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6 BANK ET AL.

of any affine zero-dimensional equation system in nonuniform sequential time that is
polynomialin the length of the input (given in straight-line program representation) and
an adequately definegeometric degree of the equation systdReplacing the notion of
geometric degree of the given polynomial equation system by a suitably dedialeg@r
complex) degre®f certain polar varieties associated to the input equation of the real
hypersurface under consideration, we are able to find for each connected component of
the hypersurface a representative point (this point will be given in a suitable encoding).
The input equation is supposed to be given by a straight-line program and the (sequential
time) complexity of the algorithm is polynomial in the input length and the degree of
the polar varieties mentioned abovea997 Academic Press

1. INTRODUCTION

The present article is strongly related to the main complexity results and
algorithms in [18-20]. Whereas the algorithms developed in these papers
concern solving polynomial equation systems over the complex numbers, here
we deal with the problem of real solving. More precisely, we consider the
particular problem of finding real solutions of a single equatitim) = 0,
where f is ann-variate polynomial of degreé > 2 over the rationals which
is supposed to be a regular equation of a compact and smooth hypersurface of
R™. Best known complexity bounds for this problem over the reals are of the
form d°) | counting arithmetic operations i@ at unit cost (see [1, 6, 22, 23,
26-28, 41, 42, 50]).

Complex root finding methods cannot be applied directly to real polynomial
equation solving just by looking at the complex interpretation of the input
system. If we want to use a complex root finding method for a problem over
the reals, some previous adaptation or preprocessing of the input data becomes
necessary. In this paper we show that cerfarar varietiesassociated to our
input affine hypersurface possess specific geometric properties, which permits
us to adapt the complex main algorithm designed in the papers [18-20] to the
real case.

This algorithm is ofintrinsic type,which means that it allows us to distinguish
between semantical and syntactical properties of the input system in order to
profit from both for an improvement of the complexity estimates compared with
more “classical” procedures (as e.g. [5, 6, 8-10, 14, 17, 24, 25, 30-32, 34, 35,
44]). The papers [18—-20] show that tgeometric degree of the input systé&n
associated with the intrinsic complexity of solving the system algorithmically
when the complexity is measured in terms of the number of arithmetic operations
in @. The paper [18] is based on the somewhat unrealistic complexity model in
which certainFOR instructions executable in parallel count at unit cost. This
drawback of the complexity model is corrected in the paper [19] at the price
of introducing algebraic parameters in the straight-line programs and arithmetic
networks occurring there. These algebraic parameters are finally eliminated in
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the paper [20], which contains a procedure satisfying our complexity requirement
and is completely rational.

We show that the algorithmic method of the papers [18—20] is also applicable
to the problem of (real) root finding in the case of a compact and smooth
hypersurface ofR", given by ann-variate polynomialf of degreed with
rational coefficients which represents a regular equation of that hypersurface. It
is possible to design an algorithmiotrinsic typeusing the same data structures
as in [20], namely arithmetic networks and straight-line programs @véthe
straight-line programs—which are supposed to be division-free—are used for
the coding of input system, intermediate results, and output). In the complexity
estimates the notion digeometric) degree of the input systerih[18-20] has
then to be replaced by tHeomplex or real) degree of the polar varietiedich
are associated to the input equation.

The basic computation model used in our algorithm will be that of an
arithmetic network with parameters i (compare with [20]). Our first
complexity result is the following:

There is an arithmetic network of sizedsL)°(") with parameters in the field

of the rational numbers which finds at least one representative point in every
connected component of a smooth compact hypersurfd€e given by a regular
equationf € Q[X, ..., X,] of degreed > 2. Here L denotes the size of a
suitable straight-line program which represents the input of our procedure coding
the input polynomialf. Moreover,é denotes the maximal geometric degree of
suitably defined polar varieties associated to the input equafion

The network size(nd6L)°V) involves the maximal geometric degree of
certain complex polar varieties associated to the equatibn The answer
concerning the algorithmic problem is satisfactory. However, this is not the case
with respect to the network size that measures the complexity of the underlying
algorithm, because the size depends, beside$ and L, on the parameter
6, which is related to complex considerations rather than to real ones. Our
second complexity result deals with a procedure showing a complexity that is
polynomial only in a suitably definer@al degree of the associated polar varieties
instead of their geometric degree.

