonly used classes are fixed for use as primitive elements of new ap-

plications. All classes of objects designed during the development of the system are written in 

C++ because of the benefits its encapsulation offer for shared code projects. 

The classes VSframe, VS/rameJo, VS-image -process , VSicalman and VS-matrix discussed 

below were pre-existing classes within the Vision Systems Code Library, primarily written by 

A.M. Peacock and C. Haworth. The new classes written for this project (table 3.3) were de-

signed to interface with and/or derive from these base classes. 

The VSframe class is used to store an image as a 2D rectangular array of pixel values. Pixels are 

stored as integer (int) values which can be displayed directly and allow the use of fast fixed point 

arithmetic. These can be one or more channels of 2D pixel arrays, the channels comprising a 

W. 
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Figure 3.5: Model based object classification and tracking 
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Magic 
Number Description 

P2 ASCII PGM (greyscale) 
P3 ASCII PPM (colour) 
P5 raw PGM (greyscale) 
P6 raw PPM (colour) 

Table 3.2: Supported input file formats. 

third dimension to the image structure: greyscale images have 1 channel and RGB images, for 

example, have 3. Access functions allow the 3 dimensions specifying the frame size and the 

intensity value at a specific 3D coordinate to be returned during processing. The latter value 

may also be reset during the life of a VS.frame object, whereas the others are fixed. 

Class VS./rameio provides i/o facilities for a frame, which are not included in the VS frame 

class as most such objects do not require that functionality. Objects of this class allow input 

and output from/to files of the formats given in table 3.2. 

The VSframe and VSframeio class together provided the basic format required as a base for 

the inputs and the principal intermediate outputs of the system. These are to be in image-like 

format which is consistent with both standard practice in vision research and evaluation the 

context of semi-automated surveillance (see section 3.3.3). 

The initial design work pre-dated the inception of the Vision Systems Code Library and a 

separate class was originally developed to define image-like entities. This VS image class was 

retroactively modified to be a sub-class of the standard VS/rame class (appendix A, figure A. 1) 

to allow compatibility and consistency. Similarly the VSimageio class was converted to be a 

sub-class ofVSframeio. 

Initial design and development involved implementation of these classes, using single greyscale 

images stored as .pgni files to test the basic construction, input/output and arithmetic function-

ality of the classes. A pointwise operation function in the form of a simple edge detector was 

implemented at this stage to check the viability of the structure for applying vision processing 

operators generally. 

The data members of the VS image class itself include some more basic classes, VS-point and 



Platform specification and system 

Module Object 
Image loading VSimageio 
Background estimation (1) VSjnedian : public VSimageprocess 

VS-blur-image: public VS-image-process 
Background estimation (2) VS-mix-back 

VSgaussinix 
VS.gaussian 

Foreground segmentation VSdzfffranie 	public VS -image -process 
Object growing/labelling (1) VS-object-map 	public VS image 
Object growing/labelling (2) VS-outline 
Object classification (1) VS-tracker 

VS-spline: public VSimageprocess 
VS-model 
VS-pedestrian 

Object classification (2) VS.shapetrack 
VS-shape 

Object tracking VSJalman 
VS-matrix 

Table 3.3: Discrete objects used in the system variants 

VS-win, the first of which is a structure to hold a 2-D pixel coordinate and the second defining 

a rectangular area using two such points (appendix A, figure A.2). 

The intermediate output of the system modules was primarily in the form of objects derived 

from the VS-image class so that the standard i/o interface could be used to store the results for 

review in the initial testing procedures. 

The other objects required in the system correspond to simple or composite image processing 

techniques. For simple image processing functions, these were implemented from the base class 

VSimageprocess in the VS library which has the virtual function ProcessQ, used to process 

one frame and return the results of processing as another frame. Image processes derived from 

this class replace the Process() function with one that does a specific required task. 

More complex, composite processes were used to define independent classes, which often cor-

respond to modules within the system. A summary of the image processing objects, which is 

based upon the actual module choices made in section 4.2, is given in table 3.3 and their full 

class structure is specified in appendix A. 

The VSialman class used in the tracking subsystem also comes directly from the VS library, 
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as does the VS-matrix class used in its matrix operations. 

As noted above, the code is written in C++ to promote modularity, encapsulation, re-usage and 

for consistency with the VS library. At the outset of the project it was established that CamOS, 

the proprietary system used by all VideoBridgeTM  units used what was described as a pseudo-

C++ compiler. This point was not investigated in detail at the time, with the assumption being 

made that transfer of code from C++ to CamOS would be a relatively minor task. This turned 

out to be an error, as the CamOS compiler demands a code structure much more analogous to 

C code conventions in the structures used. 

Conversion of C++ code to C is generally a non-trivial procedure: the class structures/interfaces, 

input/output functions and basic commenting rules are examples of elements of C++ which are 

not supported in C. The conversion process, while not challenging in terms of difficulty can be 

extremely time consuming in execution. 

Only as late as the final project review, it was discovered that most C++ compilers can generate 

'vanilla' C code from a C++ source as a first pass preprocessing stage. This can be processed 

by the CamOS compiler after relatively little additional work. This option was not appreciated 

until it was too late to take advantage of the potential avenue for accelerated conversion. 

This error had significant ramifications as it made the proposed transfer of the final proposed 

solution to the end-use platform a time-intensive endeavour. This, coupled with the need to 

ensure that all code only requires fixed point arithmetic processing (see section 4.4.4.3) put the 

final transfer outside the time-scale of the current project. 

3.9 Summary 

The rationale underlying the construction of a modular surveillance system has been presented 

in terms of the distributed processing platform to be used and the intended nature and scope of 

the application to be implemented. The characteristics of the processing problem have been set 

out leading to a statement of the overall research goal. 

The system design strategy has been discussed in terms of an initial top-down decomposition 

of the problem, followed by a bottom-up approach to designing the resultant modules. The 

general points to consider in the selection of candidate solutions for each module have been 

determined and the individual modules have been specified. 
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The next step, to apply the selection procedures for each module to choose the specific candidate 

solutions and to explore their implementation is presented in Chapter 4. 
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Chapter 4 
A Surveillance Solution with 

Interchangeable modules 

4.1 Introduction 

Chapter 3 examined the overall design of a surveillance solution suitable for a specific system, 

directed toward a particular application. First, a top-down approach was taken to produce a 

specification in terms of the appropriate operational modules from a design perspective. Then 

object oriented design principles were employed bottom up to specify the meaningful objects 

for each module in the system, their attributes and their properties. 

With the modular units so defined, the next key step in the design process is the selection of the 

best candidate solutions to implement as modules for the system performance characterisation. 

For each module, a choice must be made as to the most suitable approaches to be implemented 

within the context of the current system and application. The modular decomposition of the 

system is specified in section 3.7 and the details of the chosen solutions will be given in the 

following sections. 

For each module implemented in the test system, a sufficient theoretical grounding will be 

given to justify the approach's applicability within the current application. The level of detail 

presented with respect to the implementation will be enough to allow the control structure to be 

understood and for the approach to be re-implemented in a similar form. 

The correct functioning of each module must be established before integration into the final 

system and brief details are given of the format of these basic tests. The results of these initial 

runs are also used in setting tuning parameters for the modules to optimise results on the test 

data. 
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4.2 	Choice of candidate solutions 

In terms of suitability to the task in question, each possible candidate solution should be re-

viewed in the context of available knowledge of the system and application. The problem 

specifications both in terms of platform constraints and performance requirements are as set 

out in full in Chapter 3. These factors must be taken into account both when developing an 

approach 'in-house' and when evaluating the suitability of implementing a method based upon 

a previously published approach. In the latter case, the existing work on the approach should 

provide the subjective, qualitative results (perhaps in image-like format) which will serve as an 

initial basis for selection. 

The approach suggested by this re-implementation can only draw on the original work for the 

seed of a solution. While they will share elements of a common theoretical background, the 

new implementation will need to be constructed from first principles to reflect the requirements 

and limitations of the final platform and so both the solutions will be essentially novel. This 

reinforces the fact that the published results can only serve as a qualitative guide to selection. 

In this project, there are further constraints to put upon the selections for candidate solutions. 

Not only must the task-based constraints be fulfilled, but it is also desired that the comparative 

results be of interest in and of themselves. Little work has been carried out in the vision com-

munity on performance characterisation of alternative solutions on common data (see Chapter 

5). The results will be most useful if the comparisons made during the evaluation process give 

information of more general value on the abilities of approaches which represent quite distinct 

approaches to solving individual problems. 

There are then a further group of targets to consider within the selection process at a particular 

module: 

. The theoretical basis of and assumptions inherent in candidates for a particular model 

should be considered, mindful of opportunities for interesting comparison. 

If there is a commonly used approach, this should be evaluated against (a) novel method(s). 

Approaches with contrasting levels of general complexity should be compared to evaluate 

the benefits of that complexity. 

New/interesting published approaches should be investigated to confirm their reported 

results. 
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. Any approaches the implementation of which for the final system would be sufficiently 

different from the extant work should give interesting and novel results. 

A final additional consideration motivating the choice of the number and type of the candidate 

solutions is the novelty of the proposed evaluative process itself. As discussed in full in Chapter 

5, there is currently no accepted procedure for making comparative qualitative performance 

characterisations of the type which will be valuable in assessing the system variants here. 

In the absence of this, not only are the results of the evaluation important but also results on how 

well the proposed evaluation process itself assists in making a final determination of relative 

abilities. This suggests first that at least one approach for each module should be one where 

clear pre-existing qualitative performance appraisal exists. Secondly, the number of candidate 

solutions considered should be fixed at the minimum compatible with the development aims so 

that the exploration of of the evaluation process is simplified. 

The exact consideration process in selecting the candidate solutions for each module are dis-

cussed separately in the section pertaining to that module. 

4.3 Image capture and preprocessing 

In the final application, the input data which will be provided to the system which serves the 

intended application will be uncompressed digital images. The specifics of the image format 

are described in Chapter 3, and the interface with the final platform is an issue to consider in 

detail when the system migrates from the test platform. This interface will take advantage of 

extant modules available for video stream conversion, modified as appropriate to deliver images 

in the VS-image format discussed in the previous chapter. 

The steps constituting preprocessing will not be subject to methodical variation then, as their 

detail will not have impact on the final implementation. The choice of the procedures for sup-

plying the input data to the first variable module will be linked to the planned testing procedures 

and the format in which raw data will be supplied. 
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4.3.1 Operational test data collection 

The details of the data capture process used during the main performance characterisation test-

ing phase are described in full in Chapter 5. 

During the implementation phase of the modules sufficient input data was needed to test the ba-

sic function of the modules and to allow various internal parameters to be tuned optimally (see 

individual sections below). For this procedure, the test data required varies between procedures 

from numerical input to a full (real or simulated) sequence. At each stage of development, 

testing was carried out on the stand-alone modules and also incrementally on the sub-system 

variants implemented to that point. 

For tests on image sequences to evaluate basic functionality, it is important to have a stored 

test sequence to allow the direct comparison of results and the repetition of tests. This is 

needed both in obtaining the correct core functions and in setting the tuning parameters of 

each to optimise stand-alone performance. Test image sequence data was obtained from the net 

(http://www.openvms.compaq.com/fremare&'REEWARE40/NWEG2PLAYI  lB/TENNIS .M2V) in the 

form of a short standard test sequence. The sequence used was 'tennis.m2v' (see figures 4.2 

and 4.3 ), an eight frame sequence of size 704x576 pixel frames sufficient to test the running 

and basic functionality of the program modules. 

This file is in the MPEG-2 format which is a generic method for compressed representation of 

video sequences using a common coding syntax (section 4.3.2). The primary application for 

which MPEG-2 was developed was the all-digital transmission of broadcast TV but it is now 

used in many other areas including video conferencing and the compact storage of video se-

quences. The IndigoVision system uses H.262 coding for the transmission of video sequences, 

which has a common syntax with MPEG-2. 

The MPEG-2 coding process involves colour space compression, motion estimation, DCT con-

version, quantisation and Huffman encoding: the important point to note is that the storage 

space required is reduced by using a series of approximation processes. The overall result is a 

lossy compression of the sequence, one where the exact details of the original data can not be 

recovered precisely. Further, artifacts may be introduced during the process i.e. features may 

occur in the decoded images which do not correspond to real features in the original sequence. 

By choosing to use the MPEG-2 format to conserve memory space it was also possible to take 
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advantage of the existing control and output options available within the context of the decoder 

(see section 4.3.2 below). The fact that storing images in the MPEG-2 format is lossy and 

may introduce artifacts during the encoding/decoding process has not been neglected and may 

indeed affect the absolute results of evaluation. 

During the initial testing, the maximum achieved processing result is not under evaluation: what 

is of concern is the correct overall functioning of each module. The tuning of the parameters 

too is important, but the most appropriate settings for threshold levels, acceptance ranges, sens-

itivities etc. will not be affected by artifacts in the image data. 

Due to the noted effects that using MPEG-2 files as input has on the absolute results, an altern-

ative was needed for the qualitative testing procedures (and for the later stages of operational 

testing: see section 4.3.3 below). The choice of using a sequence of individual binary .ppm files 

as noted in Chapter 5 meant that a separate control structure had to be developed to use in the 

test harness. It should be noted that use of individual JPEG files was discounted for the same 

reasons that MPEG-2 was not acceptable, but that the new JPEG2000 format, with its promise 

of a lossless compression ability would be an interesting option for future experiments. 

4.3.2 MPEG decoding 

To work from MPEG-2 files, the first module required in the system was an MPEG decoder. The 

standard format of decoder takes a .m2v file as input and accepts control-line specification of 

the output type which can usually include separate or interleaved YUV components, Truevision 

TGA, PBMPLUS PPM and X1  display. It would be inefficient to perform the initial step of 

conversion to a sequence of still images which must themselves then be converted to VS image 

format (see Chapter 3). More useful would be an adapted decoder which includes an option to 

output a sequence of VS image objects direct to the next module. 

Rather than devote time and resources to building a decoding utility from scratch or falling 

back on using a pre-compiled utility as preprocessor, an existing decoder available in the public 

domain as source code was modified to the specified requirements. Using 'off-the-shelf' com-

ponents for which source code is available is advantageous in that the specifics of operation can 

be modified directly and re-modified to reflect development and other changes in the system. 

Also, any individual component routines (for example: the DCT algorithm here) can be made 

available if required in future processing steps. 
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The module obtained was MPEG-2 Video Decoder, Version 1. 1, (Copyright June 1994 MPEG 

Software Simulation Group), a public release not optimised for speed in which emphasis is 

on correct implementation of the MPEG standard and simple program structure. The speed 

issue is not of undue concern as the decoding time will not be included in the evaluation phase 

measurements. The module was written in C, whereas the standard for the department's Vision 

Systems library software is C++, so the first required step was modification throughout the body 

of the programme to convert to C++. 

The overall control structure of the MPEG decoder involves first opening the .m2v file and the 

reading of its header information which specifies sequence length and the coding parameters. 

A loop is initiated for the indicated number of frames to be decoded and after decoding each 

frame it is stored to file in the specified format. 

In the modified decoder, the control line option specification is disabled and an additional output 

option integrated for 'storage' in the VS image object format, which option is set as the default 

for the procedure. A call to a FrameProcess() function is included in the loop after the creation 

of the VS-image object. This function will be modified during development to correspond to 

the process(es) under test at that time. 

After the specified number of frames in the sequence have been decoded/processed, the frame 
loop ends and the MPEG-2 file is closed. At this point, any further processing on accumulated 
data from the sequence overall can be performed by incorporating further process calls prior to 
the decoder routine terminating. 

Open MPEG-2 file 

Read file header, set up loop 

While (frames to be decoded) 

Decode data for current frame to a VS-image object 

Store original frame (if required) 

Call FrameProcess() to execute processing on current VS-image object 

Store processed output 

Close MPEG-2 file 

Perform any processing required on the sequence data overall 

Another option considered at this stage was to process the coded MPEG stream directly, mov-

ing the processing problem into a different data domain. A VS-MPEG-frame object could be 

created by modifying the decoder at an earlier stage in processing. This would lead invest-

igations in a quite different direction to the initial intention (of investigating processing on 

image-like entities). 
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Although an interesting possibility, this option was discarded as it would constitute a step away 

from the anticipated real world application. Although in some situations image sequences may 

be stored in MPEG format in the final application, developing an approach assuming this would 

be restrictive. The process would be tied into this additional stage of processing which may not 

be required in most instances. 

In summary, the MPEG decoder was integrated with the basic VS image routines to enable 

generation of the desired stream of image-like entities. Once this sequence of VS-image objects 

is available, the image processing proper can begin. 

4.3.3 Control structure when using .ppm files 

As the cumulative subsystem complexity increased, the use of an MPEG file as the data source 

became less attractive. Its advantages were low storage overhead, the ability to call the novel 

image processing routines from within the decoder control cycle and the integral ability to store 

image-like results in the variety of formats available in the standard decoder. 

Set against this, the test runs had to begin from the coded MPEG file for every subsystem test: 

the decoding overhead, although not to be considered in overall evaluation nevertheless took 

significant processing time, slowing down the rate of development. Also, the option of storing 

the results of one processing step in a lossless format to use as input for testing the subsystem 

from that point was not available if only MPEG source data was accepted. 

Accordingly, from the point after development of the object growing module, the test system 

was altered to accept input data in the form of a sequence of individual binary .ppm files, using 

the standard input/output procedures for VS image objects. These options are inherited from 

the parent VS-Frame class (see Chapter 3) and allow input/output as binary or ASCII .ppm or 

.pgm format files 

Background representations, difference maps and object maps could then be stored as image-

like entities and used as input for testing later stages of processing in isolation. This made 

it possible to create artificial images to test the operation of modules as stand-alone units on 

quantitatively known images. 

As noted, a separate control structure had to be developed to use in the test harness now that the 

control flow of the MPEG decoder could no longer be utilised. The format used followed the 
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specifications of the department's guidelines for writing Vision Systems code and the overall 

control flow is as follows: 

(set t1) 

Specify global variables 

Call constructors of required objects 

Set flags to specify module choices 

Perform conditional initialisation based on module choices 

(set t2 ) 

For the specified number of frames 

(set t:) 

Load current frame's file to a VS-image object 

Call FrameProcess() to execute frame-wise processing on current VS-image object (and set t4  ,t5  ,t6  etc.) 

Store processed output 

Increment frame counter 

Perform any processing required on the sequence data overall 

(set t7  and report timing/memory results) 

The bracketed elements correspond to modifications to include timing and memory estimation 

routines for performance characterisation (Chapter 5). 

4.4 	Background estimation and foreground segmentation 

4.4.1 Background representations 

4.4.1.1 The significance of background representations 

As discussed in Chapter 2, efficient and robust construction of a dynamically evolving back-

ground estimate is a vital first step for versatile scene analysis. While some environmental 

knowledge may be significant in later stages of interpretation, in the initial stages we desire to, 

as far as possible, remove the effects of as many environmental variables as possible, and to do 

this they must be (implicitly or explicitly) modelled in the background estimate. 

Segmentation of foreground objects, the differentiation of them from the background, may 

be integral to the background estimation or can be implemented as a separate process. This 

must usually include the first levels of noise elimination and the removal of potential objects 

characterised as 'not significant' by some heuristic rules. 

Before considering the choice of candidate solutions for this module, it is worthwhile to address 
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the meaning and desired characteristics of a background for surveillance purposes. 

The most basic principle is that the background should register permanent, essentially un-

moving objects in the scene and identify them as background components. The simplest 

case would be a scene of rigid, immobile objects under constant lighting conditions: in 

the absence of any moving objects the background would be the scene itself. The task of a 

background estimation approach is to analyse a dynamic scene and in some way to allow 

moving objects to pass through the scene without significantly affecting the knowledge 

of the underlying background. 

New objects placed 'permanently' in the scene should be incorporated into the back-

ground representation (and those removed should similarly be replaced by the back-

ground which they formerly occluded). This dynamic behaviour must be balanced against 

the ability to distinguish moving, impermanent objects and so some latency (a delay 

between the object appearing and its being incorporated into background) is usually an-

ticipated. 

The background should be robust with respect to 'slow moving' objects: these should not 

be incorrectly incorporated into the background. There is usually a trade-off to be made 

between the ability to correctly exclude objects moving below a certain velocity and the 

latency with respect to registering new objects. 

The estimation approach should be able to cope with a variety of backgrounds, including 

those which develop dynamically over time. Apart from the introduction and removal of 

new objects as noted, this will include the significant case of lighting variation. To take 

the example of exterior scenes, the natural lighting varies over a 24 hour cycle, changing 

the average contrast of the image and the pixel values of points corresponding to the same 

scene elements. 

This diurnal lighting change is normally viewed as a slow variation, compared with the 

anticipated time scale of changes due to moving objects. Such contrast changes will also 

occur on shorter time scales due, for example, to the passage of a cloud in front of the 

natural light source or the change of artificial lighting affecting the scene. 

The approach should be able to cope with the effects of environmental noise, for example 

rain or snow in an outdoor environment, or the effects of reflections on intervening glass 

surfaces. 
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Ideally, the approach should in some way be able to cope with motion within the back-

ground. The examples usually cited are of oscillatory motion due to the motion of ve-

getation in the wind and of specularity effects on the surface of water in direct sunlight. 

If the approach cannot adapt to recognise this motion as an element of the background 

itself, the effects are likely to be registered as foreground objects and it may be possible 

to eliminate or mitigate the effect in the noise handling procedures. 

The nature of a background representation will vary dependent on the variability allowed 

in the camera's intrinsic and extrinsic parameters. Where a camera is allowed degrees 

of freedom in respect of translational motion, pan, tilt or zoom, the background repres-

entation problem becomes more complex. In this situation, information on the changes 

in these parameters could be combined with a representation of the background which 

covers the full range of their allowed values to generate the appropriate estimate for the 

current settings. 

The case of a stationary camera with fixed intrinsic parameters requires only a represent-

ation for a single invariant scene space and is the subject of most work in the area. If 

a process developed for this situation is used where camera parameters may vary peri-

odically, there would be a latency period after the change as the background estimate 

is updated. In effect, this is equivalent to removing all background objects or replacing 

them with new items thus the latency which echoes the object introduction/removal case. 

There are some further desired characteristics more appropriately identified with the foreground 

segmentation approach: 

Foreground extraction can be with respect to a dynamically evolving background as de-

tailed or simply with respect to an unmodified earlier scene image. 

Segmentation is usually conducted on a pixel-by-pixel basis, with objects constructed 

from these initial results using a subsequent object growing module (see section 4.5). 

The approach should be able to deal with 'camouflage' effects in extracting objects. In 

image terms, this effect is the result of a low contrast between the foreground and back-

ground, due to poor lighting or similar colour levels. 

Balanced against the first consideration, some small changes with respect to background 

should not be interpreted as foreground objects, but used to update the background value. 
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Noise effects which are not interpreted as a valid part of the background should be dis-

counted. The definition of what is noise as opposed to an 'interesting' object will be task 

dependent to some degree and so this functionality should ideally be variable. 

. There should be a fast response to new foreground objects appearing within the scene. 

4.4.1.2 Choice of candidate solutions 

To provide a contrast between a mathematically complex and a less complex approach, the 

first background estimation approach selected was one based on the most intuitive background 

representation, the long term average image. As far back as the 19th  century, this was used in 

photographic effects, exposing a film over a long period of time to capture long-term effects 

while omitting relatively fast moving objects. 

A development of the idea is to weight the contributions of the time series of values observed 

at a point so that their relative contribution decreases exponentially over time. This gives a 

background estimation which can adapt dynamically over time to encapsulate, for example, the 

effects of changing lighting in a scene. 

Conceived in 1995, the Median average background representation has been shown [25] sub-

jectively, by use in surveillance applications similar to that under examination to give good 

results and is quoted as being able to provide functionality in respect of most of the quoted 

characteristics. 

This approach generates an image-like background and requires a separate segmentation method. 

The most commonly employed partner method is provided here, direct frame differencing 

between the current frame and the background image. Both this and the background estim-

ation can be implemented directly based on published details with no significant modification. 

For an alternative method, the approach selected was based on a relatively new method solution 

published in the literature [50]: a Mixture of Gaussians background representation. The pub-

lished results indicate qualitatively superior performance, especially in modelling backgrounds 

with significant oscillatory behaviour. 

A direct re-implementation of the approach is not possible in this case due to the specific re-

quirements of the system and several novel modifications were required to give a useful variant 

method. 
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This approach integrates background estimation and foreground segmentation and so does not 

require a supplementary module for the second task. However, to give results which are com-

parable with the median background approach and also in a suitable form for use by the fol-

lowing module, interface output functions were needed. 

4.4.2 Median background generation 

The first approach considered for constructing a background which captures the characteristics 

as specified in section 4.4.1.1 involves the building of a time-averaged median background 

image. In this approach, an image-like background is generated with the intensity value at each 

pixel position being derived from the weighted median average of the values seen there over 

previous frames. 

The approach was first developed in 1995 [28] for the purpose of detecting piglets in an over-

head scene of a livestock storage area. The key similarity with a surveillance scene is that frame 

differencing can be performed to detect objects, but only where a current frame and reference 

background can be compared. In both cases, it may not be possible to capture an image of 

the uninterrupted background and even where this is possible the background may evolve over 

time. 

Conceptually, the pixel setting is intended to approximate the underlying background, being 

incremented/decremented toward the current frame value, which is the most recent information 

and which should therefore be the most significant: this allows the system to develop dynamic-

ally with a more rapid response time. 

To initialise the background, a basis image is constructed by simply copying the first frame, 

which may contain foreground objects occluding some real background features. There will be 

an initial equilibration period as the update process gradually eliminates these objects in favour 

of the 'true' background values. For each subsequent frame the intensity values at each pixel 

position in the background are dynamically updated over the life-span of the process using the 

formula: 

At  = wA_1  + u(I) 	 (4.1) 
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where: 

—1 : 

U (It) = 	0 :It  = A_1 	 (4.2) 

+1 : 

and: 

At  is a pixel value in the average image at time t 

w is the weighting factor 

It is a pixel value in the current frame image 

Without the weighting element, this would result in a pixel's value converging at a level where 

half of the historic values seen at that point were higher and half were lower, the simple time-

averaged median. Inclusion of the weighting factor to give a weighted time-averaged median 

allows the value to be biased in favour of more recent values, giving a faster response to vari-

ations in the background. 

The background value is incrementedldecremented by a constant amount irrespective of the 

magnitude of the deviation of the current observed value from the previously generated back-

ground. This makes the approach less sensitive to outliers (values separated from a distribution 

mean by a large amount compared to its standard deviation). Thus unwanted change in the 

background caused by the passage of an object of greatly divergent colour is less than, for 

example, a weighted mean average background. 

It is the frame-wise update process which underlies the latency in adjusting to object introduc-

tion/removal and an initialisation latency as the background is refined over several frames to 

exclude any moving objects in-frame when the unit was activated. 

Use of this time-averaged median background image as the reference for object detection can 

not only take account of lighting, but also counter the effects of changes in the environment 

caused by objects being introduced and left (e.g. cars parked, snow cover). Where a sub-class 

of such changes are considered significant by the user, (perhaps a suspicious package being left 

behind) steps can be taken to modify the approach to give alarm signals in these instances. 

The control structure for the time-averaged median background are relatively straightforward: 

For every pixel in the background image 

Get the corresponding pixel value from the current frame (Is) 
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If this is the first frame 

Set the background pixel value (4) to (4) 

else 

Get (Is) 

If I, > 1b, lb = I + 1 

If 4 < 'b, 'b = Ib - 1 

4.4.3 Difference map construction 

Immediately before the background representation is updated from the current frame, a frame 

dfferencing approach is applied to execute foreground segmentation. In this method, the value 

of each pixel in the current frame 'Ct  is compared with the value of the corresponding pixel in 

the background representation A_1, for each of C colour channels independently: 

Ct = 'Ct - A_1 	 (4.3) 

where z\ is the pixel value of channel c in the difference map at time t. The difference map is 

an image-like representation of the differences between the two source images. 

The results of the single channel differencing are combined using the standard JPEG formula 

as a first stage filter for noise. 

= 0.59G + O.11B + 0.30R 	 (4.4) 

where I, is the greyscale intensity 

G 	is the green channel intensity 

is the blue channel intensity 

is the red channel intensity 

The idea here is that taking the difference for each colour channel separately and then combin-

ing these will 'even out' any channel specific variations in what is effectively a colour-channel 

blurring procedure. 

Gaussian low-pass filtering is applied to the combined difference image to further reduce noise, 

mathematically: 

G(x,y) = 
1 	_2 	

(4.5) 
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where G(x, y) is the filtered result 

or is the standard deviation of the Gaussian distribution 

x, y are the coordinates of the centre of the distribution 

This filtering is implemented by convolution with the 2D kernel (or mask): 

K11  It12 1113 

1121 A22 '23 

1(31 1(32 It 33  

with the It' j j set to integer values: 

	

hi1 = 1113 = 1(31 = 1(33  = 1 	 (4.6) 

	

K12  = K21  = K23  = It 32  = 2 	 (4.7) 

	

1(22 = 4 	 (4.8) 

These values correspond to the most commonly used 3x3 Gaussian mask [17]. 

The process of convolution involves the placement of the mask at each pixel point in the image 

in turn. The value at that point is then replaced by the sum of the products of the mask entries 

with the pixel values at the corresponding points in the unblurred image. Mathematically: 

rn n 

G(x,y) = 	1(x+i-1,y+j-1) 1 ij 	 (4.9) 
i=1 j=1 

the principle here is that this filtering will 'even out' the spatial noise in the image by replace-

ment of values with a weighted average of the values in the immediate neighbourhood. The 

spatially small (typically single pixel) random noise effects will be strongly modified in this 

process such that they may no longer be detected as object pixels in the later thresholding pro-

cess. There will be a lesser effect on large objects whose values will tend to be reinforced by 

similar neighbouring values (although there will be more effect at the edges). 

The resultant filtered, single channel, greyscale difference image is thresholdedto give a 'trinary' 

image. For a threshold value T, pixel values in a band about 0 defined by ±T are set to zero, 
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Figure 4.1: An example of a trinary difference image. The leftmost object was registered at val-
ues below the threshold band and is set to —1. The rightmost object was registered 
at values above the threshold band and is set to —2. All otherpointsfell within the 
threshold band and are set to 0 

those below the band are set to —1 and those above are set to —2. 

—1 :Jjj < (—T) 

= 	0 : (—T) 	/' 	 (4.10) 

—2 : 

Thus there is a two-part foreground of non-zero values corresponding to potential moving ob-

jects against a zero-value background. If an actual moving object is brighter than background, 

—1 will represent its position in the current frame, —2 in the previous frame. Conversely, if the 

object is darker than background, — 2 will represent its position in the current frame, —1 in the 

previous frame. A simple example of such a trinary difference map is illustrated in figure 4.1. 

In choosing the threshold levels, a balance has to be struck between the amount of noise which 

can be subtracted and the system's ability to give a consistently contiguous object image. For 

our purposes, the bias of the thresholding is toward 'foreground' (conservative thresholding) to 

promote object continuity. 

Where an extracted object is smaller than a threshold number of pixels in size (20 pixels used 

here) it is discarded on the grounds that it is both likely to constitute noise and also on the 

practical grounds that it will be of little use for accurate shape estimation or spline fitting. This 

should be noted as a lower boundary to the scale invariance of the system: below this size 

otherwise potentially valid objects will not be recognised. 

The output of the combined background estimation and foreground segmentation processes is 

a sequence of trinary difference maps (all VS images), each 'blob' therein corresponding to a 
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hypothesised moving object is the current frame. 

The command structure for both frame differencing and filtering too are relatively straightfor-
ward: 

For every pixel in the current colour VS-image 

Convert the 3 channels of colour information into a single value using the JPEG formula 

Store as a greyscale VS-image 

For every pixel in the greyscale VS-image 

Convolve with the Gaussian kernel 

Store resulting value in the corresponding position in a temporary VS-image 

Copy the temporary image values into the greyscale VS-image 

For every pixel in the blurred greyscale VS-image 

Compare the value (Ia)  with the threshold value T 

If I < —T, 'b = —1 

If Ir.  > T, I = —2 

else 4 = 0 

Implementation points The trinary map values corresponding to foreground were set as negat-

ive values to assist in distinguishing them from labelled object pixels (marked at positive integer 

values) in a later stage of processing. Trinary maps are thus unsuitable for direct display as im-

age like entities, as negative values have no meaning in this context. A conversion procedure to 

display the foreground components at suitable positive values must always be incorporated if a 

visual representation is required. 

In the convolution stage, special boundary conditions are implemented at the edge and corners 

of the frame. For all such operations using the values of neighbouring pixels, special cases 

must be applied at the boundaries where the normal algorithm looks for values of pixels outside 

the image. In this implementation, the special cases project 'mirror' values for pseudo-pixels 

outside the boundary. 

4.4.4 Mixture-of-Gaussians pixel model 

More complex alternatives to viewing the background as a long term average exist which in-

volve modelling the individual background pixels explicitly. The median average background 

approach, along with all others which implicitly or explicitly model a pixel using any single 

distribution make the assumption that its value is due to a single static surface. In this case, 

changes in the pixel's value will be due to: 
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. An object occluding the background surface 

. The removal of the original background surface 

. A change in environmental conditions (lighting/visibility) 

To move away from this simplistic assumption, it is useful to consider the variation in values 

observed at a pixel p = (xv, y) as a time series. At time t, the data upon which a prediction 

of the pixel's value can be constructed are the pixel values observed at that point historically: 

{Io,Ii. ....... 	= 1(x,y,t) :0< t < tP 	 (4.11) 

where It  is the intensity at time t. 

In these terms, the process involved at this pixel in generating, for example, a mean weighted 

average background is: 

tM  
Bt,

=L 0"(t,—o 
	 (4.12) 

where: 

BtP  is the value of the background at this pixel at time t 

tm is the number of recent pixels used in building the background 

c is the (fractional) learning rate 

In proposing an alternative approach, [50] notes that the long term average models share failings 

in that they are not robust to scenes with many objects and tend to allow slow moving objects to 

become partially incorporated into the background too readily. This is because there is a single 

background value at every pixel which is modified to some degree by every non-background 

object which passes there. 

That alternative involves modelling the observed time series at the pixel by a probability density 

function (PDF). The PDFs for all pixels at the current time can then be considered as a whole 

and a heuristic decision made as to foreground/background classification 
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In reviewing the decision of an appropriate basis function to use in modelling the intensity val-

ues, it is useful to go back to the realities of the observed scene. Considering an idealised scene 

with constant lighting and no moving objects, the representative time series for a pixel would be 

a static repetition of a single value (scalar for greyscale images, a 3-vector for RBGIYT.JV). The 

static value would correspond to the colour and brightness of the world object corresponding to 

the pixel's coordinates in the image plane. 

Moving away from the ideal and considering noise due to acquisition and processing, one would 

expect variation around the static value over time. Assuming multiple independent factors cause 

the noise, the variations would be random, individually small and with an effect over time which 

averages to zero. The Central Limit Theorem states that the best representation for modelling 

such a process is by a Normal or Gaussian distribution. 

