
IEE
E P

ro
of

Hardware Architecture Implemented on
FPGA for Protecting Cryptographic Keys

against Side-Channel Attacks

Rub�en Lumbiarres-L�opez, Mariano L�opez-Garc�ıa,
and Enrique Cant�o-Navarro

Abstract—This paper presents a new hardware architecture designed for
protecting the key of cryptographic algorithms against attacks by side-channel
analysis (SCA). Unlike previous approaches already published, the fortress of the
proposed architecture is based on revealing a false key. Such a false key is
obtained when the leakage information, related to either the power consumption or
the electromagnetic radiation (EM) emitted by the hardware device, is analysed by
means of a classical statistical method. In fact, the trace of power consumption (or
the EM) does not reveal any significant sign of protection in its behaviour or shape.
Experimental results were obtained by using a Virtex 5 FPGA, on which a 128-bit
version of the standard AES encryption algorithm was implemented. The
architecture could easily be extrapolated to an ASIC device based on standard cell
libraries. The system is capable of concealing the real key when various attacks
are performed on the AES algorithm, using three statistical methods which are
based on correlation, the Welch’s t-test and the difference of means.

Index Terms—Security, side-channel attacks, power analysis attacks, software-

hardware countermeasures

Ç

1 INTRODUCTION

THE addition of countermeasures for protecting the key in crypto-
graphic algorithms has become an emerging field of research, since
in the late 1990s several authors revealed the inherent weakness
associated with physical devices used in their implementation [1].
When a cryptographic algorithm is implemented in a hardware
device, it could be shown as both its power consumption and its
electromagnetic radiation (EM) are heavily dependent on the data
that are being processed. Since data rely on the cryptographic key,
this dependence can be exploited to find out such a key by using a
statistical method of analysis. Further, as the leakage information
that is exploited is external to the hardware device, these methods
are usually known as Side-Channel Analysis (SCA) attacks.

The most widely used statistical method is based on the calcula-
tion of the correlation between the captured power trace (or the
EM) and a theoretical model of power consumption for a specific
key. In order to obtain such a model, it is necessary to know both
the data that are being processed and the behaviour of the basic
CMOS cells that form the circuit. This model is usually approxi-
mated by the Hamming distance (HD) or the Hamming weight
(HW) related to the binary value of the particular point to be
attacked in the circuit [2]. This approximation is based on the
assumption that the actual consumption is proportional to HW or
HD. The former represents the number of ones included in a byte
vðtkÞ at instant tk, whereas the latter is based on the HW of the
result obtained when operating with an exclusive-OR the value of
byte v at instants tk�1 and tk (i.e., vðtk�1Þ and vðtkÞ). Nevertheless,
the knowledge of data is more complicated, since such data
depend not only on the plain text to be encrypted but also on the
value of the cryptographic key. Generally, it is accepted that the

attacker knows the plain text (or the encrypted text) and he/she
makes N hypotheses for the N possible keys. For the sake of feasi-
bility, most publications focus the attack on a specific byte (N ¼
256), and usually it is considered impractical to use values of 32 or
more bits due to the high number of hypotheses that should be per-
formed. The correct key is determined by the highest correlation
found among all guessed hypotheses. This correlation is calculated
by capturing a set of current traces, whose number depends on fac-
tors such as the signal to noise ratio or the accuracy of the power
consumption model [3].

Most researchers focus the design of countermeasures to avoid
SCA attacks on breaking the existing correlation between the data
processed by the hardware device and the cryptographic key. The
success of such approaches is reflected in the value of the correla-
tion factor, which should be identical and close to zero for all
guessed keys. A simple way to achieve this objective is in design-
ing systems in which the power consumption is constant for every
clock cycle [4]. Such systems are usually designed in hardware at
gate or cell level, and they require approximately double the area,
compared with their non-protected counterpart versions. The
design is performed on a dual-rail network based on two comple-
mentary wires, whose load capacitances must be perfectly bal-
anced to guarantee the success of the countermeasure. Such a
condition is difficult to achieve in practice, even when certain con-
strains are included as part of the placement and routing steps [5].
Another important group of approaches aim at eliminating the cor-
relation by concealing all values v processed into the hardware
device with a random mask m. Usually, the operation employed to
conceal such values is an exclusive-OR, so that the masked value
vm could be represented by vm ¼ v�m. Under certain conditions
vm is independent with respect to v, and therefore, the crypto-
graphic key cannot be revealed by means of statistical methods.
These approaches have been implemented at both cell and algo-
rithm levels. The latter has the disadvantage that the execution
time is about doubled when compared with a non-protected sys-
tem. The former, related to hardware implementations, has proven
to be vulnerable due to the early propagation effect [6], [7]. Never-
theless, as such weaknesses were known many of these proposals
have been improved by including subsystems or modifications
that minimise or eliminate such effects [8], [9], [10].

Another interesting approach implemented on FPGAs was pre-

sented by Kamoun et al. [11]. Their proposal is based on deteriorat-

ing the side-channel signal by adding a noise power generator. The

main feature of such an approach, when compared with other

implementations based on similar strategies, is that the noise is cor-

related with both the data manipulated by the system and a spe-

cific interfering key. However, this countermeasure is only

effective when the attack is performed on the function block linked

with the correlated noise power. Furthermore, the revealed key is

not always the same and it depends on the number of traces cap-

tured and used to perform the attack.

