2,816 research outputs found

    Subroutines in P Systems and Closure Properties of Their Complexity Classes

    Get PDF
    The literature on membrane computing describes several variants of P systems whose complexity classes C are "closed under exponentiation", that is, they satisfy the inclusion PC C, where PC is the class of problems solved by polynomial-time Turing machines with oracles for problems in C. This closure automatically implies closure under many other operations, such as regular operations (union, concatenation, Kleene star), intersection, complement, and polynomial-time mappings, which are inherited from P. Such results are typically proved by showing how elements of a family of P systems can be embedded into P systems simulating Turing machines, which exploit the elements of as subroutines. Here we focus on the latter construction, abstracting from the technical details which depend on the speci c variant of P system, in order to describe a general strategy for proving closure under exponentiation

    On the complexity of solving linear congruences and computing nullspaces modulo a constant

    Full text link
    We consider the problems of determining the feasibility of a linear congruence, producing a solution to a linear congruence, and finding a spanning set for the nullspace of an integer matrix, where each problem is considered modulo an arbitrary constant k>1. These problems are known to be complete for the logspace modular counting classes {Mod_k L} = {coMod_k L} in special case that k is prime (Buntrock et al, 1992). By considering variants of standard logspace function classes --- related to #L and functions computable by UL machines, but which only characterize the number of accepting paths modulo k --- we show that these problems of linear algebra are also complete for {coMod_k L} for any constant k>1. Our results are obtained by defining a class of functions FUL_k which are low for {Mod_k L} and {coMod_k L} for k>1, using ideas similar to those used in the case of k prime in (Buntrock et al, 1992) to show closure of Mod_k L under NC^1 reductions (including {Mod_k L} oracle reductions). In addition to the results above, we briefly consider the relationship of the class FUL_k for arbitrary moduli k to the class {F.coMod_k L} of functions whose output symbols are verifiable by {coMod_k L} algorithms; and consider what consequences such a comparison may have for oracle closure results of the form {Mod_k L}^{Mod_k L} = {Mod_k L} for composite k.Comment: 17 pages, one Appendix; minor corrections and revisions to presentation, new observations regarding the prospect of oracle closures. Comments welcom

    Model checking Branching-Time Properties of Multi-Pushdown Systems is Hard

    Full text link
    We address the model checking problem for shared memory concurrent programs modeled as multi-pushdown systems. We consider here boolean programs with a finite number of threads and recursive procedures. It is well-known that the model checking problem is undecidable for this class of programs. In this paper, we investigate the decidability and the complexity of this problem under the assumption of bounded context-switching defined by Qadeer and Rehof, and of phase-boundedness proposed by La Torre et al. On the model checking of such systems against temporal logics and in particular branching time logics such as the modal μ\mu-calculus or CTL has received little attention. It is known that parity games, which are closely related to the modal μ\mu-calculus, are decidable for the class of bounded-phase systems (and hence for bounded-context switching as well), but with non-elementary complexity (Seth). A natural question is whether this high complexity is inevitable and what are the ways to get around it. This paper addresses these questions and unfortunately, and somewhat surprisingly, it shows that branching model checking for MPDSs is inherently an hard problem with no easy solution. We show that parity games on MPDS under phase-bounding restriction is non-elementary. Our main result shows that model checking a kk context bounded MPDS against a simple fragment of CTL, consisting of formulas that whose temporal operators come from the set {\EF, \EX}, has a non-elementary lower bound

    Polar Varieties, Real Equation Solving and Data-Structures: The hypersurface case