Given this, standard statistical methods [104] show that the PDF, ij, giving the best model of 

the observed values is: 

= 
(v/2-7r)-',./1et () 
	 (4.13) 

where: 

Xt is the pixel value at time t 

i is the mean of the Gaussian (the static value expected) 

>i is the covariance matrix of the Gaussians (the second order moments: in one dimension, the 

variance) 

n is the dimensionality of the image (1 for greysc ale, 3 for colour) 

det is the determinant of a matrix 

This Gaussian model of pixel value can be extended by using each new measurement of in-

tensity to update the values for i and E to give an adaptive Gaussian model, able to handle 

variation of lighting over time. 

So far, the calculations to be applied have been increased in complexity with little evident in 

terms of theorised increased performance over the time average background approaches. What 

using a distribution in this way leads us to, however is the ability to consider a newly observed 

pixel value probabilistically in terms of previously seen values. We can form conclusions as 

to how likely it is that the observed intensity is within the expected distribution of values as 
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opposed to being due to a new element. 

This attribute is of great value in practical applications where it is usually not possible to make 

a uni-modal classification of a pixel as belonging to a single background or being part of an 

extant/new foreground object. In real,world scenes a 'background' point may vary between 

values corresponding to, for example, road/leaf/branch as a local bush is blown in the wind. 

The pixel corresponding to this behaviour would thus oscillate between at least three values 

even in the absence of a foreground object or light variation. 

Considering the occurrence of values as a distribution, intensity against time, this situation 

would be reflected by a multi-modal pattern which cannot be satisfactorily represented by any 

single simple function. Here the value of having a mixture of distributions available for rep-

resenting each pixel becomes evident. A new value can be compared with the mixture and 

either classified as belonging to an extant distribution or being part of a hitherto unseen one. 

An additional advantage is that a 'primary' background distribution may not be lost if an object 

temporarily becomes part of the background. The primary distribution remains in existence un-

til it is the least probable one when a new object appears and so can be quickly re-incorporated 

when the temporary object moves on. 

4.4.4.1 Calculation of mixture model 

The mixture which best represents the distribution at any point in time can be considered to 

be that linear combination of basis functions (Gaussians here) whose product of likelihoods is 

maximised when taking into account all observed values. We can define the mixture model at 

time (t) as P(It ): 

k 

P(I) = 	 (4.14) 
i=1 

where: 

is the ith mixing coefficient at time t. 

,qi is the ith distribution. 

k is the number of Gaussians used to represent each pixel. 
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Then the product of likelihoods (.X) is: 

= fJnP(i) 	 (4.15) 

A strict algebraic solution of the maximisation requires computing the derivatives with respect 

to the parameters (both mixing weights and each Gaussian's parameters) and using these in 

a non-linear optimisation algorithm [104] . This complex constrained optimisation problem 

requires the solving of highly non-linear coupled equations which is prohibitively complex 

and time-consuming for this application. The preferred alternative is to apply a re-estimation 

technique based on the expectation-maximisation (EM) algorithm. 

This algorithm can be summarised as: 

Initialsation: 

Set k Gaussians with means at a random step from a point in the data set. 

Set the initial covariance matrices to the identity matrix and the initial weights to 1/k. 

Expectation: 

Use the Gaussian PDF generated by the current mixture to calculate a likeliness estimate for each point. 

Maximisation: 

Re-estimate the parameters using the results of the expectation calculations 

Convergence: 

Repeat expectation-maximisation cycle until the parameter values cease to change significantly. 

Applied to our situation, initialisation will be incremental, in that a first distribution will be set 

up at the pixel's initial value (as above) and distributions will be added as needed up to the 

maximum. 

Even using the EM algorithm, with re-estimation required for each pixel at each time step, 

the processing required would be prohibitive in an on-line real time application. We use a 

limiting case of the EM algorithm assuming spherical Gaussian basis functions with a common 

parameter o to replace the covariance matrix >k,t, where: 

(4.16) 

and I is the identity matrix 

This means we are making the simplifying assumption that, for the RBG case for example the 

same variance is observed in each colour channel. Although this is not going to be the case in 

reality, the computation saving is worth the loss in accuracy. Considering the limit of a - 0 
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[104] gives the K-means clustering approach which is implemented. This can be summarised 

(from [104]) as: 

Compare the current pixel value, I, with the extant distributions for that pixel. 

If: 

	

(jj - (2.5)aj) < it < ( tj + (2.5)aj) 	 (4.17) 

for distribution i, we have a match and mark the distribution to be updated. 

Otherwise, we have no match. Replace the distribution with the lowest probability with a new 

distribution such that: 

	

/1new = It 	 (418) 

max 
anew = ot_i 	 (4.19) 

mm 

	

?Inew = 71)t--1 	 (4.20) 

Adjust the weights of the old models using: 

Wk,t = (1 - c)wk,t_1  + c.(Mkj) 	 (4.21) 

where: 

c is a learning rate defined by the inverse of the time constant which defines the rate of change 

of parameters. Mk,t is 1 for models marked as matched, 0 otherwise. 

Re-normalise the weights so that: 

Wi't = 1 	 (4.22) 

For any models marked as matched, update the parameters using: 

	

Pt = (1 - p)Itt_1 + Ph 	 (4.23) 

ort  

	

p)_1 + p(It - 	(it - 12t) 	 (4.24) 
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where: 

P = cnl(It, 1ak,ak) 	 (4.25) 

This is the application of standard learning rules, taking the new pixel value as the new sample. 

The overall result of the process to this point is an up-to-date Mixture-of-Gaussians model for 

each pixel in the image. 

4.4.4.2 Classification of models 

The final step in the segmentation process involves the classification of the Gaussians as back-

ground/foreground. A heuristic rule needs to be applied to differentiate between the two, based 

on logical inferences about real world scenes. We need to establish some distinctive character-

istics of background pixels which can then be used in selecting the distributions. 

Firstly, by their very nature, we expect distributions relating to background to be present for 

longer that those relating to new and/or moving and/or transient objects. Thus, considering 

equation 4.21 for the mixture parameters we would expect that, at any time, Gaussians corres-

ponding to background values will, on the whole, have a greater value for w than models which 

do not. Also, we expect those relating new/moving/transient objects to have a greater variance 

due to the changes in the object over time. 

So, the likelihood that a pixel corresponds to background has an inverse relationship with o 

and a direct relationship with w. It seems reasonable, then to consider the value 	which 

increases both for increase in w and decrease in a-. All other things being equal, we would 

expect Gaussians with a high value of to be most likely to correspond to background. 

The process of distribution classification using this premise is: 

Sort the individual Gaussians representing the pixel in order of decreasing . 

. Classify enough Gaussians in the ordered list as background, such that a pre-defined 

minimum proportion (T) of the mixture is classified as background. 

Empirical selection of the parameter T to allow more than one of the constituent Gaussians to 

constitute background allows the system to handle a multi-modal background. 
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4.4.4.3 Implementation notes 

Objects 

The implementation of the Mixture-of-Gaussians segmentation approach uses three distinct 

objects: 

. VS-Gaussian objects have a mean value, variance, current weight and flags which indic-

ate whether they are currently matched and and/or classed as background. 

. VS-Gauss-mix objects held an integer size and a 1-D array of that many VS-Gaussian 

elements. 

VS-mix-back objects have a 3-D array of VS-Gauss-mix object equal to the image size 

(area x number of channels) 

Mixture size 

Three Gaussians per mixture were used throughout the current implementation. The paper 

which first developed a similar approach [50] investigated between 3 and 5 as mixture sizes and 

the lowest of the range is implemented here to limit memory and computation requirements. 

Initialisation 

There was no information given as to choice of initialisation procedures for the Gaussians in 

the above paper. It was decided that each VS-Gaussian object would be initialised by setting 

the mean outside the range of possible image values (at 300), with a low variance (1). The 

first value observed at each pixel will be outside the acceptance range of the corresponding 

mixture's Gaussian distributions and so will form the basis for a new distribution centred on 

that value. The initial variance is set high (400, giving a standard deviation of 20) to allow 

a large range of acceptance about the first observed value. As new values are matched, the 

variance will equilibrate to a more reasonable value. 

Colour matching 

The match process is carried out for each match separately. The same Gaussian must be 

matched in each channel for an overall match to be reported. 

System restrictions: fixed point arithmetic 

A significant development of the published work was required to construct a similar method 

suitable for implementation on the final platform. On that platform, the application will be 
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restricted to using fixed point arithmetic, which is a major complicating factor in applying a 

procedure based around calculating probabilities under a Gaussian distribution. 

There is no direct ability to calculate the exponent values central to the process nor the required 

square root values and calculations with probabilities, restricted to the range 0 to 1, are not 

manageable. Alternative solutions must be developed, keeping as close to the original methods 

as feasible and applying reasonable approximate methods. 

Calculating probabilities for unmatched values On considering how to limit the need for 

the exponent calculations required in explicit calculation of these probabilities, a useful 

computation reducing solution was found. The probability (F) of a value varies mono-

tonically with the separation of the value from the mean and is inversely proportional to 

the variance of the distribution: 

ps= (XtP2 	 (4.26) 
9 2 

In evaluating whether or not a value matches with a distribution, we are assessing whether 

it falls within 2.5 standard deviations of the distribution's mean value, t. Thus the match 

condition can be re-written simply in terms of separation as: 

Ixt - JLJ  < 2.5 	 (4.27) 

This considerably simplifies the calculation required in the matching process. 

When a current pixel value does not match to an extant distribution, the Gaussian which 

has the lowest probability in the current mixture is replaced by a new distribution centred 

on the new value. In the original approach, the probabilities for each distribution were 

calculated and compared in making the replacement decision. 

As the calculation requires only a comparison of probabilities, it is sufficient to instead 

compare the value of the scaled separation, S: the distribution which gives the highest 

value here is the least probable in terms of the current value. 

These changes are required in the fixed point implementation, but also present a compu-

tational saving with no loss of accuracy or precision suitable for the original method. 

Updating matched distributions As part of the distribution update process, a full probability 
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calculation is required. From our match criterion though, we know that we need only 

calculate e 	for x which fulfills equation 4.27. This limit on the value of x makes 

calculation of a reasonable approximation to e_X  feasible using a lookup table and linear 

interpolation. In constructing a lookup table, values of e 	are calculated for discrete 

x within the allowed range using floating point procedures and are stored in a ID array. 

When an exponent value is to be calculated in the final system, the known values on 

either side are accessed from the table. 

Using linear interpolation to project the desired value makes the assumption that e is 

itself linear, which is not the case. However, exact correspondence to the Gaussian update 

formula is not considered vital to the functioning of the system: if the values are close 

enough together, an approximation good enough for use in updating the distribution can 

be obtained. 

Calculation of the square root values using fixed point arithmetic utilises Newton iteration 

to extract an good approximation. 

'Shift' arithmetic The restriction to integer arithmetic generates general problems in perform-

ing precise calculations and representing results, especially where intermediate results 

are restricted to the range 0 to 1. This problem will apply in each of the modules and a 

solution is vital for transferral of each to the final platform. 

The solution for fixed point arithmetic is a process of scaling and de-scaling before, 

during and after calculations using the C++ shift operators. These operators are a fast 

way to execute multiplication and division by factors of two: the goal in their use here is 

too keep all results (final and intermediate) within the range which can be be represented 

on the system to acceptable precision. Simply, input is scaled up to the maximum amount 

that does not give an overflow of the register within the expected range of performance. 

The organisation of the number of shifts to perform for each stage of the calculation 

involves knowing the allowed input range, and the effect that operations have on that 

range so that optimal shifting is performed in respect of each intermediate result. It is 

critical to keep track of the number of shifts which have been performed so that the final 

result can be restated correctly. 

Loss of precision The use of look-up tables, linear interpolation, Newton Iteration and shift 

procedures introduce a potential loss of precision as the cost of having reduced com-

putational complexity. Each procedure was tested in isolation against results of normal 
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floating point calculations to ascertain the degree of this loss: it was found that the results 

were accurate to a level of precision in excess of that of the image format. There will 

thus be no effective loss in precision. 

Overlap of distributions 

In the first test implementation, the CheckSpread() function was used after each updating or 

replacement to ensure that distributions' acceptance ranges for matching new values did not 

overlap. The new/updated distribution's acceptance range was 'cropped' at the interface with 

an extant range by reducing the variance accordingly. The problems with this method were 

twofold: firstly, the range reduction was symmetrical, and so an undesired 'mirror' reduction 

in acceptance occurred on the far side of the distribution's mean. More significantly, modifying 

the variance in this way distorts the modelling process, inhibiting the normal development of 

the distribution. 

The CheckSpread() function was removed and the alternative solution was a modification to 

the matching procedure. The TestMatch() function was altered to check all distributions for a 

match with any new point, with the distribution giving the optimum value of S accepted as the 

matching distribution. 

Choice of tuning parameters 

ü is the learning rate which specifies the latency in the update process and so how quickly the 

background responds to change. If this is set too high, unwanted slow moving objects will be 

incorporated into the scene, if too low then changes in the background will not be recognised 

on a timely basis. 

T is the minimum proportion of data which must be attributed to background in the classific-

ation process. Where T is set low (comparable with 1/n where n is the number of Gaussians 

in the mixture), a unimodal background is likely. This will reduce reduce processing costs but 

will also sacrifice the characteristic improvements attributed to the approach. The higher T is 

set, the more modes it is likely will be included in the background representation, giving greater 

flexibility at the cost of increased processing costs. 

a and T are the two tuning parameters quoted as significant in the paper on the original Mixture-

of-Gaussians background method. In developing the current method, these parameters were 

set empirically during the functionality testing procedures. The criterion used in their initial 

setting was qualitative visual review of the output of the system on the test sequence. As the 
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sequence was quite short and without significant multi-modal behaviour, the settings were not 

fixed at these values immediately: they were finally fixed during later tests on a longer sample 

sequence (see Chapter 5). 

A further significant parameter which needs addressing is ii, the number of Gaussians in the 

mixture. The considerations governing the choice of this value are those noted in respect of T, 

the balancing of processing cost against representational flexibility. In this implementation, n 

was set at 3 from the outset: a 3-distribution is the minimum size required to offer the ability to 

represent a multi-modal (here bimodal) background plus foreground objects. 

Finally, the criterion used to evaluate a match to a distribution is that the new value should 

fall within t ± 2.5o, that is within 2.5 standard deviations of the mean. This criterion gives 

a correct match for Gaussian distributed data in 95% of cases. As probability values in the 

Gaussian distribution approach zero asymptotically away from the mean, 100% confidence in 

matching is not possible. The choice of 2.5 standard deviations as the threshold is taken from 

the original approach and has a good basis in the use of 95% confidence intervals in statistics. 

Output Configuration 

The raw output of the module is a VS-mix-back object for each frame, with the VS-Gauss-mix 

objects on the 2D array each containing updated VS-Gauss objects with MatchFlag and Bg-

Flag variables set appropriately. If the intended standardisation of module input/output is 

to be followed exactly, a supplementary module was needed to convert this to an image-like 

tnnary difference map as produced by the VS median procedures. The alternative is to relax the 

guidelines and allow modification of the succeeding module to recognise both forms of input, 

allowing future segmentation modules to give output in either format. 

The latter alternative was chosen as the trinary difference map format has no functional signi-

ficance to the Mixture-of-Gaussians background method or the system overall: conversion to 

this format as a matter of course would be an inefficient use of resources. To facilitate this, it 

is useful to set a flag to indicate which background module is used so that the appropriate input 

option in the object growing module is employed. 

A more elegant and general solution to consider is to make all background generation classes 

subclasses of a generic abstract background building class. The subclasses could inherit im-

portant common attributes and succeeding modules would call on a member of the abstract 

class as input. The appropriate input option would be called depending on the specific subclass 
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of object received by that module. 

4.4.5 Functionality testing 

The first step in functionality testing is the inclusion of procedures for the image-like output 

of intermediate results within the implemented code. Even though these modules will not be 

used in the final implementation, care must be taken in their design and construction. If they 

are constructed poorly, misleading results as to the functionality of the module under test will 

be given, with repercussions throughout the design process. 

For output as standard binary .ppm files, it is most efficient to generate results in the VS image 

format and to employ the standard i/o functions available to objects of that class (allowing 

binary or ASCII .ppnil.pgm files). 

For the Median average background/frame differencing approach, the procedure required to 

display the segmentation result is conversion of the extant trinary difference map (itself a 

VS-Image: see class diagram in Appendix A) to a comparable difference map without the 

negative values which cannot be displayed. A simple loop routine is used to handle the three 

cases to convert: 

For every pixel in the trinary difference map VS image 

Get the current pixel value (Ia ) 

If I = 0, I. = 254 

else I = I 

For the purposes of visual output, background pixels are set to 100, corresponding to a pale 

grey colouration. Foreground pixels are set to a value I f , to give sufficiently discernible objects 

in the visual representation. An I f  value of 200 was suitable for this purpose. 

Figures 4.4 and 4.5 illustrate the output format used for the segmentation result on the ten-

nis.m2v sequence shown in figures 4.2 and 4.3. 

Visual display of the background itself is trivial: the Median average background is a VS image 

object suitable for storage as a .pgm/.ppm file suitable for direct display, and an example of this 

visual output for the tennis.m2v sequence is given in figures 4.6 and 4.7. 

For the Mixture-of-Gaussians background representation, the procedure is rather more involved. 
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Figure 4.2: Excerpts from the decoded tennis.m2v sequence (i) 
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Figure 4.3: Excerpts from the decoded tennis.m2v sequence (ii) 
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Figure 4.4: Difference images for the initial test sequence against median background (i) 
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Figure 4.5: Difference images for the initial test sequence against median background (ii) 
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Figure 4.6: Median background testing for the initial test sequence (i) 
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Figure 4.7: Median background testing for the initial test sequence (ii) 
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Firstly, the two visual output routines required are both procedures of the VS-mix-back class. 

Objects of this class contain information in respect of which distributions in each mixture are 

classified as background, which one in each is matched and whether it itself is background or 

foreground. 

To generate an image-like difference map with values I, the procedure is: 

For every pixel equivalent position in the VSjnix_back object's 2D array 

For all Gaussians in the mixture at the current position 

If the current Gaussian is flagged as matched 

If the current Gaussian is flagged as background, I = 254 

else I. = If 

Visual display of the background presents two issues. The first is what value should be chosen 

as representative of a distribution and can be answered uncontroversially by using the standard 

approach, giving the mean value. This will not indicate how great a range of values could be 

recognised as part of that background, but is the best single value option. 

Secondly, one of the principal characteristics of this representation is that the background at a 

single point may not have a single representative value at all. To recap, the mixture at any point 

is a 1D array of VS-Gaussian objects, sorted in order of descending probability that each is a 

component of the background. The number of distributions classified as part of the background 

at any point is controlled by the variable T and the number of distributions in the mixture. 

In the current implementation, the number of distributions classified as background at a point 

can, in theory, vary from 1 t 3 at any time: an image-like output must be capable of represent-

ing this. The chosen solution was to allow multiple image-like entities to constitute the overall 

representation. The primary background display will present at each point the mean of the 

distribution most likely to be part of the background; the secondary background display will 

present at each point the mean of the distribution second most likely and so on. As the mix-

ture is pre-ordered in these terms, the procedure involves simply working through each mixture 

array in order. To generate a series of three image-like backgrounds with values 41, 42, 43 : 

For every pixel equivalent position in the VS-mix-back object's 2D array 

I = I = 1b3  = 254 

bgcounter = 0 

For all Gaussians in the mixture at the current position 

If the current Gaussian is flagged as background 
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Variable Setting 
Median threshold 10 

Mix Size (n) 3 
Learning rate (cv) 0.1 

Background fraction (T) 0.5 
Distribution initial mean (ii) 300 

Distribution initial variance (a2) 400 

Table 4.1: Fixed settings for tuning variables 

Increment bgcounter 

If bgcounter= 1''b1  = Ic 

If bgcounter = 2, 42 = 

If bgcounter = 3, I = I 

Examples of the background displays for the tennis.m2v sequence shown in figures 4.8 and 4.9 

for the primary background, figures 4.10 and 4.11 for the secondary background. 

When the visual output options were configured, the test sequences were run and the results 

analysed by eye. The threshold values and other parameters were varied and set at values (table 

4.1) which gave an acceptable result, again judged by eye. As noted, the parameters were left 

open to variation until after running on a longer test sequence, but no changes were found to be 

required at that point. 

4.5 	Object growing and labelling 

4.5.1 Connectivity 

The object labelling process takes as its input the foreground segmentation routine's output, 

either a trinary difference map (section 4.4.3) or a VS-mix-back object (section 4.4.4). 

In the first case, there is a sequence of image-like difference maps of the same size as the 

frames in the source sequence. These trinary images have a distinct value assigned to back-

ground, and two further distinct values assigned to object pixels. 'Bright' objects' pixel values 

exceeded those of the corresponding pixels in the reference image by more than the specified 

threshold amount, 'Dark' objects' pixel values were below those of the corresponding pixels in 

the reference image by more than the specified threshold amount. 
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Figure 4.8: Primary Gaussian background testing for the initial test sequence (i) 
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Figure 4.9: Primary Gaussian background testing for the initial test sequence (ii) 
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Figure 4.10: Secondary Gaussian background testing for the initial test sequence (i) 
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Figure 4.11: Secondary Gaussian background testing for the initial test sequence (ii) 
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4-neighbours of (ij) 
	

8-neighbours of (i,j) 

Figure 4.12: The two alternative neighbourhood areas. 

In the second case, there is a sequence of non image-like objects, each containing a 2D array 

of VS-Gauss-mix objects. The array size corresponds to the size of the frames in the source 

sequence and each VS-Gauss-mix corresponds to a pixel position. Within each mixture, there is 

one VS-Gaussian object flagged as currently matched and greater than or equal to one flagged 

as (a) component(s) of the background. 

Whichever format of input is encountered, the information encoded in the representation is 

sufficient to specify regions corresponding to background and to foreground. To be able to 

evaluate the position and properties of elements of the foreground, the input data must be re-

represented by re-labelling of the difference map pixels to indicate distinct individual objects. 

The processes used to achieve this rely on very basic machine vision concepts and processes: 

analysis of the connectivity of pixels identified as foreground and the assignment of unique 

labels to all points in the same component. 

The connectivity of a pixel is an expression of the number of neighbouring pixels which are in 

the same set as the current pixel. In the current example, members of a set are identifiable by 

sharing the same pixel value. For our purposes, the sets present in the segmented representation 

can be considered to be: 

. n sets i (for an i range from 1 to the n + 1), one corresponding to each of the n objects 

in the scene 

a general set for background 
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There are two bases which can be used to define the neighbourhood of a pixel (i, j): we can look 

at its 4-neighbours [(i + 1), j], [(i - 1), j], [i,  (i + 1)], [i, (j - 1)] or its 8-neighbours which in-

clude in addition [(i+ 1), (j+ 1)], [(i+ 1), (j - 1)], [(i - 1), (j + 1)], [(i—i), (j - 1)]. From 

figure 4.12, it can be seen that the descriptions are quite intuitive: when considering 8-neighbours 

we consider all pixels connected by at least one vertex/corner, when considering 4-neighbours 

we only consider pixels connected by at least one side. 

The choice of which to use depends upon the application. In general, looking at 8-neighbours 

will require a larger search and will find more 'tenuous' connections; looking at 4-neighbours 

will require less searching but will not consider diagonal relationships. 

In generating the unique object classifications, using 4-connectivity could reduce the occur-

rence of 'false' inclusion being made of two distinct objects. Certain 'outliers' could be lost 

(pixels only connected at one vertex) but this should not be a problem, especially as the object is 

to be approximated by a curve in later stages of the model building process. Indeed restricting 

ourselves to the more exacting form of connectivity can perform a little extra useful smoothing 

on the object. 

Checking the points in the neighbourhood of a pixel should be implemented as a discrete pro-

cedure to allow for re-use as it is a component step in many vision operations. If empirical 

testing results indicate that objects are being incorrectly split due to 8-connectedness being 

disregarded, the function could be redefined in terms of finding 8-neighbours. The functional 

abstraction inherent in correct C++ programming allows for the internal processing to be altered 

in this manner with no effect on the required methods of using the function, as long as the in-

terface is preserved unchanged. 

The desired result of the object growing process is to label the pixels constituting each object 

with a unique identifier to differentiate the points from those corresponding both to the back-

ground and to any other object. Values for the size (in numbers of pixels) and centroid (in frame 

coordinate) of each object can be calculated simultaneously with the labelling. 

The intuitive approaches to the problem (as detailed in [17])  are connected component al-

gorithms (CCAs), where the values of each neighbouring pixel are examined and re-labelled 

to give labelling of the whole object and exact values for both centroid position and object 

size. A CCA can be designed most straightforwardly in terms of coding as a recursive proced-

ure, and this was the first implemented solution. Excessive resource requirements mandated 
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the abandonment of this approach entirely and a more complex sequential procedure requiring 

two passes of the image but with less resource demands was substituted as the first candidate 

solution (section 4.5.2). 

The alternative candidate solution implements a boundary following approach, developed from 

first principles, for each object: some more involved heuristic rules are required in this case to 

avoid double-counting problems but the results in terms of the objects labelled are identical. 

The desire to maintain a common interface in terms of input/output characteristics for modules 

was however only partially fulfilled in this case. The boundary following approach gives an 

approximation to the object size based on the boundary length and assumptions of general 

shape (see section 4.5.3). This means that results given by the two module alternatives are not 

compatible and specifically that any succeeding module using size data for comparing objects 

(e.g. model matching) will malfunction if the objects compared were labelled using different 

approaches. 

The output also varies in that only the boundary is labelled in the second option, whereas 

the whole object 'blob' is so labelled in the CCA approach so that the visual output differs 

similarly. This does not prevent comparison between the results of the two approaches and so 

is not a drawback. 

4.5.2 Connected component algorithms 

4.5.2.1 Recursive approach 

The CCA was first implemented in its most intuitive, recursive version. This involves the 

methodical review of the values of neighbouring pixels of a foreground object pixel. 

The object classifying process has the following steps: 

Build an object map with a VS-image of size equal to the original frames 

Initialise variables size, x..accumulator,y_accumulator, object-counter to zero 

For every pixel equivalent position in the segmented representation 

If the corresponding value indicates an unlabelled foreground point, we have a new object 

Increment object-counter 

Set corresponding object map pixel to value of object-counter 

Relabel the original to indicate that this is no longer an unlabelled foreground point 

Increment size; add x and y values of current pixel to x_accumularor and y.accu,nulator respectively 

Recursively check neighbouring pixels, and labellaccumulate until no unlabelled foreground neighbours are located 

If the final value of size is greater than or equal to the threshold value 

Store size value in a 1D size[] array at a position indexed by the value of object-counter 
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Figure 4.13: The neighbourhood area of pixel x used in the sequential approach, first pass 

Calculate centroid points as c =c5 = accumulator 
ai­ 

Store c., c5  in a 2D centroids[] array at a positions indexed by the value of object-counter 

else 

Reset object map pixels with a value of object-counter to background 

Decrement object-counter 

Reset size, xaccumulator, yaccumulator to zero 

The output of the module is a VS-object-map object, the principal data attribute of which is a 

VS-image which is a fully labelled representation of the individual objects in the input. This 

image-like component is supported by two arrays indexed by unique object label (so having 

unit offset, i.e indexed from 1) indicating the object size in pixels and the centroid position. 

As noted above, although intuitive, the recursive process is very demanding in terms of com-

puter time resources on a serial system. The time taken in processing images during initial 

testing of approximately 15 minutes for the simple eight frame tennis.m2v sequence was pro-

hibitive and so the recursive approach was replaced by a two-pass sequential implementation. 

4.5.2.2 Sequential approach 

This approach requires two passes of the segmented representation: in the first only three neigh-

bours (figure 4.13) are considered to give an initial labelling and construct an equivalence table. 

The second pass is used to relabel the object map with the lowest member of each equivalence 

set as recorded in the table: 

Build an object map with a VS-image of size equal to the original frames 

Initialise variables size, xjiccumulator, y.accumulator, object-counter to zero 

For every pixel equivalent position in the segmented representation 

If the value indicates an unlabelled foreground point 
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If neighbour d is labelled, set this value at pixel x and set entry x in the equivalence table to d. 

else if neither,c nor b are labelled, we have a new object. 

Increment object-counter 

Set this value at pixel r and similarly set entry x in the equivalence table. 

else if only b or c are labelled or b and c are labelled and (b = c) 

Set this value at pixel x and similarly set entry i' in the equivalence table. 

else if b and c are labelled, and (b i4 c) 

Set the value of c at pixels x and b and similarly set entries x and b in the equivalence table. 

For all entries in the equivalence table beginning from I upwards 

Replace each entry with the lowest member in its equivalence set 

Accumulate the total number of entries in each equivalence set 

Review entry counts for each equivalence set 

If total is below the specified threshold, zero all entries and relabel the table accordingly. 

else store the total entry count for the set 

For every pixel equivalent position in the segmented representation 

If the value corresponds to an equivalence table entry, replace the label with the lowest equivalent set value 

Accumulate and store (x,y) values to calculate centroid. 

Using this sequential approach resulted in frame processing times improved by a factor of 10, 

taking approximately 90 seconds for the test sequence. 

4.5.2.3 Implementation points 

Trinary difference map values 

In processing the trinary object map, relabelling to indicate that a point is no longer unlabelled 

foreground is achieved by resetting the value to that of object-counter. For this to work, it is 

essential that none of the background, bright object or dark object pixel values should be in the 

same range as possible unique object identifiers. This was ensured by using positive integers 

from 1 for unique object identifiers, zero for background and negative values for bright objects 

and dark objects. 

Object map attributes 

Only objects which exceed the specified threshold size are included in the VS-object-map: this 

constitutes a supplementary noise reduction process where any detected object below threshold 

is assumed to be not significant. In the current implementation, the value was empirically set 

at 1000 pixels. Clearly using an absolute value will not be suitable in all applications as the 

significance of a size in simple pixel number terms will vary with the scene magnification and 

image size. 
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With respect to scene magnification, inherent limits on the abilities of the system are where 

pedestrian objects are so small as to be indistinguishable from scene noise at one extreme and 

so large as to not be encompassed within the frame at the other. In respect of the significance 

of image size (in numbers of pixels) the threshold could be set to vary in proportion to changes 

made from the default expected frame size. The value of threshold chosen for a particular 

scene magnification/image size combination must reflect a balance between noise reduction 

and system ability for distant pedestrians. 

The size of an object was recorded by accumulating the number of pixels labelled during the 

process in the array as above. Where this value was below a specified threshold, the object 

pixels were reset to the background value. Similarly, the x, y coordinates of each identified 

point were stored during labelling: division of the accumulated totals by the number of points 

labelled gives the object's centroid position. 

The two required supplementary arrays were constructed at a size corresponding to the max-

imum theoretical number of discrete objects which could be detected (Oma) at the specified 

threshold level, calculated by: 

image - area 

threshold - size 
(4.28) 

I/O functionality 

As the object growing process constitutes a 'bottleneck' in many vision processes, the current 

one included, functionality was included to allow for file storage and loading of VS-object-map 

objects. This was implemented by using the extant VS image i/o function for storage of the 

image-like component as a .ppm file and to augment this by filing the non-image data in a sup-

plementary .Omap file. A constructor for the VS-object-map class was added to allow objects 

of this type to be built using such a pair of files. 

This facilitated the efficient testing of subsequent modules, using a sequence of file pairs as 

input, circumventing the need for object growing on each run. 

Boundary conditions (sequential approach only) 

Special cases of the initial labelling procedure were required for pixels along the top row and 

left column. These simply substituted abbreviated searches which assumed the out-frame posi-

tions to be background. 
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Equivalence table (sequential approach only) 

The equivalence table was first implemented as a 2D array of size ([2][0max])  where °rnax 

was given by equation 4.28. Further consideration revealed that a much larger array size may 

be needed, with the limiting case in the initial labelling of a new object every four pixels. To 

avoid possible overflow, °max  must be restated here as: 

0 max2 
image - area 

= 	 (4.29) 

The maximum number of objects here corresponds to the hypothetical case where the frame is 

'full' of single-pixel sized objects. Referring to diagram 4.13, this situation requires one object 

every four pixels, corresponding to the formula given. 

The first element at each object label index is used to store the current equivalent value for that 

label, initialised at itself. The second element is for storage of the current estimate for the size 

of the equivalence set. After the initial setting of equivalence values in the first pass over the 

segmented representation, the table is relabelled as follows: 

For each non-zero entry in the equivalence table 

Set a to the entry value, ito the entry index 

If a = i (Base Case: no lower equivalent) 

Add element size to current cumulative size 

Replace element size with current cumulative size 

Pass value out as lowest equivalent 

else (Recursive case: get values from base case) 

Add element size to current cumulative size 

Recursive step: repeat process at lower table entry using a as the new index 

Reset v to lowest equivalent passed up from Base case of recursion 

Replace element size with current cumulative size 

4.5.3 Boundary following object labelling 

4.5.3.1 Boundary tracing 

To extract the boundary pixels for each object and store them in an array requires a two pass 

connectivity-based procedure. The approach was developed from first principles based on con-

sideration of the geometrical properties of the scene and is more involved than the intuitive 

CCA method. 
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The basic principle is conceptually straightforward: instead of examining all neighbours throughout 

the body of each object to assess connectivity, the boundary pixels are traversed and labelled. 

These are all that is required to calculate the accurate centroid and principal axis of the object 

and form a suitable basis for estimating its size. The actual process is only this simple in the 

trivial case of a single object in scene: more complicated scenes require the application of a set 

of heuristic rules and approximations. 

Build an object map with a VS-image of size equal to the original frames 

Initialise variables size, xiccumu1ator,y_accumu1ator, object-counter to zero 

For every pixel equivalent position in the segmented representation 

If the value indicates an unlabelled foreground point, check its neighbours 

If any are labelled already, set oldflag to I 

If any are background, set edgeflag to I 

If edgefiag and not oldfiag, we have a new object 

Increment object counter 

Relabel original to indicate this is no longer an unlabelled foreground point 

Increment size; add x and y values of current pixel to xuccu,nulator and y_accumulator respectively 

If x and/or y coordinate constitutes maximum or minimum seen so far, record the values. 

Record this point as start and current 

Check clockwise round neighbours from bin figure 4.13 for the first unlabelled foreground point. 

Set that point as current 

Repeat for each new boundary point until current = start 

Calculate a size estimate using x and y maximum/minimum values and the approximation that the object is a vertical ellipse. 

If size is greater than or equal to threshold: 

Store size value in a 1 D size[] array at a position indexed by the value of object-counter 

Calculate centroid points as c = 	 c5 = 

Store c,, c, in a 2D centroids[] array at a positions indexed by the value of object _counter 

else 

Reset object map pixels with a value of objectcounterto background 

Decrement object-counter 

Reset size, x_accumulator, y_accuinulator to zero 

Using this approach, when an object has been labelled and accepted as above threshold size, 

it retains a 'protective layer' which prevents it being recognised as a new object and double 

counted. Conversely, objects below threshold size are 'winnowed away' a layer at a time: this 

involves some extra processing effort until the object fully dissolves, but as the objects are by 

definition small, the additional processing incurred is not large. 