Almost all previous passive approaches based their fortress on

hiding the cryptographic key, in such a way that the failure of the

SCA attack is produced because all possible keys are equally likely.

Generally, this objective is difficult to achieve, since any small differ-

ence, signal delay or defect in the implementation is enough to gen-

erate a tiny correlation between the data and the cryptographic key.

Suchminimal correlation can be successfully exploited to obtain the

key by simply processing a higher number of current traces.
The countermeasure proposed in this paper is completely dif-

ferent and is based on protecting the system by revealing a false
key. This key is randomly chosen by the designer and can be
changed at any time. In fact, the overall encryption process is
always performed using such a false key, without introducing any
constraint in the implementation or any additional mechanism of
protection, so that an attack by SCA will never lead to finding out

� R. Lumbiarres-L�opez and M. L�opez-Garc�ıa are with the Universitat Polit�ecnica de
Catalunya, Vilanova i la Geltr�u 08800, Spain.
E-mail: {ruben.lumbiarres, mariano.lopez}@upc.edu.

� E. Cant�o-Navarro is with the Universitat Rovira i Virgili, Tarragona 43007, Spain.
E-mail: enrique.canto@urv.cat.

Manuscript received 16 Dec. 2015; revised 25 July 2016; accepted 12 Sept. 2016. Date of
publication 0 . 0000; date of current version 0 . 0000.
For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.
org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2016.2610966

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016 1

1545-5971� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

© 2016 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

This article has been accepted for publication in a future issue of this journal,
but has not been fully edited. Content may change prior to final publication.

Citation information: DOI 10.1109/TDSC.2016.2610966, IEEE
Transactions on Dependable and Secure Computing

IEE
E P

ro
of

the true key. This paper presents the design and implementation of
this countermeasure on a Virtex 5 FPGA, although as no restric-
tions are included in the design, the proposal can be easily imple-
mented on an ASIC by using standard cells.

The paper is organised as follows. Section 2 describes the funda-
mentals of the faking countermeasure. Section 3 shows the internal
structure of the proposed hardware implementation. Section 4
shows the experimental results and finally Section 5 presents the
conclusions.

2 FAKING COUNTERMEASURE

Nowadays, the Advanced Encryption Standard (AES) is the most
popular algorithm used by researchers when proposing counter-
measures against attacks by SCA. The basis of this standard is well
documented in [12], [13]. Briefly, it consists of four functions or steps,
AddRoundKey, SubBytes, ShiftRows and MixColumns, which are sub-
sequently applied on several rounds over a 4x4 matrix of 16 bytes.
Such a matrix, termed the state, is initially obtained by combining
the plain text and the encryption key KREAL with an exclusive-OR
gate. In the second and subsequent rounds, the state is operated
with a new key obtained after processing the original key with an
algorithm known as key expansion. Fig. 1 shows the internal structure
of theAES algorithm including the aforementioned four steps.

For a specific instant of time tk, an attack by SCA could be suc-
cessfully performed on the input or the output of any of the four
functions represented in Fig. 1. For that purpose the following infor-
mation should be available: a theoretical model that represents the
power consumption of the device to be attacked; a set of T captured
current traces; and finally a known plain text which could be conve-
niently chosen according to the target function. The aim is to calcu-
late the correlation factor between the theoretical model of power
consumption and the actual consumed power (othermethods based
on a different statistical measure can be used). Note that, this calcu-
lation can only be performed if KREAL is known, since its value,
jointly with the plain text, is necessary to assess the model of power
consumption. Usually, the attacker makes N hypotheses for KREAL

and calculates the correlation factor for each one. The true key could
perfectly be identified, since such a key produces the highest corre-
lation factor between all hypotheses. As aforementioned, in practice
the attack is only feasible if the number of hypotheses made is in
accordance with the processing capability of existing computers
and the time needed for capturing the current traces. Thus, due to
practical issues, the attack is usually focused on a specific byte of the
state (256 possible encryption keys).

The faking countermeasure is based on the simple idea of proc-
essing the plain text with a false key KFALSE . However, following
this strategy the cipher text would be incorrectly encrypted with a
key that is different to KREAL. Thus, in some stage of the algorithm
an additional processing should be introduced in order to recover
the original text encrypted with the correct key. Let the relation
betweenKFALSE andKREAL be the following:

KFALSE ¼ KREAL �KMASK; (1)

where KMASK is a value that consists of 16 bytes, and � represents
the exclusive-OR operator. Note that (1) is satisfied for each of the
16 bytes that form KMASK , (i.e., KFALSEði; jÞ ¼ KREAL ði; jÞ�
KMASKði; jÞ, i ¼ 0..3 and j ¼ 0..3). The function ShiftRows is a per-
mutation of the elements of each row of the state, so that it does
not have any influence on the process of recovering the original
text. In contrast, the non-linear function SubBytes has a significant
effect. Such a function is applied over all bytes aF(i,j) (i ¼ 0..3, j ¼
0..3) of the state, which are generated by combining the plain text
T ði; jÞ and KFALSEði; jÞ (i.e., aF ði; jÞ ¼ T ði; jÞ �KFALSEði; jÞ. Let
aRði; jÞ ð i ¼ 0::3; j ¼ 0::3Þ be the value of the same byte if it was
encrypted with KREAL (i, j) ði:e:; aRði; jÞ ¼ T ði; jÞ� KREALði; jÞÞ.
Then, the output of SubBytes, which is represented by SBox(aF),
could be related with aF(i,j) and aR(i,j) as follows:

