
Simulating counting oracles with cooperation

Alberto Leporati1, Luca Manzoni1, Giancarlo Mauri1,
Antonio E. Porreca2, and Claudio Zandron1

1 Dipartimento di informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca,
Viale Sarca 336, 20126, Milan, Italy
alberto.leporati@unimib.it luca.manzoni@unimib.it

giancarlo.mauri@unimib.it claudio.zandron@unimib.it
2 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
antonio.porreca@lis-lab.fr

Summary. We prove that monodirectional shallow chargeless P systems with active
membranes and minimal cooperation working in polynomial time precisely charac-
terise P#P

‖ , the complexity class of problems solved in polynomial time by deterministic
Turing machines with a polynomial number of parallel queries to an oracle for a counting
problem.

1 Introduction

Many variants of P systems with active membranes [8] are able to solve tradition-
ally intractable problems: with charges and bidirectional communication, uniform
families of them are able to solve P#P-complete problems when only one level of
membrane nesting (i.e., shallow systems) is allowed [2, 3], and PSPACE-complete
problems when this restriction is removed [9]. The presence of simple cooperation
rules, like the ones provided by antimatter, where two opposite objects can annihi-
late each other, allows the systems to reach P#P with a shallow membrane struc-
ture, also when the systems have no charges [5]. Even when the communication
is severely restricted, as in monodirectional systems, where send-in is forbidden,
uniform families of P systems with active membranes with charges characterize
PNP or, if shallow, the class PNP

‖ , as shown in [4]. It is interesting to see that
this is not the case for monodirectional systems with antimatter: the additional
cooperation provided by object annihilation makes possible to “count” once, thus
allowing families of this kind of systems the ability to reach P#P[1] = P

#P
‖ , even

with only one level of nesting [5].
In this paper we continue the investigation of the importance of cooperation

to increase the computational power of P systems. In particular, we show that
monodirectional systems with minimal cooperation [10] working in polynomial

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/286563793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

110 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

time also characterize the class of all decision problems solvable in polynomial
time by a deterministic Turing machine with access to a single query of a #P

oracle, i.e., P#P[1] = P
#P
‖ .

The paper is organized as follows: Section 2 introduces the basic notions nec-
essary for the rest of the paper. Section 3 shows how a single #P query can be
simulated, and in Section 4 the main result is presented. Section 5 contains the
conclusions, and shows some directions for future research.

2 Basic Notions

In this paper we consider (semi)uniform families of P systems with active mem-
branes without charges and using minimal cooperative evolution rules [ab→ w]h,
send-out rules [a]h → []h b and elementary division rules [a]h → [b]h [c]h, where a,
b, and c are single objects and w is a multiset of objects. For the technical details
we refer the reader to Valencia-Cabrera et al. [10].

We also consider polynomial-time Turing machines with oracles for count-
ing problems in the complexity class #P [7] and, in particular, the complexity

classes P#P[1], where only one query is allowed, and P
#P
‖ , when any polynomial

number of queries is allowed, but they must all be carried out in parallel, that is, all
query strings are prepared in advance before actually interrogating the oracle (in
other words, later queries are not adaptive with respect to the answers to previous
ones). The two classes P#P[1] and P

#P
‖ actually turn out to be equivalent:

Proposition 1 (Leporati et al. [5]). A polynomial number of parallel #P

queries can be simulated by a single #P query in polynomial time (in sym-

bols P
#P
‖ = P#P[1]).

Proof. A single query does never depend on the results of previous queries,
thus P#P[1] ⊆ P

#P
‖ by definition.

Conversely, let M be a deterministic Turing machine running in polynomial
time p(n) with parallel oracle queries for a function f ∈ #P, and let N be a
nondeterministic Turing machine having f(x) accepting computations for each
input string x of length n and running in polynomial time q(n).

Then f(x) ≤ 2q(|x|) for each input string x, since 2q(n) is the maximum number
of computations of N on an input of length n (assuming binary nondeterministic
choices). Clearly, due to its running time, the machine M can only ask queries with
query strings of length bounded by p(n), which means that each query answer is
an integer bounded by 2q(p(n)), and M can ask up to p(n) queries.