Compared with the output of the CCA approaches the most obvious divergence is that the 

image-like component is labelled only at the object boundaries, but the object position (and 

later, principal axis) data will be unchanged. The other major change is in a size estimate 
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being used for each object. This applies the clearly unrealistic assumption that all objects are 

vertically oriented ellipsoids, but the results are quite adequate for comparison of relative object 

sizes. 

4.5.3.2 Implementation points 

Boundary conditions 

Special cases were required for pixels along the edge rows and column and further different 

cases at the corners. These simply implement that the out-frame positions being ignored in the 

clockwise neighbourhood search. 

Single point objects 

When a single foreground pixel is located, the clockwise neighbourhood search to find the next 

boundary pixel can cause an infinite loop. The addition of a neighbour review counter and a 

check that this has not exceeded eight provides the solution to this. If the counter does exceed 

eight, the single foreground pixel is set to background as noise. 

Size estimation 

The size calculation has two principal purposes: the elimination of objects below a specified 

threshold value and a metric for scaling valid objects. 

In the first respect, the precision and indeed accuracy of the evaluation is not critical as long as 

the estimate is conservative in respect of pedestrian type shapes. The vertical ellipsoid calcula-

tion is based upon the recorded maxima and minima for both x and y coordinates and will err 

toward overstating size. Any objects erroneously accepted will be eliminated if they fail to be 

classified as pedestrians, at the cost only of some extra processing in the matching stage. The 

use of an estimate which assumes in advance a pedestrian-type shape is quite suitable. 

For the second purpose, the size measurement may be used to eliminate differences in scale 

when comparing two objects (for example a model and a new object). They key point here is 

that the use of an approximation will not cause problems as long as it is applied consistently. 

If this object labelling approach is used, for example, in building the model of a pedestrian, it 

must be used in matching models in each new scene and vice versa. This is not a problem as 

the module choices will be fixed in the final implementation and so a mis-match of labelling 

approaches cannot occur. 
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4.5.4 Functionality testing 

The result of the object labelling process is a sequence of objects, each with: 

Image-like object maps of the same size as the frames in the training sequence, with 

background pixels at zero and object pixels labelled with unique identifying integer val-

ues from 1 to n + 1 (where n = the number of objects). 

An array of object sizes ordered by object number. 

An array of object centroids ordered by object number. 

The exact format of labelling and the size estimate varies dependent on the candidate solution 

employed. 

To evaluate these results, it is again necessary for inclusion of procedures for the image-like out-

put of intermediate results within the implemented code, which outputs will be in the VS Image 

format to allow reuse of the i/o options of the class. 

In both cases, the procedure uses the object labels as a base for assigning pixel values: 

For every pixel position in the object map VS-image 

Get the current pixel value (0) 

If 	= bgvalue,O = 254 

If 0, = Ojiumber,O = S  0-number 

(If O =fg_value, O = 254) 

S is an integer multiplier for numbered objects used only for increasing contrast to enhance the 

ease of reading of the visual output by eye and was set at 20. The third case, in brackets, is 

relevant only for the boundary following object growing method and removes the 'filling' of 

the object boundaries. 

Evaluation is by visual comparison of the results with the difference maps from the same source 

data. 
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4.6 	Object classification 

4.6.1 Approaches to classification in vision 

Of the areas of vision research examined as distinct modules for the construction of the overall 

application object classification is the one associated with the largest volume of previous work. 

The range of approaches investigated is correspondingly wide (see Chapter 2) and the potential 

for interesting and useful comparisons between alternative methods extensive. 

Given this context, several broad considerations were used to guide the choice of the approaches 

to use as candidate solutions, in addition to the general points given in section 4.2: 

. At least one candidate solution will be based upon an approach drawn from the existing 

literature. This will be one that has strong qualitative results for performance within a 

surveillance setting. 

. The methods implemented should reflect distinct subclasses of approach to object classi-

fication (the chosen central comparison was model-based and pixel-based - see below) 

. Following from one of the general points, it is possible to find methods within this area 

of very widely varying complexities. The two methods chosen should then represent 

distinctly different complexity levels. 

The candidate solution based upon an approach drawn from the existing literature should 

be one which has not previously been adapted to work on a distributed processing plat-

form with limited on-camera processing. The implementation of a variant suitable for 

such a system will then be of further research interest in itself. 

Two distinct subclasses of approach to object classification which provide an interesting oppor-

tunity for investigation were model-based and pixel-based methods. Pixel-based methods to 

image analysis rely on analysis of the pixel values within an image compared with the values 

of neighbouring pixels, of 'connected' pixels (see section 4.5) and of pixels globally within the 

image. Heuristic rules can be used to evaluate the results of this analysis which can range from 

simple segmentation to a series of complex mathematical operations. 

All the methods detailed for background estimation, foreground segmentation and object la 

belling are pixel-based, as are most basic vision processing operations. A key feature which 
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characterises this subdivision of approaches is that such approaches do not involve the use of a 

pre-prepared model appropriate to the process. This does not refer to the use of a mathematical 

model of a process, which is implicit in all pixel based approaches, but rather a model of a 

particular object or feature which is to be used in the processing. 

This definition is not completely infallible: where, for example, corner detection or edge de-

tection uses a simple pattern as a template for locating significant pixels (e.g. a line in one 

dimension represented by the pattern 0 - 1 - 0), this is usually classified as pixel-based rather 

than model-based. The key is the complexity of the model and its construction: in the pattern 

example, the features are called primitives, corresponding to basic building blocks of image-

like representations which are usually defined by hand. In the pixel-based method proposed 

below, the assumption that a pedestrian can be classified by shape is a simple 'model' of this 

type. 

To constitute a model-based approach, the models are generally complex, specific to a particular 

type of object and most often learned in some pre-processing stage. The model can be of 

widely varied entities including a specific object (21) or 31)), a view of an object, a type of 

object, an object's variation over time, a trajectory or a pattern of behaviour. 

Whereas, in pixel-based approaches, processing is conducted on an image directly, with no 

specific need for supplementary processing in advance, the first step in a model-based approach 

must be construction of one or more appropriate models. The models may be constructed 'by 

hand' but most often are learned from representative examples of the entity which the model 

is to represent. The models are then stored for use in the main image processing session using 

some form of model matching. 

The model is compared with an hypothesised instance of the entity which it represents in the 

image and some metric is used to compare the two. The result of this matching process can 

be an object classification (as in the current example) or a result such as identification of an 

individual or analysis of a trajectory or behavioural pattern. 

As can be seen from the examples discussed in Chapter 2, research endeavour in the field of 

classification has primarily concentrated on a wide variety of model-based approaches. The 

models applied to represent the human body (a critical task in pedestrian detection) take differ-

ent approaches to capturing the intrinsic flexibility and thus variation in pedestrian shapes. 
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With stick figure models, the body is represented by a skeleton of line segments, generally 

connected at their end points. Volumetric models attempt a better representation of the body's 

three dimensional complexity by replacing the line segments with generalised cylinders which 

allow better recognition over multiple viewpoints. 

Straddling the two, cardboard models have been used [76] with simple two dimensional shapes 

as segments to give a balance between performance and computational requirements. The work 

on flexible 2D models of a body as a spatiotemporal entity, discussed in more detail below, 

represent a body using an average shape and a set of characteristic distortion parameters. 

Rigid models, whether 2D or 3D have limited use in modelling pedestrians, and are more fre-

quently used for tracking inherently rigid objects, such as cars. 

The relative merits of model-based over pixel-based approaches can be stated qualitatively as 

follows: 

It is difficult to achieve object specificity and flexibility in object range when using pixel-

based approaches for detecting complex objects. It it not possible to encode complex 

characteristics of an object for recognition without using a model. These approaches 

are restricted to using more general characteristics such as colour range, size, position, 

shape, pose, position and trajectory. 

. Model-based approaches require the model building preprocessing step. For this, know-

ledge of sufficient details of the element to be matched must be known and both repres-

entative data and sufficient time must be available for training. 

The model building process must be carefully performed if it is to capture the appropriate 

characteristic features of an element. An example of where this can fail in the first respect 

is an anecdotal account of a 'tank detector' trained on a set of images both containing 

tanks and without them. The detector seemed to operate well, but wider analysis of the 

performance showed poor results: all scenes containing tanks had been taken at night and 

the actual result was a 'night detector'. 

Model-based approaches have the advantage of being precisely 'tuned' for a specific 

target element and so are less susceptible to false identifications. The downside of this 

is that the models can be over-specific and unable to match with the general case of an 

object. They can also be confounded by augmentation of an object (for a pedestrian this 
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Approach Pixel based Model based 
Basic element Pixel Pedestrian 

cluster model 
Fitness Measure Shape, Deformation 

orientation parameters 
Occlusion Handling Poor Good 
Pedestrian Differentiation Bad Poor 
'Augmented' Pedestrians Poor Bad 
Distant objects Poor Bad 
False alarm rate High Low 
View dependency High High 
Scale Dependency Low Low 
Computational requirements Low High 
Memory requirements Low High 

Table 4.2: Pixel and model based object classification comparison 

may be addition of a hat, bag, umbrella or pram). 

The handling of occlusion (where only part of an element is observed) is possible in 

model-based approaches, whereas it generally presents a greater difficulty to pixel-based 

approaches. 

It is possible to use model-based approaches to make predictions about a full element 

from a partial representation (this can be of future development if the model includes a 

temporal component). 

Despite this wide range of qualitative information on the relative merits of pixel-based and 

model-based based approaches, there has been no quantitative performance analysis conducted 

in this area. Pixel-based approaches have been somewhat neglected, based largely on subjective 

evaluations as summarised in table 4.2. The characterisation of the performance of the current 

system overall makes some contribution to providing a comparison of the results of two such 

approaches on a common data set. The comparison is restricted to being between two spe-

cific methods and moreover two specific implementations, which is a key limiting factor in its 

generality. 

128 



A Surveillance Solution with Interchangeable modules 

4.6.2 A model-based object classification approach 

With the majority of object classification approaches in the literature being model-based, the 

number of choices for the candidate solution is extremely large. The criteria for the specific 

choice are outlined in section 4.2 and augmented in section 4.6. 

There are several major subdivisions into which the model-based approaches developed may 

be gathered as introduced in section 4.6.1. 

Rigid models (21) & 3D) 

Articulated models (11), 2D & 3D segments) 

Flexible 2D models 

Spatiotemporal models 

The selection from these subdivisions of a modelling approach to develop and modify for use 

within the current system was principally motivated by an analysis of the extant qualitative 

results from previous research endeavour in the area (see Chapter 2). 

Rigid models are, as previously noted, most useful for tracking cars and similar rigid objects. 

Articulated models, although compact, require identification of individual components of a 

pedestrian body. In the anticipated application, surveillance cameras may be positioned at 

an oblique angle, looking down on the scene, the foreshortening effect this causes potentially 

presenting severe problems for this task. Accordingly, these models were considered a subop-

timal choice, although the work in [76], [75] suggests the problem may be tractable. 

Generally, a 3D model of a 3D object presents the potential to be most robust over angle, 

but it is desirable that the model building be feasible using a single camera and its distributed 

processing unit. Although a general pedestrian model is conceived as being provided with 

the application, for greater versatility the option of building a view-specific model should be 

available. Further, the resource requirement of building a flexible 3D model, even off-line, that 

captures the variations likely in a pedestrian are considered prohibitive. 

The flexible 2D model approach has been presented [25] applied in the very situation of in-

terest in terms of camera positioning (remote, overhead/oblique) and scene type (pedestrian 

thoroughfare). The approach is essentially pose invariant as it portrays the nature of character- 
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istic perturbations at fractional increments along the boundary of a scaled mean shape. With 

foreshortened objects, the increments should simply 'slide' along the boundary in response. 

Further, the approach has been shown [105] to be amenable to the construction of Spatiotem-

poral models of object behaviour. These would be of interest in extensions of the system to 

predict and/or evaluate pedestrian behaviours. 

The specific approach investigated was suggested by the Integrated Traffic and Pedestrian 

Model-Based Vision System [25], product of a collaborative effort between Computer Vision 

Groups at Leeds and Reading Universities. First, a broad classification of objects in the scene 

is made as either flexible or rigid bodies, the focus in Leeds being to represent the trajectory of 

a flexible object (e.g. a person) in a scene geometrically, using representative landmark points 

and including information on interaction with mapped stationary objects (e.g. cars). 

In the approach, a model can be constructed using a representative sequence of a single pedes-

trian in motion. In each frame, the boundary of the pedestrian is extracted and approximated 

mathematically as a cubic B-spline. This mathematical representation allows a model of the 

characteristic outline variations to be constructed using principal components analysis (PCA) 

to generate the corresponding eigenvalues and eigenvectors. The model consists of a scalar size 

measurement, a centroid offset vector and arrays containing the average shape boundary, the 

eigenvalues and the eigenvectors. 

To classify a new object, the average shape boundary is scaled and placed over the object (using 

the centroid offset). A dynamic simultaneous minimisation process is employed to find the 

combination of eigenvector-generated distortions required to minimise the difference between 

corresponding model and object points. For an object to be classified as a pedestrian, both the 

minimum distance and the distortion required must be below specified threshold values. 

This approach fulfils the criterion previously specified (section 4.6) in that the original im-

plementation gives good qualitative results, involves a high level of mathematical complexity 

and has not previously been adapted to work on a distributed processing platform with lim-

ited on-camera processing. The approach has been previously implemented for a system with 

fixed, stationary cameras observing pedestrian surveillance scenes [25] and so is prima facie 

appropriate for the intended application 

To implement a variant of this approach, the individual steps from an input in the form of a 
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labelled object map (section 4.5) are: 

Boundary extraction 

Boundary reordering 

Spline fitting 

PCA: Principal components analysis (for the model building) 

Model matching 

Registering and listing pedestrian objects 

Steps 1 to 3 are used in in both the model building and model matching processes, steps 4 and 

5 are used in model building only and the balance are used only in model matching. 

4.6.2.1 Boundary extraction 

Whether the CCA or the boundary following object labelling module is used, the input data will 

be a sequence of image-like object maps of the same size as the frames in the source sequence. 

In either case, the first task is the extraction and storage of the boundary points of each object. 

Each individual object's boundary is simply traced to give a list of points using an algorithmic 

approach very similar to that used in the boundary following object labelling method in section 

4.5.3. 

Allocate memory to store the boundary points for each object at maximum size 

Initialise size variable 

For every pixel position in the object map 

If the value indicates an labelled foreground point not yet marked as traced, we have a new object. 

Record this point as start and current 

Put current into first space in a new boundary array 

Increment size 

Check clockwise round neighbours from bin figure 4.13. for the first unlabelled foreground point. 

Set that point as current and record as the next point in the boundary array. 

Repeat at for each new boundary point until current = start 

Mark this object/label as traced 

Record size in boundary .sizes array 

Reinitialise size 
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The procedure is a simpler than the extraction of boundaries from an unlabelled segmentation 

representation as a simple recording of which labelled objects have been traced replaces the 

heuristic approach needed in the absence of labels. 

Implementation points 

The boundaries are stored in a 2D boundary .array of size [nobjects][maxsize]. The evalu-

ation of max-size will vary depending on the previous module choice. If the boundary following 

approach was used, the size of the target boundary is already known and can be used immedi-

ately. If the CCA approach was used, max-size must initially be set to the known value, that of 

the object blob size in pixels, the limiting case of the boundary length. 

To achieve a more efficient memory usage, the array can be 'cropped' after all of the objects 

have been traced. The boundary data must be copied into a temporary array while the bound-

ary-array is deleted and reconstructed at the reduced size. 

4.6.2.2 Boundary Reordering 

For each object, we now have a list of points corresponding to the boundary. To build a general 

object model over multiple frames the variations of corresponding points on the boundary over 

time must be evaluated. The points compared need to be arranged in a consistent order and 

so some criterion must be specified to choose where an ordered list of points starts for each 

new observed shape. The boundary extraction algorithm gives lists which sweep out the object 

shape in a specific direction (clockwise), so the first step is to obtain a consistent starting point. 

Considering the nature of the objects we are interested in modelling, i.e. pedestrians, we can 

make the assumptions both that there will be a consistent axis of maximum elongation and that 

these axes will be oriented in one direction. This is essentially just saying that people are very 

likely to be moving erect, standing on their feet. While this admits the possibility of fooling the 

model matching procedure by adopting a less usual orientation, it serves as a starting point. 

The first step to reordering using this assumption uses the calculated value of the centroid point 

of the current shape. The centroid is simply the point whose cumulative distance from the 

known boundary points is a minimum. This has the physical analogue of the centre of mass of 

an object and was simply calculated during the boundary reordering by averaging the x and y 

coordinates of all boundary points. 
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Mathematically, for centroid c: 

c= (:,) 	 (4.30) 

where: 

E  Xi 	
(4.31) 

Yi 	
(4.32) 

and: 

n is the number of points on the boundary 

(xi , y) are the coordinates of the ith point 

This can then be used to find the principal axis of the object, which is the straight line passing 

through the centroid along which the sum of perpendicular distances to the boundary points is 

minimised. Using linear regression, the formula for the principal axis given by: 

	

y=mx+c 	 (4.33) 

slope m is given by: 

.sxy m = 	 (4.34) 
sxx 

where: 

= 	- 	- 	 (4.35) 

= 	(x - 	 (4.36) 

Then the intersection with the y-axis, b is: 

	

mi 	 (4.37) 

This gives two points with which to specify the principal axis: (, ) and (0, b). 
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Figure 4.14: Finding the intersection of the principal axis with a boundary. The line through 
points c and d gives the boundary intersection p between the defining points. The 
line through points a and b gives an off-boundary intersection q, away from the 
defining points. 

The procedure for this is fairly straightforward: 

Initialse S, Sxy at zero 

For all objects in boundary array 

For all points (x, y) in current boundary 

S 	= S j  + ((x - i) x (y - 
= S 	+ ((x - x (x - 

- 	- Intercept= y - ( s 
 - x r) 

Store value in intercepts array 

To re-order the list, we select the point closest to the upper intersection with the boundary and 

the list is reordered with this as the first point. The intersection is found by considering each 

adjacent pair of points on the boundary in turn and the line that they define. 

If the intersection between this line and the principal axis occurs on the segment of the line 

bounded by the two points, we have found a point of intersection with the curve which is a 

potential solution. For all other point pairs, the intersection will occur elswhere on the line (see 
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figure 4.14). 

The solution with the minimum y coordinate constitutes the top most intersection and the 

boundary point to the immediate left of the intersection is used for the reordering. 

Procedurally: 

For all objects in boundary array 

Get the line defined by the current and next boundary points 

Find the intersection with the principal axis 

If the intersection lies between the current and next boundary points 

If the intersection has the lowest y value for any yet reported, store as current intercept 

Reorder the boundary with the new start at the point immediately anticlockwise of the stored intercept 

Implementation points 

A linear approximation is used to find the intersection point, which will not give a precise value 

for the true intersection. However, the value is only needed to sufficient precision to allow the 

choice of a consistent start point for every boundary. It is thus only neccesary to find the correct 

inter-point segment, as the start point is simply set as the anticlockwise bounding point. The 

approximation is unlikley to distort the final results. 

As the top-most intersection is sought, it is possible to reduce processing by discarding points 

below the centroid (i.e. with larger y values) immediately. 

4.6.2.3 Reparametrisation 

The second step in generating a defining series of points with a consistent 1 : 1 correlation 

between objects is to be re-represent the ordered list of points parametrically. The representa-

tion used is a piecewise polynomial which approximates the object's shape in a mathematically 

tractable form. 

Restating the curves in terms of a single variable in this manner allows corresponding points to 

be selected and compared between boundaries of varied size and shape. For each such shape, 

all points can be specified by the value of this variable which can be set to span the same range 

around the curve irrespective of the boundary's absolute length. 

We can then define the same number of equally spaced points (in terms of the base parameter) 

on each curve which hypothetically correspond to common points on a flexible object. The 
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mean position and variations from it can be calculated for a sequence of such shapes. Stating 

the curve parametrically also allows the mathematical formulation for a wider range of curves, 

including those which 'double back' upon themselves and so do not have a (1 : 1) (x : y) 

relationship. 

Mathematically, in expressing a curve parametrically, we move away from the representation 

of the form y = f(x) and look to specifying x and y coordinates separately in terms of some 

variable u i.e. 

W(x,y) = W(u) = W(X(u),Y(u)) 	 (4.38) 

Where X (u) and Y (u) are independent functions of u which specify corresponding x and y 

coordinates. The parameter u is chosen to increase along the curve from an initial minimum 

value at the start to a maximum at its end. 

For our purposes we will be seeking the best fit to a given boundary list at all points and, as 

will be seen later, will desire that u steadily increases in value over the evaluation points. It is 

appropriate to define the parameter u in terms of distance along the curve from the start. Using 

the simplest measure of point-point separation, we consider the cumulative Euclidean distance 

between adjacent points on the curve. This takes the simplifying approximation of looking at 

straight lines connecting the points. The specification for u can be expressed as: 

1 	0 : k=0 
= 	 (4.39) 

1 
A 	i=-  W( _i)  I 	k >0 

Where k numbers the points at which u will be evaluated and A is a normalising function, 

calculated to set the length to N here, the desired number of control points for the curve ap-

proximation. W is defined for point (xi, y) as: 

W=x+y 	 (4.40) 

In practical terms, this is implemented by calculating the Euclidean distance between each 

adjacent pair of points and, starting at zero for the first point, summing these to give the u value 

to which the x and y values at each point correspond. First, for each object, the ordered list of 
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boundary points is smoothed by applying 1-D Gaussian filtering: 

G(x) = 
22ra 
---e 2T2 	 (4.41) 

This is implemented by applying a 1D kernel of the form: 

K1  K2  K3 I  It 4  

where K1  = It 4  = 1 and [(2 = 1( 3  = 3. 

The Gaussian filtering gives a more even spread to the points at which the defining parameter 

is to be estimated. This is desirable to minimise any error caused by the interpolation process 

at any point along the boundary (error being proportional to the distance over which a curve is 

approximated by a straight line). 

The reparametrisation involves one full loop over the ordered boundary list. At each point the 

cumulative Euclidean distance is calculated and stored in a 1-D array of the same size as the 

boundary array. After this procedure the array has distances stored in a 1-1 relationship with 

the boundary, ready for use in control point specification. 

4.6.2.4 Control point specification 

To approximate the curve, we will fit a sequence of cubic polynomials which approximate 

the local outline shape, specifically at 'control points' on the original boundary. The best fit 

criterion is specified in terms of minimising an error function of the form: 

Error = 	 - x)2  + (P(u) - 	 (4.42) 

where the approximating curve is P(u) = (P... (u), P. (u)) defined with respect to n control 

points. The jth control point has parameter value uj and the control points on the original 

boundary against which the error is calculated are (xi, y3). 

A simple choice could be made by choosing every N/nth member of the boundary list where 

is the total number of coordinates in the boundary list and n is the desired number of control 

points, which for our closed curve will be equal to the desired number of spline sample points. 
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However, we wish the final control points to be at equal spacings in terms of u, in order to 

reduce computation requirements at a later stage (4.6.2.5). To achieve this we obtain total 

Euclidean distance from the final member in the distances array to calculate: 

interval =(4.43) 

which is the increment in terms of parameter value we look for between adjacent control points. 

This is used to give the parameter values which correspond to the desired control points, by 

simply taking the integer multiples of interval upton. To find the corresponding X(u) values 

we loop over the boundary list once more and again apply a linear approximation to the variation 

of X (u) with u. So, taking that u values vary linearly between each successive pair of boundary 

points, we can employ linear interpolation to obtain: 

X(U)
U — Uk , 	Uk+1 U 

(u) - 	 Ak+1 + 	— Xk 	 (4.44) 
- Uk+1 - Uk 	Uk+1 - Uk 

Using this formulation we can obtain a new set of X (u) values at integer values of u from 

0 to n. With a similar approach to Y (u) we can form the desired set of points with fixed, 

approximately evenly spaced parameter values. 

4.6.2.5 B-spline fitting 

The curve which we are to generate, which will approximate the shape of the original outline 

at the control points specified above, is a uniform cubic B-spline. The overall curve is defined 

in terms of a sequence of polynomial pieces termed segments joined end-to-end. 

The points at which the segments of a B-spline join are termed kn ot points, the parameter values 

thereat being referred to as knot values. Our knot points are the control points defined in section 

4.6.2.4. By the reparametrisation process employed, the knot values K increase regularly and 

by our definitions we have set K 

K = {k0,... , 	d} = {0, ..., n + flord} 	 (4.45) 

where n is the number of control points and n,,d  is the order of the B-spline B0  (here 3). In 

the case of a closed curve, the n,,d  additional control points required to define the curve at say, 

the far end are repeats of the first n,,d )Oflt5. 
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In considering how the standard B-spline basis functions combine with the given control points 

to give an approximating curve, there are two useful ways of considering the process: 

a linear combination (specified by the control points V) of cubic polynomial basis func-

tions B 

a cubic-weighted (specified by the basis functions B ) sum of control points Vi  

To illustrate using the simpler case of linear approximation to a curve, we have already used 

the fact that any point between two vertices Xi (u) and X 4.1  (u) can be expressed using linear 

interpretation as a weighted sum of the values X (u) and X 1  (u). Equation 4.44 can be re-

wntten as 

X(u) = X +1B +1(u) + XB() 	 (4.46) 

where B(u) is a basis function, zero outside the range u_1  < u < u 1  and which, graphic-

ally, constitutes a symmetric triangular 'hat function' translated to and scaled over that range 

and centred on u. 

Where, as in our case, the control points are equidistant, the basis function need only be scaled 

once and then simply translated to the appropriate interval to indicate the degree of mixing 

of two points at any point between them. This means that we can use a single B-spline basis 

function at any point to give the appropriate weightings of neighbouring points which generate 

the spline points. To give a smooth overall curve requires the use of cubic polynomial basis 

functions, having as they do positional and both first and second derivative continuity at the 

knots (termed C2  continuity). To achieve this, the calculation of values for each segment re-

quires mixing of two neighbouring points on each side, i.e. the basis function is non-zero over 

four successive segments (figure 4.15). This equally implies that four basis functions will be 

non-zero for any given segment (figure 4.16). 

The derivation of the specific form of the standard B-spline basis function is given in [106] and 

gives a basis function over a particular segment as follows: 

u3 	U 2 

(4.47) 
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1-3 	 1-2 	 1-1 	 I 	 41 	 +2 	 1+3 

Figure 4.15: A simple 'hat' basis function straddling four segments 

i-3 	 1-2 	 i-I 	 i 	 i+1 	 i+2 	 i-i-3 

Figure 4.16: The four basis function which are non-zero for a segment. The part of each basis 
function which intersects is shown solid 
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bi(u) = 	- u2  + 	 (4.48) 

U3  U2  U 1 
(4.49) 

b3  (U) = -- 	 (4.50) 

So, if we have four values [x0 . . x3], the uniform cubic B-spline segment 1x1, x 21, (where we set 

u=[0, 1] over that interval) will be: 

X(u) = xo.bo(u) + xi.bi (u)  + x 2.b2(u) + x3.b3(u) 	 (4.51) 

The expression for the overall spline curve P(u) is: 

P(u) = 	VkBk(U) 	 (4.52) 

i.e. the spline points are given by calculating for each control point, the basis function-weighted 

sum of the neighbouring control points as specified in the previous equations. 

It is here that the importance of having control points with uniformly increasing parameter 

values becomes evident: we need only explicitly calculate a basis function for one segment of 

our spline and can re-use this for each successive segment to weight its neighbouring control 

points. Also, as we have established, the basis function for any point is non-zero over only four 

basis functions and so equation 4.52 reduces to 

r=O 

P(u) = >i: Vi+rB+r (tt) 	 (4.53) 
r=-3 

Note finally that as we are approximating a closed curve, to enable the support for 'end' seg-

ments to cross the U = 0 point, we specify 

B(u — k) : (U—k)>0 
Bk(t) = 

	

	 - 	 (4.54) 
B(u+N—k) : (U—k)<O 

So, the control sequence used is (V0, Vj, V ...... .- 1, VN, Vo, Vi, V2) and the extra 3 control 
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points required are 're-used'. 

The B-spline basis function calculation is implementable as a recursive procedure using the 

relationship of an rtordth order spline to an (ford - 1)th order spline and the base case of a 

single order (linear) spline. 

The recursive relationship for BOd  is: 

ord 	
= 
	

uj   - k 	
B °'(u) + kj+fl

ord  - Uj   Bd(uj ) 	(4.5 5) 
—1 - kj+fl d 	k 

	

s 	 kj+nOTd  - 

Where i = 0, ..., Thsarnple - 1 

The base case for first order spline B51 : 

: 

B51 (u) = 	1 : k < uj < k 1 	 (4.56) 

: k 1 <u 

The recursive procedure is contained in the routine blend in the VS-spline program and is a 

standard implementation. 

For our parametrically regular spaced curve, the basis functions at each point will be identical, 

which simplifies both the calculations necessary and the control structure of the VS-spline pro-

gram. The reparametrisation and the specification of control points are both carried out during 

the construction of a VS-spline object: 

For all objects in boundary array 

Build distance array equal in size to current boundary 

For each point on the current boundary 

Execute Gaussian filtering 

For each point on the current boundary 

Calculate the cumulative Gaussian distance (ge ) 

Store current (g a ) at corresponding position in distance-array 

Calculate required increment between points 

Use linear interpolation with distance-array and current boundary to generate s-s evenly spaced points 

The calculation of the spline points themselves is a separate operation called for each required 

shape: 

Initialise para,netericcuinu1ator to zero 
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Calculate increment value required form spline points at (total —par am etc r—range) 

For all required spline points 

At all control points 

Use recursive blend function with current parameter-accumulator value to calculate current point position 

Add point to spline array 

increment parameter -accumulator by increment 

Implementation points The spline fitting routine was adapted from an existing public domain 

routine bspline.cpp [2] intended for use in interactively fitting splines to screen images. The 

recursive bland function was lifted directly from this program and integrated with the in-house 

developed routines for reparametrisation and control point specification. 

4.6.2.6 Eigenshape building by principal components analysis 

The key to the usefulness of the flexible model approach is that it captures the oscillatory 

behaviour observed in flexible shapes such as pedestrians. The approach used to encapsulate 

this knowledge is to apply principal components analysis (PCA) to the covariance matrix of the 

representative sequence of uniform B-splines as constructed to this stage. 

The central goal in PCA is the analysis of a distribution in multiple dimensions to derive an 

efficient re-representation of the relationships with the variables upon which the values depend. 

The process can be visualised by considering the points of the distribution to to lie in a di-

mensional space defined by n orthogonal axes, each of which corresponds to one of the base 

variables. In PCA, that n-i dimensional hyperplane is plotted which captures the maximum 

variance in the distribution: in two dimensions this would be equivalent to plotting a line of 

best fit on a scatter diagram. 

In multi-dimensional PCA, the process is repeated in sequential steps, plotting successive mutu-

ally orthogonal hyperplanes to capture progressively finer variations of the distribution. Taken 

to the logical conclusion, n hyperplanes may be plotted to capture all variation in the distribu-

tion: the important change is that they are ordered in terms of their significance in explaining 

the variation of the distribution. 

Mathematically, the process is implemented by calculating the eigenvalues and eigenvectors 

of the covariance matrix of the sample distributions (here, spline point arrays). Here, the first 

eigenvector captures the maximum variance (indicated by its eigenvalue), the second captures 
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the next most variance and so on down to the nth. Relatively compact models can thus be 

constructed which explain most of the variation in the system but only using a subset of the 

eigenvectors. 

To generate a model capturing the variance of a flexible human shape, the required input data 

is the sequence of B-spline approximations to the shapes of the training sequence. The mean 

shape and covariance matrix for the sequence is calculated and a standard module is used to 

calculate the eigenvectors and eigenvalues. 

Allocate memory for mean, posvar and temp arrays (size 2 x n) and a 2n X 2n covar array 

For each spline in the training sequence 

For each point on the spline 

Add the point coordinates to the corresponding mean shape point 

Divide each mean shape point value by the number of objects in the training sequence. 

For each point on the spline 

For each spline in the training sequence 

Calculate difference from the corresponding mean point and store in temp array 

Accumulate values in covar array: covar[i][j] + = trnpN]xtmp[3I 
nu,nberof aplvnes 

posvar[i] = covar[i][i] 

Note that the positional covariance estimate for each point is stored in the posvar array to 

augment the model. This is used in the model matching process. 

Implementation points 

Rather than apply effort to developing an in-house routine for calculating the eigenvalues and 

eigenvectors of the covariance matrix, an 'off-the-shelf' implementation of the Jacobi Method 

was used. This was used with no changes to the internal procedures, the only modifications 

being the minimum required to convert to C++ format and at the input/output level to give an 

efficient interface with the rest of the system. The implementation used was obtained from a 

standard source [1] and calculates the full set of eigenvalues and eigenvectors as two matrices 

(the first 113, the second 21)) from input in the form of a symmetrical matrix. As the covariance 

matrix will always be symmetrical, this restriction is not a problem. The mathematical basis 

for the process and specifics of the implementation will not be detailed here, but are available 

in [1]. 

4.6.2.7 Model matching 

The model matching procedure is itself a process with several distinct elements: 
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Object segmentation 

Model Scaling 

Model Translation 

Calculation of normals to boundary 

Feature detection along the normals 

Minimisation of difference between predicted and observed points 

Evaluation of match score(s) 

With the exception of the minimisation step, these are relatively straightforward routines. For 

the exception case, a novel method was implemented based around the Simplex Method for 

solving linear programming problems. 

Object Segmentation 

In the run-time detection process, the early processing mirrors that used in the model building 

procedure. The input to the model matching routine, apart from the model itself, is a labelled 

object map as detailed in section 4.5 which includes data on object centroid positions and object 

sizes. It is worth reiterating that the labelling module used in the matching process must be the 

same one used in the model building if scale measures are to be compatible. 

Model Scaling 

In attempting to match to a new object, the model is initialised as the mean shape component. 

This is scaled by taking the ratio of the new object size to the stored model size and applying 

this to each point coordinate of the mean shape. 

Model Translation 

The scaled mean shape is positioned by a simple addition to each point coordinate. The corn-

bined scaling and translation process can be expressed by: 

x'=(Sx ii) +Co+(SxO) 	 (4.57) 
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where: 

x 21 is the scaled, translated model point 

S is the scaling ratio 

is the corresponding model mean shape point 

Co is the centroid position of the current object 

is the offset of the mean shape start point from its centroid 

Normal Calculation 

To asses the difference between the model predication and the actual object for each point on 

the model spline's curve, corresponding points on the object boundary must be specified. The 

chosen solution is to construct a normal to the model curve at each control point and to search 

for features in the object map along that normal. 

The unit normal was calculated by first deriving the line connecting the two points immediately 

on either side of the current control point along the boundary. The normal is approximated as 

the line perpendicular to this which passes through the current control point. 

A search window must be specified indicating how far along the normal features will be sought. 