SBox aF i; jð Þð Þ ¼ SBox aR i; jð Þð Þ �M aF i; jð Þð Þ: (2)

Taking into account (1) and (2), the value of function M(aF(i.j))
can be expressed as:

M aF i; jð Þð Þ ¼ SBox aX i; jð Þð Þ � SBox aX i; jð Þ �KMASK i; jð Þð Þ; (3)

where aXði; jÞ could be either aF ði; jÞ or aRði; jÞ. Note that, as byte
aXði; jÞ can only take 256 different values, MðaF ði:jÞÞ can be stored
in a small memory and it can be pre-computed before executing
the AES algorithm. Moreover, (3) is very useful, since if MðaF ði; jÞÞ
is known then it is possible to recover, at the output of SubBytes,
the state encrypted with KREAL by using as input data the actual
output of SubBytes (see (2)).

The state encrypted with KFALSE is finally processed by the
function MixColumns, which is based on linear operations over ele-
ments of different rows of the state. Let bF ði; jÞ and bRði; jÞ (i ¼ 0..3
and j ¼ 0..3) be the output byte (i,j) of this function when the plain
text is encrypted with KFALSE and KREAL, respectively. Thus, such
output can be expressed as:

MixColumns bF i; jð Þð Þ ¼ MixColumns bR i; jð Þð Þ �N i; jð Þ (4)

being

N i; jð Þ ¼ MixColumns MðaF i; jð Þð ÞÞ (5)

and

MixColumns bR i; jð Þð Þ ¼ MixColumns Sbox aR i; jð Þð Þð Þ: (6)

Therefore, at the end of any round processed with KFALSE , the
original text encrypted with KREAL can be obtained by simply
operating with an exclusive-OR the output of MixColumns
(described in (4)) and Nði; jÞ (described in (5)). This operation is
known as remasking. Subsequently, the correct state is used as
input of the following round, repeating the process until the algo-
rithm is finished.

3 IMPLEMENTATION OF THE FAKING COUNTERMEASURE

Fig. 2 represents the internal structure of the two proposals pre-
sented in this paper for implementing the faking countermeasure.
In the first proposal (Fig. 2a), the system was segmented into two
stages including their corresponding registers, so that each round

Fig. 1. Internal structure of the AES-128 algorithm.

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016

IEE
E P

ro
of

can be solved in two clock cycles ðTCLKÞ. In the first cycle, functions
AddRoundKey, ShiftRows and SubBytes are evaluated, while in the
second cycle the function MixColumns and the remasking are proc-
essed. In the second proposal (Fig. 2b), the register at the output
of MixColumns is eliminated, so that each round is processed in
only one cycle. As will be seen in the next section, when comparing
both implementations the experimental results will be quite differ-
ent, providing a trade-off between speed, number of traces
required to undertake a successful attack and correlation value.
Registers are the usual target chosen by attackers. They have the
advantage that their output only switches once per clock cycle. In
contrast, due to the delay of signals, logic gates may switch many
times per clock cycle producing glitches that are difficult to predict.
Such glitches have a remarkable influence on the consumed power,
so that it is hard to generate a faithful model that matches the real
power consumed by the device.

The implementation of function AddRounKey is very simple,
since it corresponds to an exclusive-OR operation. Likewise, Shif-
tRows does not require any logical resource, since it can be imple-
mented by connecting properly the output of AddRoundKey with
SubBytes. Finally, SubBytes and Mixcolumns are implemented fol-
lowing an identical hardware architecture that is used to build
SbTrans andMixCol, respectively.

The block SbTrans is in charge of implementing (3) for obtaining
MðaF ði; jÞÞ. As shown in Fig. 2, a random maskmH is used for con-
cealing the output of this function. This mask is necessary for sev-
eral reasons:

� Note that the attacker is able to know KFALSE , since this is
the aim of the faking countermeasure. Then, based on (3),
if a first-order SCA attack is performed on the output of
SbTrans, the value of KMASK can be easily revealed, and
therefore applying (1) the actual value of KREAL could also
be determined. It is noteworthy that this situation of risk
can be avoided by including a masking scheme that pro-
tects the output of SbTrans, so that (3) is modified as fol-
lows [14], [15]:

M aF i; jð Þð Þ
¼ SBox aF i; jð Þð Þ � SBox aF i; jð Þ �KMASK i; jð Þð Þ �mH:

(7)

� In addition, if no masking was used, by combining the
values of registers located at the output of SubBytes and

SbTrans, a second-order attack would be possible [15], since
both values can be processed by an exclusive-OR leading to
a new result which depends only on aR(i,j):

M aF i; jð Þð Þ � Sbox aF i; jð Þð Þ ¼ Sbox aR i; jð Þð Þ: (8)

� Besides, the mask mH must be included to protect the state
once the remasking is performed. Thus, at the output of
the register located after Mixcolumns (Fig. 2a) the state will
be masked with a new maskmG:

mG i; jð Þ ¼ MixColumns mH i; jð Þð Þ: (9)

Additionally, note that before AddRoundKey the state is always
protected since it is encrypted with the false key.