The second complexity result relies on two algorithmic assumptions which are
very strong in theory, but hopefully not so restrictive in practice. We assume
now that a factorization procedure for univariate polynomials o®ebeing
“polynomial” in a suitable sense (e.g. counting arithmetic operatiofgan unit
cost) is available and that we are able (also at polynomial cost) to localize regions
where a given multivariate polynomial has “many” real zeros (if there exist
such regions). This second assumption may be replaced by the following more
theoretical one (which, however, is simpler to formulate precisely): we suppose
that we are able to decide in polynomial time whether a given multivariate
polynomial has a real zero (however, we dot suppose that we are able to
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exhibit such a zero if there exists one). We call an arithmetic netwrénded
if it uses subroutines of these two types.

Let notations and assumptions be as before. Suppose furthermorg tbpte-

sents a regular equation of a nonempty smooth and compact real hypersurface.
Then there exists an extended arithmetic network which finds at least one rep-
resentative point for each connected component of the real hypersurface given
by f. The size of this arithmetic network (adé* L)Y whereé* denotes the
suitably defined maximal real degree of the polar varieties mentioned above.

Complexity results in a similar sense for the specific problermwherical
polynomial equation solving can be found in [49], following an approach
initiated in [45-48] (see also [12, 13]). In the same sense one might also want
to mention [7] and [15] as representative contributions for the sparse viewpoint.
For more details we refer the reader to [40] and [20] and the references cited
therein.

2. POLAR VARIETIES

As usual, letQ, R, and C denote the field of rational, real, and complex
numbers, respectively. The affinespaces over these fields are denoted by
Q", R™, and C™, respectively. Further, l[e€™ be endowed with the Zariski
topology of@Q-definable algebraic sets, where a closed set consists of all common
zeros of a finite number of polynomials with coefficientsin Let W C C™ be
a closed subset with respect to this topology andite C; U - .- U C; be its
decomposition into irreducible components with respect to the same topology.
ThusW, C, ..., C, are algebraic subsets 6f*. We call W equidimensional
if all its irreducible component§’;, ..., C, have the same dimension.

In the following we need the notion of (geometric) degree of an affine
algebraic variety. LetW be an equidimensional Zariski closed subseCof If
W is zero-dimensional, thdegreeof W, denoted bydeg W, is defined as the
cardinality of W (neither multiplicities nor points at infinity are counted).if
is of positive dimensiorr, then we consider the collectiat of all (n — r)-
dimensional affine linear subspaces, given as the solution 4et iof a linear
equation systeni,; = 0, ..., L, = 0 where forl < k < r the equationLy, is
of the formL;, = E};l ax;T; + axo With ay; being rational. LetMyy be the
subcollection ofM consisting of all affine linear spacés € M such that the
affine varietyH N W satisfiesH N W # () anddim (H N W) = 0. Then the
geometric degree di is defined asleg W := max {deg (WNH)|H € Mw}.

For anarbitrary Zariski closed subsét’ of C*,letW = C U --- U C; be its
decomposition into irreducible components. As in [24] we define its geometric
degree asleg W = deg Cy + --- + deg C,. Let W be a Zariski closed
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subset ofC™ of dimensionn — ¢ given by a regular sequence of polynomials
fl, caey fz S Q[Xl, caey Xn]

DEFINITION 1. Forl < j < s, the irreducible componerd; is called a real
component of/ if the real varietyC’; N"R™ contains a smooth point @f;. Let
us write

I'={jeN|1<j<s, Cjisa real component of W}.

Then the (complex) affine varietyy* := U, C; is called thereal part of I.
We calldeg™ W := deg W* = > ._, deg C; thereal degreeof the algebraic
setW.