Let x1, x2, . . . , xp(n) be the query strings of M on a run on a given input,
letting xi = ε if M asks less than i queries, and let g : Σ? → N, with Σ the union
of the query alphabet and the separator symbol $, be defined as

g(x1$x2$. . . $xp(n)) =

p(n)∑
i=1

Bi × f(xi)

Simulating counting oracles with cooperation 111

where B = 2q(p(n)) + 1; this corresponds to encoding all the query answers as a
base-B integer. Then, a single query to g contains all the information that can be
obtained by asking up to p(n) parallel queries to f , since each value f(xi) can be
recovered in polynomial time by computing

f(xi) =

⌊
g(x1$x2$. . . $xp(n))

Bi−1

⌋
mod B.

The function g is also in #P, since this class is closed under summations and
products [1], and this proves P

#P
‖ ⊆ P#P[1]. ut

3 Simulating a single #P query monodirectionally

It is quite easy to simulate efficiently (actually, in linear time) a deterministic
Turing machine working in polynomial time, and thus using only a tape length, by
means of a uniform family of P systems [6]. A configuration of the Turing machine
can be encoded as a multiset of objects as follows:

a b b a

q

0 1 2 3 4 5

a0 b1 b2 a3

q1

�4 �5b2

that is, each symbol (including blanks) is subscripted by an index corresponding
to the number of the tape cell, and the state of the machine is also represented
as an object, subscripted by the index of the cell currently under the tape head.
Blank tape cells are represented by the �i objects. Then, each transition of the
machine, say δ(q, b) = (r, a, d) with d = ±1, is simulated by a set of cooperative
evolution rules replicated for each legitimate tape position:

[qi bi → ri+d ai]h for 0 ≤ i < s(n) (1)

where s(n) is the polynomial space bound of the machine tape. These rules replace
the symbol bi under the tape head by ai, and update the state symbol qi to ri+d,
which also updates the position of the tape head.

A nondeterministic Turing machine can be simulated by dividing elementary
membranes, replacing the rules (1) by

[qi bi → 〈qi, bi〉]h for 0 ≤ i < s(n) (2)

[〈qi, bi〉]h → [〈ri+d, ai〉′]h [〈si+e, ci〉′]h for 0 ≤ i < s(n) (3)

[〈ri+d, ai〉′ → ri+d ci]h for 0 ≤ i < s(n) (4)

[〈si+e, bi〉′ → si+e ci]h for 0 ≤ i < s(n) (5)

in the case of a nondeterministic transition such as δ(q, b) = {(r, a, d), (s, c, e)}.
The rules of type (2) “pack” the head-state object and the object representing the

112 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

symbol under the tape head into a single object (which is necessary in order to
respect the membrane division rule format). The rules of type (3) then perform the
transition rule by dividing the membrane and rewriting the packed object into the
two objects representing the two possible evolutions of the configuration, one in
each of the resulting membranes; these objects are primed, in order to signal that
they are the result of the transition and not the left-hand side. Finally, the two
resulting objects are “unpacked” by the rules of type (4) and (5), thus obtaining
the two possible Turing machine configurations inside the divided membranes.
In order to avoid synchronisation issues due to the three-step simulation of a
nondeterministic transition vs the one-step simulation of deterministic ones, we
also slow down the latter accordingly, using the rules

[qi bi → 〈qi, bi〉]h for 0 ≤ i < s(n)

[〈qi, bi〉 → 〈ri+d, ai〉′]h for 0 ≤ i < s(n)

[〈ri+d, ai〉′ → ri+d ai]h for 0 ≤ i < s(n)

in the case of a deterministic transition such as δ(q, b) = (r, a, d).
Thus, a single membrane (or a number of membranes obtained by division

of a single initial one, in the case of nondeterminism) can efficiently simulate a
polynomial-size tape Turing machine and, in particular, a Turing machine working
in polynomial time. On the other hand, by using several nested membranes it is
possible to efficiently simulate oracle queries [6]. With bidirectional P systems (i.e.,
standard P systems using both send-in and send-out rules) the simulation of the
Turing machine is paused, then one usually sends the query string into a child
membrane, where another Turing machine for the oracle language is simulated,
possibly using membrane division; the answer is sent out and the simulation of the
original Turing machine is resumed.