    Get PDF
    In this paper we apply for the first time a new method for multivariate equation solving which was developed in \cite{gh1}, \cite{gh2}, \cite{gh3} for complex root determination to the {\em real} case. Our main result concerns the problem of finding at least one representative point for each connected component of a real compact and smooth hypersurface. The basic algorithm of \cite{gh1}, \cite{gh2}, \cite{gh3} yields a new method for symbolically solving zero-dimensional polynomial equation systems over the complex numbers. One feature of central importance of this algorithm is the use of a problem--adapted data type represented by the data structures arithmetic network and straight-line program (arithmetic circuit). The algorithm finds the complex solutions of any affine zero-dimensional equation system in non-uniform sequential time that is {\em polynomial} in the length of the input (given in straight--line program representation) and an adequately defined {\em geometric degree of the equation system}. Replacing the notion of geometric degree of the given polynomial equation system by a suitably defined {\em real (or complex) degree} of certain polar varieties associated to the input equation of the real hypersurface under consideration, we are able to find for each connected component of the hypersurface a representative point (this point will be given in a suitable encoding). The input equation is supposed to be given by a straight-line program and the (sequential time) complexity of the algorithm is polynomial in the input length and the degree of the polar varieties mentioned above.Comment: Late

    Active Self-Assembly of Algorithmic Shapes and Patterns in Polylogarithmic Time

    Get PDF
    We describe a computational model for studying the complexity of self-assembled structures with active molecular components. Our model captures notions of growth and movement ubiquitous in biological systems. The model is inspired by biology's fantastic ability to assemble biomolecules that form systems with complicated structure and dynamics, from molecular motors that walk on rigid tracks and proteins that dynamically alter the structure of the cell during mitosis, to embryonic development where large-scale complicated organisms efficiently grow from a single cell. Using this active self-assembly model, we show how to efficiently self-assemble shapes and patterns from simple monomers. For example, we show how to grow a line of monomers in time and number of monomer states that is merely logarithmic in the length of the line. Our main results show how to grow arbitrary connected two-dimensional geometric shapes and patterns in expected time that is polylogarithmic in the size of the shape, plus roughly the time required to run a Turing machine deciding whether or not a given pixel is in the shape. We do this while keeping the number of monomer types logarithmic in shape size, plus those monomers required by the Kolmogorov complexity of the shape or pattern. This work thus highlights the efficiency advantages of active self-assembly over passive self-assembly and motivates experimental effort to construct general-purpose active molecular self-assembly systems

    Zielonka's Recursive Algorithm: dull, weak and solitaire games and tighter bounds

    Full text link
    Dull, weak and nested solitaire games are important classes of parity games, capturing, among others, alternation-free mu-calculus and ECTL* model checking problems. These classes can be solved in polynomial time using dedicated algorithms. We investigate the complexity of Zielonka's Recursive algorithm for solving these special games, showing that the algorithm runs in O(d (n + m)) on weak games, and, somewhat surprisingly, that it requires exponential time to solve dull games and (nested) solitaire games. For the latter classes, we provide a family of games G, allowing us to establish a lower bound of 2^(n/3). We show that an optimisation of Zielonka's algorithm permits solving games from all three classes in polynomial time. Moreover, we show that there is a family of (non-special) games M that permits us to establish a lower bound of 2^(n/3), improving on the previous lower bound for the algorithm.Comment: In Proceedings GandALF 2013, arXiv:1307.416

    Simulating counting oracles with cooperation

    Get PDF
    We prove that monodirectional shallow chargeless P systems with active membranes and minimal cooperation working in polynomial time precisely characterise P#P k , the complexity class of problems solved in polynomial time by deterministic Turing machines with a polynomial number of parallel queries to an oracle for a counting problem

    Thermal radiation analysis system TRASYS 2: User's manual

    Get PDF
    The Thermal Radiation Analyzer System (TRASYS) program put thermal radiation analysis on the same basis as thermal analysis using program systems such as MITAS and SINDA. The user is provided the powerful options of writing his own executive, or driver logic and choosing, among several available options, the most desirable solution technique(s) for the problem at hand. This User's Manual serves the twofold purpose of instructing the user in all applications and providing a convenient reference book that presents the features and capabilities in a concise, easy-to-find manner
    • …
    corecore