This window size must vary from point to point in proportion to the range over which features 

can be anticipated in the normal flexing of the object. Taking the starting 'head' point to be 

fixed, this window size should vary along the boundary dependent on the characteristic vibra-

tions in a pedestrian shape. 

It is for this purpose that the pedestrian model was augmented by inclusion of a value for the 

average positional variance (a) observed at each point, not a feature of the models used in 

[25]. If these variances are scaled up in proportion with the object/mean ratio (as in the Model 

scaling), they can be used as a basis to specify an appropriate search window size in terms of 

the standard deviation at each control point. A search window size of 2.5o P  was found to be 

effective for locating sufficient points. 

Feature detection 

As the source image is a labelled object map, a trivial feature detection algorithm is acceptable. 

The feature sought is the outside edge of an object, irrespective of whether the object is specified 

by a blob or an outline. This is easily modelled as a step function from the object label value 

to background value. This is only slightly complicated by the need to allow for the predicted 
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point being within or outside the boundary. Features must be sought in both directions along the 

normal to allow for this, with the step function's profile being inverted dependent on direction. 

A simple weighting was applied so that the feature detected in either direction closest to the 

predicted point would be recorded. 

A minimum threshold is applied at this point as the first stage in the matching decision: if 

features are not detected at more than half of the control points, the matching process can be 

failed here. 

Simultaneous minimisation 

The problem to be solved is the derivation of the combination of model eigenvectors which, 

when added to the existing scaled mean, will minimise the prediction error i.e. the overall 

separation between predicted and observed points. This is a complex simultaneous minimisa-

tion of connected variables: varying the amount of a particular eigenvector to be included will 

potentially affect the positioning of every point on the outline. 

In the original implementation of this flexible model approach [25]an iterated Kalman Filter 

was used at each control point to track these differences using a B-spline interpolation matrix 

stored as part of the object model. 

As noted, the chosen alternative approach here is a novel application of the Simplex Method 

used in solving linear programming problems. This method had been applied in previous un-

published work [107] in assessing similarity between iconic image objects. This suggested its 

applicability in this case as an interesting alternative approach to investigate. 

In brief, the Simplex Method is a systematic approach to linear programming, which concerns 

maximising/minimising an objective function z: 

z = a0 x + a02 x2  + ... + aoNxN 	 (4.58) 

where 

x 	> 0 for N independent variables : p = [1.. N] 

a0  are scaling coefficients 
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Figure 4.17: Diagrammatic illustration of the Simplex method in two dimensions 

The objective function is subject to m(= m1 + m2  + m3) additional constraints, m1 of the 

form: 

a1x1 + a2x2  + ... + aNxN < b 	 (4.59) 

M2 of the form: 

a1x1 + a2x2  + ... + aNxN > bj 	 (4.60) 

m3 of the form: 

ajx + ak2x2 + ... + akNxN = bk 	 (4.61) 

where: 

(b,bj,bk) > 0 

i=[1..mi] 

j=[(mi+1)..(m1+m2)] 

k = [(Ml +M2 + 1)..(mi  + m2  + m3)] 

aij are scaling coefficients which may be positive, negative or zero 

The concepts underlying the Simplex Method for solving such linear programming problems 

are well illustrated diagrammatically, as in figure 4.17. There, the solid lines correspond to 
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the constraints: the axes correspond to the x 	0 	requirement, the other lines are m1  type 

inequalities. The shaded region corresponds to the set of all allowed values which fulfil these 

constraints and the dashed lines correspond to selected solutions to the objective function, here 

simply z = x1  + x2 . There are an infinite number of such solution lines possible and those 

chosen illustrate arbitrarily chosen integer solutions. 

It can be shown [1] that the optimal solution can be obtained by considering the set of lines 

corresponding to the objective function and moving through them away from the origin by 

running along the boundary (the simplex) until the furthest vertex is reached. 

On the diagram, the black circles along the boundary correspond to some possible solutions 

which are found during this process, the single white diamond at the vertex corresponds to the 

optimal feasible solution. 

Considering the problem in these terms reduces the optimisation problem to combinatorial 

complexity for the m dimensional case. The Simplex Method constitutes a systematic procedure 

for investigating the combinations in n dimensions such that the objective function increases 

with each step and the number of iterations required can be guaranteed to be less than or equal 

to the larger of in or ii 

Reimplementation of the simplex method was not a productive use of resources and an 'off-the-

shelf' implementation from [1] was again employed. The mathematical basis for the process 

and specifics of the implementation, not detailed here, are available in [I]. 

The main challenge in adopting this solution was to restate the simultaneous minimisation 

problem in a linear programming format. The central aim is to minimise the overall distance 

between the set of n pairs of predicted and observed points, d where: 

np 

	

d=>dj 	 (4.62) 

and di is the distance between the ith pair of points: 

	

d=f1 — p2 	 (4.63) 

where: 

fi  is the ith observed point coordinate 
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pi is the ith predicted point coordinate 

The set of predicted points can be varied by altering the amount of each eigenvector which is 

included in the current prediction: 

p=*+bxE 	 (4.64) 

where: 

p is a (1 x m) vector giving the current prediction 

* is a (1 x m) vector giving the scaled model mean 

b is a (1 x m) vector specifying the amount of each eigenvector to be included in the current 

predication 

E is a (m x n) array containing the m eigenvectors, each of size n 

Considering the ith predicted point, pi: 

where j indexes the m eigenvectors. Combining equations 4.63 and 4.65, we get: 

and substituting into equation 4.62, we get: 

Thp 	

I: Ebj  
flp rn 

d= 	- 	- 	x eij 	 (4.67) 
i=O 	 i=O j=O 

which we can rewrite summarily as: 

d = dstatic  - dvariable 	 (4.68) 

where d3tat jc  is a constant term expressing the difference between the observed feature points 

and the scaled model mean and dvarjable is the variable component which we wish to optimise. 

The variable which we control is b, the amount of each eigenvector to be included in the current 

(4.65) 

(4.66) 
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predication, so we rewrite as: 

rn, 	flp 

dvariable = 	x bj 	 (4.69) 
j=O i=O 

(4.70) 

So we now have: 

flp 

	

(d - d80 ) = - 	ei x b 	 (4.71) 
i=O 

which is in a form amenable to application of the simplex method. 

Vector array b is the list of variables (x 1, ..xN) and the coefficient aoi of each is the sum of 

the elements of the corresponding eigenvector. This constitutes the objective function to be 

minimised. 

The primary constraints are that the difference at each point must individually be below a spe-

cified margin threshold, Mt: 

	

dI < M 
	

(4.72) 

Here, the scaled positional variances can again be used as the basis for the threshold values 

(2.5 x or again). 

As the unmodified minimisation process would push toward the highest negative value of z, an 

overall secondary constraint to keep the minimised function non-negative had to be added: 

	

d>0 
	

(4.73) 

At this point it became clear that there was no straightforward way to handle the case of the 

ideal optimum solution being a small negative value within the single Simplex run. A second 

'mirror image' run is needed with primary constraints and the objective function remaining 
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unchanged but the task being a maximisation subject to a revised secondary constraint: 

d < 0 	 (4.74) 

The result with the lowest magnitude from the two runs is accepted as optimal. 

Match Result 

The overall match decision is comprised of three component parts. Firstly, during the feature 

detection phase, more than half the control points must find corresponding features. If this is 

not satisfied, perhaps due to severe occlusion of the object, the match fails there. Secondly, the 

predicted/observed differences are used as input for the Simplex routine: if no solution is found 

subject to the imposed constraints the match again fails. 

Finally, the optimised result must be above a specified threshold: the maximum value to which 

this can be set is simply the sum of the positional variances for the individual points, the min-

imum zero, demanding an exact match. This threshold is set empirically based on initial test 

results and the maximum value was found to be suitable. 

Where a satisfactory overall result is obtained, by the structuring of the test, it is also then known 

that the result has a satisfactory overall difference and that no individual point is distorted by 

more than a second specified amount. The object can then be stored as a confirmed pedestrian 

and the requisite update procedures performed. 

Implementation points 

For use of the standard Simplex Method routine, input data must be arranged in a quite specific 

format, a tableau implemented as a 2D array a [fl [k]. Row one contains the objective function 

coefficients and the balance of rows the coefficients of the constraint equations in the strict 

order m1,m2,m3. 

Further, the array will not be of a fixed size between match sessions as there may be a variation 

in the number of features located. A tableau building routine was needed which dynamically 

adapted size and overall threshold to reflect the number of points. A second such routine built 

the tableau for the 'mirror image' maximisation, which in this implementation is run as a min-

imisation problem with constraints manipulated to simulate the 'negative problem'. 

The output of the routine is the transformed tableau array plus a 1D array indexing which row 

now corresponds to which variable. The indexing was used to give the desired list of deltas 
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indicating the amount of each eigenvector included in the optimum predication model. 

Use of the Simplex Method to solve this problem relies on several simplifying assumptions 

concerning the system. A central assumption is that the variables are independent which, as 

they constitute points on a continuous line is not strictly the case. The predicted points are 

allowed to vary independently here, which diverges from a strict realism. 

While the resulting shape could potentially be more irregular than is entirely feasible, the effects 

of this are mitigated as a side effect of the imposition of absolute maxima on the individual 

divergences. 

The need to specify threshold values introduces assumptions as to what is to be considered 

acceptable for the system. The specification that more than half the control points must generate 

observed features will inevitably reduce the system's ability to handle severe occlusion. 

Use of the scaled model's positional variances to give the allowed deviation at each point is 

intuitively appealing, but could lead to point loss where extreme motion occurs. 

4.6.2.8 Pedestrian objects and arrays 

When an object is identified as a pedestrian, a new VS-pedestrian object is constructed. Each 

has a Unique Identification Descriptor (UTD) allocated which allows the pedestrian to be spe-

cified for tracking and retrieval purposes. The object age in number of frames is set at 1 and 

incremented for every frame where the pedestrian is matched to an object. The pedestrian data 

also includes an array which records the current and historic centroid positions and which thus 

specifies its historic trajectory which can be used for analysis purposes. 

Two prediction arrays augment the pedestrian data, one giving an estimate of the pedestrian 

shape in the next frame using a simplified Kalman filter prediction of the shape parameters (see 

section 4.6.2.9) and the other containing an updated estimate of shape parameter variance. 

When a pedestrian object is constructed, it is stored in an array of VS-pedestrian objects which 

contains all such entities found and not yet lost at the current frame. At the start of processing 

of each new frame's labelled object map (before located objects are matched against the scaled 

median shape) matching is attempted with the extant objects from this array. 

The prediction arrays are used along with the tracking module to generate a scaled, translated 
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shape, pre-distorted from the scaled mean using the predicted distortion parameters. This is 

used to match against the object using the same criterion as are applied for new objects against 

the scaled mean shape. 

The relative positions are evaluated first, in terms of the known centroid points and pedestrians 

outside a specified distance from the object are discounted. The pedestrian with predicted 

position closest to the object's actual position within the distance threshold and which matches 

the object's shape is taken as the positive result. 

The choice of threshold distance does not depend upon evaluation of the maximum pedestrian 

velocity as this is modelled in the Kalman filter tracking (section 4.7): the distance is solely a 

measure of the allowed positional prediction error. In the current implementation a Euclidean 

distance of 100 pixels was fixed during testing. To cope better with different image scales, it 

would be better to vary this in proportion to the estimated scene:image ratio. 

A Kalman filter is maintained to predict position of the pedestrian and its scale as described in 

more detail in section 4.7 

4.6.2.9 Simplified Kalman filter predictions 

The shape prediction array for each pedestrian object is made using a simplified Kalman filter 

for each shape parameter b, initialised at the value calculated for the first match against the 

scaled mean shape. The companion variance prediction array contains the estimate measure-

ment variances for each parameter, initialised at the scaled positional variance used with the 

scaled mean shape. The Kalman Gain, gj for each parameter is calculated using: 

ci 
gi = 

ci + v 
(4.75) 

where: 

ci is the variance of the ith shape parameter, b, initialised at the ith eigenvalue 

vi is the measurement variance, estimated for the ith point using the average of the scaled mean 

shape positional variances 
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The parameter predictions are then calculated using a simplified filter equation: 

bil  = b 0  + gj(f - b20) 	 (4.76) 

where: 

b 1  is the new parameter prediction 

b 0  is the old parameter prediction 

fi  is the corresponding observed value 

The error covariance is updated using: 

c 1  = (1 - gj)cjo 	 (4.77) 

where: 

c 1  is the new error covariance estimate 

c 0  is the old error covariance estimate 

4.6.3 A novel pixel-based object classification approach 

The second module option was a novel pixel-based approach developed to complement the 

model-based technique. To provide the desired contrast the method should involve a minimum 

of mathematically complex elements. This was doubly appropriate as this alternative approach 

should also focus on minimising the resource requirements demanded of the object classifica-

tion process. 

As noted, pixel-based approaches rely on basic geometrical properties to identify objects, 

whereas it is clear that moving pedestrians are not in themselves simple geometrical shapes. 

It was therefore necessary to make assumptions and approximations in attempting to design 

a pedestrian detection module. The assumptions were made from first principles, based on a 

priori knowledge of the attributes of pedestrians and their relationship to surveillance scenes. 

The assumptions used in the approach were as follows: 

1. Position can be represented by object centroid (this assumption is used in the model-

based approach also). 
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Orientation can be represented by object principal axis. This assumes that a pedestrian 

will generally be erect while in motion. 

Shape can be approximated by a rectangle or ellipse. This allows the ratio of lengths 

parallel (ipar) to and perpendicular to (lpe.) the principal axis to define the object shape. 

Pedestrian shapes, expressed by (I par  : l per) will not usually fall below a certain threshold 

value. 

Using these assumptions, a procedure for detecting pedestrians using a shape-based approach, 

from an input in the form of a labelled object map (section 4.5) could be developed: 

Boundary extraction 

Calculation of the principal axis 

Shape estimation 

Shape classification 

Registering and listing shape objects 

4.6.3.1 Boundary Extraction 

The process for boundary extraction is held in common with the model -building approach and 

is as detailed in section 4.6.2.1. 

4.6.3.2 Principal axis calculation 

Calculation of the principal axis involves minimising the sum of perpendicular distances to the 

boundary points and is implemented using the linear regression procedures detailed in section 

4.6.2.2. 

4.6.3.3 Shape estimation 

Shape estimation is performed by finding lpar and  lper  to specify the object's principal axis 

oriented bounding box. This approach is equivalent to specifying the shape using its elongation 
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value, E, where: 

(4.78) 
Xperp 

and: 

X7nax is the length of the shape along its axis of orientation, the principal axis calculated in 

section 4.6.3.2 

Xperp is the length of the shape along the axis perpendicular to Xrnax 

The true elongation uses Xrnin,  the length of the shape along the axis giving the minimum 

results in place of Xperp 

A heuristic approach is taken to estimating E, as follows: 

Begin at object centroid point 

For both of the specified axes 

In each direction 

Find the first point outside the object, set previous point as an initial bound point 

For each bound point 

Move one point along the axis (away from the centroid) 

Check perpendicular to this point 

If any object point is seen within range of current bound box 

move Out another point along the axis and repeat 

else, set this as the new bound point 

The result is as illustrated in figure 4.18: the initial bound points lie on the object boundary and 

are pushed outward to the final points shown, giving a bounding box aligned along the object's 

principle axis. 

4.6.3.4 Shape classification 

A simple elongation thresholding is used to to classify objects. A shape is classed as a po-

tential pedestrian if the elongation as calculated in equation 4.78 exceeds a specified value. 

The threshold ratio is set at 1.5 drawing on contextual knowledge, implicitly assuming that 

pedestrians correspond to long, narrow objects. 

The thresholding can be extended to cover pose using a supplementary elongation calculation. 

Given that it is now known that the shape is within acceptable limits, a second bound box can 

be estimated using the four boundary points with the maximum or minimum x or y coordinate 
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Figure 4.18: Finding the bounding box. The solid straight lines are the two axes through the 
centroid point. Each small circle is an initial or final bound box located along an 
axis. The dashed line is the corresponding bounding box 

values respectively. This box is aligned with the vertical and if its elongation is above a second 

threshold, the pose will be correspondingly close to vertical. 

Two examples are shown in figures 4.19 and 4.20 to illustrate the extreme cases of a near 

vertical object ( a potential pedestrian as used in figure 4.18) and a near horizontal one. To 

allow for some variation in pose, the threshold was set at 1 for this bounding box. 

4.6.3.5 Shape objects and arrays 

When an object is identified as a pedestrian, a new VS-shape object is constructed. Very similar 

to the VS-pedestrian objects described in section 4.6.2.8, these also have UIDs, age, centroid 

array and a positional/scale Kalman filters. The distinction is that there is no need to maintain 

arrays for prediction here. 

Again like the VS-pedestrian objects, these are stored in an array of all such entities found and 

not yet lost at the current frame. The same approach is used to identify extant VS-shape array 

members with newly discovered objects although the process here is simpler as no matching 

is required. If the object has been classified as a pedestrian, the shape with predicted position 

closest to the object's actual position within the distance threshold is taken as the positive result. 
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Figure 4.19: The second bound box compared with the original object in the same pose 

Figure 4.20: The second bound box compared with the original object at an extreme variant 
pose 
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4.6.4 Functionality testing 

4.6.4.1 Model-based approach 

The procedures for model fitting were assessed by visual review of image-like output of runs 

on short sequences of artificial test images, an excerpt from which is shown in figures 4.21 

and 4.22. The various stages of the model matching process were tested incrementally, using 

labelled object maps as input, with output primarily in the form of image-like representation, 

supplemented by textual log output where required. 

The boundary extraction was tested by image-like output of the boundaries projected onto the 

labelled object map. 

The reordering process was examined by generating textual lists of the boundary points before 

and after the reordering process, along with details of size and centroid. The linear regression 

calculation procedure had been pre-tested on text book problems with known answers prior to 

integration. 

B-spline fitting was assessed visually, by adding an image-like output of the spline points to 

the test image sequence, an excerpt from the results being shown in figures 4.23 and 4.24. 

Model translation and scaling, normal calculation and feature detection were all assessed sim-

ilarly by superimposing the calculated results on the test image sequence. An excerpt showing 

illustrating the centroid fitting stage is given in figures 4.25 and 4.26. 

As an off-the-shelf unit, the Jacobi routine function had been pre-tested by use in multiple 

environments and as such, the correct basic operational structure was treated as known. The 

correct functionality was double checked by testing on text book problems (for calculation of 

eigenvalues and eigenvectors) with known answers. 

The implementation of the Simplex method was again an off-the-shelf unit and so the correct 

basic operational structure was treated as known. The correct functionality was double checked 

by testing on text book problems (for calculation of simultaneous optimisation solutions) with 

known answers. 

Object identification was tested on short sequences of artificial test images. A model trained 

from a sequence of such shapes was used for matching. Identification was signalled in the 

visual output by marking the centroid position of each identified object. Textual output of the 
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Figure 4.21: Excerpts from the artificial test image sequence (i) 
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Figure 4.22: Excerpts from the artificial test image sequence (ii) 
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n 
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U 

Figure 4.23: B-splines fit to the artificial test image sequence (i) 
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n 
U 

Figure 4.24: B-splines fit to the artificial test image sequence (ii) 
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Figure 4.25: Centroids showing modelfit to the artificial test image sequence (i) 
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Figure 4.26: Centroids showing model fit to the artificial test image sequence (ii) 
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centroid history, UID and age of each matched object was provided as supplement to assist 

resolving potential ambiguities. 

4.6.4.2 Shape-based approach 

The boundary box calculation and subsequent classification were tested in the form of image-

like representation, supplemented by textual log output where required. 

Object identification was tested on the same short sequences of artificial test images and iden-

tification was signalled in the visual output by marking a cross joining the bounding points on 

each identified object, as illustrated in figures 4.27 and 4.28 . Textual output of the centroid 

history, TJID and age of each matched object was provided as supplement to assist resolving 

potential ambiguities. 

4.7 Tracking 

As noted in section 4. 1, only one solution to the tracking task was implemented in the current 

testing because tracking is essentially an extension after the first possible alarm stage and can 

be implemented from an extant module. The tracking module is included both to check on the 

usefulness of the output of model classification as input to a succeeding module and to facilitate 

the development of using trajectory data for analysis (section 4.8.2). 

An 'off-the-shelf' (in-house) developed tracker was adapted to integrate it with the output of 

the subsystem to this point. This was both to assess the system's compatibility with such an 

independently designed unit and to avoid focusing excessive development time on this 'support' 

module. The implementation used was the VS-Kalman routine developed by Andrew Peacock 

for the University of Edinburgh Department of Electronics and Electrical Engineering's Vision 

Group library. 

A full discussion of the theory underlying the Kalman filter will not be presented here as no 

modification or development work was carried out on the routine other than integration with 

the system. Further, the performance characterisation results (Chapter 6) are not extended to 

examine the tracker's performance by the same rationale. 

In brief then, for a simple 1D version of the filter, where the filter's current state is equivalent 
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Figure 4.27: Bound box axes fit to the artificial test image sequence ( (i) 
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Figure 4.28: Bound box axes fit to the artificial test image sequence (ii) 
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to a direct estimate of the measured variable, the algorithm steps are as follows: 

Input a new measurement (X m) and estimate error covariance (c) 

Calculate the Kalman gain, gk  using: 

gk = 
c 	

(4.79) 
C+v 

where v is measurement noise variance 

Re-estimate using: 

= X0 + 9k(X - x0 ) 	 (4.80) 

where: 

x1  is the new estimate 

x0  is the old estimate 

Re-estimate error covariance c using: 

Ci = (1 - gk)co 	 (4.81) 

where: 

c1  is the new estimate 

c0  is the old estimate 

5. Make predications of the process state, x, c, using: 

	

X P  = A x x1 	 (4.82) 

	

e=Axci+Q 	 (4.83) 

where: 

A relates the process state at time t + 1 to that at time t 

Q is the variance of any process noise 

170 



A Surveillance Solution with Interchangeable modules 

A full Kalman filter allows for complex relationships between state, measurement and control 

input and can allow for multidimensional variables. 

For the straightforward application to the tracking system, the velocity of centroid movement 

and rate of change of size were the states modelled by separate Kalman filters. 

4.8 Extensions 

As noted, the system is designed with the possibility of extension modules being integrated at 

a later date as a significant consideration. There are three specific modules under development 

for inclusion with the system to extend its abilities. The first of these, face capture is the most 

interesting as it is a module which can be activated for all pedestrians or as a result of an alarm 

only. In this respect, it could be run from the central control point and offer the additional 

functionality without a corresponding overhead in resource usage. 

4.8.1 Face capture 

For surveillance applications, identification of individuals in real time or from stored footage 

is a significant issue. The ability to capture face images in compact form for further analysis 

alongside extant alarm data would be valuable in the final application. 

On the final platform, this could be implemented using a camera's control input to automatically 

direct pan, tilt and zoom (PTZ) to capture a high definition face image. Using a simpler camera, 

a sub-image corresponding to the head position could be extracted for review and/or longer term 

storage. 

It is possible to implement the latter approach on the test platform. In both classification mod-

ules, the centroid, principal axis and bounding box of the pedestrian are ascertained. Using 

this data and assumptions as to the standard construction of a pedestrian drawn from contextual 

knowledge, sub image capture can be simply implemented. 

A simple average pedestrian layout is specified with the ratio (head: trunk: legs) set at (1.2:2) 

(see diagram 4.29). Using this model, a sub-image of the top 20% of the bounding box is 

likely to capture the head region. Although not guaranteed or exact, the saving of storage is 

considerable: even storing just the whole bounding box requires 400% more space. 
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2 

2 

Figure 4.29: An illustration of the 1:2:2 ratio assumption for three different pedestrian stances. 

As no face recognition software should be assumed, the sub-image captured will not be eval-

uated during capture for quality (i.e. the front or back of the head may be captured). It would 

be prudent to capture a sequence of these sub-images from the objects history to maximise the 

likelihood of a good face shot being obtained. 

An illustration of the operation of a simulated version of this extension is given in section 6.5. 

4.8.2 Trajectory extraction 

The trajectory data for each identified pedestrian is recorded as part of VS-pedestrian or VS_ 

shape objects. A simple extension is to store these trajectories either in isolation or alongside 

face sub-image sequences (see 4.8.1). In [32], such data is analysed to extract the distance to 

whichever is the nearest vehicle at a given time: at the point of closest approach to each vehicle, 

the distance and instantaneous speed were recorded and plotted as a scatter plot for all vehicles. 

Taking the measurements over all trajectories observed they then built up a 2-D cumulative 

probability distribution. The cumulative probability of the speed-distance triple at each closest 

point would be used as a measure of interest: the closer/slower to a vehicle, the more interesting 

the event. 

A module to perform this kind of analysis could be implemented as a direct extension of the 

current system, but a simpler alternative is possible. If the trajectory data were stored alongside 
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the face sub-image sequences with both labelled using the UW of the corresponding object, the 

two taken together would provide evidence linking identity data with a summary of trajectory 

behaviour. 

Furthermore, this alternative provides an avenue to solving the problem of analysing the beha-

viour of an individual over several visits to a scene. If the behaviour is stored with sufficient 

identifying data (the face sequences) then atypical behaviour analysis can be made for the group 

of scene visits overall, taking into account number of returns in a specified time-span, traject-

ories executed in each etc. 

This type of behaviour analysis is of particular interest in analysing the behaviour of shoplifters, 

car thieves and other criminals performing reconnaissance and making frequent returns in an 

attempt to conduct their business unobserved. 

4.8.3 Behaviour analysis 

Both the existing plan for alarming on entering a restricted area and the proposed face/trajectory 

review constitute basic behaviour analysis procedures. 

The system provides data which is suitable for input to a wide range of more complex behaviour 

analysis methods which would need to be evaluated within the context of a larger composite 

system. Possibilities include the use of Bayesian analysis to generate semantic descriptions 

of behaviour [86] or to interpret behaviour patterns [108], building spatiotemporal models to 

predict/evaluate human/human and car/human interactions [105] and using information fusion 

to combine the system results with other data sources [109]. 

4.9 Summary 

This chapter has presented the motivations for choosing the specific module options to be in-

vestigated. The theory underlying significant modules and submodules has been presented 

where it has relevance to performance evaluation and design. 

The implementation details have been presented at a level appropriate to indicate control choices 

and allow re-implementation without presenting code-level specifics. The evaluation proced-

ures used to ascertain correct functioning and assist in setting tuning parameters have been 
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summarised for each module. 

The overall control structure has been described and proposed extensions which are appro-

priate within that control structure (and which require relatively little additional work/on-line 

resources) have been introduced. 

Now that the design and implementation of the system have been specified, it is necessary 

to find a suitable performance characterisation approach and to obtain results sufficient for 

selecting the optimum system variant to be implemented on the final platform. 
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Chapter 5 
Performance Characterisation 

5.1 Introduction 

The performance characterisation of the alternate approaches for the final application is a vi-

tal step in constructing a system which is appropriate and performs optimally both in terms of 

processing abilities and resource requirements. There is no generally accepted approach to the 

characterisation of vision systems and none of the techniques published in the literature are suit-

able for the analysis of the system under consideration. The case is made for a novel approach 

to such evaluation, suitable for characterising the system options for a particular application. 

5.2 	The case for performance characterisation 

Quantitative performance characterisation has not traditionally been the norm in the vision 

research community and is only now becoming more accepted. It is important to understand 

the standard approach still common and the rigorous alternatives proposed to see the need for a 

'third way' in vision system performance characterisation. 

5.2.1 Traditional approaches to testing in vision research 

Computer Vision as a distinct research discipline can be traced back to its emergence from com-

puter science and electrical engineering more than 30 years ago. Over this time, the primary aim 

of researchers has been to develop ever more effective methods to allow a system to correctly 

perceive details of its visual environment. 

During the last 15 years, there has been a growing unease throughout the vision community 

over a perceived lack of a coherent system for the evaluation of the capabilities of the diverse 

approaches available for solving common problems. 

To quote from [110]: 
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"we are willing to develop one more edge detector, but we do not want to develop 
objective and quantitative methods to evaluate the performance of an edge de-
tector. About three decades of research on edge detection has produced N edge 
detectors without a solid basis to evaluate the performance. In most disciplines, 
researchers evaluate the performance of a technique by a controlled set of experi-
ments and specify the performance in clear objective terms" 

In common with other many other fields, the pressure to publish in the vision community is 

intense and, as indicated above, a bias exists in favour of the conception and implementation of 

novel approaches to solving both new and classical vision problems. 

The traditional approach to moving ahead in the field has been to follow the software imple-

mentation of an approach with sufficient testing to illustrate the validity of the concept on a 

small number (1 - 4 per [20])  of images. The rationale for the choices of number and of nature 

of the images was not commonly reported, neither was whether the results were representat-

ive of average or best performance from a larger set. At this stage, an initial paper could be 

published before continuing with the research endeavour by enhancing the existing approach, 

adding additional steps or moving on to the next concept, with the goal of writing the next paper 

as soon as feasible. 

Also, the common practice is that results published to illustrate the quality of a method are given 

in the form of image-like entities. This representation is both a qualitative indicator and one 

which implicitly involves subjective factors in the choice of display format. Further assessment 

of such results is complicated by being inextricably entangled with the observer's own high-

level visual processing. This processing occurs on an unconscious level and so cannot be set 

aside, rendering the evaluation of the results dependent on the observer, potentially different 

for each reader. 

Even with concerns of subjective factors set aside, the use of such a result format can be mis-

leadingly seductive where the end 'user' is not a human, but a further stage of processing or 

other automatic system. Such systems do not have recourse to the high level processing that is 

unavoidably assumed in using this results format. 

A consequence of the traditional approach is the generation of many candidate solutions to 

each vision problem, with very little objective and comparative review of their performances. 

Subjective comparison is common, for example the assertion that "Canny's edge detector is 

best" is commonly made [22], but this sort of statement is not quantified, is without context 
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Figure 5.1: Graphical representation of Bowyer's Conjecture for performance as afunction of 
mathematical sophistication 

and so is essentially not open to confirmation. To quote again from [110]: 

"Vague justifications, such as subjective evaluation of images ... should not be 
allowed" 

In the absence of the robust quantitative evaluation of results in the field, it is suggested [181 

that it has become commonplace to measure progress by other standards. Apart from using the 

quality of image-like results, there is a tendency to associate the complexity of the algorithm's 

mathematical basis with advancement. Thus there is a trend toward ever more complex ap-

proaches without there always being a solid basis to indicate that performance is actually im-

proving. 

While greater complexity of theory can offer the possibility of superior performance, this will 

only bear fruit where the mathematical basis of the algorithm and the assumptions inherent 

in it are appropriate to the problem. Bowyers Conjecture [18] can be well illustrated graph-

ically (Fig.5.1), showing the potential effect of increasing complexity in isolation, without an 

established link through empirical testing to complete the development cycle. 

177 



Performance Characterisation 

Li 

Figure 5.2: The Val D 'Isere cable car 

5.2.2 Performance characterisation in other fields 

A useful comparison of the field with other engineering disciplines which have comparable 

pressures toward improving quality and reducing costs is made in [19]. A specific example 

related is that of the Val D'Isere cable car (Fig.5.2) built in 1931 and extensively repaired, 

refitted and redeveloped over its 70 year life to date, still transporting approximately a quarter of 

a million persons each year. This system's reliability and extensibility have their foundations in 

the rigorous demands of the civil engineering design methodology. Testing has to be sufficient 

to explore all foreseeable modes of operation, to chart the system's failure modes and to specify 

its operational parameters. Comprehensive data sheets have to be constructed on all relevant 

system parameters before such a system can be accepted for commercial usage, due to the 

safety critical nature of the design factors. 

Where new failure modes are encountered (the infamous example of the Tacoma Narrows Sus-

pension Bridge is cited), the underlying causes are identified, solutions developed and the in-

formation gained is absorbed into the discipline's body of knowledge. Similarly, in aeronautical 

engineering, where catastrophic failure occurs, the black box recorder is of singular importance 

in preserving failure data to feed back into the design process. 

Electrical engineering is perhaps most closely allied to the vision field, requiring extremely 

complex systems which may be subject to rapid development and which must nevertheless be 

designed and implemented cost effectively in a commercial context. Any proposed solution in 

this field whose components are not extensively tested, characterised and validated with data 

sheets specifying all relevant properties is unlikely to be considered seriously. 
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Compare this with the body of work in the computer vision literature and the distinctions are 

clear. The legacy of the traditional approach is a large number of candidate algorithmic solu-

tions to vision tasks, tested in a limited manner with little quantitative performance evaluation 

carried out upon them. There is usually no data on failure modes of systems and so neither 

overall performance nor range of operation can be clearly stated. 

Unlike in the other fields described, there is no clear record of exactly what has been attempted 

to solve a certain vision problem, what did (and did not) work, how well it worked and what the 

effect of changing various conditions is. There is no clear basis for predicting the capabilities 

of systems on an arbitrary data set. 

Courtney [19] provides an account of a practical instance of the problems this can cause by 

citing the proposed commercial development of a surveillance system incorporating a variety 

of detection methods, including vision-based components. In brief, a detailed data sheet was 

required for each component, which was not available for the vision-based items and which led 

to these being replaced in the final implementation. Financial resources flowed back to the non-

vision developers only and anecdotal evidence suggests this is a commonly occurring pattern. 

The projection if this pattern continues is a dwindling of funds available to vision researchers 

and a consequent hindering of development in the field. 

5.2.3 Objections to performance characterisation 

Despite the problems caused and projected for development of the field by a lack in the exper-

imental component of vision research as compared with the amount of theoretical work, there 

has been some resistance to a shift towards more empirical performance evaluation. Some 10 

years after the 1985 Computer Vision Workshop, where two significant papers ([111], [112]) 

brought the controversy over such testing to the fore, Foerstner [113] considered in detail a vari-

ety of these objections to performance characterisation of vision solutions using empirical data. 

More than five years on again, evidence that the principle is gaining acceptance and interest is 

observable in the number of workshops and discussions around the topic in the literature. The 

old attitudes retain sufficient dominance however that it is worthwhile to address some of these 

objections here. 

Task dependency 

It is stated that meaningful evaluation of any visions system is task dependent and that evalu- 
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ation of a particular approach in one task context may not transfer to others. This is answered by 

recommending that the developer be responsible for specifying a characteristic set of variable 

quality measures that can be evaluated in the context of each new task. Each vision component 

should have its own data sheet giving performance ranges in terms of all relevant characteristics. 

Complexity 

Vision systems are usually comprised of many small algorithms whose interactions can be data 

dependent. This makes overall evaluation an intractable problem and even where data for the 

individual units is available, the results may not propagate to give an overall assessment. This 

can be mitigated with careful design: the system can be constructed from modules which may 

be independently evaluated and this evaluation can employ probabilistic measures which do 

propagate acceptably for the overall system. 

Tuning parameters 

Another feature of vision processes which is cited as making empirical testing undesirable is 

the number of tuning parameters commonly used. These are variables such as thresholds for 

evaluating the significance of differences: values which are set during initial tests to give the 

best results on the input data. Evaluation effort does indeed grow with combinatorial complex-

ity with the number of free tuning parameters, but rather than being an argument against testing, 

this can be seen as one to minimise the number of such parameters in the design stage. They 

should ideally be employed only where they have a well-defined and appropriate theoretical 

significance which informs the setting of their values. The process of eliminating superfluous 

parameters can itself enhance understanding of the system. 

