15,316 research outputs found

    Hardware architecture implemented on FPGA for protecting cryptographic keys against side-channel attacks

    Get PDF
    This paper presents a new hardware architecture designed for protecting the key of cryptographic algorithms against attacks by side-channel analysis (SCA). Unlike previous approaches already published, the fortress of the proposed architecture is based on revealing a false key. Such a false key is obtained when the leakage information, related to either the power consumption or the electromagnetic radiation (EM) emitted by the hardware device, is analysed by means of a classical statistical method. In fact, the trace of power consumption (or the EM) does not reveal any significant sign of protection in its behaviour or shape. Experimental results were obtained by using a Virtex 5 FPGA, on which a 128-bit version of the standard AES encryption algorithm was implemented. The architecture could easily be extrapolated to an ASIC device based on standard cell libraries. The system is capable of concealing the real key when various attacks are performed on the AES algorithm, using two statistical methods which are based on correlation, the Welch’s t-test and the difference of means.Peer ReviewedPostprint (author's final draft

    CacheZoom: How SGX Amplifies The Power of Cache Attacks

    Get PDF
    In modern computing environments, hardware resources are commonly shared, and parallel computation is widely used. Parallel tasks can cause privacy and security problems if proper isolation is not enforced. Intel proposed SGX to create a trusted execution environment within the processor. SGX relies on the hardware, and claims runtime protection even if the OS and other software components are malicious. However, SGX disregards side-channel attacks. We introduce a powerful cache side-channel attack that provides system adversaries a high resolution channel. Our attack tool named CacheZoom is able to virtually track all memory accesses of SGX enclaves with high spatial and temporal precision. As proof of concept, we demonstrate AES key recovery attacks on commonly used implementations including those that were believed to be resistant in previous scenarios. Our results show that SGX cannot protect critical data sensitive computations, and efficient AES key recovery is possible in a practical environment. In contrast to previous works which require hundreds of measurements, this is the first cache side-channel attack on a real system that can recover AES keys with a minimal number of measurements. We can successfully recover AES keys from T-Table based implementations with as few as ten measurements.Comment: Accepted at Conference on Cryptographic Hardware and Embedded Systems (CHES '17

    Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Get PDF
    Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods. Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1% to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing information

    Advanced Cryptographic Power Analysis

    Get PDF
    This project seeks to advance the differential power analysis MQP of Hnath and Pettengill. Using their work as a foundation, we implement a power analysis attack on the Advanced Encryption Standard (AES). We then evaluate our attack according to the criteria from the DPA Contest. In addition, we explore several strategies to improve the attack. Our attempts result in slight improvements in select cases. We also seek to attack AES using the differential template attack (DTA) of Karakoyunlu and Sunar. Although originally designed to attack physically unclonable functions, we show the DTA can be used against AES. We implement the DTA to attack AES and find it promising, but not entirely successful. We then present our theories on how to improve the DTA

    ASSESSING AND IMPROVING THE RELIABILITY AND SECURITY OF CIRCUITS AFFECTED BY NATURAL AND INTENTIONAL FAULTS

    Get PDF
    The reliability and security vulnerability of modern electronic systems have emerged as concerns due to the increasing natural and intentional interferences. Radiation of high-energy charged particles generated from space environment or packaging materials on the substrate of integrated circuits results in natural faults. As the technology scales down, factors such as critical charge, voltage supply, and frequency change tremendously that increase the sensitivity of integrated circuits to natural faults even for systems operating at sea level. An attacker is able to simulate the impact of natural faults and compromise the circuit or cause denial of service. Therefore, instead of utilizing different approaches to counteract the effect of natural and intentional faults, a unified countermeasure is introduced. The unified countermeasure thwarts the impact of both reliability and security threats without paying the price of more area overhead, power consumption, and required time. This thesis first proposes a systematic analysis method to assess the probability of natural faults propagating the circuit and eventually being latched. The second part of this work focuses on the methods to thwart the impact of intentional faults in cryptosystems. We exploit a power-based side-channel analysis method to analyze the effect of the existing fault detection methods for natural faults on fault attack. Countermeasures for different security threats on cryptosystems are investigated separately. Furthermore, a new micro-architecture is proposed to thwart the combination of fault attacks and side-channel attacks, reducing the fault bypass rate and slowing down the key retrieval speed. The third contribution of this thesis is a unified countermeasure to thwart the impact of both natural faults and attacks. The unified countermeasure utilizes dynamically alternated multiple generator polynomials for the cyclic redundancy check (CRC) codec to resist the reverse engineering attack
    corecore