Remark2.

jeI

(i) deg*W =0 holds if and only if the real pafV* of W is empty.

(i) Note that “smooth point ofC;” in Definition 1 is somewhat
ambiguous and should be interpreted following the context. Thus “smooth point
of C,;” may just mean that the tangent spaceifis of dimension(n — ) at
such a point, or, more restrictively, it may mean that the hypersurfaces defined
by the polynomialsfy, ..., f; intersect transversally in such a point.

PROPOSITION3. Let f € Q[X, ..., X,,] be a nonconstant and square-free
polynomial and letV := {x € C™|f(x) = 0} be the set of complex zeros of the
equationf(z) = 0. Furthermore, consider for any fixed0 < ¢ < n, the com-
plex variety

Wi = {JZEC”

0f(x) 0f(x)
I@) =%, == o, :0}

(here Wo is understood to béV). Suppose that the variablek,, ..., X,

are in generic position with respect t¢. Then any point ofi¥; being a
smooth point of W is also a smooth point of¥;. More precisely, at any
such point the Jacobian of the equation systfm= Jf(z)/0X; = --- =
af(x)/0X,; = 0 has maximal rank, i.e., the hypersurfaces defined by the poly-

nomialsf, 8f/0Xy, ..., 8f/8X; intersect transversally in this point.
Proof. Consider the nonsingular linear transformatios- Ay where the
new variables arg = (Y1, ..., Y;). Suppose that(") is given in the form
I . 0: ..
T, T, N—1 1
<(akl)n—i,i In—i,n—i) (1)

where I; ; and0; (,—;y denote thei x ¢ unit and thei x (n — 4) zero matrix,
respectively, and wherey; are arbitrary chpIex numbers for+ 1 < k < n
and1 < I < i. Since the square matrid() has full rank, the transformation
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T = A@y defines a linear change of coordinates. In the new coordinates, the
variety W, takes the form

oy e oy,
W~ )
= = oy, +j=zi-|:—1 G oy, =03.

The coordinate transformation given By induces a morphism of affine spaces
®,; : C" x Cn=Di —, Ci+! defined by

(I)Z(Yiv LR Y; LR an Qig1, 1y c++7On 1y ooy Qidl iy ooy an,i)
_ af - af af - af
—<f7 8Y1+Z a]lay;vvayvz—i_z ahan .

j=i+1 j=i+1

For the moment let

o = (alv L) an—l—(n—i)i) = (Yiv (RN an Aig 1,15 «» - an,i) e C"x C(n—z)z

Then the Jacobian matriX(®;)(«) of ¢; in « is given by

J(‘I’i)g’é) = )
8—;1 % a() a() e 0
- 8Yi1 % 0 : 0 (@),
) 0 0
* * 0 0 a%il %
Suppose that we are given a poift = (Y, ..., Y2, af,, |, ..., aj ;) which

belongs to the fibe®;*(0) and suppose tha?y’, ..., ¥,0) is a point of the
hypersurfacéV in which the equatiory is regular (i.e., we suppose that not all
partial derivatives off vanish in that point). Let us consider the Zariski open
neighborhood/ of (Y?, ..., Y,?) consisting of all points of™ in which at least
one partial derivative off does not vanish. We claim now that the restricted
map

(I)i U % C(n—z)z _ Ci-i—l
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is transversal to the origifi = (0, ..., 0) of C**1. In order to prove this as-
sertion we consider an arbitrary point= (Y1, ..., Y, ait1,1, ..., an, ;) Of
U x C(»=9% which satisfiesb;(a) = 0. Thus(Y1, ..., Y;,) belongs ta/ N W
and is therefore a point of the hypersurfdgein which the equatiory is regu-
lar. Let us now show that the Jacobian matrixdgfhas maximal rank inv. If
this is not the case, the partial derivatives/aY;.1, ..., df/9Y, must vanish
in the point(Ys, ..., ¥,). Then the relatiord;(«) = 0 implies that the deriva-
tivesdf /oY1, ..., 8f/9Y; at the point(Yy, ..., ¥,) vanish, too.