A masking scheme is effective if mask mH changes its value ran-
domly and independently on the data that is being processed.
Thus, a True Number Random Generator (TNRG) is included as
part of the design to create such a mask. The internal structure of
this block is based on the design proposed in [19], which basically
uses Configurable Logic Blocks (CLB) available in all FPGAs. How-
ever, the update of mH is the main challenge of such design, since
this change should be performed without affecting the execution
time or the encrypted text. In order to facilitate this process, the
pre-computed values of (7) are stored in a set of 16 memories
denoted as Mk ðk ¼ 0::15Þ. The input of each memory Mk corre-
sponds to one of the 16 bytes that form the state. Although only
256 bytes per memory would be necessary, (7) is implemented
twice in two consecutive areas of memory, referred to as Mk;a and

Mk;b, (then, a total of 512 bytes are used) masked with two different

masks mH and included as part of Mk. Thus, when Mk;a is being

used to implement (7), the second blockMk;b is being updated with

a new mask mH, without affecting the normal operation of the
countermeasure. Afterwards, the second block Mk;b is used for

encrypting a new plain text, whereas the first blockMk;a is updated

in a similar way to howMk;b was previously updated. Details about

the implementation are given in the next section.
The value of Nði; jÞ, described in (5), is calculated by means of

the block termed as MixCol in Fig. 2. In fact, its implementation
aims at reproducing the function Mixcolumns defined by the AES
encryption algorithm. Its internal structure, only for byte 0, is rep-
resented in Fig. 3. The remaining set of bytes are calculated with an
identical implementation.Mixcolumns is mainly based on additions

Fig. 2. Hardware implementation of the faking countermeasure: a) Two clocks per round, b) One clock per round.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016 3

IEE
E P

ro
of

and multiplications for constants (only values 2 or 3) performed
over the bytes of a column of the state. The easiest way of imple-
menting a multiplication by 2 is using a shift-register, while a mul-
tiplication by 3 can be performed by means of a shift-register and
an addition. Moreover, the sum of two bytes can be carried out by
simply using an exclusive-OR operator. In this way, as demon-
strated in Fig. 3, each byte at the output of MixCol can be imple-
mented by including simple blocks such as shift-registers,
multiplexors and exclusive-OR operators.

4 EXPERIMENTAL RESULTS

Experiments were conducted to test the correctness of the pro-
posed faking countermeasure. The whole system, following the
hardware architecture shown in Figs. 2 and 3, was implemented on
a Virtex-5 FPGA clocked at 24 MHz. Power traces were measured
using a Tektronix CT-1 current probe with a bandwidth range 25
kHz – 1 GHz. The current probe was connected to an Agilent
DSO1024A oscilloscope, which captures and stores current traces
using a sample rate of 2 GS/s.

4.1 Area and Maximum Clock Frequency

The logic resources needed for implementing the overall system,
and the maximum clock frequency fixed by the critical path, are
represented in Table 1. These results were obtained using the ISE
design Suite 13.1 and the synthesis tool XST provided by Xilinx.
Only the area was the parameter chosen to be optimized a no addi-
tional constraints were included in the implementation process.
The table shows the results obtained for an unprotected version of
the AES 128-bit encryption algorithm (using one or two registers)
and for the two proposals presented in Fig. 2 including the faking
countermeasure (one or two clock cycles per round). Note that, the
number of slices is increased by about 30 percent when such coun-
termeasure is included, but it only represents a small part of the
total amount of slices available in the FPGA. Besides, there is not a
noteworthy difference between the logical resources needed by the
two implementations based on one or two registers.

On the other hand, as the internal architecture presented in
Fig. 2a is based on a couple of registers, each round could be solved

in 2 clock cycles (the last round is also solved in 2 clock cycles, due
to the output register in which the cipher text is placed). Thus, a
complete encryption process is performed in 20�TCLK . Moreover,
both the area and the maximum clock frequency of the simplest
implementation based on only one register (Fig. 2b) is almost identi-
cal to the first version. However, each round could be solved in
1�TCLK , so that a plain text could be encrypted in 11�TCLK , which
represents an important advantage in terms of resolution time.

It is noteworthy that the implementation of the countermeasure
requires the use of 16 blocks of BRAM, that are used for imple-
menting the 16 Mk ðk ¼ 0::15Þ memories previously described.
The size of a BRAM memory block is 18 kb (16 kb are for data and
2 kb are for parity). In our particular case, each block of BRAM was
configured as a memory capable of storing 2 k bytes of data. The
upper area of such a memory is used for implementing Mk;a,

whereas the lower area is employed for implementing Mk;b. As

BRAM memory blocks are dual-port, they can be configured to
read and write simultaneously at different addresses. This prop-
erty allows managing each block of BRAM as two independent
memories, which facilitates the updating of mask mH following the
procedure described in Section 3.

4.2 Results for Different Attacks

In order to perform the analysis, traces of current are compressed
in such a way that all samples captured during a clock period are
substituted by their average value. Results are given for both pro-
posals presented in Fig. 2. Thus, Fig. 4 shows an attack performed
on the register located at the output of function SubBytes when the
faking countermeasure is activated. As can be seen, in both cases
the system is completely protected by revealing the false key
KFALSE rather than theKREAL. Specifically, in the first implementa-
tion the correlation obtained for the first byte is about 0.14, while in
the second implementation the value is 0.05. Results for the rest of
sub-bytes are represented in Table 2. Such a table also shows the
ratio between the maximum values obtained for the correlation
regarding KFALSE and KREAL. The best case is produced for the
sub-byte 7, for which the correlation obtained for the true key is
more than 6 times smaller than the correlation obtained for
KFALSE . The worst case is given in sub-byte 15, in which a ratio of
1.17 is obtained.