Resources required 

The final purely technical objection is the cost in man and machine hours required for extensive 

empirical testing, which may be beyond many research budgets. Most particularly, obtaining 

control or ground truth results for the test data can be very difficult and time consuming. In 

part, the answer here is to consider the wider perspective, viewing cost versus benefit for the 

field as a whole. Further investment may be required in the short term but without an improved 

empirical foundation, vision research will not be on an equal footing with other fields in attract-

ing commercial interest and funding. The long term costs are likely to far exceed the short term 

resource increment. Another part of the solution is the creation of common publicly available 

data bases of test data which can be used as standards in a benchmarking process. Not only 

would the costs of data gathering be shared but this is the only way that results of testing could 
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be made fully comparable between research groups. A longer term goal is the standardisation 

of vision modules, with specifics laid down for required performance and interface character-

istics. 

Acceptability of empirical testing research 

The last objection of all is not technical, but more psychological and sociological in nature. 

This is that studies of extant vision approaches, including quantitative empirical testing have 

tended to be less well respected than the implementation of novel algorithms in the vision re-

search community. Further, the 'rule of thumb' time relationship of theory: implementation: 

testing = 1:10:100 [113] means that research effort focused on testing gives a significant poten-

tial reduction in the rate of paper production. The increase of workshop numbers and interest 

in the subject is an encouraging indication that the situation may be changing in this respect. 

5.3 Approaches to performance characterisation 

5.3.1 Current approaches 

The current approaches to performance characterisation in the computer vision literature are 

presented in section 2.2. Although the different approaches emerging in the field for perform-

ance characterisation are predictably varied, there are significant areas of commonality and 

important issues and objectives which emerge. 

The importance of empirical testing 

A core message of all of the current endeavours is that, to develop as a credible scientific 

discipline with the commercial and funding status concomitant with this, the vision field needs 

to complete a paradigm shift in respect of its experimental methodologies. Comprehensive tests 

of old and new algorithms are needed to assess their abilities on real test data. 

The need to choose suitable test data 

To obtain significant and useful results, the data used in testing must be both of sufficient 

quantity and variety to encompass the range of situations in which a candidate approach is 

intended to function. To promote comparability, there should ideally be a commonly available 

database of benchmark images to use in performing tests. 

The need for test results to be quantified and comparable 

Quantifiable and comparable results on the performance of vision systems are essential for 
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measurable and communicable progress in the field. Built upon the benchmarking database, 

common test and evaluation procedures are needed to facilitate direct comparison of perform-

ances and the results should be presented in a standardised manner. 

Exploration of failure 

The works discussed in section 2.2 all recognise that exploration of the conditions under which 

systems fail is of key importance, as is mapping of operational limits. The problem specifica-

tions given by users are commonly couched in terms of the maximum number of failures which 

are acceptable and in what conditions. 

High resource demands of empirical testing 

Set against the importance of obtaining empirical test results are the costs involved in the pro-

cess. There is a disproportionately higher investment in terms of computer and person hours 

required to complete thorough testing of vision algorithms, which can potentially be mitigated 

by increased standardisation and the consequent sharing of costs. 

5.3.2 A 'third way' 

The most common approach to designing a novel system for a practical application is to take an 

overall problem specification and use the results available in the literature to suggest possible 

avenues of investigation which lead to a solution draft. This solution is generally implemented 

monolithically, with testing on the composite solution as a whole. As noted, the data from the 

literature used in this is usually only sufficient to give an indication of promising approaches. 

As an alternative, current research efforts focus on performance characterisation of vision sys-

tems at the algorithm level. This is quite reasonable and important for the long term credibility 

of the field, taking again the comparison with electrical engineering and the characterisation 

of its re-usable components. Considering the effort required to characterise the performance 

of each algorithm in even a 'simple' vision process however, the resources required to put this 

into effect generally will be very great. 

Although this seems to represent the only reasonable long term goal in the field, current end 

users need a way to make a comparative evaluation of approaches until this element of the field 

matures. A 'Third Way', straddling the subjective, qualitative evaluations of the past and the 

full comparable, objective and quantitative characterisations of the future would be a valuable 

tool for the present. One such approach to vision system evaluation is proposed here and its use 
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on the system implementations as described in Chapter 4 is illustrated. 

5.4 A novel performance characterisation approach 

The primary contribution of this project is the creation and evaluation of a new methodology 

for the integrated design and characterisation of an appropriate practical solution to a specified 

vision processing problem. Practical aspects of the design steps of the approach have been 

presented in Chapters 3 and 4 and will be discussed further in section 5.4.1. The performance 

characterisation approach, suitable for assisting in the selection of algorithm implementations 

to be used in a modular vision system, is presented in the following sections. 

5.4.1 Modular design 

An integral part of the approach is that object oriented principles be exploited in the design and 

implementation of the system. This will impose restrictions in respect of functional abstraction 

and interface stability. In essence this means that each module is designed so that an application 

designer need know nothing of its internal workings. At the system specification stage, the data 

objects to be passed into and out of a module are specified. This specification of an object's 

interface characteristics is all that is needed to ensure mutually compatible and interchangeable 

modular components. 

In this approach, each module is considered to correspond to a distinct candidate solution which 

may correspond to one algorithm implementation or a fixed combination of these. The assump-

tion is that neither full performance characterisation data on the modules nor the resources to 

derive such data are available. The context is where a vision-based system is required for a 

particular application to be run on a specified or semi-specified system. Here, the parameters 

of acceptable behaviour of the system overall will have been stated, either as specific values, 

acceptable ranges, or mixtures thereof. 

The first step in the planning of the evaluation process is held in common with general object 

oriented (00) system design principles. This is the deconstruction of the overall process into 

the appropriate individual modules. From the perspective of pure 00 design however, module 

choice is dictated purely by application of the principles which dictate what constitutes a valid 

and efficient object. The choice of module definition for the purposes of performance analysis 
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however will be influenced by more diverse considerations. 

Here, the module is recast as the basic indivisible unit for characterisation processes: the more 

modules the system is split into the greater the level of resource requirement and the detail 

of results. At the finest level, the modules could be taken as individual algorithms, reverting 

to the algorithm-wise characterisation case, at the other extreme the system would be a single 

monolithic entity. 

The two critical factors to be balanced in deciding the module designations are how fine a 

level of characterisation is desired and what budget exists to perform it. The decision over this 

balancing is at the heart of this performance characterisation approach. The more modules that 

are used, the finer the results of the characterisation and the greater their potential for re-use. 

Reducing the number of modules used will reduce the resources required for performing the 

testing. 

An additional consideration in some cases will be what 'off-the-shelf' modules are available to 

be used in the system to take advantage of the re-use principles of 00 design. An advantage 

of this system is that the designers are free to employ any such modules without restriction to 

those for which performance data is available. 

Similarly modules may be re-implemented based on existing work in the vision literature for 

which subjective, qualitative evaluations may exist. The key element of this design approach is 

the previously noted existence of a vast range of candidate solutions for many vision problems 

(here constituting our modules). The original evaluations serve as a starting point in the process 

of choosing promising approaches to characterise for possible use in the final system. The 

assumption is that there will be a sufficiently large range of solutions for the module to allow 

considered choice of a subset to be test-implemented for characterisation within the context of 

the overall system. 

After the level of modularity for characterisation purposes has been fixed, and the candidate 

solutions for each module selected, the design of each is completed in greater detail. It is vital 

to include consideration of module-wise testing approaches at this stage to allow the functioning 

as stand-alone units to be established independently. 

Each vision module is then implemented separately, either as an off-the-shelf solution, re 

implementing a variant of an existing method as discussed or from an original in-house concept 

184 



Performance Characterisation 

where appropriate. The basic functionality of each module is tested using the 'traditional' vis-

ion research principles: test of performance on a small number of images (synthetic and real) 

with performance evaluated from image-like results where appropriate. The tuning parameters 

of each module are set during this stage to optimise the results on the limited test data. 

Note the important point that elements of subjective interpretation are introduced into the eval-

uation approach at this stage. Similarly, with the tuning parameters set in this way, it cannot 

be assumed that the full range of behaviours for the system overall will be explored. These are 

both trade-offs needed to achieve a balance between results quality and resources required. 

Relying on the functional abstraction qualities of the object oriented design, the full system 

should be implementable as alternate combinations of the individual modules. The number of 

combinations possible is: 

flm 
	

(5.1) 

where: 

]J signifies the product 

m is the number of modules 

m is the number of candidate solutions for module i 

This may be reduced by fixing a certain module after preliminary results if it is known that there 

is significant independence between modules. A particular module combination is referred to 

as a system variant in this thesis 

5.4.2 Test data selection 

Quantitative performance evaluation is carried out independently on each system variant using 

the same database of test data. The data should at minimum be representative of the predicted 

application domain and for greater generality could be extended to cover all other cases that 

can be anticipated. To allow comparison and repeatability of the tests, the test data must be 

captured in advance of the testing and stored in an appropriate format. The test data should be 

retained after testing and ideally made available to external parties, e.g. by posting on the web. 

The exact decision on the format in which the data is stored will depend upon the specifics of 

the test, but several general points are important to consider. The storage format should be non- 
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lossy: this means that it must be possible to reconstruct the original data exactly from the stored 

format: any loss of accuracy or precision could bias the results. The storage format should not 

be prone to the creation of artifacts: this is really another aspect of the previous point, in that 

methods where approximations are made in the storage process may give alterations to the data 

are not useful. This means that storage as compressed files (single MPEG files or multiple 

jpegs for example) is not feasible. As it will be desirable to make the data available to external 

parties, most commonly on the web, the storage space required must be suitable in the context 

of the resources available. 

Although the testing must be off-line, due to the requirements for common data and repeatabil-

ity, the capture of data should be planned to incorporate the important features of the intended 

application. These must be evaluated as part of the planning process and stated along with any 

limitations and assumptions made. Where appropriate, thought should be given to evaluating 

the ground truth or control results during the capture phase so that any physical measurements 

required can be performed. In cases where ground truth is to be evaluated separately, this must 

be stated and planned well in advance, as this usually represents a significant draw on resources. 

5.4.3 Test metrics and procedures 

Once the system variants have been implemented, the database composition specified and the 

test data captured, the performance evaluation may be commenced. The first stage will usually 

be the estimation of ground truth as noted. Performance should then be evaluated using metrics 

appropriate to the task domain and should include evaluation of failure modes, estimates of 

resource requirements and analyses by data type. 

The indicators will not be as quantitatively precise as those appropriate to algorithm-level char-

acterisation and may not include information on significance levels, stochastic result formats 

and error propagation data. The key features which must be present are that the metrics be: 

. Quantitative 

Comparative between system variants 

Sufficiently accessible for users to make an evaluation of the optimum system variant for 

full implementation on the final platform. 
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These metrics will present the basic comparative performance/resource requirement inform-

ation which will then be subjected to further causal analysis. From this analysis, secondary 

results can be obtained in the form of hypotheses as to system variant abilities in the general 

case which will be the bases for the final optimality decision. 

5.4.4 Assumptions and limitations 

Constituting as it does a balance between information quality/generality and resource require-

ments, the outlined testing approach makes significant assumptions about the system and the 

needs of the user and has clear limitations which should be emphasised. 

A large assumption is that the qualitative evaluation of each module and allied fixing of 

the tuning parameters is appropriate and will not distort results beyond usefulness. While 

it is clear that reducing the degrees of freedom in the system overall will inhibit the oppor-

tunities for achieving optimum performance, it is necessary to forestall the combinatorial 

explosion which their being left as free variables would cause. This is a key thrust of 

the approach: a sacrifice of optimality and accuracy to allow an interim comparative 

quantitative evaluation with restricted resources. 

The interdependence of module performances is not addressed: although the intermedi-

ate results formats are prescribed during the design process, the quality of results will 

vary between module alternatives and subsequent modules may be able to deal with this 

variation to different degrees. 

The evaluation is restricted to performance in a specific application on a particular system 

and so does not have the generality of algorithm-level characterisation. A mitigating 

factor in terms of more general usage is that useful results will be transferable between 

similar applications. For example, many factors relevant from a consideration of car park 

surveillance will be useful in evaluating options for a system used to watch for shop 

lifters. In terms of the system specificity, approximate mappings will be possible as long 

as the system specifications are included with the test results. 

Due to the less robust nature anticipated from the results in terms of statistical signi-

ficance, stochasticity and error data it will not be easy to make robust quantitative pre-

dictions as to the performance of extended/enhanced systems. If possible, where this 
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contingency is likely, such systems could be included as a system variant during the 

planning stage of the system. 

Given that these limits and assumptions are taken into account in usage, this approach still 

offers a useful medium-term compromise solution to the lack of quantitative performance char-

acterisation data for use in constructing vision-based applications. The results will be of great 

use within the group/company in developing a novel composite solution and should be useful 

to third parties in constructing sufficiently similar systems. Further, the contribution made to a 

growing distributed database for such evaluations will be of use for succeeding researchers. 

The application of this proposed evaluation strategy will be illustrated on the current example, 

that of the vision system proposed in Chapter 4 to run on the platform described in Chapter 3. 

The system as proposed has alternative solutions for each of three variable modules and will 

illustrate the level of resource required at this level of complexity. 

The specific choices made in applying the approach will be considered first, followed by the 

full experimental detail in the balance of this chapter. The evaluation results will follow in 

Chapter 6, with conclusions as to both the system choice and the evaluation approach's abilities 

in Chapter 7. 

5.5 	Applying the novel approach 

The system to be evaluated is that described in detail in Chapter 4. To summarise some key 

points: 

The system is intended for use as a semi-automated surveillance application in its final 

version and is to run on the Indigo platform discussed in Chapter 3. 

System input will be colour digital images of a scene of a constant size which will be 

captured in real time in the final version. 

The principal outputs of the final system are to be alarm signals generated by analysis of 

the trajectories of pedestrian objects which have been segmented, classified and tracked 

in the images. This output will be augmented by the transmission of the original images 

for review by human operators. 

10. 



Performance Characterisation 

. Key modules to be put under test are: background/foreground segmentation; object dif-

ferentiation/labelling; object classification and object tracking. 

There are two modules to be considered as candidate solutions for each of the first three 

modules mentioned, in order: 

- median vs mixture of Gaussians segmentation 

- connected component vs boundary based object labelling 

- model-based vs shape based object classification 

5.5.1 System specification 

As noted previously, the first stages of the performance characterisation relate to the module 

choice criterion within the 00 design process and so are discussed fully in Chapter 4. The 

module specification for test purposes reflects the implementation of particular vision processes 

both based upon variations of existing work in the field and new approaches. 

The factors influencing this choice included the desire to obtain interesting results for the com-

parative suitability of these approaches within the context of the designated system and the need 

to keep required testing time within the constraints of the time available as part of the PhD pro-

ject. Within the modules, maximum use was made of existing 'off-the-shelf' implementations 

for standard processes including those for principal component analysis, the simplex method 

and Gaussian elimination. 

The module specification also incorporated consideration of the potential for testing as stand-

alone units. Each module was supported by supplementary routines to allow the presentation 

of results as image-like entities which could be evaluated in the traditional manner. Again 

discussed in full in Chapter 4, the preliminary testing of basic functionality allowed the setting 

of tuning parameters for the modules based on an assessment of the quality of the image-like 

results. 

It is valuable at this point to note an additional limitation of the performance characterisation 

process, not covered earlier as it is not unique to this evaluation approach. In any such empirical 

evaluation process, that which is tested is the performance of a particular software implementa-

tion of a process or algorithm. Clearly a poorly implemented version of even the best theoretical 

approach may well under-perform an optimal implementation of an inferior one. 
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In the long term, for characterisation at the algorithmic level, this difficulty may be avoided 

by the availability of standard implementations of vision processes. An example of a suitable 

model for this sort of standard database is the growing Intel Vision Library [1141, formally 

launched in June 2000. To quote from the launch statement: 

"We believe that the open source availability of this library will accelerate com-
puter vision research and ultimately hasten the day when computer vision can be 
used in consumer products .....Working with academia has allowed us to consol-
idate the best known computer vision technology and the latest research into this 
software library" 

As yet, the library does not offer quantitative appraisal of the implementations, but is neverthe-

less a significant step towards the ultimate goal. 

Until this and/or other such facilities mature, it is only possible to attempt the best and most 

carefully considered implementation in all cases, subject to the abilities of the author. It can 

only remain to consider that in real applications the information of interest is indeed that of 

the best available implementation and so this information, though potentially deviating from an 

abstract ideal is nevertheless the most relevant. 

As there are three variable modules, each with two alternative solutions, equation 5.1 indicates 

that there are eight system variants to be evaluated in this case. Each separate variant must of 

course use the same implementations of common module solutions and must be compiled and 

linked using the same options and compiler program on the same platform. 

5.5.2 Scene specification 

The critical choice of the test data to be used is informed by the a priori knowledge of the 

intended application, that of remote, semi-automated video surveillance. To recap, this is the 

process of automatically monitoring a video stream to attempt to detect 'significant events', the 

detection of which could be used to trigger specified alarm signals to a human operator. 

These considerations provide the initial parameters to use in constructing the test database. 

. The test data should be of real scenes which simulate the anticipated surveillance en-

vironment. This will include consideration of camera placement, distance from scene, 

190 



Performance Characterisation 

rotation, zooming and movement limits. 

. The data must reflect the range of dynamic variation of the environment which is anticip-

ated in the final application. This will include lighting variation, meteorological effects 

and levels of scene activity. 

An emphasis should be put on the type scene variants which earlier work in the area have 

qualitatively described as 'difficult'. This will allow a better exploration of the system's 

failure modes. 

The control exercised over the environment (precision of camera placement/orientation, 

internal reflection effects etc.) should not exceed that which can be reasonably assumed 

in the final application. Applying a disproportionate control over such effects would give 

an exaggerated evaluation of the system's robustness. 

Before beginning construction of a new database using these parameters, a review was conduc-

ted of datasets published on the web. It was clear from this review that no database suitable for 

the current testing was available and so an original dataset would have to be constructed. 

In the detail construction phase, consideration of these factors along with further knowledge of 

the problem domain allows additional assumptions and data specifications to be made which 

can restrict the testing resource required (although each such restriction will, as noted, limit the 

generality of the test results). These assumptions and data specifications are set out below, with 

consideration given to their limiting effects. 

Automatic variation of camera parameters 

A simplifying assumption required for the modules under current consideration to be appro-

priate is that we are dealing with fixed stationary cameras. If automatic panning, titling or 

zooming is assumed, the system would require further functional development to be viable. 

Manual variation of camera parameters 

It is assumed that in this semi-automated system the human operators have manual control 

over cameras and may alter the pan, tilt and zoom settings themselves, on following up an 

alarm signal for example. It is known that the current system will not function usefully for that 

camera during this adjustment process and upon concluding such observation, it is not assumed 

that the system will be returned precisely to its original settings. 

Furthermore, the system as described in Chapter 3 allows cameras to be set up and relocated 
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with great facility by offering a 'plug and play' interface with the user's computer network. The 

placement of cameras is more likely to be carried out in-house and ideal 'professional' scene 

composition cannot be assumed. 

The upshot of these considerations is that the system must be flexible enough to adapt to such 

perturbations in scene registration and that evaluating this ability should be considered in the 

control in the capture process. Although no attempt is made to explicitly model the perturbation 

process, the camera set up should be allowed to vary within the limits of manual configuration 

and reconfiguration. 

External scenes 

The primary use of surveillance systems of this type is in restricted area security applications 

and CCTV systems, the majority of which are focused on external scenes. Furthermore, ex-

ternal scenes constitute a more challenging environment to vision processes as they are subject 

to greater variation outside the control of the user. External scene data is used for testing then, 

allowing maximum exploration of the system's failure modes. 

Scene occlusion 

By a similar argument, data selection will be weighted toward challenging scenes containing 

large amounts of potential occlusion which provide opportunities for camouflage of pedestrians. 

The scene should cover the range from zero to full occlusion to ascertain at what point the 

system fails in this respect. To further task the system, a portion of the potentially occlusive 

elements should be subject to oscillatory variation due to environmental factors. 

Scene activity levels 

The scene should to be one where there is a significant throughput of pedestrians and a variety of 

scene activity levels over time. It should intersect with a main concourse and/or a building entry 

way where the focusing of pedestrian traffic will result in intense activity levels at certain times 

during the day. Data must also be captured for periods where activity is sparse representing, for 

example, the weekend period for a commercial environment. There should be a potential for 

non-pedestrian moving objects within the scene, to test the system's discriminatory powers. 

Camera placement 

There are further practical considerations to take into account in choosing the capture environ-

ment for the scene. Most external security installations involve capture by external cameras, 

essentially embedded in the environment. Captured images can be monitored in real time at 
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a central location. The capture method which would most closely simulate this would be the 

secure placement of a similar camera in the test environment, with long sequences transmitted 

to a central location for storage and the selection of interesting scenes off-line. 

Without the resources for physically implementing a simulated system of this nature, the next 

best approximation would appear to be manual capture of images from a supervised external 

camera with on-board tape. The arguments against this are in respect of its unwieldiness as a 

practical approach: for each capture session, the camera would have to be moved to its external 

location and then supervised throughout the potentially lengthy capture process. A significant 

drawback is that this would introduce an unacceptable lead time to consider in 'reactive' capture 

sessions (see section 5.6.1). In order to capture the data variations described, especially the 

more unpredictable meteorological variations, a quick response time is needed. As the camera 

cannot be securely mounted in the environment, and must be setup afresh for each capture 

session, the interesting scene data may be missed. 

It would also expose both camera and operator to meteorological conditions which, though 

interesting in terms of scene composition, have an adverse effect on both humans and electrical 

equipment. Further more, for capturing long term variations (possibly using time lapse capture) 

the approach is not feasible. 

Accordingly, the choice was made to locate the camera indoors, in a secure local environment 

where it could be left unattended for long periods of time and where it could be set up for react-

ive capture quickly. As the camera was to observe the scene through a window, this introduced 

the possibility of additional artifacts due to dirt, scratches and reflections. This will complicate 

the system's task, but is in fact particularly appropriate for the evaluation of this application. 

As noted above, the redeployment of cameras is greatly facilitated on the final platform and 

the likelihood of 'casual' camera placement is accordingly increased. In recognition of this 

fact, the decision was made to reproduce the camera placement, orientation, and zoom level by 

hand/eye measures only, to replicate these effects anticipated by this. 

Final scene specification 

Bringing together all these considerations a review was conducted of the scene/camera place-

ment options available in the local environment with the result that the camera was located 

on the third floor of the Airick Building, part of the Department of Electronics and Electrical 

Engineering at the Kings Buildings site of the University of Edinburgh. The camera was moun- 
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ted on a tripod which itself was positioned on a window ledge area and angled to observe the 

pedestrian concourse in front of the building. The distance and angle from which the scene 

was observed effectively approximates a pole-mounted or wall-mounted surveillance camera 

as well as the 'casual' repositioning of a mobile unit. 

The details of the monitored scene which make it particularly appropriate for the surveillance 

testing are summarised below: 

The scene includes a much frequented section of the concourse in front of the Michael 

Swan Building. This building houses lecture theatres, laboratories and a restaurant and 

presents a varied activity profile over 24-hour and 7 day cycles. The area is a popular 

meeting place and so pedestrian interactions can be captured in addition to simple scene 

transitions. 

. The scene includes two entrance points into the Michael Swan Building, one clear and 

one subject to severe occlusion (approximately 70% as evaluated by eye). 

. A section of road in the foreground offers a variety of non-pedestrian moving objects and 

the introduction of new background features in the form of parked cars. 

Potential for occlusion in the scene varies from zero to total with mild occlusion epitom-

ised by a single interrupting branch, severe occlusion at the second door (as noted above). 

The is also a lamp post which illustrates the special occlusion case of vertical bisection 

of an object and a handrail to cover horizontal bisection. 

Scene vegetation constitutes a significant oscillatory element to both background and 

occlusive elements. 

Artificial lighting exists within the scene (lamp post, windows, wall lights) allowing in-

vestigation of night/twilight conditions. 

The endeavours to capture the widest possible range of scene variation will be a combination of 

proactive and reactive steps. The initial planning will encompass obtaining scene variants with 

predictable variations: full natural light/ twilight/ artificial light; sparse activity (Sunday cap-

ture)/ average activity! busy (around lunchtime on a weekday). After representative sequences 

for these instances are obtained, further capture will continue in reaction to unpredictable novel 

meteorological conditions. 
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5.5.3 Data storage 

As noted, after capture, the data must be stored in a non-lossy format, not subject to artifact 

generation. The design of the system has focussed on the use of sequences of uncompressed 

digital images in the binary .ppm format as these simulate the nature of data which will be 

available on-line on the final platform. 

Accordingly, the image sequences selected from the captured data (see below) are converted to 

sequences of these binary .ppm files. The files require considerable storage resources (approx-

imately 1Mb for a 640x480 pixel (vga) image file) and so the test data is stored on CDs prior to 

testing. The sequences in this format are made available on the web [115], to allow third parties 

to use data in the same format to replicate/extend test runs. 

5.5.4 Event and ground truth specification 

In conceiving the test procedures and metrics to be used, the starting point is again consideration 

of the application in which the final system is to be used. The projected goal is the detection 

of significant events in surveillance footage to allow development from an entirely manual 

approach to a semi-automatic one. The first issue to address is what constitutes a significant 

event in this context and this is an informed assumption based on knowledge of the application 

context. 

We define a pedestrian event to be the behaviour of a pedestrian object within the scene over 

a sequence of consecutive frames. The significance of this can be evaluated independently in 

terms of the spacetime coordinate ascribed to that pedestrian object. It is important to decide 

how the 'correct' analysis of the scene in terms of these events is to be defined and evaluated 

in advance of system testing, to give a ground truth for the data set. Predicted results compared 

with actual system-derived answers are a valuable element of good experimental practice. 

The decision of how to obtain the ground truth in this case again draws on consideration of the 

final application. The performance against which the system should be evaluated is that of the 

existing practical approach, which is the purely manual analysis of results. The ground truth 

here then will be the analysis of the sequences carried out by an 'ideal' manual observer. 

The definition of such an 'ideal' observer in this context is one for whom the effects of tiredness, 

repetition, attention splitting and other psychological pressures are mitigated to the maximum 
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degree possible. The manual analysis will be conducted off-line, with images viewed and 

reviewed on a frame by frame basis as desired and in sittings of a length such that concentration 

does not fade. 

From empirical investigation, sessions of no more than one hour, with gaps no less than 30 

minutes between them were adopted. By recording the pedestrian events in this manner for each 

scene, a useful ground truth can be constructed using reasonable although not inconsiderable 

human resource. 

It is important to note though that a further element of subjectivity is introduced here, although 

appropriate in the context as discussed. A possibility to eliminate or reduce this element would 

be conducting multiple blind evaluations of the scenes by different people, but this would in-

crease human resource requirement proportionately. 

5.5.5 Results format and test procedure 

Having made a decision about how the ground truth is to be specified, it is necessary to consider 

an appropriate format for the recoding of its details, the results from the system tests and the 

comparison study between them. 

Ground truth recording 

The important elements to be recorded to identify the ground truth details are the pedestrian 

events defined above. The features of an event which it is important to record are its start and 

end frame number, and a description of the event type identifying the manual classification of 

the object, its trajectory and behaviour, including any interactions between objects. 

To assist the coherent recording of such data a pedestrian sequence event sheet proforma was 

designed (see figure B.1) which assists these details being recorded clearly during the ground 

truth evaluation stage. 

System tests results format 

Configuration of the system variants to produce output in a form suitable for test purposes is 

initially planned during the design phase of the individual modules. The principal intent is for 

the design to allow the most efficient operation leading to the generation of results in the final 

platform implementation. In that full implementation, the system will need to pass results to a 

supplementary 'alarm module' which will use its own evaluation process and the attributes and 
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abilities of the CAMOS operating system (see Chapter 3) to transmit a signal along the network 

to the human operator. 

To allow the more quantitative analysis of system performance at the event detection stage, 

a separate test harness is constructed to output the results in a format suitable for evaluation 

and comparison with the ground truth information. The general procedure chosen is a manual 

comparison of the test results with the data on the pedestrian sequence event sheets. This takes 

advantage of the human high level processing in an appropriate manner: to analyse and compare 

results using scene knowledge and automatic vision processing abilities. Although theoretically 

possible to attempt automation of such a process, this would inevitably require computer vision 

techniques itself, making evaluation a circular problem. 

The principal output results format is visual: a 3x3 pixel square is placed in the original image 

at the centroid position of each identified pedestrian. This can be quickly analysed manually to 

ascertain if it is within the boundary of an actual pedestrian object. This visual representation is 

supplemented by text output to file: each pedestrian in a scene is assigned a unique identification 

descriptor (UID) on detection and in each frame this is used to flag the cumulative data on that 

pedestrian object. 

The data recorded is as follows: 

frame number 

number of objects detected 

object centroid positions 

predicted position/scale of extant objects 

results of any attempts to match with new objects 

updated track history of matched objects 

classification results for new objects 

memory usage and timing data 

This textual data can be used to resolve ambiguities in interpreting the visual output: for ex-

ample where two pedestrians interact and both are tracked, has the track been maintained on 
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the two or has each been mistakenly identified with the other? This additional component to 

the analysis helps in adding a temporal dimension to what would otherwise be a collection of 

instantaneous evaluations. 

The second important use of the textual output is to record the resources used by the system. 

Timing is implemented in two ways: first the get-time() command is used after the operation 

of individual modules and recorded in a series of variables within the test routine. At the 

completion of execution for the test run, the average times for the individual modules are output 

to the textual results file. In parallel with this, the Unix time command is used under the Bash 

shell to give data on real time (wall clock time start to finish), user time (total CPU time taken 

by the program) and system time (the CPU time spent on operating system calls executing the 

program). 

A significant deviation between real time and user time would suggest other large jobs running 

in parallel with the testing (see section 5.6.3): the most relevant figure for our evaluation is 

the user time. The approach taken was to take the user time as the best indication of the time 

resource required overall and to allocate this time between modules in proportion to the splits 

given by using the get-time() command. 

Memory usage was evaluated using the getinem(argc, argv) command alongside get-time() for 

each module. For each system variant, the largest reported memory usage over all runs was 

used as the estimated maximum required by that variant. 

Again, it is worth reiterating that the resource results are platform dependent and approximate 

so that only comparative results are available from this analysis, the mapping of which onto the 

final platform will be unavoidably inexact. 

5.5.6 Test metrics 

The choice of test metrics to apply must again flow from the consideration of the important 

factors to ascertain in the characterisation, informed by knowledge of the application. 

In this instance the central performance measure will be the proportion of true positive identific-

ations made. Analysis of scenes for surveillance purposes can be considered to be an instance 

of binary hypothesis testing: for any frame the null hypothesis will be that there are only back-

ground pixels/objects present, the alternative hypothesis that there is a pedestrian object in the 
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scene. In binary hypothesis testing two kinds or errors can occur: accepting the alternative 

hypothesis, when the null hypothesis is correct and accepting the null hypothesis when the al-

ternative hypothesis is true. The first error is often called Type I error or false positive and the 

second error is usually called Type II error or false negative. 

The propagation of type II or false negative errors in the system is commonly interpreted im-

plicitly from a review of the percentage of true positives, the detection of a feature in a which 

corresponds to an actual instance of that feature occurring in the data. Within the context of the 

intended application, we will define a true positive as follows: 

The detection in aframe of a pedestrian object whose centroid falls within the manually pre 

dicted body of the correct pedestrian object. 

It is important to note that we are dealing with events at the frame level here: this approach 

allows us to evaluate the system on a larger quantity of data than if we were to, for example, 

average detections out over the life of a pedestrian event. More importantly, this approach is 

supported by the nature of the intended application: in security applications the eventual alarm 

signal should be generated by the detection of a pedestrian 'in the wrong place at the wrong 

time' for just one frame, and it is the ability to correctly detect this which we assess here. The 

system goes on to associate these frame level events (or instances), tracking the pedestrians to 

produce trajectory data: if it is chosen to use this in an application, its quality would be another 

logical choice for a metric. 

The true positive recognition rate recorded should be analysed by scene type (table 5.1) and in-

stance type. While scene type defines the overall environmental conditions, instance type char-

acterises the nature of the particular instantaneous component of the pedestrian event. Because 

the system is reviewed in comparison with a manual analysis of the scene, the five instance 

descriptions were derived from the intuitive classifications made by a human observer as to 

the instantaneous situation of pedestrian. When the possibility that the pedestrian is occluded, 

stopped, in a group or running has been discounted the instance can, in the scenes examined, 

be classified (by the absence of any of these complicating attributes) as simple. 

The analyses over instance type and scenes can be analysed graphically as simple bar graphs of 

the performance of the system variants. These results should then be subjected to further causal 

analysis to identify the failure modes of the system variants. 
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Following directly from the definition of a true positive is a corresponding definition for a false 

positive: 

The detection of a pedestrian object in aframe whose centroid does not fall within the manually 

predicted body of the correct pedestrian object. 

This covers both the cases where a real pedestrian object is detected but positioned incorrectly 

and where an object is incorrectly classified as a pedestrian. This is a very significant measure 

in the specification of this application: a key advantage of the application is that human op-

erator attention is required only when a significant event occurs: if false alarms are frequent, 

response will inevitably degrade. Further, a required characteristic of the system itself is that 

transmission bandwidth used on the network should be minimised: this too is compromised by 

a high false alarm rate. 

Receiver Operating Characteristic (ROC) graphs are very useful in assessing the overall beha-

viour and reliability of the system in terms of the two error types. The ROC graph as adapted 

for the current system shows the relation between the true positive percentage ( 100— (false 

negative percentage)) on the x-axis and the false positive percentage on the y-axis. The point 

(100, 0) is the perfect classifier: it classifies all positive cases and negative cases correctly. 

The point (0, 0) represents a classifier that predicts all cases to be negative, while the point 

(100, 100) corresponds to a classifier that predicts every case to be positive. Point (0, 100) is 

the classifier that is incorrect for all classifications. 

An ROC curve is often plotted on such a graph as tuning parameters are varied for a single 

system, to ascertain its effect on the two types of error. We modify this approach to present data 

on true/false object recognition for each of the four system variants as a point in a subsection of 

the ROC graph. The ability of each variant is proportional to the distance from point (0, 100), 

with different weightings attached to the X and Y components dependent on the importance 

attached to the two type of errors. 

The companion metrics of key importance in evaluating the suitability of a system variant for 

use on the final platform relate to the resources required for operation in terms of time and 

memory. In the first instance these will be evaluated using maximum memory requirements 

and averages of the times for the actual runs on the test platform. This will provide simple 

quantitative data useful for comparison between the system variants in choosing the recom-

mended optimum configuration. 
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The results thus gained are platform dependent and can only be approximately mapped to the 

final platform. More exacting results will require re-implementation on that platform which 

will not be feasible in all instances. 

