23,209 research outputs found

    Assessing the effectiveness of multi-touch interfaces for DP operation

    Get PDF
    Navigating a vessel using dynamic positioning (DP) systems close to offshore installations is a challenge. The operator's only possibility of manipulating the system is through its interface, which can be categorized as the physical appearance of the equipment and the visualization of the system. Are there possibilities of interaction between the operator and the system that can reduce strain and cognitive load during DP operations? Can parts of the system (e.g. displays) be physically brought closer to the user to enhance the feeling of control when operating the system? Can these changes make DP operations more efficient and safe? These questions inspired this research project, which investigates the use of multi-touch and hand gestures known from consumer products to directly manipulate the visualization of a vessel in the 3D scene of a DP system. Usability methodologies and evaluation techniques that are widely used in consumer market research were used to investigate how these interaction techniques, which are new to the maritime domain, could make interaction with the DP system more efficient and transparent both during standard and safety-critical operations. After investigating which gestures felt natural to use by running user tests with a paper prototype, the gestures were implemented into a Rolls-Royce DP system and tested in a static environment. The results showed that the test participants performed significantly faster using direct gesture manipulation compared to using traditional button/menu interaction. To support the results from these tests, further tests were carried out. The purpose is to investigate how gestures are performed in a moving environment, using a motion platform to simulate rough sea conditions. The key results and lessons learned from a collection of four user experiments, together with a discussion of the choice of evaluation techniques will be discussed in this paper

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    Investigating the appropriateness and relevance of mobile web accessibility guidelines

    Get PDF
    The Web Accessibility Initiative (WAI) of the World Wide Web Consortium (W3C) develop and maintain guidelines for making the web more accessible to people with disabilities. WCAG 2.0 and the MWBP 1.0 are internationally regarded as the industry standard guidelines for web accessibility. Mobile testing sessions conducted by AbilityNet document issues raised by users in a report format, relating issues to guidelines wherever possible. This paper presents the results of a preliminary investigation that examines how effectively and easily these issues can be related by experts to the guidelines provided by WCAG 2.0 and MWBP 1.0. Copyright 2014 ACM

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels

    Assessment of cockpit interface concepts for data link retrofit

    Get PDF
    The problem is examined of retrofitting older generation aircraft with data link capability. The approach taken analyzes requirements for the cockpit interface, based on review of prior research and opinions obtained from subject matter experts. With this background, essential functions and constraints for a retrofit installation are defined. After an assessment of the technology available to meet the functions and constraints, candidate design concepts are developed. The most promising design concept is described in detail. Finally, needs for further research and development are identified

    Survey of multi-function display and control technology

    Get PDF
    The NASA orbiter spacecraft incorporates a complex array of systems, displays and controls. The incorporation of discrete dedicated controls into a multi-function display and control system (MFDCS) offers the potential for savings in weight, power, panel space and crew training time. The technology applicable to the development of a MFDCS for orbiter application is surveyed. Technology thought to be applicable presently or in the next five years is highlighted. Areas discussed include display media, data handling and processing, controls and operator interactions and the human factors considerations which are involved in a MFDCS design. Several examples of applicable MFDCS technology are described

    Gesturing on the steering wheel, a comparison with speech and touch interaction modalities

    Get PDF
    This paper compares an emergent interaction modality for the In-Vehicle Infotainment System (IVIS), i.e., gesturing on the steering wheel, with two more popular modalities in modern cars: touch and speech. We conducted a betweensubjects experiment with 20 participants for each modality to assess the interaction performance with the IVIS and the impact on the driving performance. Moreover, we compared the three modalities in terms of usability, subjective workload and emotional response. The results showed no statically significant differences between the three interaction modalities regarding the various indicators for the driving task performance, while significant differences were found in measures of IVIS interaction performance: users performed less interactions to complete the secondary tasks with the speech modality, while, in average, a lower task completion time was registered with the touch modality. The three interfaces were comparable in all the subjective metrics

    Toward New Ecologies of Cyberphysical Representational Forms, Scales, and Modalities

    Get PDF
    Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with screen-based multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established mainstream interaction paradigms. This dissertation describes interfaces that support complementary information mediations, representational forms, and scales toward an ecology of systems embodying hybrid interaction modalities. I investigate systems combining tangible and multi-touch, as well as systems combining tangible and virtual reality interaction. For each of them, I describe work focusing on design and fabrication aspects, as well as work focusing on reproducibility, engagement, legibility, and perception aspects

    Development of preliminary design concept for a multifunction display and control system for the Orbiter crew station. Task 4: Design concept recommendation

    Get PDF
    Application of multifunction display and control systems to the NASA Orbiter spacecraft offers the potential for reducing crew workload and improving the presentation of system status and operational data to the crew. A design concept is presented for the application of a multifunction display and control system (MFDCS) to the Orbital Maneuvering System and Electrical Power Distribution and Control System on the Orbiter spacecraft. The MFDCS would provide the capability for automation of procedures, fault prioritization and software reconfiguration of the MFDCS data base. The MFDCS would operate as a stand-alone processor to minimize the impact on the current Orbiter software. Supervisory crew command of all current functions would be retained through the use of several operating modes in the system. Both the design concept and the processes followed in defining the concept are described
    • …
    corecore