This contradicts the fact that the equatipiis regular in that point. Therefore
the Jacobian matrix ab; has maximal rank i, which means that is a regular
point of ®;. Sincea was an arbitrary point ob;*(0)N (U x C=%)_ our claim
follows. Applying the algebraic-geometric form of the Weak Transversality
Theorem of Thom-Sard (see e.g. [21]) to the diagram

O HO)N (U x C=DT) s C7 x CnmDi

N\ !
C(n—z)z
one concludes that the set of all matric@g,),—; ; € R™~" for which
transversality holds is Zariski dense@"~%*. More precisely, the affine space
Q=9 contains a nonempty Zariski open set of matricé® such that the

corresponding coordinate transformation (1) leads to the desired smoothness of
W; in points which are smooth ii’. B

The proof of Proposition 3 could also be given using a linear transformation
of the variables with a generic nonsingutarx n matrix instead of the generic
one in “triangular form” used here. However, our transformation is sufficiently
generic to show Proposition 3 and exhibits the benefit that it invokes only “sparse
transformations” of the equations, which is necessary in the following.

Let f € Q[Xy, ..., X,,] be a nonconstant square-free polynomial and let
again W := {z € C"|f(z) = 0} be the hypersurface defined ks Let
A € Q[Xy, ..., X,] be the polynomialA := 7% | (0f/0X;)?. Consider the
real varietyV := W N R™ and suppose that:

« Vis nonempty and bounded (and hence compact),

» the gradient off is different from zero in all points of (i.e., V is a
smooth hypersurface iIR™ and f = 0 is its regular equation),

e the variablesX, ..., X,, are in generic position.

Under these assumptions the following problem adapted notion of polar
variety is meaningful and remains consistent with the more general definition
of the same concept (see e.g. [36]).

DEFINITION 4. Let 0 < 4 < n. Consider the linear subspacléi of
C" corresponding to the linear form&,;q, ..., X,, ie, X* = {z €
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C*"Xit1(z) = --- = Xp(z) = 0}. Then the algebraic subvariety’; of C"
defined as the Zariski closure of the set
n _ofw) . _Of(x) _
{xGC flz)= X, == e =0, A(z)#0

is called the ¢omplex)polar varietyof W associated to the linear subspateof
C™. The respective real variety is denotedlgy:= W,; NR"™ and called theeal
polar varietyof V associated to the linear subspacénR"” of R*. HereW, is
understood to be the Zariski closure of the &ete C™; f(z) = 0, A(x) # 0}
andV} is understood to bé&’.

Remark5. Since by assumptiol” is a nonempty compact hypersurface of
R™ and the variablesYy, ..., X,, are in generic position, we deduce from
Proposition 3 and general considerations on Lagrange multipliers (as e.g. in
[26]) or Morse Theory (as e.g. in [38]) that the real polar variétys nonempty
and smooth for ang < ¢ <n. In particular, the complex variety’; is not empty
and the hypersurfaces 6f* given by the polynomialg, 8f/0X;, ..., 8f/0X;
intersect transversally in some dense Zariski open subs#t;ofobserve that
any element oz € C*; f(x) = 0, A(x) # 0} is a smooth point o#¥ and
apply Proposition 3).

Let us observe that the assumptiBrsmoothimplies that the polar variety;
can be written a¥; = {z € R™; f(z) = df(x)/0X1 =---=38f(2)/0X; =0}
forany0 <i <n.