On the other hand, although the system based on two registers
takes almost twice the time spent by the second proposal, the value
of the correlation related to the false key is in most cases higher.

Fig. 5 shows the evolution of the correlation over an increasing
number of current traces related to different plain texts. Note that,
the minimum number of traces needed to differentiate KFALSE

from the rest of the possible keys is 2,000 and 5,000 traces for the
proposals based on two and one registers, respectively. Again, the
best result is obtained for the first proposal (i.e., two registers).

Fig. 6 shows an attack based on the difference-of-means method
proposed by Kocher [1]. Unlike the original attack, which was per-
formed on a single bit, this attack is targeted on a complete byte fol-
lowing a similar strategy that introduces some modifications

� The process is applied on each bit j included in the byte to
be analysed.

Fig. 3. Partial hardware implementation of block MixCol (calculation of byte 0). This
block is repeated 16 times.

TABLE 1
Area and Maximum Clock Frequency Fmax

AES-128 encryption algorithm LUTs (Lookup table) FF (Flip-Flops) Slices BRAM Fmax (MHz)

Unprotected system excluding the faking (one register) 2,664 (9.2%) 2,610 (9.2%) 1,193 (15.6%) – 167
Unprotected system excluding the faking (two registers) 2,609 (9.1%) 2,740 (9.5%) 1,096 (15.2%) – 192
System protected by faking (one register, Fig. 2.a) 3,963 (13.8%) 2,750 (9.5%) 1,535 (21.3%) 16 (33%) 167
System protected by faking (two registers, Fig. 2.b) 3,806 (13.2%) 2,880 (10%) 1,332 (18.5%) 16 (33%) 192

Percentage (%) against the total number of resources in the FPGA.

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016

IEE
E P

ro
of

� For the specific bit j, in which the attack is initially focused,
the N current traces are separated into two groups,
depending on the value that such a bit takes on the power
consumption model for a particular plain text and a spe-
cific keyKn ðn ¼ 0::255Þ.

� For each key Kn, the average of each group is calculated
and the difference between each average is assigned to the
element dðj; nÞ ðj ¼ 0::7; n ¼ 0::255Þ of a matrix D.

� The process is repeated for all bits and keys until matrix D
is completed.

Fig. 4. Experimental attack on SubBytes based on the correlation method and including the faking countermeasure: a) Implementation based on two registers (as repre-
sented in Fig. 2a), b) Implementations based on one register (as represented in Fig. 2b). TheKFALSE is plotted in blue color and theKREAL is plotted in bold.

TABLE 2
Maximum Correlation forKFALSE; KREAL and Maximum Value for the Result of the Difference-of-Means Method UsingKFALSE; KREAL

Byte (2 register vs. 1 register) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Maximum correlation using the false
key KFALSE_MAX

0,14
vs.
0,05

0,08
vs.
0,03

0,10
vs.
0,05

0,13
vs.
0,04

0,12
vs.
0,07

0,10
vs.
0,03

0,14
vs.
0,07

0,13
vs.
0,05

0,11
vs.
0,08

0,09
vs.
0,04

0,09
vs.
0,05

0,11
vs.
0,05

0,11
vs.
0,07

0,09
vs.
0,06

0,07
vs.
0,07

0,12
vs.
0,05

Maximum correlation using the real
key KREAL_MAX

0,03
vs.
0,02

0,06
vs.
0,02

0,05
vs.
0,01

0,04
vs.
0,02

0,04
vs.
0,02

0,06
vs.
0,02

0,02
vs.
0,02

0,05
vs.
0,02

0,03
vs.
0,01

0,03
vs.
0,02

0,05
vs.
0,01

0,04
vs.
0,01

0,05
vs.
0,02

0,03
vs.
0,01

0,06
vs.
0,02

0,04
vs.
0,02

Ratio between max. correlations
KFALSE_MAX / KREAL_MAX

5,51
vs.
2,61

1,36
vs.
1,3

1,99
vs.
3,69

2,96
vs.
2,05

2,92
vs.
3,41

1,71
vs.
1,62

6,41
vs.
4,35

2,37
vs.
2,88

3,54
vs.
5,73

2,85
vs.
2,70

2,01
vs.
4,78

2,97
vs.
4,97

2,23
vs.
3,48

2,80
vs.
5,71

1,17
vs.
3,48

3,22
vs.
3,48

Maximum value for difference-of-
means DFALSE_MAX for KFALSE

0,43
vs.
0,29

0,41
vs.
0,23

0,37
vs.
0,31

0,39
vs.
0,30

0,47
vs.
0,41

0,41
vs.
0,26

0,41
vs.
0,42

0,39
vs.
0,35

0,34
vs.
0,49

0,27
vs.
0,28

0,32
vs.
0,29

0,34
vs.
0,32

0,47
vs.
0,45

0,32
vs.
0,39

0,33
vs.
0,44

0,46
vs.
0,34

Maximum value for difference-of-
means DREAL_MAX for KREAL

0,07
vs.
0,15

0,26
vs.
0,14

0,20
vs.
0,08

0,19
vs.
0,17

0,20
vs.
0,15

0,13
vs.
0,14

0,09
vs.
0,10

0,14
vs.
0,12

0,11
vs.
0,10

0,13
vs.
0,07

0,16
vs.
0,02

0,19
vs.
0,04

0,21
vs.
0,09

0,11
vs.
0,07

0,25
vs.
0,15

0,11
vs.
0,07

Ratio between max. values of DFAL-

SE_MAX / DREAL_MAX

6,05
vs.
1,95

1,55
vs.
1,69

1,87
vs.
3,94

2,08
vs.
1,80

2,32
vs.
2,85

3,15
vs.
1,90

4,37
vs.
4,32

2,86
vs.
2,95

2,98
vs.
4,79

2,06
vs.
4,11

1,98
vs.