With monodirectional P systems we proceed in the opposite direction: we first
duplicate and send out the multiset encoding the configuration of the Turing
machine being simulated, then the oracle machine is simulated in the innermost
membrane, and the result is sent out, where the simulation of the original Turing
machine can then resume [6]. This process is depicted in Figure 1.

When the simulated Turing machine answering the query is nondeterministic,
several result-objects yes are sent out from the divided membranes; they can be
counted and operated upon by the Turing machine simulated in the external mem-
brane by converting them in the binary representation of their multiplicity. This
can be accomplished by using cooperative evolution rules as follows:

[yes→ 10]k

[1i 1i → 1i+1]k for 0 ≤ i < m

where m is the maximum number of bits for the answer, which can be computed
as in the proof of Proposition 1. These rules produce the multiset of 1i for all
positions i where the number of yes objects produced as the answer to the query

Simulating counting oracles with cooperation 113

a0
b1 $2 a3 b4

b5 a6 $7 b8
�9

h

k

q?,3

a0
b1 $2 a3 b4

b5 a6 $7 b8
�9

h

k

q′0,3

a0
b1 $2 a3 b4

b5 a6 $7 b8
�9

w3

Fig. 1. Simulating an oracle query by means of monodirectional P systems. The portion
of configuration delimited by $ corresponds to the oracle query string, and the tape
head is located on its first symbol. When the Turing machine being simulated inside
membrane h enters the query state q?, its configuration is duplicated and sent out. The
head-state object inside membrane h now represents the state q′0, the initial state of the
Turing machine to be simulated in order to answer the oracle query, while the head-state
object outside (in membrane k) represent a “dummy” symbol waiting for state w.

expressed in binary notation, contains a 1. By combining this with the multi-
set 0m 0m−1 · · · 01 00 using the rules

[0i 1i → 1i]k for 0 ≤ i ≤ m

i.e., by deleting the objects 0i corresponding to the existing objects 1i, we obtain
the binary notation for the answer to the query, which can then be processed by
the original Turing machine (now being simulated inside membrane k) as part of
its tape.

The existence of the simulation described here, together with Proposition 1,
prove the following result:

Theorem 1. A deterministic polynomial time Turing machine with a polynomial
number of queries to a #P problem can be simulated by shallow chargeless monodi-
rectional P systems with active membranes and minimal cooperation rules in poly-
nomial time. ut

114 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

4 Simulating P systems with a single #P query

The query used by the Turing machine that simulates a shallow chargeless P system
with active membranes and minimal cooperation, working in polynomial time, is
the following:

Query 1. Given the description of a P system Π, an elementary membrane la-
bel h, an object type a and a time t in unary notation, how many objects of type a
are collectively sent out by membranes with label h at time t?

It is now necessary to prove that the answer to the query can be actually
computed by a function in #P, i.e., it is a “valid” oracle query for the Turing
machines that we are considering. Here we only give a sketch of the proof; all the
details can be found in [5].

Lemma 1. Query 1 is in #P.

Proof. Query 1 can be answered by essentially simulating a single-membrane P sys-
tem; indeed, if Π is monodirectional, no object can enter membrane h from the
parent membrane, and if h is elementary, neither can objects from children mem-
branes. By the Milano Theorem [11], a P system without division (thus, in partic-
ular, a single membrane without division), even with cooperative evolution rules,
can be simulated in deterministic polynomial time. By allowing nondeterminism,
the divisions [a]h → [b]h [c]h of membrane h can be simulated in polynomial time
by nondeterministically choosing whether to simulate the “left” (where a is rewrit-
ten as b) or the “right” membrane (where a is rewritten as c) resulting from the
division. After simulating t steps, this results in a nondeterministic computation
tree with a leaf for each instance of membrane h. Each computation must accept
if and only if an object of type a is sent out at time t, which gives us a number of
accepting computations identical to the number of objects a that are collectively
sent out at time t by membranes labelled by h, proving that the query is in #P. ut

Since we have shown that the query is actually computable by a function in
#P, we are now ready to prove the main theorem of this section:

Theorem 2. A family of (semi)uniform shallow chargeless monodirectional P sys-
tems with active membranes running in polynomial time can be efficiently simulated
with a single #P query.