THEOREM 6. Let f € Q[Xy, ..., X,] be a nonconstant square-free poly-
nomial and letA = Y7, (8f/0X;)*. LetW := {x € C"|f(x) = 0}
be the hypersurface of™ given by the polynomiaf. Further, suppose that
V .= W nR"is a nonempty, smooth, and bounded hypersurfacR"dfvith
regular equationf. Assume that the variableX, ..., X,, are in generic po-
sition. Finally, for anyi, 0 < i < n, let the complex polar variety¥; of W
and the real polar variety; of V be defined as above. With these notations and
assumptions we have:

e Vo C Wy C W, with Wy =W if and only if f and A are coprime;

» W, is a nonempty equidimensional affine variety of dimensier(:+ 1)
being smooth in all its points which are smooth pointdiof

» the real partW; of the complex polar variety¥; coincides with the
Zariski closure inC™ of the real polar variety

_of@) __of@) _ .
o) = A = =21 o

Vi:{xeR"

o theideal(f, 8f/0Xy, ..., 0f/0X;)A is radical.
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Proof. The first statement is obvious, becauBg, is the union of all
irreducible components diV on which A does not vanish identically.

We show now the second statement. Qet ¢ < n be arbitrarily fixed. Then
the polar varietyl¥; is nonempty by Remark 5. Moreover, the hypersurfaces
of C™ defined by the polynomialg, 8f/0X;, ..., df/8X,_1 intersect any
irreducible component df’; transversally in a nonempty Zariski open set. This
implies that the algebraic varie®y’; is a nonempty equidimensional variety of
dimensionn — (i + 1) and that the polynomialg, 9f/0Xy, ..., 8f/0X,,_1
form a regular sequence in the ring obtained by localiZi}i&, ..., X,] by
the polynomials which do not vanish identically on any irreducible component
of W,. More exactly, the polynomialg, 9f/9.X, ..., 8f/0X; form a regular
sequence in the localized rin@[Xy, ..., Xx]a. From Proposition 3 we
deduce thatV; is smooth in all points which are smooth pointsiéf and that
the hypersurfaces di™ defined by the polynomialg, 8f /90X, ..., 8f/0X;
intersect transversally in these points.

Let us show the third statement. The Zariski closur&’pin C” is contained
in W (this is a simple consequence of the smoothnesg)ofOne obtains the
reverse inclusion as follows: let € W be an arbitrary point, and l€t be an
irreducible component di;* containing this point. Sinc€’ is a real component
of W; the setC N R™ is not empty and contained iW;. The polar variety
W; is contained in the algebraic s&; := {z € C"|f(x) = df(z)/0X1 =
-« = 9f(x)/0X; = 0}. Therefore, we have® NV, # @. Moreover, the
hypersurfaces dR™ defined by the polynomialg, of /90Xy, ..., 8f/0X,, cut
out transversally a dense subset(dof V;. Thus we have

n—(i+1)=dimg(CNV;) = dimg R(CNV,)
= dimc R((CNV;)) < dime C
=n-—(i+1).

(Here R(CNV;) denotes the set of smooth points@hV; and(C'NV;)’ denotes
the complexification o NV;.) Thus,dimc(CNV,) =dimc C=n—(i+1)
and, hence(C' = (C nV;)’. Moreover,(C NV;)" is contained in the Zariski
closure ofV; in C", which implies thatC' is contained in the Zariski closure of
V; as well.
Finally, we show the last statement. Let us consider again the algebraic set

_Of(x) _  _of(x) _
flz) = ax, —"'—a—Xi—O}

which contains the polar variety;. Let C’ be any irreducible component of
W;. ThenC' is also an irreducible component @f;. Moreover, the polynomial
A does not vanish identically 06”. By Remark 5 there exists now a smooth
point z* of W; which is contained irC’ and in which the hypersurfaces 6f*
given by the polynomiald, 8f/0X;, ..., 8f/0X; intersect transversally.