The final analysis will combine all the above results and analyses to give an overall recom-

mendation as to the optimum system variant for the final platform. This will be discursive in 

nature and although it will contain quantitative elements these will necessarily be accompanied 

by qualitative and subjective evaluations due to the compromises made. 

5.6 Experimental detail 

Now that the general details of the application of the approach to the particular system have been 

specified, it remains only to identify the detailed actions and choices during the experimental 

process. 

5.6.1 Data capture 

Test run 

The first step in the data capture was a 'test run' through the practical steps as far as data storage 

for a scene. In the nomenclature chosen this is scene la, which does not appear in the results 

section as it was used to check the procedural plan only. This test run was used primarily to 

evaluate the options for frame size and frame rate to be used in the test process. 

In the final application, the system will have access to a constant stream of image frames. 

Within the CAMOS environment, a new frame can be 'requested' by the system as soon as it has 

finished with the previous one and so the controlling factor on effective frame rate will be the 

system's own processing speed. The frame rate chosen for test could reflect an approximation 

of the anticipated/hoped for frame rate of the system. 

This is again a subjective choice, but can be informed by considering the limits of the tracking 

algorithm: the more time elapsed between frames, the more difficult the tracking task is for 

a given object velocity. Tests of the tracking algorithm indicated that performance is poor for 

frame rates of below 2 frames per second. To maximise the number of events within a scene of 

standard length, this extreme acceptable value was chosen as the test frame rate. 
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On the final platform, the system must be able to cope with a variety of possible frame sizes 

subject to user choice. The assumption is made that results on a single frame size will be 

sufficient to allow characterisation of relative performance. The frame size should be reasonable 

in a surveillance context and must be compatible with the storage facilities available in the test. 

The storage medium to be used is 650Mb CDs and examination of scene data captured sug-

gests approximately five minutes to be a suitable scene duration to capture a range of interest-

ing events while not being too taxing for a single session human evaluation. Balancing these 

considerations, an image size of 640x480 pixels was selected for use, at which size each frame 

corresponds to a binary .ppm file of size approximately 1MB. 

Using these parameters, it was possible to store each required 5 minute scene individually on a 

Capture procedure 

The test data is captured using a Sony DCR-TRV900E PAL positioned as detailed in section 

5.5.2. Scene capture took place over a six month period from Summer to Winter, on the East 

coast of Scotland, during which period most typical weather types were encountered. As noted 

in section 5.5.2, the initial data capture covered environmental variants which could be easily 

predicted and so scenes ib, ic, id and 2a plus the time lapse sequences (see below) were 

captured in a planned program covering one week. 

The balance of the scenes were those captured reactively over the balance of the six month 

period. Whenever an environmental condition which appeared intuitively novel occurred, the 

camera was set up to record a tape of footage. A summary description of the scenes in terms 

of day/lighting, meteorological conditions and the activity level of the scene are given in table 

5.1 and example frames from each scene are given in figures 5.3 to 5.11. The scenes are each 

assigned a unique identifying two-character alphanumeric. 

The image processing aspects of the differences between the scenes cover contrast variation 

(dusk/dawn c.f. full daylight), image noise (viability variations), background motion (wind 

effects) and degree of object interaction (activity levels). 

In addition to these scenes to be used in the main testing procedures, two further scenes were 

captured at dusk and at dawn to test the background/foreground segmentation module in isola-

tion. The detail of this capture is given in section 6.2. 
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Scene Lighting Visibility Wind Activities 
lb Full daylight Clear Mild Sparse 
ic Dusk Clear Mild Sparse 
Id Dawn Clear Mild Sparse 
le Full daylight Rain, mild snow Mild Average 
If Full daylight Snow Mild Average 
2a Full daylight Clear Mild Busy 
2b Full daylight Clear Strong Busy 
2c Full daylight Clear Strong Very busy 
3a Full daylight Mild snow Mild Busy 

Table 5.1: Scene descriptions 

LI 

Figure 5.3: Example frame from scene lb 
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Figure 5.4: Example framefrom scene Ic 

Figure 5.5: Example frame from scene Id 
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Figure 5.6: Exampleframefrom scene le 

Figure 5.7: Example frame from scene If 
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Figure 5.10: Example frame from scene 2c 
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Figure 5.11: Example frame from scene 3a 
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The detail of the capture/conversion procedure is as follows: 

The camera is set up as described in section 5.5.2 with tripod positioning, camera orient-

ation and zoom settings being the degrees of freedom. Recording is initiated when the 

scene displayed in the camera's integral LCD screen is (matched by hand/eye) a match 

with the desired composition. 

The camera is left unsupervised to record scene development on a standard 60 minute 

MiniDV cassette. No restrictions are placed on the local environment, allowing other 

office users to vary internal illumination as desired and with the camera's automatic con-

trast adjustment switched on. After initial capture, the MiniDV cassette is stored awaiting 

conversion to the required format. 

In the first stage of conversion, the camera is switched to playback mode and the full 

tape sequence reviewed visually on the camera's LCD screen. The initial annotations are 

made on the pedestrian sequence event sheet at this time, with events recorded by their 

start/finish times at this stage, as given by the camera's tape counter. 

The pedestrian sequence event sheet is used to select subsequences which will be used 

as the five minute test sequences for evaluating system performance. The choice of sub-

sequence relies upon the subjective human evaluation of which contain the most 'in-

teresting' events. This involves consideration of object interactions, inclusion of non-

pedestrian moving objects and the range of instance types (see 5.5.6) within the period. 

The camera was connected to the a Creative DV500 x86 Family 6 Model computer with 

a pentium II processor and 256 Mb RAM. Connection was via the camera's DV In/Out 

jack using a jUNK DV connecting cable. 

The computer uses the Pinnacle Systems miroVIDEO DVTools (version 6) software for 

conversion of the selected subsequence to a .dvi file. The software allows live capture, 

monitored via an on-screen window display which duplicates the camera counter reading. 

Adobe Premier 5.1 software is used to convert from the. dvi file to a sequence of. tiff files. 

It is in this package where the frame size and rate may be set as desired for the output 

sequence. The graphical interface of the package also allows the removal of the unused 

sound track, to conserve memory space. 
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Paintshop Pro software is used for batch conversion of the .tUjfiles to the desired binary 

.ppm format. The frames are named using the pattern mrSSnnnn.ppm wheremr denotes 

the author, SS is the scene alphanumeric and nnnn is the frame number from 0000 to 

approximately 0600. 

Adaptec EasyCD Creator version 4.01 is used to transfer the .ppm files to storage CDs, 

one for each subsequence. The CDs are marked with the sequence alphanumeric, the 

textual description of the scene environment (as given in table 5.1), the frame rate, the 

frame size, the range of frame names and the individual file size. 

5.6.2 Ground truth evaluation 

The initial work for the ground truth evaluation was laid out during the conversion process, with 

the pedestrian sequence event sheets partially completed, to the stage where all events were 

listed with their relative timings. These sheets are now updated to include the frame number 

referencing for the start/end of each event, for any relevant interaction and for the times where 

behaviour type changes (e.g. stopping, running etc.). 

This is a slow, frame-by-frame process: the stored scenes are loaded using an image viewer 

(both XV and Paintshop were used for this purpose) and, using the event sheet as a guide, frame-

wise reference points manually ascertained. Each event is also allocated a unique reference 

number to assist in identification. 

The end result of the process is a complete set of pedestrian sequence event sheets which 

identify pedestrian events by the range of frames in which they occur and frame-wise refer-

ences for significant changes therein. This is assumed to represent the 'ideal quality' of human 

interpretation of the data, as each frame can be reviewed and checked repeatedly to ensure the 

accuracy and precision of results. There is no pressure to perform in real time and events can 

be interpreted based both on past and future developments. 

5.6.3 Test runs 

The initial phase of test runs was designed to evaluate four of the total eight system variants out-

lined, the subset which used the connected component algorithm approach to object labelling. 

This was the approach used during the bulk of preliminary testing and was superseded sub- 

209 



Performance Characterisation 

sequently due to the excessive time resources it required. Referring to section 4.5, it is known 

that altering this object growing method gives no change in results in terms of performance and 

so cannot be excluded in the initial analyses. The effect of this change on resource requirement 

is substantial and is addressed in section 5.6.5. 

Each system variant is to be run on each scene, giving an initial total of ( 4x9 = ) 36 nor-

mal performance evaluation runs plus (2x2 =) 4 time-lapse analyses of background module 

performance: a total of 40 runs. Each run is to be processed individually on an assigned work-

station and each generates approximately 0.7Gb of results data. To keep the resource usage 

to an acceptable level the tests were split into four so that 10 workstations and a maximum of 

approximate 7 Gb would be needed at any one time. 

As discussed, the test platform is the Sun Microsystems Ultra 10: in the test environment the 

workstations available are part of the Department of Electronics and Electrical Engineering 

network and as such can have jobs allocated by other users at any point during a test run. 

This would not affect performance and is corrected for in interpreting overall time resource 

usage by considering the user time as the relevant measure. However, distortion in analysing 

individual modules time resource demands (using the get-time() command) could be introduced 

by intermittent remote access. 

Accordingly, a discrete window was specified for performing the test runs, specifically overnight 

during a two week holiday period. The network contains over 100 workstations in total and is 

configured so that users logging on remotely are directed to workstations with low or zero 

current usage. Given this, the chances of 'multi-user' distortion are acceptably low. 

The test harness requires as input the sequence of frames corresponding to the scene, condi-

tional compilation flags to indicate which system variant is to be employed and detail of the file 

and directory where the visual and textual output is to be sent. Compilation flags are not set 

to optimise the code, but configured allow debugging: if time permitted, subsequent runs with 

compilation-optimised code would be recommended. 

Copies of the required sequences of frames of frames were copied from CD into the requisite 

directories and further directories were constructed for storing the output results files. Work-

station job statistics were monitored approximately once an hour as an additional safeguard. 

At the completion of each individual run, the image-like results were themselves stored on CD 

ready for analysis, to minimise ongoing memory needs. 
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5.6.4 Comparison with ground truth 

The final stage of the result derivation is the comparison of the results of the test runs with 

the ground truth predictions made previously. The metrics used are primarily true positive and 

false positive numbers as defined in section 5.5.6. In general, the process involves the manual 

comparison of the image-like results generated in the test runs with the the pedestrian sequence 

event sheets, supported by the textual results to resolve any ambiguities. 

The pedestrian sequence event sheets provide the context for each pedestrian event, specifying 

the number of frames over which the system should have detected the object and its interactions. 

Manual review of the scene for that range of frames (again using an image viewer) provide data 

on whether a pedestrian was detected in all these frames in the correct position. A subjective 

measure of 'correct position' as being within the visually ascertained boundary of the person 

is used. The textual output is used if where any ambiguity remains as to whether the person 

tracked over time is the one as identified in the current image. 

This is the most involved and time consuming manual stage of the evaluation process. To 

facilitate the accurate recording of results, a spreadsheet was developed to record performance 

by system variant and by event. The Star Office package, freely available on Unix, was used, 

facilitating direct entry while viewing images on the same workstation on which the sheet was 

active. A standard format within the sheet was used for each run and a 2 dimensional layout 

with system variants arranged vertically and scenes arranged horizontally was employed to 

assist comparison between them. 

The general format is that for every run of a system variant on a scene, the sheet analyses each 

Numbered) pedestrian event individually by row. For each such event, entries are made for true 

positives, false negatives and a total for false positives. These entries are analysed by instance 

type (see section 5.5.6) and are entered directly during the analysis process. 

Simultaneously with this entry process, the sheet calculates check totals to ensure that entries 

are consistent within and between runs. Subsequently, the sheet can be used to calculate true 

and false positives as percentages, to present the results analysed by scene type and instance 

type and to facilitate the production of graphical representations to aid analysis. 
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5.6.5 Resource requirements 

An additional section within the sheet was used to record the basic data for memory and time 

resource usage for each run. Again, the spreadsheet was used subsequently to assist calculation 

of the maximum and average resource requirements by system variant and module. The testing 

was extended to cover all eight system variants. As only resource requirements were under 

study, the visual output option was switched off which considerably reduces the demand on the 

system for result storage. It should be emphasised that the time taken for both visual output and 

textual output was not included in the timing results for any of the test runs. These outputs will 

not be required in the final platform application, as alarming will simply trigger redirection of 

the extant live video stream. 

5.6.6 Results analysis 

After the raw results are compiled within the spreadsheet, the derivation of the performance 

results is essentially complete. The results so derived are presented in Chapter 6, including the 

graphical representations created within the spreadsheet. 

After initial review of the results, a further stage of manual examination of the data was required 

to investigate unexpected trends and behaviours which manifested. This generally took the form 

of an instance by instance analysis of unanticipated failure modes in the system to enable more 

meaningful results to be extrapolated. 

5.6.7 Posting of test data 

After completion of the review and analysis stages, the test sequences in their .ppm format were 

posted for general access on the web. They can be freely obtained at www.ed.ac.ukl mer/projectl. 

5.7 Summary 

A performance characterisation approach suitable for characterising the system options for a 

particular application has been described. The reasoning underlying the choice of methodology 

has been discussed and the application of the approach to the current evaluation problem has 

been detailed. The next chapter will present the results of this evaluation and the conclusions 
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which can be drawn from them. 

213 



Chapter 6 
Results 

6.1 Introduction 

The performance characterisation of the modular system's variants generate complicated res-

ults which are best considered using a suite of related metrics. The behaviours of the two 

background approximation approaches, as stand-alone procedures, are first examined using a 

common approach from computer vision, the analysis of output as an image-like entity. 

The system's ability to perform the surveillance task of correctly locating and tracking ped-

estrian objects is quantitatively analysed over multiple instance types and widely varied scene 

conditions. The overall performance is evaluated with balancing consideration of the resource 

requirements necessary to achieve this performance. 

6.2 	Background representation: light variation 

As a separate exercise from the performance characterisation of the overall system, the back-

ground generation module can be examined in terms of its ability to cope with 'difficult' se-

quences. As noted previously, the ability of a background estimation approach to handle light-

ing variations in an effective manner is a prerequisite for use in a robust surveillance application. 

The modular design of the overall system was conceived and developed in such a way as to 

allow the operation of this unit in isolation from the subsequent object extraction, classification 

and tracking stages. Instead of providing input to the object segmentation routine, this module's 

output is redirected to a specially written routine which generates a .ppm image suitable for 

display using a standard image viewer. This was important in testing sequences of sufficient 

length to cover the period from full natural lighting, over dusk, to a scene illuminated purely by 

artificial means (and the reverse process at dawn). 

Using the time lapse recording facility of the Sony DCR-TRV900E PAL camera it was possible 

to store fifteen hours of scene evolution by capturing two second shots every 30 seconds. Using 
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the procedures detailed in Section 5.6.1 this was stored on a 60 minute MiniDV cassette and the 

two key dusk and dawn sequences of 5 hours each were each converted to an .avi file and then 

to a sequence of 600 .ppm files. Thus the test sequences sample the original footage at a rate of 

1 frame for every 30 seconds. 

Using this time lapse approach can make the task presented to the background construction 

routine more difficult, as each new frame corresponds to an exaggerated change in the average 

illumination of the picture. The ability of the method to cope with more rapid lighting changes 

(for example caused by passage of discrete clouds over the sun on a bright day) is thus tested, 

as well as its ability to cope with the extreme illumination changes due to the fall and retreat of 

night. 

As noted, unlike the performance characterisation results to follow, those presented in this eval-

uation of the background generation module are image-like in nature, illustrating the develop-

ment of the background representation over time. Evaluation of the quality of the background 

representation in isolation involves analysis of these results using the 'black box' of human 

high-level image processing. 

Conclusions will be qualitative in nature and inherently anthropocentric, which is not necessar-

ily appropriate for evaluation of what is to be an intermediate result in the proposed applica-

tion. The important characteristics of the background representation are those which dictate its 

suitability as input to a subsequent automated process, which may be quite different to those 

which allow a convincing human perception of the scene. Consideration of the precision (or 

lack thereof) available from results in this format will serve as a good practical illustration to 

emphasise the importance of the more quantitative results presented in subsequent sections. 

The results presented in figures 6.1 to 6.4 show the image like representations of the back-

grounds generated by the median background approach and the mixture of Gaussians back-

ground approach on the two sequences (through dusk and through dawn). These representative 

images are taken in most instances at regular 30 minute intervals to compare the evolution of 

the two methods over time. 

The exceptions to this rule are the final three images for the dusk sequence which represent 30 

second gaps to illustrate the performance of the candidate algorithms in respect of an addition 

to the stationary components of the scene (a parked car). 
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6.2.1 Median background 

In this approach the image-like representation is derived by plotting the current background 

value (the weighted median average) at each pixel location directly as the value of the back-

ground image. The representation (figures 6.1 and 6.2) is convincingly realistic to the human 

eye: the high level processing of the brain recognises it as a good depiction of the scene's 

background as it varies over time. 

Qualitatively, this background approach can be seen to perform well overall, adapting to reflect 

the change in ambient lighting and incorporating the different distribution of lighting patterns 

caused by the advent of artificial illumination. 

A point that is well illustrated by the inclusion of the parking car event in figure 6.1 is that there 

is a significant latency in the approach. The calibration of the median update must allow the 

detection of pedestrians at slow walking speed, rather than their immediate incorporation into 

the scene, which would prevent reliable detection. 

The consequence of this is that it takes of the order of 20 frames for the car to be substantially 

registered and the order of 40 frames for complete incorporation into the scene background. In 

a real-time application, the actual time difference this corresponds to will depend on the frame 

rate at which the system runs. 

6.2.2 Mixture of Gaussians background 

Translating this approach to an image-like representation is a more involved process, as there 

is no single value associated with each pixel position in the scene. A meaningful image-like 

representation of the background must include the derivation of a single value which best por-

trays the Gaussian distribution most confidently classified as background at that point. The 

derivation of an image-like representation of the mixture of Gaussians background is described 

in section 4.4.5 

The representation (figures 6.3 and 6.4) is less visually compelling for a human observer than 

that of the median background approach. There is an 'unrealistic' specularity in some areas 

where neighbouring pixel values differ more discontinuously. This corresponds to the more 

complex probabilistic nature of the underlying process, where it is more likely that different 

decisions as to whether two neighbouring distributions should be updated or replaced may be 
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Figure 6.1: Median background in fading light (dusk), with time incremented along the rows. 
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Figure 6.2: Median background in growing light (dawn), with time incremented along the rows. 
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made. 

Without more extensive analysis the prima facie conclusion, based solely on image evidence 

by a human observer, would be that this background representation is inferior to that given 

by the median background approach. Although the mixture of Gaussians approach adapts to 

reflect the change in ambient lighting and distribution patterns, as does the other approach, 

the divergence from a 'realistic' image-like representation introduces a negative bias into the 

evaluative process. 

The inclusion of the car parking situation in figure 6.3 mitigates this initial conclusion in that 

there is a significant reduction in latency in this approach. By having multiple Gaussian distri-

butions to represent recurring background values at each point, the new object is incorporated 

immediately into the representation as a foreground object, with no change required to the 

distribution representing background at that time. 

From section 4.4.4 it can be seen that incorrect classification of a slowly moving object as 

background requires that the distribution to which it is matched have both a high weighting 

(corresponding to a large amount of evidence) and a low variance. As the latter requirement is 

not generally satisfied for even very slow objects, the calibration of the method in this respect 

can be skewed to allow faster incorporation of new stationary objects. 

The consequence of this is that it takes of the order of only 5 frames for the car to be registered 

and this is immediately complete incorporation into the picture as a result of the binary nature 

of the background/foreground decision. 

6.3 System performance 

6.3.1 Performance evaluation 

Chapter 5 discusses in detail the rationale behind the choices of scene type, classification of 

events, manual scene analysis, prediction of results and analysis options. 

To recapitulate some important points: 

. A scene is defined as a sequence of images gathered consecutively containing a collection 

of pedestrian events. 
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Figure 6.3: Gaussian background in fading light (dusk), with time incremented along the rows. 
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Figure 6.4: Gaussian background in growing light (dawn), with time incremented along the 

rows. 
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A pedestrian event is defined as the behaviour over time of a pedestrian object occurring 

in a series of consecutive frames within a scene. 

An instance is the current image representation of a pedestrian in a frame, a series over 

time of which then comprise a pedestrian event. 

An instance may be classified as simple, occluded, stopped, group or running (See table 

6.1). 

A system variant is a specified combination of modules comprising a candidate pedes-

trian tracking solution. 

A true positive result is the location by a system version of a pedestrian object within its 

manually identified boundary, a false negative is the failure to achieve this. 

A false positive result is the location by a system version of a pedestrian object outside 

of the manually identified boundary of a pedestrian. 

System variants are differentiated by the alternatives employed for the three primary modules 

under consideration: background/foreground segmentation, object growing and object classi-

fication. The performance results are only affected by changing the first and last of these mod-

ules: altering the object growing method (the mapping of discrete object connectivity) gives no 

change in results in terms of performance and so is not included in the analyses in this section. 

The effect of this change on resource requirement is substantial and is addressed in section 6.4. 

The four system variants investigated here then are Median/Shape(MIS), Median/Model("), 

Gauss/Shape (GIS) and Gauss/Model(G/M). 

The performance of the system versions is quantified in terms of percentage of true positive 

results and the comparison of percentage of false positive results. The analysis of these per-

formance measures are by instance type and by scene. For clear analysis of the results, it is 

necessary to decouple the effects of instance type and scene type to be considered separately. 

Instance type characterises the nature of a particular instantaneous component of a pedestrian 

event and can be associated with the five classifications listed above. Because the system is 

reviewed in comparison with a manual analysis of the scene, the five instance descriptions were 

derived from the intuitive classifications made by a human observer as to the instantaneous 

situation of pedestrian. When the possibility that the pedestrian is occluded, stopped, in a 
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Scene Simple Occluded Stopped Group I Running TOTAL 
lb 41 113 0 0 3 157 
ic 13 75 27 0 0 115 
Id 11 123 21 0 0 155 
le 51 164 24 0 7 246 
if 11 126 42 0 0 179 

2a 43 18 3 100 0 164 

2b 81 262 29 139 3 514 
2c 112 205 7 139 7 470 
3a 0 78 0 0 0 78 

TOTAL 363 1164 153 378 20 2109 

Table 6.1: Numbers of instances analysed by instance type and by scene 

group or running has been discounted the instance can, in the scenes examined, be classified 

(by the absence of any of these complicating attributes) as simple. 

It is necessary to in some way allow for classification of instances which are a combination 

of these relatively arbitrary instance types, for example a pedestrian may be occluded and 

simultaneously be running. Again recourse is made to an intuitive human order of precedence, 

recognising first running, then stopped behaviours as gross changes in pedestrian motion then 

aggregation into a group, and finally occlusion. 

The ordering of occlusion is perhaps most open to debate, the rationale for its placement being 

two fold. Occlusion can describe a wide range of degrees of object loss: at its mildest the 

occlusion may be virtually undetectable, at its most severe the object itself may be virtually 

undetectable. Where occlusion is sufficiently mild to allow recognition that a pedestrian is 

running, stopped or in a group then it is reasonable to consider that occlusion is the secondary 

characteristic. 

It should be emphasised that the order of precedence thus presented is relatively subjective 

but that the alternative to some such subjective ordering would be to separately analyse each 

possible combination of classes. While certainly possible and an option for future work, these 

combination situations were not sufficiently numerous to warrant the additional work at this 

time. 

Scene type applies to all pedestrian events and their constituent instances in a particular scene. 

The classifications are again subjective and based upon the intuitive classification of a scene by 
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Instance 
type 

Median! 
Shape 

Median! 
Model 

Gaussian! 
Shape 

Gaussian! 
Model 

Average 
performance 

Simple 66.94 82.42 73.13 79.94 75.61 
Occluded 33.28 45.48 52.36 60.00 47.78 
Stopped 26.48 33.20 67.94 41.75 42.34 
Group 72.47 1 	69.10  1 	62.92 65.14 67.41 

Running 45.00 54.55 70.00 82.51 63.01 
TOTAL 41.68 52.35 58.71 63.31 54.01 

Table 6.2: Percentage true positive identifications analysed by instance type and system variant 

time of day/lighting, meteorological conditions and the activity level of the scene as detailed 

in table 5.1. To be suitable for practical use as a robust semi-automated surveillance solution, 

a system must be able to perform adequately well across the range of likely scene condition 

types. 

6.3.2 Analysis of true positive recognition percentage by instance type 

Table 6.1 presents the numbers of instances analysed by instance type and by scene. Table 6.2 

gives the percentage true positive identifications analysed by instance type and system variant, 

which are displayed graphically in figures 6.5 and 6.6. 

Simple Instances 

As predicted, the best results for true positive recognition are for simple instances, pedestrians 

moving individually at walking pace under no occlusion. With an average recognition rate 

of 75.61% though, the results are lower than would be required from a practical surveillance 

application. More detailed review of the instances where recognition failure occurred reveal 

two primary causes. 

First, in several instances the size of the pedestrian object is not great enough to pass the initial 

thresholding to be classified as a valid object as opposed to noise. This step is common to all 

system versions and threshold level is set at an absolute pixel value in the current implementa-

tion, the least sophisticated approach possible. Two possible improvements would be to reduce 

the absolute value and/or to make it variable in proportion to the image size, giving greater 

flexibility and a more robust treatment of image scale variation. These changes would poten-

tially allow smaller objects to be classified as possibly valid but would thus create an increased 
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load on the object classification routine in filtering out non-pedestrian data: this is another good 

example of the trade-off between performance abilities and resource utilisation. 

The second main situation where failure was observed was in incidences where the contrast 

between the foreground and background were insufficient to generate a valid object at the seg-

mentation stage. Again, this is a problem common to both approaches and is one which can 

apply to any segmentation approach based solely on pixel value data. Solutions to this cam-

ouflaging problem are more challenging and include the use of data fusion techniques [109] 

(to combine disparate data sources/processing to correct for weaknesses of any individual com-

ponent) and directed enhancements to current techniques [51]. 

Comparing the performance of the different system versions for simple instances (figure 6.5), 

there is an unexpected deviation from the predicted pattern. Qualitative predictions suggest 

that median/shape combination would be least effective, the Gaussian/model most effective, 

with the other two approaches of intermediate efficacy. What we see here is better performance 

from the median/model version than any other, most significantly better performance than the 

Gaussian/model version. 

In these most simple instances, it would be reasonable to predict less benefit from the Gaus-

sian segmentation approach: greater improvements in performance would be expected in the 

occluded instances. However some benefit would be expected from incidences where there is a 

multi-modal background (e.g. background vegetation motion) and even in the absence of this, 

there is no prima facie reason for the result from the Gaussian approach to under-perform as 

compared with the median version. 

Further detailed review of the failure instances in the Gaussian versions suggest an explanation: 

these instances occur primarily in situations where multiple pedestrians follow quickly (within 

10 frames) on paths which are similar (with more than about 50% pixels in common) to each 

other. Considering the operation of the Gaussian segmentation algorithm, a pixel is classified 

as background where the current matched distribution has a low variance and a high amount 

of evidence. In the situation described, in the 'wake' of the common trajectory, a distribution 

previously matched to will still have a relatively high level of evidence associated with it. If 

the pixel value of pedestrians passing along this trajectory are similar enough, then the variance 

can in turn be low enough such that an erroneous background assignment is made, causing a 

false negative result. 
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In the current implementation, although colour images are used, they are converted to grey-

scale equivalents during preprocessing: if full colour processing was adopted, the similarity of 

successive pedestrians would be reduced, increasing the variance in the above situation. This 

would reduce the likelihood of a failure due to this combination of effects. 

Given this explanation of the unexpected reduction of efficiency of Gaussian segmentation, 

our revised prediction is that the median/shape approach would outperform the Gaussian/shape 

version, which is evidently not the case (66.94% for the former compared with 73.13% for the 

latter). Examining the instances where the median/shape version uniquely fails, the conspicu-

ous characteristic of these is the relatively high proportion of the segmented foreground object 

(in the region of 20%) which is comprised from the object's shadow along the ground. 

In the mixture of Gaussians segmentation approach, illuminated ground and shadowed ground 

can be learned as two valid background values and so substantial inclusion into the foreground 

object need not occur at all. The model-based object classification approach is able to cope 

with such erroneous inclusion quite well as only a relatively small proportion (in the region of 

10%) of the outline as used in the matching process is likely to be distorted. 

It is in the median/shape variant where the problem is not mitigated by either of these consid-

erations. The shadow is included as noted and this can cause a large distortion of the registered 

object shape, giving rise to a reduced detection rate in this instance. 

These factors taken together constitute a useful causal analysis of the anomalous performance 

distribution. 

Occluded Instances 

At 47.78%, the average recognition rate is well below that for simple instances, as predicted. 

As mentioned, occlusion ranges from mild (e.g. a leaf covering a pedestrian object's elbow) 

to severe (e.g total bisection by a bar). Without conducting a detailed quantitative analysis of 

occlusion percentage, routine examination of failing instances provided the expected qualitative 

result that the failures were occurring in proportion to the degree of occlusion. 

Comparing the performances of the system versions (figure 6.5), the pattern of Gaussian seg-

mentation outperforming the median approach and model-based classification working better 

than shape-based was observed as predicted according to the rationale below. 

For the median segmentation approach, both obscured and unobscured points must be compared 
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with a weighted average of the values observed over time at that point. The value will vary 

according to the frequency of oscillation, and the relative values of the alternating background 

image objects. The results of the segmentation of this are chaotic and essentially unpredictable 

in the general case. 

The Gaussian segmentation approach allows for multiple values to be identified as background 

at each point, irrespective of whether the value corresponds to the colloquial meaning of back-

ground or to an oscillating potentially occlusive object (e.g. a tree branch). Where an entirely 

new object such as a pedestrian moves into this scene area, then for those points not currently 

obscured, a new distribution will be initiated, distinct from those corresponding to background. 

The currently obscured points will be identified with the appropriate background distributions. 

This means that for a general point subject to oscillatory occlusion, the percentage occlusion 

will be minimised by the Gaussian approach, giving a greater probability that a sufficiently 

large connected object will be segmented to register as a potential pedestrian. 

Comparing the object classification approaches, the model based method need only be able to 

make a match at sufficient outlying edge points to provide enough data for a determination 

of the fitness of a model match. The shape based method requires not only that a sufficient 

percentage of the object be unobscured and connected, but that the distribution of points be 

sufficiently well preserved to maintain the approximate shape. 

Stopped Instances 

In manual observation of the sequences it was apparent that, to a human observer, the classific-

ation of a stopped pedestrian and recognition of such in a scene will operate quite differently 

from the perceptual model upon which the tested system is based. With the higher level pro-

cessing available to the least experienced human observer, when a pedestrian stops within a 

scene, even if they remain entirely motionless, they will still be recognised as alternative meth-

ods of still image segmentation are unconsciously brought into play. 

All the system variants start from the basic assumption that only a moving object need be detec-

ted and anything which stops for an extended time should be incorporated into the background. 

It is therefore the correct functioning of the system to not detect truly motionless objects after 

a latency period during which they would become features of background, as in the example of 

a parked car (section 6.2). 

For stopped pedestrians however, the situation is somewhat different: they are unlikely to be 
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truly motionless being subject to small scale motions of the arms, head upper body and at finer 

scales hands and face. Closer examination of their behaviour during the manual observation 

observation phase made it evident that normal behaviour for a stopped pedestrian also includes 

more gross body movements. Oscillatory motion about an average 'station' point occurs, which 

opens the possibility for the system variants to continue to segment out some kind of object. 

some areas of such a stopped pedestrian will coincide between consecutive frames and the 

nature of the object detected will vary dependent both on degree of motion/overlap and the 

system variant employed. 

On examining the performance for this type of instance, the average recognition rate is, as 

predicted, lower at 42.34% but nevertheless higher than prima facie expectations indicated. 

Comparing the performances of the system versions (figure 6.5), we see the normal steady 

increase of performance with the conspicuous exception of the Gaussian/shape combination. 

This can be explained best by considering the drawbacks of the two modules not employed in 

its operation. 

In the median segmentation approach, areas occupied relatively consistently over the 'stopped' 

period will be partially absorbed into the background after a latency period, as discussed. By 

the nature of the oscillatory motion, on average perpendicular to the pedestrian's principal axis, 

the points where this occurs most will be clustered about that axis. This will in effect constitute 

a vertical bisection of the potential pedestrian object, giving the same affect as severe occlusion, 

which confounds both object classification approaches. 

Considering the Gaussian segmentation, the dual criterion of low variance and high evidence 

must be satisfied for a point to be classified as background. In the case of the oscillating 

pedestrian, some of the points which were sufficiently absorbed into background in the me-

dian approach to approximate occlusion do not have a low enough variance to be classified as 

background by the Gaussian approach. The number of effectively occlusive points and so the 

severity of occlusion is correspondingly reduced, although there will still be a bias towards the 

bisecting occlusion for the reasons discussed. 

In most occlusive situations, the model-based classification approach performs best, but further 

examination of the failure in detail showed that the bisection case is a notable exception. The 

hypothesised reason is that in this situation, the system detects two discrete objects to either side 

of the bisection (unlike in the general occlusive case where the expectation is that those points 
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are located are still likely to be connected). The key difference in the segmentation results is 

that the objects resulting from the Gaussian approach will be larger than those from the median, 

although one or both may be below threshold size altogether. 

The model-based classification approach tries to fit a full model to each half object (unlike 

in the general occlusive case where a single model fits well to the remaining boundary points 

of a single part-object) with poor results. The shape based approach simply compares the 

vertical/horizontal ratio of the objects to the threshold value and using this criterion performs 

relatively well. 

A corollary of this consideration is that problems could occur where both objects exceed 

threshold size in that there would be double counting of pedestrian objects, i.e. an increase 

in the false positive rate. 

Group Instances 

At 67.41%, the average recognition rate is comparable with the high value for simple incidences 

and considerably above the average of 54.01%. This instance type has the most pronounced 

overall deviation from the average performance profile (figure 6.6), with the clearest difference 

being that Gaussian segmentation is distinctly less effective than the median approach. This is 

at first sight a most unexpected result, but can be explained as a side effect of the higher dis-

criminating ability of the Gaussian segmentation coupled with the deliberately anthropocentric 

treatment of group results. 

A group is perceived as the essential moving unit when a collection of pedestrians move to-

gether simultaneously with the same or similar relative velocity, often mutually obscuring each 

other in their progress through the frame. Rather than interpret them as a multiple dynamically 

interacting individuals, the human observer intuitively classifies the significant discrete entity 

as the group itself. In the manual observation stage then, the result was considered in terms 

such as: 

"group 3 entered from the right hand door beginning in frame A, exited at left of 
scene ending in frame B" 

as opposed to: 
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"person 1 entered from the right hand door in frame A, occluded person 3 from 
frame C to D, was occluded by person 4 in frame E, exited at left of scene in frame 
B; person 2 entered from the right hand door in frame .... etc." 

This degree of inherent high-level processing is not available to the system variants under test 

where the individual pedestrian is the essentially unchangeable unit of detection and mutual 

occlusion between such individuals constitutes a significant complication to this task. In the 

present context of a surveillance application being evaluated against manual scene analysis it 

was decided to retain the psychologically motivated group classification and to state a correct 

identification more broadly in these instances. This approach is similar to that taken in [80]. 