13,86

1,77
vs.
8,46

2,22
vs.
5,24

2,96
vs.
5,31

1,34
vs.
2,97

4,22
vs.
4,49

Ratios for maximum values are also included.

Fig. 5. Experimental attack on SubBytes based on the correlation method and including the faking countermeasure: a) Implementation based on two registers (as repre-
sented in Fig. 2a), b) Implementations based on one register (as represented in Fig. 2b). TheKFALSE is plotted in blue color and theKREAL is plotted in bold.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016 5

IEE
E P

ro
of

� For each column n of matrix D, its average value
Dn ðn ¼ 0::255Þ is calculated. The maximum value of Dn

indicates the correct keyKn.
Fig. 6 represents the result of such an attack performed on the

time interval in which the SubBytes operation is executed. Note
that, the proposed countermeasure successfully conceals the real
key. On the other hand, comparing the results of the two imple-
mentations it can be concluded again that the version based on two
registers produces a higher difference of means, which corrobo-
rates the result presented in Fig. 4. Details about the numeric
results for all sub-bytes are given in Table 2. Additionally, on such
a version the number of current traces needed to obtain a success-
ful result is 3,000, whereas when using only one register such a
number is increased to 15,000 current traces.

Fig. 7 justifies the need of including a mask mH to protect sev-
eral vulnerable parts of the system. In this case, the figure shows
an attack performed on the register located at the output of func-
tion Mixcolumns, but excluding the use of a mask mH as part of the
process carried out on function SbTrans. The attacker uses a partic-
ular plain text in which the 15 more significant bytes are identical.
Only byte 0 is changing its value during each encrypting process. It
is noteworthy that by using this approach, in the first round the
value of the correlation at the output of Mixcolumns will be only
affected by the first byte provided by the output of SubBytes. Such
particularity makes an attack performed at function Mixcolumns
feasible, since its value can be easily predicted. In practice, such an
attack could be carried out by extending, by several additional
clock cycles, the calculation of the correlation at the output of Sub-
Bytes. This conclusion is shown in Fig. 7. Note that, as no mask mH

is used, the system is only protected until the instant of time in
which the remasking between the output of Mixcol and Mixcolumns
is produced. The KFAKE is revealed at time instant 325 ns, when the
output of SubBytes is evaluated. However, in the following clock
cycle, when the remasking function is calculated, the system is
vulnerable and reveals the true key KREAL (trace plotted in bold).

Finally, the protection offered by the faking countermeasure has
also been evaluated following the Test Vector Leakage Assessment
(TVLA) methodology proposed in [20]. Additional details about
this methodology based on the Welch’s t-test can be found in [21],
[22]. Basically, such a test evaluates if whether two sets of data are
significantly different from each other. The calculation of the t-test
statistic is based on the mean, the variance and the number of sam-
ples that form each set of samples. For the sake of simplicity, if
such t-statistic is higher than a threshold, usually j t j>4.5, then it
is accepted that the device fails.

The two sets of data correspond to the overall set of captured
traces that were obtained by a known encrypting plain text. If the
categorization of the two sets is carried out without any knowledge
of the encryption key, then the test is so-called non-specific t-test
(or fixed versus random data datasets). In this case, a fixed text
Tfixed is selected and the device is fed by Tfixed or by a random text

Trandom following a non-deterministic pattern. The categorization is
performed taking into account if traces were obtained using Tfixed

or Trandom. Fig. 8 shows the results for the t-statistic in the first
round when the operations SubBytes and MixColumns are being

Fig. 6. Experimental attack on SubBytes based on the difference-of-means method and using the faking countermeasure. a) Implementation based on two registers (as
represented in Fig. 2a) taking 3,000 traces, b) Implementations based on one register (as represented in Fig. 2b) taking 15,000 traces. TheKFALSE is plotted in blue color
and theKREAL is plotted in bold.

Fig. 7. Experimental attack on SubBytes using the correlation method. System pro-
tected by the faking countermeasure but without using the mask mH. The KFALSE

is plotted in blue color and theKREAL is plotted in bold.

Fig. 8. Experimental t-test results for the fixed-versus-random test based on
15,000 AES operations. The t-statistic overcomes the failing thresholds -4.5 and
þ4.5 (represented in red lines).

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016

IEE
E P

ro
of

evaluated. As is was expected, such a value is always higher than
j t j>4.5 (fail test), since the system is designed to reveal the false
key.

On the other hand, if the categorization of the two sets is per-
formed by means of an intermediate value (for instance the value
of a bit at an instant in time) then the test is so-called specific t-test
(or random versus random data datasets). Note that in this case the
encryption key should be known and then the Welch’s test could
be focused on KFALSE or KREAL. Fig. 9 shows the result of such a test
over KFALSE. As can be seen, during the operation SubBytes (the cat-
egorization is based on the output of this operation) the t-statistic
is higher than 4.5, revealing a leakage of information. However, if
the same test is performed or KREAL the result is quite different. As
Fig. 10 shows, is such a case the value of the t-statistic is always
lower than j t j<4.5 (pass test), which shows as the KREAL is effec-
tively concealed by the faking countermeasure.