Wi = {JZEC”
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Letz* = (X{, ..., X};) € C" be fixed in that way. Consider the local ring

Oﬁ,_ - of the pomta: in the varletyW (i.e., O is the ring of germs

of rational functions 01W that are defined in the pouzn*). Algebraically the
local ring O, . is obtained by dividing the polynomial ring[X7, ..., X5]

by the ideal(f, 9f/0X;, ..., 8f/8X;), which defines¥; as an affine variety,
and then localizing at the maximal ide6X; — X7, ..., X,, — X*) of the
point z* = (X¥, ..., X}}). Using now standard arguments from commutative
algebra and algebraic geometry (see e.g. [4]), one infers from the fact that
the hypersurfaces of™ given by the polynomialsf, 3f/0X, ..., f/0X;
intersect transversally in* the conclusion thaOﬁ , is a regular local ring

and, hence, an integral domain. The fact tb%ﬁ . Is an integral domain

implies that there exists a uniquely determined irreducible componeﬁfiof
which contains the smooth point (this holds true for the ordinary;-defined
Zariski topology as well as for th@-defined one considered here). Therefore,
the pointz* is uniquely contained in the irreducible componéritof Wi (and
of W;).

Since the local rlngQﬁ . Is an integral domain, its zero ideal is prime.
This implies that the polynom|al$, 8f/8X1, ..., Of /0X; generate a prime

ideal in the local ringC[Xy, ..., Xu]x,—x:, ..., x,,—x:)- Hence, the isolated
primary component of the polynomial |de@lf, af/0Xy, ..., 0f/0X;) in
Q[X1, ..., X,], which corresponds to the irreducible componéttis itself a

prime ideal. Since this is true for any irreducible componentigfand since
W; is defined by discarding frorW the irreducible components contained in
the hypersurface of™ given by the polynomialA, we conclude that the ideal
(f, 8f/0X4,...,0f/0X)a of Q[X71, ..., X,,]a is an intersection of prime
ideals and, hence, is radical. This completes the proof of Theorerill6.

Remark7. Under the assumptions of Theorem 6, we observe that for any
1,0 < ¢ < n, the following inclusions hold among the different nonempty
varieties introduced up to now, namely

ViCcV and ViC W} CW,CW.

Here V is the bounded and smooth real hypersurface we consider in this pa-
per, W; andV; are the polar varieties introduced in Definitionld;" is the real

part of W; according to Definition 1, anW is the complex affine variety intro-
duced in the proof of Theorem 6. With respect to Theorem 6 our settings and
assumptions imply that — (i + 1) = dim¢ W; = dime W} = dimg V; holds.

By our smoothness assumption and the generic choice of the variables we have
for the respective sets of smooth points the inclusions

Vi = R(V;) € R(W;) C R(W;) C R(W).
(Here W is the affine hypersurfacl” = {z € C"|f(z)0} of C™.)
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3. ALGORITHMS AND COMPLEXITY

The preceding study of adapted polar varieties enables us to state our first

complexity result:

THEOREM 8. Letn, d, 6, L be natural numbers. Then there exists an arith-
metic network\" over @ of size(nd§L)“) with the following properties:

Let f € Q[Xi, ..., X;] be a nonconstant polynomial of degree at most
d and suppose thaf is given by a division-free straight-line program in
Q[X1, ..., X,] of length at mosL. LetA := 377 | (9f/9X;)*, W= {z €
C*f(z) =0}, V .= WnNR"® = {zx € R*|f(z) = 0}, and suppose that the

variables X, ..., X, are in “sufficiently generic” position. Fof < ¢ < n let
W; be the Zariski closure i©™ of the set
n _0f@) _  _9f(x) _
{xGC flz)= ox, — T ox =0, A(z) #0

(thus W; is the polar variety o’ associated to the linear spacg’ = {z €
C*"Xiq1(z) = -+ = X, (z) = 0} according to Definition 4). Let; := deg W;
be the geometric degree @f; and assume that > max {6;/1 < ¢ < n} holds.
The algorithm represented by the arithmetic netwdvk starts from the
straight-line programys as input and decides first whether the complex algebraic
variety W,,_; is zero-dimensional. If this is the case the netwaflproduces a
straight-line program of lengtinds L)°Y) in @ which represents the coefficients
of n 4+ 1 univariate polynomialg, p1, ..., p, € Q[X,,] satisfying the following
conditions:

(1) deg(q) = 6,—1 = deg W1
(2) max{deg(p)|l1 <i<n}<éb,—1
@) War ={(p(w), ..., pn(w))|u € C, q(u) = 0}.