A true positive identification is defined as one or more of the individuals in the constituent 

group being correctly located and tracked. This is reasonable in a semi-automated surveillance 

context as it is the minimum requirement for correct notification of an operator in a group 

situation. Given this context, the deviation from the normal pattern is easier to account for and 

indeed should be expected as the problem under consideration has varied. 

Considering the Gaussian approach first, the previously evidenced superior performance holds, 

with the segmentation approach yielding the correct result for the given data: a group is re-

gistered as multiple instances of partially occluded discrete objects. The occlusion tends to be 

quite severe as the group mills about and such occluded individuals fail the size thresholding. 

These not being registered as valid objects at all accounts for the relatively poor acquisition rate 

for the approach as a whole. For those objects which pass the threshold, the superior ability of 

the model-based approach to recognise partially occluded pedestrians is reflected in the results. 

In the median approach, the synchronised passage of multiple synchronised objects, if of similar 

grey-level attributes can be incorrectly interpreted as the passage of a larger merged object. 

These 'false' group objects have a higher overall detection rate than that of the 'true' mutually 

occlusive pedestrians in the Gaussian approach. This gives an apparently higher good detection 

rate within the definitions of the test for the median approach overall. 

When the object classification stage is reached, the shape-based approach again requires only 

a shape ratio above threshold which is achieved rather well by the severely occluding merged 

pedestrians. The model-based approach is seeking to match with the normal case of an indi-

vidual pedestrian for which the merged objects are a less good fit, underlying its relatively poor 

performance. 
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Running Instances 

In a visual analysis, running pedestrians differ from walking pedestrians in two main respects: 

the speed of their transition through the frame and the nature of the variations of their body 

outline. 

The effect of the speed of passage of a pedestrian on the background update has been men-

tioned when considering 'stopped' instances, the important feature being that if the passage 

is sufficiently slow, the pedestrian may be partially incorporated into the background and not 

correctly detected. At the extreme of very rapid passage however, no such problem occurs in 

segmenting the moving object from the scene. 

Similarly, in the object classification stage, the speed of the object should present no problem: at 

this stage the object has been located and classification takes place independent of its previous 

location. 

The component which may be confounded by a fast moving object is one not under comparative 

test in the current scheme, the tracking module. Each system variant uses a Kalman filter-based 

tracking module (section 4.6.2.9), optimisation or enhancement of which could improve the 

systems' overall performance for the running instance, but which is outside the scope of the 

current work. 

It is in the gait variation of running pedestrians compared with that of those walking that the 

variation in system response originates. A running person's limbs reach extrema from the 

body's principal axis that are more pronounced than those of a walking pedestrian and outline 

variations are correspondingly greater. While not significant in the segmentation step, this can 

present problems for both object classification approaches. 

If the the height/width shape ratio alters sufficiently as a result of this laterally expanded outline, 

the object will not be classified as a pedestrian. Similarly, if the distortion parameters required 

to match the walking model to the outline are too great, the classification will again fail. 

From the experimental results in figure 6.6, the performance range (from 45.00% for median 

shape to 82.51% for Gaussian/model) is the largest of any instance type and is observed for 

changes in classification approach and segmentation approach. 

From this it can be concluded that the flexibility of the model-based approach is greater in 

this area than that of the shape-based method, which is contrary to the qualitative expectations 
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which anticipated the model-based approach to have more problems. Changing the threshold 

ratio for shape acceptance could mitigate this, but at the cost of more false positives across all 

instance types. 

The question remains as to why there is a significant increase in performance between the me-

dian and Gaussian segmentation approaches. The answer is two fold: detailed analysis of the 

trajectories taken by runners revealed that 56% also involved some degree of occlusion, not 

reported in the general results due to the precedence decision as previously detailed (section 

6.3.1). As discussed in the section addressing occluded instances, the Gaussian approach per-

forms significantly better in such situations. Secondly, the sample size for running instances is 

relatively small at 20, which can account for both the apparent size in the variation in perform-

ance between the two segmentation techniques and the exaggerated range of performance for 

this instance type overall. 

Overall Performance 

Considering the performance over all instance types (figure 6.6), we observe the qualitative 

prediction of a stepwise improvement over system variants is confirmed. An interesting quant-

itative result is that the performance enhancement on the median/shape variant (at 41.68%) is by 

10.67% by enhancing the classification approach, but by 17.03% by focusing on the segmenta-

tion method. The fact that improving both modules will only return a 21.63% improvement in 

performance is a good illustration of the non-additive nature of such enhancements. The pro-

cesses cannot be considered to be independent, being components of a serial process where the 

output of one directly effects the input of the next, the performance of which can accordingly 

be altered. 

As was noted earlier, the overall system performance could be increased above its current mod-

est level by using additional modules which could use further scene knowledge to enhance 

performance, but such strategies are outside the scope of the current work. 

6.3.3 Analysis of true positive recognition percentage by scene 

Table 6.3 gives the percentage true positive identifications analysed by scene, which are dis-

played graphically in figure 6.7 to 6.9. 

While analysis of results by scene is undoubtedly an important part of evaluating the system 

variants, the process is complicated by the need to consider and decouple the instance specific 
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Figure 6.6: True positive identifications for group and running instances and totals over all 
instance types. 
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Scene 
Median! 
Shape 

Median! 
Model 

Gaussian! 
Shape 

Gaussian! 
Model 

Average 
performance 

lb 39.49 49.68 58.28 68.83 54.07 
ic 36.52 45.30 46.67 38.26 41.69 
Id 41.29 43.26 53.33 39.43 44.33 
le 26.83 47.56 64.63 74.49 53.38 

if 13.41 26.52 41.44 66.43 36.95 
2a 49.39 55.49 54.32 58.54 54.43 
2b 48.83 61.98 63.32 62.96 59.27 
2c 56.38 64.45 62.69 68.82 63.09 
3a 30.77 41.03 70.51 83.52 56.46 

Table 6.3: Percentage true positive identifications analysed by scene 

effects prevailing for each scene. It is nevertheless possible to make important and useful 

general observations concerning system variant performance in this context. 

While it has been possible to give quantitative measures to assist the comparative analysis 

between scenes, the absolute values for any scene are also subject to the spread of instance 

types over the scenes. Thus it is feasible to make qualitative comparisons of patterns and 

overall performance after decoupling major instance biased effects. Without detailed analysis 

of each scene by individual instance however, it is not meaningful to attempt a full quantitative 

derivation of the exact values. 

Scene lb 

It is very useful to consider this scene as a control against which to compare the performance 

of the system variants on other scenes. The lighting conditions are optimal in that there is full 

natural lighting with no gross illumination changes during the sequence. Visibility is good so 

there are none of the occlusive/noise effects associated with rain or snow. Wind is classified as 

mild, as opposed to strong, the latter characterised by the extent of attributable motion seen in 

vegetation and other flexible scene objects. Finally, scene activity is classified as sparse, in that 

the pedestrian events are generally discrete and do not involve group entities. 

The pattern of system variant performances match the prediction based upon the totals over 

all instance types as seen in figure 6.7 in that is a regular increase of performance from the 

median/shape to the Gauss/model variants, with the greater improvement seen on enhancing 

the segmentation module. 
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Scene ic 

The clearest change for this scene is the overall drop in performance over all system variants, 

with an average rate of 41.69% (figure 6.7). The scene was recorded in failing lighting and the 

reduction in ambient illumination and the consequent reduction in contrast make foreground 

discrimination more difficult for both segmentation approaches. A possible solution to this 

problem is to make the thresholding for the pixelwise foreground/background decision a vari-

able dependent on the average pixel variance for the image overall. 

An anomaly can observed in the pattern of performance in the relatively low success rate of 

the Gauss/model variant. Further detailed analysis of the failure instances reveal a cause which 

constitutes a potential drawback to the mixture of Gaussians segmentation approach. 

As previously discussed (section 4.4.4), segmentation using the match of each new pixel value 

with a corresponding mixture of Gaussian distributions allows greater flexibility in the back-

ground representation. Among other advantages, greater pixelwise discontinuity can be por-

trayed as illustrated in figures 6.3 and 6.4. In a low light scene, with more background variation 

caused by the local and directional nature of artificial lighting, this attribute is emphasised. 

Divergence in the value neighbouring pixels develop as thresholds for assignment to back-

ground (due to slow divergence, not sudden enough to have caused the initialisation of a new 

background distribution) coupled with similar variation caused by increased shadowing can 

give objects with a most irregular outline pattern. This irregularity appears to be distributed 

quite evenly over the object boundary on average, which causes little problems for the shape 

based approach as the gross height/width ratio is generally unaffected. The model-based ap-

proach, however relys on a good percentage of matched boundary points around the object and 

so fares less well in these circumstances. 

Scene id 

This scene was recorded at the beginning of the day, with very similar conditions to those 

observed in scene id at the day's close. We would thus expect to see results very similar to 

those of scene id and this is indeed observed with an average rate of 44.33% (figure 6.7). 

There is no significance attributed to the variations in individual system variant performances, 

which do not exceed 7% and do not cause a deviation from the pattern observed for scene id. 

Scene le 

This scene differs from the control in two main respects, a reduction in visibility caused by the 

236 



9000 

0000 

o0 

DlMOdlaO/9fl4p€ 

000iaMAOd€I 

0 00005000051 

Nov podorn 

5000 

a 

4000 

3000 

Results 

0d — 

m 

Figure 6.7: True positive identifications for scenes lb, Ic, Id 

237 



Results 

rain/mild snow mixture and a greater amount of pedestrian activity overall. It is interesting to 

note that the systems overall cope better with the occlusive scene effects than they did with the 

overall contrast reduction, the latter affecting the variants across the board at the most basic 

level of processing. 

The prevailing meteorological conditions cause a mild occlusion to apply for all instances, even 

those nominally classed in table 6.1 as simple. This accounts for the greater variance between 

system variant performance with a low of 26.83% for the median/shape combination and a 

maximum of 74.49% for the Gaussian/model variant. 

It will be seen (figure 6.8) that the absolute performance values of the Gaussian variants in this 

scene actually exceed those for the methods in scene lb (by an order of 5%) although that is 

classified as a less difficult scene. I attach no particular significance to this particular observa-

tion but it is mentioned to emphasise the point that random variances in absolute performance 

values of this order are to be expected given the low level of precision possible in the scene by 

scene analysis. 

Scene if 

This is a more extreme example of the complicating effects of meteorological occlusion across 

all incidences in a scene. With a greater rate of snow fall and larger constituent particles, the 

percentage occlusion superimposed on the constituent incidences is correspondingly greater. 

As expected, the result (figure 6.8) is a further reduction of overall performance (down to 

36.95%) and a still greater variance in performance across system variants (now 13.41% for 

the median/shape combination and 66.43% for the Gaussian/model variant). 

Scenes 2a, 2b, 2c 

These scenes are considered together as the dominant effects in the results pattern apply across 

all three. The most noticeable feature of the results (figures 6.8 and 6.9) is the reduction in 

the improvement to results caused by switching from the median segmentation approach to the 

mixture of Gaussians version. The overall trend, in fact, is that of a levelling of performance 

abilities over the system variants. 

The underlying cause of this shift is the same for all of the scenes: as can be seen in table 

6.1 group incidences constitute a significant proportion of the makeup of each. Considering 

the performance pattern for group incidences generally (figure 6.6) what we observe is the 

superposition of this with the expected pattern of performance variance seen overall. We also 
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see that a greater proportion of group incidences reduces the average performance over all 

systems, which is reasonable given the change in the nature of the entity under observation. 

What does not emerge from these results is a significant variation in results due to other changes 

in scene construction: the increase in wind speed from 2a to 2b and the increase in overall 

scene activity between 2b and 2c. The effects of the change in proportion of group activity 

effectively swamps any useful results on these scene variations. It would be useful to obtain 

further sequences which illustrate these variations in a scene without the high levels of group 

activity to analyse these effects better. 

Scene 3a 

The final scene is again similar to le, with the variation being that there is only mild snow, 

without a rain component. The results are as anticipated (figure 6.9) with a very similar profile 

and superior overall performance. 

6.3.4 Performance of system variants over all scenes 

In summarising the relative abilities of the system variants, it is instructive to consider the 

profile of performance of each variant across all scene types (table 6.3, figures 6.10 and 6.11). 

This firstly reinforces the fact that, as previously identified, performance results increase from 

median/shape to Gaussian/model. However where, in most cases, greater improvements are 

given by enhancing the segmentation module (especially in adverse meteorological conditions), 

the exception is as detailed for the low light scenes ic and id. 

There are broad patterns in the results (figures 6.10 and 6.11): the worst performance is gen-

erally for scene if; that for scene 3a is always superior; performance on scenes 2a, 2b, 2c is 

similar. However it is more significant to note that there is not an overall general pattern which 

can be identified for each variant across the scenes. It is not possible to state without qualifica-

tion that the mixture of Gaussians segmentation approach is superior to the median nor that the 

model-based classification approach is superior to the shape-based. 

The relative performances in terms of true positive identifications can only be stated for a 

specified instance type and even then scene conditions can give unpredictable variances. In 

evaluating performance for a robust surveillance application, it is necessary to both make as-

sumptions about the scene and incidence variation and to consider the uncertainty inherent in 
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Instance 
type 

Median! 
Shape 

Median! 
Model 

Gaussian! 
Shape 

Gaussian! 
Model 

Average 
performance 

Simple 0.33 0.24 0.54 1.96 0.77 
Occluded 0.61 0.91 8.24 5.11 3.72 
TOTAL 0.93 1.15 8.78 7.06 4.48 

Table 6.4: Percentage false positive identifications analysed by instance type 

the performance predictions made. 

6.3.5 Analysis of true positive against false positive recognition percentages 

As discussed in Chapter 5, it is important to consider a second way in which the system van-

ants can fail to give the correct results. Analysis of scenes for surveillance purposes can be 

considered to be an instance of binary hypothesis testing: for any frame the null hypothesis can 

be that there are only background pixels/objects present, the alternative hypothesis that there 

is a pedestrian object in the scene. In binary hypothesis testing two kinds or errors can occur: 

accepting the alternative hypothesis, when the null hypothesis is correct and accepting the null 

hypothesis when the alternative hypothesis is true. The first error is often called Type I error or 

false positive and the second error is usually called Type II error or false negative. 

Receiver Operating Characteristic (ROC) graphs are very useful in assessing the overall beha-

viour and reliability of the system in terms of these two error types. The ROC graph as adapted 

for the current system shows the relation between the true positive percentage (100- false negat-

ive percentage) on the x-axis and the false positive percentage on the y-axis. The point (100, 0) 

is the perfect classifier: it classifies all positive cases and negative cases correctly. The point 

(0, 0) represents a classifier that predicts all cases to be negative, while the point (100, 100) 

corresponds to a classifier that predicts every case to be positive. Point (0, 100) is the classifier 

that is incorrect for all classifications. 

An ROC curve is often plotted on such a graph as tuning parameters are varied for a single 

system, to ascertain its effect on the two types of error. We modify this approach to present data 

on true/false object recognition for each of the four system variants as a point in a subsection of 

the ROC graph. The ability of each variant is proportional to the distance from point (0, 100), 

with different weightings attached to the X and Y components dependent on the importance 

attached to the two type of errors. 

244 



Results 

Scene 
Median! 
Shape 

Median! 
Model 

Gaussian! 
Shape 

Gaussian! 
Model 

Average 
performance 

lb 2.42 0.00 5.63 3.05 2.77 
ic 0.00 0.82 5.05 5.56 2.86 
Id 0.00 0.56 0.00 8.85 2.35 
le 1.20 1.99 20.13 12.90 9.06 
if 1.59 1.63 28.74 23.53 13.87 
2a 2.96 4.09 4.71 7.87 4.91 
2b 0.00 0.00 0.47 1.35 0.45 
2c 1.05 0.43 4.03 6.46 2.99 
3a 0.00 0.00 1.27 1.09 0.59 

Table 6.5: Percentage false positive identifications analysed by scene 

True/false positive identifications analysed by instance type 

Table 6.4 gives the false positive identifications analysed by instance type. Each diagram in 

figure 6.12 shows a plot of the ROC graph area between 0% and 90% for the true positives and 

0% and 10% for the false positives. The results are shown separately for simple and occluded 

(there being no false instances in the data for the other types) as well as over all instance types. 

As expected, the results are better overall for simple instances but the general pattern is common 

across the instance types: the optimum method will be either median/model (true = 52.35%; 

false= 1.15%) or Gaussian/model (true= 63.31%; false = 7.06%) dependent on the weighting 

assigned to the error types. 

True/false positive identifications analysed by scene 

To get an idea of the spread of behaviours for the system variants in terms of the false/true 

positive results, it is useful to consider the performance scene by scene. Table 6.5 gives the 

false positive identifications analysed by by scene. 

Figure 6.13 presents a graphical summary of these behaviours, where the key factor to be illus-

trated is not the individual values, but how the spread of the results for the methods varies from 

scene to scene. An unlabelled plot of the points for all scenes together is given to illustrate the 

overall spread of results. 

This clearly illustrates a further drawback of the mixture of Gaussians segmentation approach: 

the false negative rate is consistently higher than that given by the median segmentation method. 
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The effect is most pronounced in scenes with poor visibility due to meteorological conditions 

(le and if) where aggregations of random scene variation caused by the increased scene noise 

can be incorrectly interpreted as significant moving objects. 

Performance of system variants over all scenes 

In summarising the relative abilities of the system variants using this metric, it is again instruct-

ive to consider the profile of performance for each variant across all scene types (figures 6.14 

and 6.15). 

As for the similar analysis for true positives alone, the difference in performance results is most 

notable between the two segmentation approaches. However, in this analysis of results it can be 

seen that it is misleading to characterise performance change as a linear increase in performance 

from the median to the mixture of Gaussians approach. While it remains evident that the points 

do indeed cluster around a higher true positive value in the graphs both Gaussian segmentation 

based approaches, this point also has a significantly higher false positive value. 

In evaluating these results it would again be necessary to draw on the application specific in-

formation as to the relative significance of the values for true and false positives. In the applic-

ation for which the current evaluation is being made, there are several issues to consider. 

The relative importance of a good true positive rate is dependent to some degree upon the 

specific surveillance application to which the system is applied. It is important to be able to 

maintain a consistent track of a pedestrian if useful analysis is to be made of their trajectory but 

to obtain simple alarm data based on their hypothesised presence in a specific area, obtaining 

just one true positive incidence is sufficient. As noted in section 6.3.2, the current performance 

of the system overall in respect of true positive rates is not optimised and a conclusive decision 

in this respect is thus harder to form. 

The situation is clearer in respect of false positive rates: one of the key attributes required of the 

system is that it run efficiently within the context of a distributed application whose operation is 

characterised by the selective transmission of alarm data over a network. The system has been 

biased towards minimising false positives to reduce unnecessary transmissions which both tie 

up network band width and reduce response efficiency in true alarm situations. There is thus a 

heavy weighting in favour of reducing the false positive rate to a minimum while maintaining 

adequate true positive response. 
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Gaussian/shape-based module combinations. 
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Module Average(s/f) S.D. (s/f) 

Initialisation 36 9 
Median Segmentation 4 2 

Gaussian Segmentation 11 7 
CCA object growing 96 80 

Edge trace object growing 0.7 0.5 
Shape-based classification 0.2 0.1 
Model-based classification 0.5 0.3 

Table 6.6: Module timing results in seconds/frame 

Considering the results in this context, the relatively high maximum of false positive rates seen 

over the mixture of Gaussians variants (28.74%) are unlikely to be acceptable as compared to 

that for the median approaches ( 4.09%). As noted above, these excessive rates occur for the 

scenes with poor meteorological conditions (le and it), but even if these were excluded, the 

high maximum seen over the mixture of Gaussians variants is still a factor of two higher at ( 

9.06%). Based on these results, without considering possible modifications possible by using 

supplementary processing modules, the Gaussian background approach appears less suitable 

for the intended application. 

6.4 	System resource requirements 

The balancing factor to be considered against the level of performance associated with a system 

variant is the resource requirement of that variant. The most effective combination of modules 

would be of little use if they are too memory intensive to run in the operating platform's re-

source scarce environment or if they run so slowly that results cannot be transmitted on an 

approximately real time basis. Each system variant was therefore timed during its operation 

and the maximum memory required registered as detailed in Chapter 5. 

6.4.1 Comparative analysis of system variant run speeds 

The number of system variants to be considered in this context is eight, as each of the four 

variants analysed for performance characterisation can run with one of two object growing 

methods. As the two object growing methods give the same intermediate output they do not 

have an impact on the performance results and so were not considered in section 6.3. 
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Figure 6.16: Charts of relative time cost of modules using connected component object grow-
ing 

The systems were first developed using a connected component algorithm (CCA) based object 

growing method (section 4.5), using which the bulk of the testing was performed. It became 

clear that this step was making a disproportionate draw on processing requirements and so an 

alternative boundary tracing object growing method was developed for repeat runs. 

The timing results for the individual modules is given in Table 6.6, specifying the average and 

standard deviation of the figures. The data spans the constituent frames of the sequences for 

each frame, with a relatively large standard deviation due to the effects of the large variation in 

scene complexity over the data sample. 

The first clear result is that system variants employing the connected component algorithm 

based object growing method are unlikely to be suitable for use in a real time surveillance 

application. With an average per frame processing speed on a dedicated workstation of 96 

seconds per frame, the variants cannot output data at a serviceable rate for such a use. 

Considering the charts (figure 6.16) displaying the processing time spread over the component 

modules (excluding initialisation) for the variants, it is clear that varying the other modules 

will have an insignificant effect on processing speeds, as they account for only 1054 of the time 
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Figure 6.17: Charts of relative time cost of modules using outline tracing object growing 

taken. 

Focusing attention on the approaches employing the boundary tracing based object growing 

method then (figure 6.17), the most significant choice in terms of time resource utilisation is 

of the segmentation module. Accounting for up to 90% of the processing time of the system 

variants, changes in the time taken by this will be the critical factor in controlling operating 

times. 

It can be seen that the mixture of Gaussians segmentation approach takes on average seven 

seconds per frame longer to give a result than the median based method. This can represent 

more than a doubling of the overall processing time per frame, which must be a significant 

cautionary element in considering the merits of this approach. 

The shape-based matching approach is on average twice as fast as the model based approach, 

but as the matching step only accounts for from 2% to 9% of the time per frame, this turns out 

not to be so significant a consideration in evaluating the optimum overall variant. 
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System variant heap (kb) RSS (kb) 
Median/Shape 153.2 153.2 
Median/Model 153.8 154.0 
Gauss/Shape 174.3 178.3 
Gauss/Model 175.3 179.6 

Table 6.7: System variant memory requirements 

6.4.2 Comparative analysis of system memory requirements 

The memory requirements of the system variants (table 6.7) represent the maximum amount 

of memory recorded as used by a system variant during the runs made over all scenes. Again, 

no variation was observed by varying object growing methods and so this variable is excluded 

from consideration. 

The key variable is, once again the choice of segmentation methodology, with the object clas-

sification approach making little alteration to the overall resource demands. Looking at the 

memory used in the heap, the variation from 154kb to 175kb is only 14%, but in the practical 

application where memory is at a premium, this can nevertheless be a significant factor. 

6.4.3 Mapping of resource requirements to operating platform 

Although the performance results are useful not only as comparative measures, but also as valid 

projections of ability on the final platform, the same does not apply to resource requirement 

measurements. As they stand, these are useful in their primary purpose only, that of concluding 

the most suitable module combination to be transferred to the final platform. 

Both timing and memory usage statistics are inherently platform dependent and no universal 

approach exists to reliably map the statistics between arbitrary platforms. Using the operations 

per second performance of two systems to project times is only suitable to give an approximate 

mapping as it cannot encompass deviations due to variation in efficiency of different CPU 

architectures to perform diverse tasks. Also, factors such as memory access times (whose 

significance changes in relation to the number of transfers required, the type of memory used 

etc.) vary widely between systems 

Even the basic memory usage data on one system can be very difficult to interpret meaning-

fully where, as in the example under consideration, one system uses virtual memory and states 
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memory usage in terms of resident set size which has no direct correspondence with memory 

usage on a simpler system. 

SPEC (Standard Performance Evaluation Corporation) have the stated mission: 

To establish, maintain, and endorse a standardised set of relevant benchmarks and 
metrics for performance evaluation of modern computer systems 

and make available benchmarking results for many common platforms, running a variety of 

applications [116]. Their use is clearly limited in respect of mapping resource usage to com-

parisons between instances of these common platforms and applications, and so are of little use 

in evaluating the performance of a novel application on a non-standard platform. 

The original intention was to physically transfer the optimum system variant onto the final 

platform as the final stage in the performance characterisation, there to analyse its speed of 

operation and memory usage in situ. This extension of testing had to be abandoned due to a 

combination of an error in communication at the system specification stage and attendant time 

constraints. 

The final system uses a unique and proprietary operating system, CamOS which uses what is is 

described as a pseudo-C++ compiler. This fit in well with the intention to develop the system 

in C++ taking advantage of its object oriented nature to facilitate modular design. The code 

was to be developed in standard C++ using the g++ compiler and gnu programming tools and 

would then be modified in respect of the unique features required under CamOS. 

It was not until the bulk of the system had been implemented that it became clear that the 

CamOS compiler was not in fact configured to support C++ style coding conventions. Trans-

fer to the final system will involve substantial rewriting of the system code using C program-

ming conventions before being further modified in respect of the unique features required under 

CamOS. 

At this stage it was understood that this would require a significant input of man hours and it was 

considered no longer feasible for inclusion within the scope of the current work, necessitating 

recourse to the previously noted approximate mapping approaches. 

Only during the final stages of the project, at the very end of the write-up process, was it realised 

that most C++ compilers can generate 'vanilla' c as a first pass preprocessing stage. This could 
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Module Average(s/f) S.D. (s/f) 
Initialisation 363 91 

Median Segmentation 40 20 
Gaussian Segmentation 111 71 

CCA object growing 967 807 
Edge trace object growing 7 5 
Shape-based classification 2 1 
Model-based classification 5 3 

Table 6.8: Projected timing results on final platform in seconds per frame 

be precessed by the CamOS compiler with relatively small amounts of modification. At this 

point it was not feasible to attempt this additional process, but the lessons learned from this 

compounded error are discussed in section 7.3.1. 

Despite the limitations of the approach, as noted above, it is still possible to give an rough 

mapping for the operation of system variants on the final platform from that on the development 

platform by neglecting the complicating factors to give a strictly approximate measure. 

From Chapter 3, the VideoBridge VP400 In-camera codec uses is a 33M11z 32bit RISC pro-

cessor with lMbx32-bit SRAM memory available for storage of code, data and the heap. The 

development platform, the Sun Microsystems Ultra 10, uses the U1traSPARC-Ili processor, 

which has a processing speed of 333IV111z. It utilises virtual memory and the units used in 

testing were part of the Department of Electronics and Electrical Engineering network. 

As noted in Chapter 5, testing was conducted overnight during a holiday period: the department 

system default settings default remote users to unused workstations and so the probability of 

significant distortion of timing data by other usage was low. Workstation job statistics was 

monitored on an approximately hourly basis as a supplementary check on usage status. The 

test data was gathered over 32 runs for each module further reducing the effect of possible 

distortion of data by any brief or intermittent additional load on the workstations. 

In the circumstances, it is only reasonable to make the most approximate computation of pro-

jected processing times by applying the ratio of the two systems' processor speeds to the test 

platform results. Similarly, the only basic hypotheses available on memory usage is to assume 

no difference between the dynamic memory requirements in the two systems. The very approx-

imate results are presented in tables 6.8 and 6.9. 
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System variant Heap (kb) Remaining DRAM (kb) 
Median/Shape 153 359 
Median/Model 154 358 
Gauss/Shape 174 338 
Gauss/Model 175 337 

Table 6.9: Projected memory usage on final platform 

Dependent on the accuracy of these projections it appears that the system requires further op-

timisation if it is to be of practical application on the final platform. Several possibilities exist 

to reduce resource requirements which could apply to any system variant. 

The background update need not be performed on every frame registered by the camera: the 

system could be set to perform background update only every n frames, reducing the average 

processing load per frame. This would clearly have an impact on the performance of the system 

to the degree that the background would adapt more slowly to environmental changes. 

The architecture of the system allows parallel processing of multiple tasks with message passing 

to transmit results between these tasks.It should be noted, however, that the RISC itself is re-

stricted to multitasking, so parallel processing proper is not available for routines which run 

only on the RISC. Rather than specifying background update only every n frames, the back-

ground update process could run in parallel with the object tracking. The background would 

be updated ready for the next captured frame which would would then be used for the next 

background update. Again, this option reduces the average processing load per frame but the 

background update process operates continuously at the maximum speed which processing re-

sources allow. A disadvantage is the processing overheads for the message passing and other 

parallelisation factors. 

6.5 	System extension results 

As noted in section 4.8.1, a proposed extension to add value to the system on the final plat-

form is to use a camera's control input to automatically direct pan, tilt and zoom to capture a 

high definition face image. The camera would be directed to that portion of the scene corres-

ponding to the position of a face according to the object classification scheme, using a simple 

geometrical assumption as to the average human form. 
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Figure 6.18: Face images ext racted from a sample sequence containing one pedestrian and an 
excerpt image from the sequence 

Although not implemented in full, a pilot routine was constructed to illustrate the feasibility of 

the approach, using the simple shape-based object classification approach. Rather than direct 

a PTZ camera, the hypothesised face area was specified using this model in terms of a sub 

window in a short sample sequence of images containing a single pedestrian. The results of 

this simulation are given in figure 6.18. The face images are of a lower resolution than would 

be the case if the approach were applied at capture, but the approach can be seen to be suitable 

for directing attention to the appropriate area in an image in this case. A suitable face image 

is captured for most frames, but the last two extractions illustrate a limitation of the approach 

where the face is lost. This could be overcome simply by storing a subset of the face captures 

equivalent to that displayed for this sequence, increasing the probability that a useful face shot 

was obtained. 
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For a real-time image capture version, some correction would need to be made for predicted 

motion in the body during the re-direction time of the camera. The criterion for selecting the 

individual whose face is to be captured could be provided by some heuristic rule set related to 

the alarm condition or via a user interface. 

6.6 Summary 

The performance characterisation on the development platform has given some unexpected 

and interesting results. The qualitative predictions were that results overall would be superior 

performance from the Gaussian/model variant over the median/shape version, with intermediate 

results from the other two variants. What has emerged is that although this overall pattern 

indeed holds in many situations it is not a clear cut relationship and is subject to provisos and 

limitations. 

Considering the overall results presented in tables 6.2 and 6.3, the first evident point is that 

the overall positive identification rate does not exceed 75% for any scene. Further, the pos-

itive identification rate even for simple instances does not exceed 83%. Compared to results 

presented in the literature and to the level of performance required from a system with practical 

usefulness, this level of performance is poor. 

In respect of the discrepancy with results in the literature, it is worth noting that the present 

system is being tested thoroughly over a large data set including diverse scene types. The tuning 

of parameters which can occur in systems tested on small data sets and which may contribute 

to the published results are thus eliminated, making direct comparison difficult. 

In terms of the performance desired in a commercial system not being achieved, it should be 

noted that the implementations under examination have not been optimised. All modules were 

tested for correct functionality and then immediately brought into the system for comparative 

testing. Only the system variant suggested as appropriate for the final platform would be op-

timised in parallel with its transfer onto that platform. The performance improvement cannot 

be quantified in the absence of this stage's completion. 

From section 6.3.2, the best overall performance in terms of true positives over all instance and 

scene types is indeed from the Gaussian/model variant. The biggest enhancement in system 

performance comes from changing the segmentation module to use the mixture of Gaussians 
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approach. 

Segmentation module 

Considering the mixture of Gaussians segmentation approach in detail, it clearly performs best 

in instances of median occlusion (and thus also in rain/snow) and results from previous work 

[48] suggest superior performance in scenes with a large degree of oscillatory motion generally. 

Furthermore, the latency in adjusting to new objects in the background is lower by at least a 

factor of four (section 6.2). 

This segmentation approach performs quite poorly however in 'twilight' scenes with artificial 

lighting and low levels of background/foreground contrast (section 6.3.3). In surveillance ap-

plications, these 'twilight' scenes can be of particular importance as they often correspond to 

times of high risk for intrusion. Miscreants will tend to take advantage of the camouflage op-

portunities inherent in poor light conditions. A system which is not robust to these conditions 

would thus be at a great disadvantage. 

A further drawback for this segmentation approach is the relatively high false positive detection 

rate observed across all scene types (table 6.5 and figures 6.14 and 6.15). As an explicit goal 

for this system is to minimise false alarm signals, this too is a significant failing. 

Finally, use of this segmentation approach increases time resource demands by the order of 

100% (table 6.6) which, using current approximations (table 6.8), equates to more than a minute 

per frame on the final platform. 

Given this extensive list of drawbacks to balance against a projected 17.03% increase in true 

positive detections overall (section 6.3.2), the mixture of Gaussians segmentation approach 

would not be selected in favour of the median average version. 

Classification module 

Considering the shape-based classification approach in terms of resource requirements first, 

the model-based approach operates on average half as fast as the shape-based version (table 

6.6) which, assuming the median segmentation approach is used, equates with a 6% increase 

in processing time per frame. In terms of overall performance, the model-based version gives 

a 10.67% improvement in true positive identifications (section 6.3.2) and a maximum false 

positive rate only 1.13% higher. 

While the shape-based classifier has proven to be better in coping with bisective occlusion the 
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possibility of double counting in these instances mitigates the benefit somewhat (section 6.3.2). 

Further, the median/shape variant system encounters significant difficulties in scenes with a 

large amount of ground shadowing (Section 6.3.2). 

Suggested system variant 

It is necessary to take into account all of the above specific considerations in concluding on the 

optimum choice for development on the final platform. This vital specific data was derived from 

a detailed quantitative analysis of the performance and resource requirements of the system 

variants over multiple instance and scene types. 

Taking all these factors into consideration it is possible to conclude that the optimum is not the 

variant suggested by initial qualitative characteristics (the Gauss/model variant) nor the fully 

minimised system using the most economical approach to processing (the median shape/variant) 

but is in fact the median/model combination, using the boundary tracing object growing mod-

ule. 

This system does not give the best performance across all instance types, but the more robust 

all-round performance over scene types, reduction in false positive signals and significant re-

duction in time resource requirements serve to outweigh this fact for the specific application in 

consideration. 
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Chapter 7 
Summary, further work and 

conclusions 

7.1 Introduction 

This thesis proposed that an integrated design and characterisation methodology for the con-

struction of vision systems for a specified application, based on object oriented design prin-

ciples, can efficiently provide a recommendation as to an appropriate implementation and that 

such a methodology can also contribute to an evolving database of test sequences and compar-

ative performance information of more general use to third parties. 

To establish these contentions, several goals had to be met. 

A survey of existing work in the fields of vision system performance characterisation and those 

areas of vision research relevant to the application designed is presented in Chapter 2. 