4.3 Comparison with Other Proposals Implemented
at Cell Level

The implementation of countermeasures against SCA attacks, have
usually been performed using structures based on DRP (Dual-Rail
Precharge) logic styles. Such structures are based on either full-cus-
tom designs, such as the proposals performed in [4], [7], or designs
based on standard cell libraries [5], [8]. Our proposal does not
include any restriction so that it falls into the second group. Hence,
as was seen in the experimental results, it can be implemented in
FPGAs or in a different technology. On the other hand, the imple-
mentation of the faking countermeasure leads to an increase in the
number of logical resources by about 30 percent (measured in
terms of slices), when compared with the non-protected version
(see Table 1). Additionally, the maximum clock frequency is identi-
cal, and it is not affected by the inclusion of the proposed
countermeasure.

The performance of the proposals made in previous publica-
tions, in terms of logical resources and frequency, vary depending
on the hardware structure in which the countermeasure is based.
For instance, as it is shown in [16], an optimized design of a Wave
Dynamic Differential Logic (WDDL) resistant style on an FPGA
requires 1.95 times the slices of the single-ended design, and in a
non-optimised version this number could be increased by up to 4
times. Other countermeasures such as BCDL [17], MDPL [18] or
iMDPL [8] also increases the area needed by their implementation
by a factor that is always higher than 2. On the other hand, DRP
logic styles follow (independently, if a random mask is included as
part of the basic cell) a sequence based on two states: precharge
and evaluation. During the precharge phase the outputs are set to

either 1 or 0, while in the evaluation phase only one of the outputs
changes its value. Thus, for a constant clock frequency, the time
needed by a DRP logic style for encrypting a plain text is twice that
when compared with a structure based on simple Single Rail (SR)
networks (assuming that all registers flip-flops are synchronised
by positive or negative edge) and the same ratio is obtained if such
a comparison is made against the faking countermeasure.

4.4 Comparison with an Implementation
at Algorithm Level

The faking countermeasure can also be implemented at algorithm
level, but this leads to lower performance than the approach car-
ried out at cell level. Table 3 shows the results obtained when an
AES 128-bit encryption algorithm is executed on MicroBlaze, the
32-bit microprocessor soft-core provided by Xilinx. In order to
facilitate comparison with other microprocessors of similar fea-
tures, the results of execution time are given in clock cycles (TCLK).
Additionally, two implementations have been performed. In the
first (second column of Table 3) the countermeasure was included
as part of the algorithm, whereas in the second one (third column
of Table 3) the countermeasure was disabled. As can be seen, when
the countermeasure is activated, the number of clock cycles is
almost twice that of the non-protected version. Such a difference is

Fig. 10. Experimental t-test results for the random-versus-random test based on
15,000 AES operations usingKREAL. The t-statistic is lower than the failing thresh-
olds -4.5 and þ4.5 (represented in red lines).

Fig. 9. Experimental t-test results for the random-versus-random test based on
15,000 AES operations using KFAKE. The t-statistic overcomes the failing thresh-
olds -4.5 and þ4.5 (represented in red lines).

TABLE 3
Execution Time for One Round of AES 128-Bit Algorithm

Function Execution time
(including faking)

Execution time
(without including faking)

AddRoundKey 52.76 ms
(1266�TCLK)

39.16 ms (940�TCLK)

ShiftRows 4.04 ms
(97�TCLK)

4.04 ms (97�TCLK)

SubBytes 26.58 ms
(638�TCLK)

26.58 ms (638�TCLK)

MixColumns 54.03 ms
(1297�TCLK)

43.17 ms (1036�TCLK)

SboxTrans 4.46 ms
(107�TCLK)

–

MixCol 54.03 ms
(1297�TCLK)

–

Remasking 6.04 ms
(145�TCLK)

–

Execution time
for one round

201.94 ms
(4847�TCLK)

112.95 ms (2711�TCLK)

Results Given for a 32-Bit Microprocessor (MicroBlaze) at 24 MHz, Including
and Excluding the Faking Countermeasure.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016 7

IEE
E P

ro
of

mainly due to theMixCol function, which requires about 25 percent
of the total execution time. The results obtained in [2] for an AES
128-bit masked implementation at algorithm level are quite similar.
The difference between the masked an unmasked implementa-
tions, measured in clock cycles, is also double. Thus, although the
faking countermeasure can very well be included in a microproces-
sor, the best performance is obtained for the hardware implemen-
tation at cell level.

5 CONCLUSION

This paper presented a novel countermeasure against SCA attacks
implemented in hardware. Unlike previous approaches aimed at
concealing the statistical dependence between data and power con-
sumption, the fortress of the countermeasure is based on revealing
a false key. In order to verify the correctness of our proposal, two
different implementations were performed on a Virtex 5 FPGA.
Several attacks were carried out on function SubBytes of the AES
128-bit encryption algorithm. In all cases, the experimental results
corroborated the efficiency of our proposal, demonstrating that the
system is completely protected. Particularly, results show that the
first implementation based on two registers provides the highest
correlation factor for the false key using a lower number of cap-
tured traces. However, the second implementation is able to
encrypt a plain text in half the time using about the same amount
of logical resources. When compared with countermeasures based
on dual-rail networks, the area needed for implementing our pro-
posal is significantly lower. Additionally, as no restrictions are
included in the hardware design, the system could also be imple-
mented in an ASIC device using standard cell libraries.