Proof. Given an input string x, the corresponding P system Πx can be constructed
in polynomial time by a deterministic Turing machine M that simulates the (two)
Turing machine(s) establishing the (semi)uniformity condition.

Before beginning the actual simulation of Πx, we can ask a number of queries
to an oracle for Query 1; in particular, we ask Query 1 for each possible value of h
(labels of elementary membranes), of a (symbols of the alphabet of Πx), and of t
(time steps between 0 and p(|x|), where p is the polynomial running time of the

Simulating counting oracles with cooperation 115

family). Clearly, this is a polynomial number of parallel queries. These queries can
then be combined into a single #P query by means of Proposition 1.

Then, the external membrane of Πx can be simulated by Turing machine M .
Since this membrane does not divide, by the Milano Theorem [11] it can be sim-
ulated deterministically in polynomial time, except for the objects coming from
the children membranes, which are allowed to divide. But these have already been
precomputed by asking the oracle queries, and can simply be added with the corre-
sponding multiplicity in the correct time step to the configuration of the outermost
membrane. The simulation can then be carried out correctly until the result ob-
ject is sent out to the environment, and the simulation algorithm accepts or rejects
correspondingly. ut

5 Conclusions

We have shown that minimal cooperation for monodirectional, shallow P systems
with active membranes without charges is sufficient to reach and characterize P

#P
‖ .

This minimal amount of cooperation seems actually necessary and it might be ex-
pressed either explicitly (as done here), or implicitly (as with antimatter [5]).
However, the minimal amount of cooperation actually required to “count”, thus
allowing the construction of a #P oracle, is still an open research avenue. In fact,
while minimal cooperation can simulate annihilation rules in P systems with anti-
matter, it is unclear if there exist ways of performing cooperative actions that are
even weaker, while still attaining the ability to “count” and perform #P queries.

References

1. Fortnow, L.: Counting complexity. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Com-
plexity Theory Retrospective II, pp. 81–107. Springer (1997)

2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating ele-
mentary active membranes, with an application to the P conjecture. In: Gheorghe,
M., Rozenberg, G., Sośık, P., Zandron, C. (eds.) Membrane Computing, 15th Inter-
national Conference, CMC 2014. Lecture Notes in Computer Science, vol. 8961, pp.
284–299. Springer (2014), https://doi.org/10.1007/978-3-319-14370-5 18

3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane divi-
sion, oracles, and the counting hierarchy. Fundamenta Informaticae 138(1–2), 97–111
(2015), https://doi.org/10.3233/FI-2015-1201

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.:
Monodirectional P systems. Natural Computing 15(4), 551–564 (2016),
https://doi.org/10.1007/s11047-016-9565-2

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: The counting
power of P systems with antimatter. Theoretical Computer Science 701, 161–173
(2017), https://doi.org/10.1016/j.tcs.2017.03.045

6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Subroutines in
P systems and closure properties of their complexity classes. Theoretical Computer
Science (2018), https://doi.org/10.1016/j.tcs.2018.06.012, in press

116 A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
8. Păun, G.: P systems with active membranes: Attacking NP-complete problems. Jour-

nal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)
9. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A char-

acterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–152
(2007), https://doi.org/10.1016/j.jcss.2006.10.001

10. Valencia-Cabrera, L., Orellana-Mart́ın, D., Mart́ınez-del-Amor, M.A., Riscos-Núñez,
A., Pérez-Jiménez, M.J.: Polarizationless P systems with active membranes: Com-
putational complexity aspects. Journal of Automata, Languages and Combinatorics
21(1–2), 107–123 (2016), https://doi.org/10.25596/jalc-2016-107

11. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems us-
ing P systems with active membranes. In: Antoniou, I., Calude, C.S., Din-
neen, M.J. (eds.) Unconventional Models of Computation, UMC’2K, Proceed-
ings of the Second International Conference, pp. 289–301. Springer (2001),
https://doi.org/10.1007/978-1-4471-0313-4 21