A methodology for the integrated design and characterisation of an appropriate practical solu-

tion to a specified vision processing problem was to be created and evaluated. The vision 

processing problem and design principles are introduced in Chapter 3 and the characterisation 

phase was detailed in Chapter 5. An evaluation of this methodology is presented in section 7.2. 

The methodology was to be used to design a modular surveillance application to run on a 

distributed processing architecture, using object oriented design principles to implement a se-

lection of standard algorithms and novel approaches. This process is detailed in Chapter 4. 

The system variants of the modular surveillance application so designed was to have its per-

formance characterised on real surveillance image sequences. The results of this characterisa-

tion are given in Chapter 6 and are discussed in section 7.3. 

A relative analysis of the performance of the candidate solutions of the performances against 

manually acquired ground truth and review of resource requirements was to be performed. The 

results from Chapter 6 are considered in these terms in section 7.4. 
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The data base of real surveillance test sequences made available to third parties is described in 

Chapter5. 

There are several conclusions to draw from this work. First, the design and evaluation method-

ology should be assessed to ascertain the quality of results and their generality compared with 

the resources required. Following on from this, the overall results for the test design problem it-

self can be evaluated in terms of their reliability and generality. Finally, the performance results 

for individual modules within the context of the system allow some conclusions to be drawn as 

to their relative effectiveness. 

7.2 The design and characterisation methodology 

The proposed integrated design and characterisation methodology is intended to bridge the 

gap between monolithic vision system design and testing and the anticipated use of detailed 

algorithmic performance characterisation data-sheets. By implementing a subset of individual 

modules for specified vision processes and evaluating the performance of composite system 

variants on real data, a choice of the most suitable combination for the current problem can be 

made. 

The overall idea of using the framework of a cost versus benefit analysis for evaluating vision 

systems is complicated by both platform and application dependencies. General cross-platform 

results in respect of resource utilisation require an extensive characterisation regime to give 

quantitative data. An approach which is constrained to use less detailed investigation will only 

give qualitative results cross-platform, a significant limitation. 

In respect of application dependency, the modular construction in terms of commonly used 

processes will allow some useful extrapolation of results to similar design problems. This 

extensibility would increase if a library of such evaluations evolved incrementally. 

7.2.1 Individual module implementation 

The individual module implementations are tested in isolation using a limited data set and qual-

itative evaluation of the results by a human observer. Any tuning parameters in the individual 

module are varied to give the optimum results in these terms. 
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This represents a weakness in the approach as one of the key assumptions underlying the need 

for this sort of overall evaluation is that human interpretation is not adequate for assessing such 

intermediate data. An anthropocentric bias is introduced that has no basis where the 'user' will 

be another automated process. Furthermore, there is no evaluation of the stepwise error levels 

which may be significant in overall system performance. 

Some of these limitations represent the cost of the approximation required to reduce the re-

source requirements for the methodology. The approach is intended as a compromise between 

costs and benefits and so some sacrifice in results quality is to be expected. 

One alternative approach to simply fixing the implementation at this stage would be to record 

relevant metrics (possibly in the form of ROC curves) of each module's performance in terms 

of the internal parameter settings. This could increase the generality of the eventual results, 

giving some indication of how to modify the system for different problem requirements. 

7.2.2 Procedural abstraction 

The initial intention was to enforce procedural abstraction for the individual modules, so that it 

would be possible to exchange/replace individual solutions independently. A strict application 

of this rule does not appear to be feasible for the current problem. To take an example, where 

the boundary-following approach was used to evaluate object size in the model-building step 

of a system, the same approach must be used in the labelling of the current image for correct 

operation. 

This does not invalidate the approach, but it does make it more complex to operate, with the 

requirement for flagging as to which approach has been utilised. The use of design principles 

based on Object Oriented principles is still important and should be supplemented with suffi-

cient documentation to specify where flagging is required. 

7.2.3 System specificity 

The principal quantitative results for the evaluation are specific to the system and application 

upon which the testing was conducted. The anticipation is, however, that the comparative 

qualitative results will be valid across a wider range of problems, that extrapolation will be 

possible to similar applications in the future. If the extant testing is used as a basis for the 
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initial choices in future applications, a library of such results would incrementally be built up 

which could reduce the search space for a growing range of applications. 

The results for the current system should have application for systems which employ back-

ground estimation and/or object segmentation and/or object classification, especially in a re-

source scarce environment. The results would also have some relevance outside the resource-

scarce area. 

The choice of extensive intuitive approximations within the evaluation process reduced evalu-

ation resources required, but also limited the generality of the results somewhat. 

7.2.4 Evaluation metrics 

The interpretation method devised for evaluation of performance relied on comparison against 

human-generated ground truth. Statistics as to true positive results and ROC plots were used to 

assist interpretation of the system variants behaviours. It was found that these results required 

extensive further analysis, often on frame by frame basis, to evaluate the causes of unanticipated 

performance thoroughly. 

This gave interesting results for individual methods (see 7.4 ) but significantly increased the hu-

man resource time for the evaluation. This will be partially due to this being the first application 

of the method (if a library of previous results is available, less work may be required to interpret 

the observed patterns) but storage of the analyses as textual interpretations is inconvenient in 

terms of reuse. Even where the analysis burden is reduced, the nature of the method requires 

the storage of extensive contextual information concerning assumptions and problem-specific 

factors which is not ideal for a clear, objective characterisation. 

The decision to classify pedestrian groups as single entities in the testing, to parallel human 

intuitive perceptions, will have had a significant bearing on the results for these situations. This 

will limit the generality of the results somewhat, to applications where this corresponds to the 

'event' of interest. 

Appropriate metrics must be devised for evaluating any additional modules in further applica-

tions of the methodology. For example, to extend to evaluating alternative tracking approaches 

would require metrics to evaluate how long a correct track is maintained, how many times it is 

lost or false tracking occurs etc. Again, this is a consideration which applies primarily for the 
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early uses of the approach, as details of metrics used should be included in the documentation 

supporting each usage 

7.2.5 Resource requirements 

The resource requirement measures are currently of limited use due to the system dependency of 

such metrics. Again, if a library of such evaluations on different platforms grew, extrapolation 

of the results would be more meaningful. The significant error (see 7.3.1) during the design 

process which prevented transfer of the application to the final platform presents a reduction in 

the quality of the overall results. 

7.2.6 Test data 

The test data collected covered a wide range of environmental conditions and object beha-

viours. To give clearer results, requiring less frame-wise analysis, a greater decoupling of 

environmental and object attributes would have been useful. The current work attempted to 

examine the same test data to evaluate changes due to both, again to reduce the testing resource 

requirements. In the end, the additional work required in analysis to separate the effects and 

the degree of ambiguity this gave for the results suggests that investment of additional up-front 

resource allocation may be more efficient. 

In all scientific investigation, it is common practise to investigate systems by holding all vari-

ables except one static while another varies. Here, this would be equivalent to, for example, 

comparing scenes with constant lighting/weather/activity levels, which differ only in the amount 

of occlusion at the objects (which themselves should exhibit similar speed/scale). The attempt 

to short-cut this process here, by allowing multiple variables to vary simultaneously followed 

by a multi-dimensional statistical analysis has given ambiguous results requiring the supple-

mentary frame-wise analysis. 

7.2.7 Assumption of non-combinatorial nature 

A key assumption of the evaluation methodology is that the assessment approach for the per-

formance of the individual modules is not sufficient to support an efficient overall system 

design. The evaluation process for the individual modules is traditionally by high-level hu- 
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man interpretation of visual output, which may not be appropriate for considering modules 

which feed results to subsequent automated processes. 

This is supported by the actual results. A 'traditional' evaluation of the background represent-

ation process suggests that the Mixture of Gaussians approach gives the better approximation 

to the background scene than the median average method. However, evaluating the results of 

system variants using the two approaches reverses this evaluation. 

This is partially due to the greater range of situations which can realistically be used in evalu-

ation for the system overall. It is difficult to ascribe meaning to the emulation of a background 

representation process in varying conditions of occlusion, object size etc. It is only when the 

evaluation takes place within the context of the overall system that this sort of detailed consider-

ation becomes meaningful. This is a significant strength of this approach to system evaluation. 

7.2.8 Accessible storage of test data 

The storage of the test data for use by third parties is an important aspect of the methodology. 

Ideally, it should be in the same format as that used directly as input by the test system, although 

the memory required for making the full data sets available is in the region of 4Gb. Compressed 

file formats were considered inappropriate due the possibility of information loss during the 

process and .avi files (from which the test image sequences were constructed) did not offer a 

significant memory usage saving. 

The memory-intensive use of storage as a sequence of still .ppm images has been adopted in 

this pilot study [115], which may not be viable for larger databases. This is clearly not ideal, 

and the possibility of using the allegedly 'lossless' video compression offered by JPEG2000 is 

recommended as a future solution. 

7.2.9 Conclusion on the design and evaluation methodology 

As planned, the methodology presents a possible 'third way' for the evaluation of vision sys-

tems as part of the design process. The approach balances quality and generality of results with 

the resources applied to achieve them. The overall approach of evaluating composite system 

variants implemented from distinct modules is supported in that the results do diverge from 

those suggested by the traditional approach to evaluating individual modules. 
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As a 'pilot' exercise during which the methodology became more clearly defined and could be 

evaluated as a work in progress however, it does have clear limitations and areas for improve-

ment. More decoupling of the controllable variables in the test data examples would allow for 

clearer statistical results with less need for supplementary analysis. If the methodology is ad-

opted by other researchers, the library of test results would enhance the generality, but only if 

the results are made centrally available in some form with a clear taxonomy. 

The approach is intended only as a medium-term solution in the absence of algorithm-level 

performance characterisation. Whether the methodology would represent an efficient use of re-

sources in this context is questionable and depends to some degree on the speed and enthusiasm 

with which that is achieved. 

An additional benefit of the methodology worth highlighting is in facilitating the integration of 

user specifications into the design/testing process. The process of validation of the initial design 

process with the user can be extended to cover not only the basic modular design, but also the 

selection of candidate solutions for test implementation. Also, where the user has specific 

demands in respects of certain scene types or operating conditions where the application must 

function well, they could specify the inclusion of representative data sets in the test phase, 

ideally proving real examples of such themselves. 

A benefit which is of particular significance to the third generation distributed processing sur-

veillance systems systems which are becoming more common is in allocation of processing 

load. The system architecture of such systems will often allow for processing tasks to be alloc-

ated dynamically between the (resource scarce) distributed processors and a (relatively resource 

rich) central processing unit or 'hub'. By altering the assumptions as to the relative importance 

of performance characteristics, different task allocation plans will be recommended as most 

appropriate by the method. 

7.3 	The overall results for the test design problem 

7.3.1 Specification error 

The most significant limitation in the quality of results for answering the current design prob-

lem originates from an error during the initial stage of the investigation. To give a quantitative 

confirmation of the comparatively evaluated system choice, that choice should have been im- 
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plemented directly on the VideoBridgeTM  platform as the final stage in the process. 

The test implementations for the system should have been written in code that was closely com-

patible with the language to be used on the final platform, so that transferral process would have 

involved only relatively minor modifications. In the event, the language used by the CamOS op-

erating system was not investigated in sufficient detail, which error led to a divergence between 

the test implementations and the desired final result. 

The performance evaluation had to be prematurely curtailed at the stage of the most appropriate 

system variant recommendation from test implementation results, without being able to evalu-

ate actual resource demands on the final platform. Further, an option to generate code which 

may have been considerably faster to transfer to the final platform was not discovered until the 

very end of the write-up period. 

Several valuable lessons have been reaffirmed as an outcome of this error. Establishing the 

system requirements is an elementary but central stage of any systems design problem, and 

the problems caused by a deficiency in this area here serve to underline its importance in fu-

ture applications of the methodology. Time spent in a full, detailed evaluation of the problem 

and its context is seldom wasted and the need to question all assumptions and maintain good 

communication with the user is highlighted here. 

Further, the abilities and limitations of the tools used (here the C++ and CamOS compliers 

particularly) should be explored in sufficient detail that their potential can be fully employed. 

7.3.2 Timing and memory metrics 

The timing and memory results were obtained using UNIX procedures for the overall processes 

and at intermediate points of operation. Their use could be refined in future evaluations to 

record minima, maxima, averages and variances for each value and to record modal and mean 

averages. Data on the spread of values would be an important additional information element 

for evaluation of processes. 

It should be noted again that the results are platform specific and also that they can be affected 

by external considerations. Safeguards to minimise any distortion due to system use by multiple 

users are vital to mitigate theses platform effects. 
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7.3.3 Most appropriate selection 

The recommendation for the most appropriate system variant within the context of projected 

use for the VideoBridgeTM  system was not as anticipated. The most appropriate variant as 

selected in 6.6 is the median/model combination, using the boundary tracing object growing 

module. 

This is interesting as the variant suggested by initial qualitative characteristics would be the 

Gauss/model combination. The secondary expectation was that the fully minimised system 

using the most economical approach to processing (the median/shape variant) could be more 

appropriate given the resource restrictions of the specific application. 

The fact that the result diverges from both of these supports the general idea that a modular, 

combinatorial system variant evaluation is appropriate. Whether the result is in fact correct 

is more difficult to ascertain. A possibility to consider for obtaining this comfort outside the 

routine methodology proposed would be the re-implementation of all system variants for a 

test case onto the final platform. This would provide a valuable check both on the general 

conclusions and the comparative validity of the evaluation cross-platform. 

7.3.4 Conclusion on the overall results for the test design problem 

Following on from the assessment of the evaluation process itself, the recommendation for 

the current design problem is made with many provisos, limitations and assumptions. The 

recommendation only holds in a specific and limited application context which may not be 

adequate given the rate of development common in such systems. 

The large amount of frame-wise analysis and subsequent qualitative description of effects is not 

ideal in an engineering context and brings an unwelcome element of further ambiguity to the 

results evaluation. 

The most significant limitation to the current results comes from the inability to transfer the 

most appropriate variant cleanly to the final platform. Due to this, the results fall short of the 

ultimate aim of generating a working system solution. The importance of clearly and unam-

biguously understanding the system specifications in future evaluations cannot be stressed too 

greatly. 
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7.4 	The performance results for individual modules 

7.4.1 General 

The results for individual modules flow from evaluation of system variants where the specific 

solution used for a particular module is the only significant variable. In the pilot application of 

the evaluation methodology, the individual module testing was restricted to establishing basic 

functionality and setting module-specific parameters to optimise the image-like output from a 

module. The results of this stage would be of more general use if an ROC curve for a range of 

parameter settings for each module implementation were recorded. This would allow informed 

selection of implementations for situations where the weighting applied to true/false results 

vary. 

7.4.2 Background representation and segmentation 

The median background representation approach was a straight re-implementation of previ-

ously published work in the area [28]. 

The mixture of Gaussians approach implemented differed from earlier versions [48] in that the 

restriction to fixed point arithmetic mandated that exact calculations of exponent values for 

probability were not possible. Examination of the algorithm revealed that these were not actu-

ally necessary for evaluating initial matches, providing an avenue for reducing computations in 

the approach generally. Approximation of the probability calculation for matched points was 

possible within the allowable range using a look-up table. 

Although the mixture of Gaussians approach performs best in instances of median occlusion 

and scenes with a large degree of oscillatory motion generally, there were unexpected failure 

results in 'twilight' scenes with artificial lighting and low levels of background/foreground 

contrast (section 6.3.3). The current implementation also exhibited relatively high false positive 

detection rates across all scene types (table 6.5 and figures 6.14 and 6.15) and an increased time 

resource demand of the order of 100% (table 6.6). 

These are interesting results that were not anticipated and resulted in the conclusion that, for 

this problem, the median background approach was to be preferred. 
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7.4.3 Object labelling 

Both CCA approaches implemented for the system were too slow for effective use in a real-time 

system with limited resources. Fast CCAs do exist which may make the approach more feasible 

but comparing the relative dimensionality of the search space, these would still be slower than 

a similarly improved boundary-following approach. In terms of speed, this approach is far su-

perior to the CCA method and is equal in effectiveness for object locating, moment calculation, 

pose estimation and outline specification. 

The main drawback of the approach is that the precise size is not automatically generated. 

In the current system an ellipsoid approximation is suitable for potential pedestrians, but fast 

approaches to give the exact area in pixels are possible (using e.g. a l-D horizontal count 

between boundary points). 

7.4.4 Object classification 

The shape-based classification approach is a novel implementation developed from first prin-

ciples to be a fast and straightforward method to select pedestrian objects. 

The model-based classification approach differed from earlier versions in that an alternative 

approach was taken to matching a slightly altered model. The models used consisted of the 

mean shape for an object, arrays of eigenvalues and eigenvectors corresponding to its observed 

characteristic distortions and a new element, the positional variance at each point on the ob-

ject. The interpolation matrix used in the original implementation during the model matching 

process was eliminated in the new version. 

In the revised version, the matching process was approximated as a linear optimisation prob-

lem in multiple variables, to be solved using the Simplex Method. This reduced the extent of 

the spline interpolation process required and generated results that, with the stored positional 

variances, were used to update simplified Kalman filter predictions for each point. 

The revised version functioned well within the system, giving an improvement of approxim-

ately 11% in true positive identifications compared to the shape-based approach (section 6.3.2). 

Although proving the concept within this context, an evaluation against the original approach 

should be conducted as a separate exercise to evaluate their comparative performances. 

Although the model-based approach gives a maximum false positive rate approximately 1% 
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higher than the shape-based approach and equates with a 6% increase in processing time per 

frame, the median/shape variant system encounters significant difficulties in scenes with a large 

amount of ground shadowing (section 6.3.2). 

On balance, the results did not give a clear general 'winner' for this module but the fact that the 

range of results can be evaluated in terms of a specific problem is an advantage of the overall 

methodology. Within the context of the current problem, the shape-based approach gave the 

best all-round performance. 

7.4.5 Conclusion on the performance results for individual modules 

The level of results on individual modules within this methodology is limited to that of qual-

itative comparison between approaches. As such, the results serve as a starting point for more 

detailed quantitative comparison in areas of interest, as well as providing supplementary data 

to assist in choosing candidate solutions in later design problems. 

It would be interesting to extend the module evaluations to further test data, to see if predictions 

based upon the current results were fulfilled. 

7.5 Overall conclusions 

The methodology proposed has been proven to the extent that it has been shown to be capable 

of producing unanticipated results for the relative abilities of a subset of system configuration 

options for a visual surveillance application. The approach has allowed selection of an appro-

priate system variant to be implemented on the final platform and has provided more general 

comparative performance and resource evaluation for the candidate approaches at the module 

level. 

The results are generalisable in two main areas. First, to the extent that the methods employed 

have been qualitatively compared at the module level. Secondly, at the system level, where the 

quantitative results may be used to extrapolate performance predications for similar problems. 

By publishing the detailed quantitative results with supporting contextual information and ana-

lysis and making the test data available to third parties [115], the data can serve as the basis for 

an evolving library of such results. This library can be used as an improved source for initial 

data for future design problems. 
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The limitations of the approach are primarily a characteristic of its nature as a compromise 

solution between the full generalisation ultimately desired (from algorithm level performance 

characterisation across a range of platforms) and the resources required to achieve the results. 

The 'freezing' of individual module implementations, including tuning parameters based on the 

image-like output is likely to introduce sub-optimality in the overall system. Assessment of the 

intermediate output using a human evaluation is inevitably anthropocentric and does not factor 

in any consideration of error propagation along the system. 

As an evaluation process which must provide practical performance characterisation results for 

a specific application/platform combination, the quantitative results generated are only strictly 

applicable to that case. The inferences which may be drawn to give evaluation useful in the 

general case for third parties is more qualitative, and provides comparisons only over a subset 

of algorithm combinations. 

The results of the pilot application required extensive frame-wise re-analysis, making them less 

easily interpretable at a glance. Further, as with all such empirical testing approaches, it is the 

specific implementation of each algorithm and procedure which the final results relate to: if 

the programming quality is inferior, the results may be distorted. 

A major restriction in this instance of the methodology's use was the error in the choice of test 

programming language. The primary testing was conducted on the local network for speed and 

convenience, but should have been supplemented with a final test suite while running on the 

final platform. 

It terms of individual module implementations, it has been shown that a mixture of Gaussians 

background representation using only fixed point arithmetic is feasible. It was also shown that 

several efficiency savings were possible by removing certain probability calculations altogether. 

A fast object labelling approach, based on boundary following and shape approximation has 

been shown to be effective where a specific object type is of interest. A novel version of 

flexible model matching using a linear optimisation approximation and applying the Simplex 

Method has been presented and shown to function. 

In comparing module performances, the most interesting result was that the mixture of Gaus-

sians approach did not perform as well as the median average method over a wide range of 

scene types. Although it performed better with occlusion instances and scenes with oscillatory 

motion, the mixture of Gaussians approach performed quite poorly in scenes with low levels of 
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background/foreground contrast. 

While the superior performance of the model-based object classification method over the shape 

based approach was as anticipated, the increased processing time for the whole system due to 

its use (of only 6%) was lower than anticipated and make it appear suitable even in resource 

scarce applications. 

Overall, the project has presented a novel design and evaluation methodology which has been 

shown to be capable of producing novel and interesting results for modular systems based on 

new and extant approaches. The results from this pilot application can serve as useful data for 

future system design problems. If the method is further developed, to refine the balance between 

resources invested and results generated, then the quality and usefulness of the information 

generated to add to a growing data base can only increase. 

This thesis proposed that an integrated design and characterisation methodology 
for the construction of vision systems for a specified application, based on ob-
ject oriented design principles, could efficiently provide a recommendation as to 
an appropriate implementation. Such a methodology could also contribute to an 
evolving database of test sequences and comparative performance information of 
more general use to third parties. 

This has been shown to be the case, given the limitations discussed and the further development 

of the methodology. 

7.6 Further work 

The next step following on from this work in the short term should be the migration of the 

recommended system variant to the CamOS platform. This would provide both a practically 

useful deliverable application and corroborative evidence as to the quality of the results of the 

characterisation process. 

Taking the lessons of the current 'pilot' implementation, the next step in the development of the 

design and evaluation methodology should be to generate further results using more decoupled 

scene data. New implementations of the modules which are compatible with the final platform 

should be used for the current design problem or as appropriate for a new one. 
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Figure 7.1: Technical evolution of multimedia surveillance systems versus time 

If the current design problem were re-examined, the results from this second application should 

be evaluated in tandem with the current results and analyses. Although less 'frame-wise' ana-

lysis will be required, the results should provide additional comfort in respect of such analyses 

made in this project. 

More detailed results on the performance of individual modules could be recorded and both 

additional analysis of system performance and extension modules considered. The additional 

analysis could involve evaluation of tracking performance with extensions including a full im-

plementation of face capture/association with general scene footage. 

7.7 	The future 

7.7.1 Conclusions in context 

To put the overall conclusions into context to assess their potential value, one need only con-

sider the continually accelerating pace of technological advances in the areas of surveillance 

and of computing generally. Computing power available from a single chip has historically 

grown according to a broadly exponential curve, and figure 7.1, taken from [117] illustrates 

the technical evolution of video-based surveillance systems versus time in the civil field, with 

extrapolation to the end of the decade. The processing power offered by the new releases of 

IndigoVision's technology as compared with the releases extant at the start of this project has 
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already increased significantly and with continuing advances the resource availability aspects 

of the problem will continue to vary. 

The continuing growth in the capabilities of mobile communications and computing units of-

fers whole new areas for increasingly flexible image sequence processing and interpretation. 

Dynamic reconfigurability of distributed and mobile units by down-loading software tools on 

demand are anticipated to be industrially feasible in the next decade, as is the advent of ad hoc 

wireless networks for public security aims [117]. With the growth of such markets, the already 

extensive research effort focused on advanced surveillance development is likely to intensify. 

In such an environment, the efficient design and evaluation of appropriate vision applica-

tions over acceptable time-scales and which fulfil varied user requirements will become of 

even greater importance. Algorithm-level performance characterisation is only likely to be-

come more prevalent gradually within the vision community: the change is of the nature of a 

paradigm shift in terms of the design and evaluation approach. 

Given this, the natural tendency would be to continue with the traditional monolithic approach 

to design, almost entirely focused on the single application under development, with no ad-

ditional resource made available for providing more generalisable data for subsequent tasks. 

With the increasing range of potential solutions in the literature from which to select candidate 

solutions, achieving a near-optimal result in this environment will become ever less likely. 

A refined version of the presented methodology constitutes one approach to providing a more 

flexible approach to the design problem incorporating limited comparative testing. With the 

accelerated pace of development envisioned would come increased pressure for timely and 

effective design. The ability to 'test run' a subset of candidate solutions, with value added in the 

form of incrementally generating an accessible database of test data and qualitative performance 

comparison information is an attractive proposition. 

A methodology which addresses the new systems architecture issues presented by distrib-

uted/mobile technologies to give a quantitative evaluation of alternative task distributions is 

presented in [118] and would constitute an appropriate companion evaluative method. 
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7.7.2 Broader surveillance issues 

Surveillance in some form is becoming an increasing part of everyday life in a variety of en-

vironments. Whether implementing an automated 'Neighbourhood Watch' to protect the prop-

erties of Middle England, identifying vandals in the inner cities, implementing the forces of 

government oppression to discourage free expression or just allowing more effective monitor-

ing of contestants in the latest 'Reality TV' game show, routine surveillance is essentially afait 

accomplis. 

The best that can realistically be hoped for from an engineering design/evaluation methodology 

is that the closet to the optimum implementation is recommended for the final implementation. 

This should in turn result in the provision of the highest quality results for a given system, so 

that negative effects due to problems with the technology itself may be minimised. 

Whether the overall effects of the ubiquitous nature of the technology on society are to the good 

or ill really depend, as with so many aspects of technology, on the use to which they are put. 

No evaluation methodology from a technical standpoint can be expected to take quite so global 

a view of performance as to formally incorporate concerns at this level. 

In final summary, surveillance technology seems certain to become an increasing part of con-

temporary society in ever broader areas. The attitudes to this have changed almost beyond 

recognition since the visions of Orwell's dystopia. The presented methodology answers the 

requirement for an improved technical evaluation strategy for such systems. An effective eval-

uation of applications of the technology in social and ethical terms, though more the province 

of philosophy, sociology and privacy law, would be an ideal partner in the future. To paraphrase 

the words of the new Big Brother (figure 7.2) "N solutions. One Winner. You Decide." 
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Figure 7.2: Ten Contestants. One Winner You Decide. 
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Appendix A 
Class diagrams 

This appendix provides additional detail with respect to the Object Oriented class structure 

aimed for in the implementation of the modules of the vision processing system. The devel-

opment was not always strictly in line with the deals of 00 design and some further work to 

achieve the structural goals is still desirable. 

The class diagrams are abbreviated versions of UML class diagrams used in planning and 

design of C++ applications commercially. The principle purpose of the diagrams is to spe-

cify the data and process attributes of each class and to indicate inheritance and association 

relationships between them. 

The diagrams used herein are simplified in two main ways. The processes within a class are 

listed in the lower half of a rectangle corresponding to that class (as is usual), but normally the 

arguments of these operations are specified as well. As a full documentation of the class is not 

needed here, it is sufficient to give an indicative list of the member processes by name. 

Also, the access functions required to get or set the private data members are not listed explicitly 

except, as an example, in figure A. 1. All of the classes have such functions which must be used 

to access these data members. 

Figure A.1 illustrates the inheritance relationship between the VS-frame and VS -image and 

corresponding input/output classes. The VS-frame class is the basic image unit of the Depart-

ment of Electrical Engineering's Vision Systems Library, and was written independently by 

fellow group members. 

The VS-image class is the basic image unit written at the outset of the project and was retro 

spectively modified to make it a descendent of the VS -frame class to achieve compatibility with 

the Vision Systems Library. 

The VSpoint, VS-win and VSnhood8 classes illustrated in figure A.2 are supplementary 

classes written alongside VS-image to provide easier specification of pixel positions, rectan-

gular windows and pixel neighbourhoods. 
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VS—frame I 	 I VS_frame_jo 

mt nWjdth 
jnt nHeight 

mt nNumChannels 

int*** onFrame 

GetBlock() 

GetWjdth() 

GetHeight() 

GetNumChannels() 

Getlntensjty() 
Setlntensity() 

mt nMaxlntensity 

LoadFrame() 

DjsplayFrame() 

DisplayAPGM() 

DispIayRPGM() 

L0adAPXM() 

L0adRPXM() 

Maxlntensity() 

SetDisplayMode() 

VS—image I 	 I VS_image_io 

VS—win image_bounds 
char strtitle[80] 

Loadlmage() 
Filelmage() 

GetlmageBounds() 
SetlmageBounds() 

GetTitle() 
SetTitel() 
GetPixel() 
SetPixel() 

Threshold_O() 
Threshold—MAX( 
ColourToGrey() 

Window() 
Invert() 

Figure A.1: VSJrame and VS-image and corresponding input/output classes. 
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VS—win 

VS—point t_Ieft 
VS—point bright 

-------------- 

Area() 
InWin()  

VS_nhood8 
Height() 
Width() 

2\ 	/8 

VS noint 

mt nx 
mt fly 

Figure A.2: VSpoint, VS-win and VSjzhood8 classes. 

The VS-image-process class is another which was written independently by fellow group mem-

bers as part of the Vision Systems Library. It provides a virtual function (ProcessQ) which can 

be overwritten by derived classes and is useful for implementing the simple vision processes as 

illustrated in figureA.3. 

VS-tracker is the top-level class implementing the overall vision system and has two distinct 

versions (as illustrated in figure A.4) corresponding to the choice of object classification ap-

proach. In addition to the elements shown in that figure, the class contains objects from the 

other modules as indicated in figure A.5. 

A class exists to define objects for each module, which usually have two alternative des-

cendents corresponding to different candidate solutions. Figure A.6 illustrates the distinc-

tion between the two background approaches in this respect: VS-median is a descendent of 

VS-image-process (see figure A.3) whereas VS-mix-back is much more complex and also con-

tains objects of class VS-gauss-back (which themselves contain objects of class VS_gaussian). 

Figure A.7 shows the distinction between the classes corresponding to CCA labelling and the 

boundary following approach. Note that, by standard 00 design conventions, the common 

elements from the two should be moved to the parent VS-labeller class for efficiency. 

Figure A.8 illustrates the most complex module in terms of 00 class relationships, the object 
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VS—image—process 

Process() 

VS—median 	I I VS_diff_frame J 	I VS_blur_image I I 	VS—spline 

Process() 	II 	ProcessO 	I 1 	1 I 	ProcessO 	II 	Process() 

Figure A.3: VS_imag&process descendent classes. 

classification stage. The two classifier derived classes each have unique classes providing ob-

jects, but both require a VS-outline object for boundary extraction. It should be noted that many 

of the elements of the VS-outline class should be relocated into a separate class for bound box 

building and evaluation which are only required by VS-shape-class objects. 

To achieve the most elegant and clear structure, it would also be desirable to transfer some func-

tionality in respect of model matching and tracking between the classifier and tracker classes. 

Finally, the VS-shape and VS-pedestrian classes should derive from a supper class which col-

lects their numerous common attributes. 
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VS-tracker 

mt max_peds 
mt cur_peds 

mt ped_count 

MatchObjects() 
PrintTracker() 
ViewResults() 
ViewOmap() 

VS_shapetrack I I 	VS_modeltrack 

mt num_points mt ped_count 
mt threshold mt ** unit norms 

mt thresh_dist I 	mt ** cur _norm 
VS—shape * PedArray mt ** cur_predict 

mt * cur vars 

MatchObjec() cur -features mt 	features 

PrintTracker() mt cur—Updates 

ViewResults( ) I 	VS model * model 

ViewOmap() mt 	tableau 
Ivc 	* 

MatchObjects() 
ScaleModel() 
TransModel() 
UnitNorms() 

MakeNormal() 
FindFeatures() 

CheckFeatures() 
BuildTableauMin() 

BuildTableauMax() 
GetDeltas() 

InitPed() 
UpdatePed() 

InitFilter() 
UpdateFilterGain() 

FilterEst() 
UpdateFilterVars() 

PrintTracker() 
ViewResults() 
VmewOmap() 

ViewPrediction() 
ViewNormals() 
ViewFeatures() 

Figure A.4: VS-tracker descendents corresponding to object classification module choice. 
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VS—tracker 

VS—background I I VS_diff_frame I I 	VS.-,labeller 	I I 	VS—classify 	I I 	VS_kalman 

Figure A.5: Tracker analysed by module super-classes. 
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VS—background 

VS—median 

VS—image background 

VS—mix—back 

mt nMixSize 
mt nwjdth 

mt nfleight 
mt nNumChannels 

Process 0 double dLearningRate 

double dBackground 

UpdateBack() 
FileValues() 

ImageValues() 

PrintBg() 
VS—gauss—mix (]etMatchGaussStatus() 

ViewBgMatch0 
lot nSize ViewBgState() 

TestMatch() 1 

PickGauss() 

VS_gaussian 
WeightUpdate() 

SetBack()  

lot ScaledMean FileValueso 	L.n 
PrintMix() lot ScaledVariance 

I iiit ScaledWeight 
jot nBgFlag 

mt nMatchFlag 

Probability() Ln 
UpdateGauss() 

ReplaceGaussO 
Separaton() 

FjleValues() 

Print Values() 

Figure A.6: Background generation module classes. 



Class diagrams 

VS—labeller 

VS_object_map VS—object—lists 

mt thresh—size mt thresh_size 

mt max—objects m t max—objects 

int* sizes nt* sizes  
i 

mt object—Count mt object—Count 

mt 	centroids mt ** centroids 

mt * bound—sizes 

GrowObjects() 
GrowObjects() 

CheckNeighbours() 
CheckStart() 

ClearObject() ChecicNeighclockwis 
PrintOmap() ClearObject() 
FileOmap() PrintOmap() 

LoadOmap() FileOmap() 
Setlmage() LoadOmap() 

ViewOmap() Setlmage() 
reset() ViewOmap() 

reset() 

Figure A.7: Object labelling module classes. 
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1..n 

VS—model 

jot spline—total 
mt size_data 

jilt size_array 
jot * blob—sizes 

jot * mean—spline 
jot spline—array 
jilt ** covar_array 

nt incas_size 
jut *evals 

mist ** evecs 
jilt * centrojd 
ml * offset 

BuildModel() 
Align() 

CalcMean() 
CalcSizeO 

CalcCentroid() 
CalcCovar() 
CalcEigen() 

PosVar() 
FileModel() 
LoadModel() 
PrmntModel() 
VjewMean() 

l..n 

VS—pedestrian 

jot stD 
jilt age 

ml n_data_size 
mt ** estimates 

nt * variances 
jilt ** centrojd_traek 

mt scale 
VS_kalman trans—filter 
VS_kalman scale_filter 

lncAge() 
ResetAge() 

SltapeMatcli() 
PrmntSltape() 

PrintSttapeTrack() 

Class diagrams 

VS classifier 

VS shaoe class I 	 I VS model class 

I/ 	l\ 	 /1 l\ lN.l 
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Figure A.8: Object classifier module classes. 
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Figure B.1: Example offormat for Pedestrian Sequence Events Sheets 
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