ACKNOWLEDGMENTS

This work was supported by the Ministerio de Econom�ıa y Com-
petitividad in the framework of the Programa Nacional de Proyec-
tos de Investigaci�on Fundamental, project TEC2012-38329-C02-02.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proc. 19th
Ann. Int. Cryptology Conf. Adv. Cryptology, Aug. 15-19, 1999, pp. 388–397.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks—Revealing the
Secrets of Smart Cards. New York, NY, USA: Springer, 2007.

[3] S. Mangard, “Hardware countermeasures against DPA—A statistical anal-
ysis of their effectiveness,” in Topics in Cryptology, T. Okamoto Ed. Berling,
Germany: Springer, Feb. 23-27, 2004, pp. 222–235.

[4] S. K. Tiri, M. Akmal, and I. Verbauwhede, “A dynamic and differential
CMOS logic with signal independent power consumption to withstand dif-
ferential power analysis on smart cards,” in Proc. 28th Eur. Solid-State Cir-
cuits Conf., 2002, pp. 403–406.

[5] K. Tiri and I. Verbauwhede, “A logic level design methodology for a secure
DPA resistant ASIC or FPGA implementation,” in Proc. Des. Autom. Test
Eur. Conf. Expo., Feb. 16-20, 2004, pp. 246–251.

[6] S. Mangard and K. Schramm, “Pinpointing the side-channel leakage of
masked AES hardware implementation,” in Proc. Cryptographic Hardware
Embedded Syst., 2006, pp. 76–90.

[7] D. Suzuki, M. Saeki, and T. Ichikawa, “Random switching logic: A counter-
measure against DPA based on transition probability,” Cryptology ePrint
Archive, Report 2004/346, 2004. [Online]. Available: http: //eprint.iacr.
org/.

[8] T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard, “Evaluation of the
masked logic style MDPL on a prototype chip,” in Proc. Cryptographic Hard-
ware Embedded Syst., Sep. 10-13, 2007, pp. 81–94.

[9] R. P. McEvoy, C. C. Murphy, W. P. Marnane, and M. Tunstall, “Isolated
WDDL: A hiding countermeasure for differential power analysis on
FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 2, no. 1, pp. 1–23,
2009.

[10] W. He, E. de la Torre, and T. Riesgo, “A precharge—Absorbed DPL logic
for reducing early propagation effects on FPGA implementations,” in Proc.
Int. Conf. Reconfigurable Comput. FPGAs, 2011, pp. 217–222.

[11] N. Kamoun, L. Boussuet, and A. Ghazel, “Correlated power noise genera-
tor as low cost DPA countermeasures to secure hardware AES chiper,” in
Proc. 3rd. Int. Conf. Signals Circuits Syst., 2009, pp. 1–6.

[12] J. Daemen and V. Rijmen, The Design of Rijndael: AES—The Advanced
Encryption Standard. Berlin, Germany: Springer, 2002.

[13] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” [Online]. Available:
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf, 1999.

[14] S. Mangard, E. Oswald, and F.-X. Standaert, “One for all—All for one: Uni-
fying standard differential power analysis attacks,” IET Inf. Security, vol. 5,
no. 2, 2011.

[15] G. Piret and F. X. Standaert, “Security analysis of higher-order Boolean
masking schemes for block ciphers (with conditions of perfect masking),”
IET Inf. Secur., vol. 2, no. 1, 2008.

[16] K. Tiri and I. Verbauwhede, “Synthesis of secure FPGA implementations,”
in Proc. Int. Workshop Logic Synthesis, 2004, pp. 224–231

[17] M. Nassar, S. Bhasin, J.-L. Danger, G. Due, S. Guilley, “BCDL: A high
performance balanced DPL with global precharge and without early-
evaluation,” in Proc. Des. Autom. Test Eur. IEEE Comput. Soc., Mar. 2010,
pp. 849–854.

[18] T. Popp and S. Mangard, “Masked dual-rail pre-charge logic: DPA-resis-
tance without routing constraints,” in Proc. 7th Int. Workshop Cryptographic
Hardware Embedded Syst., 2005, pp. 172–186.

[19] P. Kohlbrenner and K. Gaj, “An embedded true random generator for
FPGAs,” in Proc. ACM/SIGDA 12th Int. Symp. Field Programmable Gate
Arrays, 2004, pp. 71–78.

[20] J. Cooper, E. Demulder, G. Goodwill, J. Jaffe, G. Kenworthy, and P. Rohatgi,
“Test vector leakage assessment (TVLA) methodology in practice,” in Proc.
Int. Cryptographic Module Conf., 2013. [Online]. Available: http://icmc-2013.
org/wp/wp-conent/uploads/2013/09/goodwillkenworthtestvector.pdf

[21] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing methodology for
side channel resistance validation,” in Proc. NIST Non-Invasive Attack Test-
ing Workshop, 2011. [Online]. Available: http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

[22] T. Schnneider and A. Moradi, “Leakage assessment methodology—A clear
roadmap for side-channel evaluations,” in Proc. Cryptographic Hardware
Embedded Syst., 2015, pp. 495–513.

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. X, XXXXX 2016

IEE
E P

ro
of

Queries to the Author

Q1. Please provide complete bibliography details for references [7], [21], and [23].
Q2. Please provide year for reference [13].
Q3. Please provide page-range for references [20] and [22].

	Página en blanco