Moreover, the algorithm represented by the arithmetic netwbtkdecides
whether the semialgebraic s#&t,,_; N R™ is nonempty. If this is the case the
network\ produces not more tha#),_; sign sequences ¢f1, 0, 1}~ which
codify the real zeros of “a la Thom” ([11]). In this way, N describes the
nonempty finite sét/,,_; N R™.

From the output of this algorithm we may deduce the following information:

» If the complex varietyW,,_; is not zero-dimensional or i#V,,_; is
zero-dimensional an@/,,_; NR™ is empty we conclude that is not a compact
smooth hypersurface d&&™ with regular equatiory.

» If V is a compact smooth hypersurfaceRf with regular equatiory,
thenW,_; NR™ is nonempty and contains for any connected componeft of
at least one point which the netwaX codifies a la Thom as a real zero of the
polynomial q.
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Remarkd. The hypothesis that the variabldg, ..., X,, are in “sufficiently
generic” position is not really restrictive since af@ylinear coordinate change
increases the length of the input straight-line prograimnly by an unessential
additive term of O(n®). Moreover, by [29, Theorem 4.4], any genericity
condition which the algorithm might require can be satisfied by adding to the
arithmetic networkA" an extra number of nodes which is polynomial in the
input parameters, d, 6, L.

Remark 10. From the Bézout Theorem we deduce the estimation
max {6;|0 < i <n} < d(d—1)""! < d". Moreover,f can always be evaluated
by a division-free straight-line program g[.X1, ..., X,] of lengthd". Thus,
fixing § :== d(d — 1)"~! and L := d" one is concerned with a worst-case
situation in which the statement of Theorem 8 just reproduces the main
complexity results of [1, 6, 22, 23, 26-28, 41, 42] in case of a compact smooth
hypersurface ofR™ given by a regular equation of degree The interest
in Theorem 8 lies in the fact that may be much smaller than the “Bézout
number”d(d — 1)~ and L smaller thand™ in many concrete and interesting
cases.

Proof of TheoremB. Since by [2] and [39] we may derive the straight-
line programg representing the polynomigf in time linear in L, we may
suppose without loss of generality that represents also the polynomial
A. Applying now the algorithm underlying [19, Proposition 18] together
with the modifications introduced by [20, Theorem 28] (compare also [20,
Theorem 16 and its proof]), we find an arithmetic netwok with pa-
rameters inQ of size (nd§L)°) which decides whether the polynomials
f,0f/0Xy, ..., 8f/8X,,—1 form a secant family avoiding the hypersurface
of C™ defined by the polynomial\. This is exactly the case #V,,_; is zero-
dimensional.

Suppose now that the polynomialsf, df/0Xy, ..., 3f/0X,—1) form
such a secant family. Then the arithmetic netwdvk which we obtained
before applying [19, Proposition 18] and [20, Theorem 28] to the input
f,0f/0Xy, ..., 8f/8X,,—1 and A produces a straight-line program iQ

which represents the coefficients of polynomialspi, ..., p, € Q[X,]
characterizing the pai¥,,_; of the complex variety¥,,_; := {z € C"|f(z) =
0f(x)/0X, = -+ = 9f(x)/0X,,—; = 0} which avoids the hypersurface

{z € C"|A(z) = 0}. More precisely, the output, p1, ..., p, of the network
N’ satisfies the conditions (1)—(3) in the statement of Theorem 8.

Now applying for example the main (i.e., the only correct) algorithm of
[3] (see also [43] for refinements) by adding suitable comparison gates for
positiveness of rational numbers, we may extéitito an arithmetic network
N of asymptotically the same siz@:d§L)°Y), which decides whether the
polynomial ¢ has any real zero. Moreover, without loss of generality the
arithmetic network " codifies any existing zeros af a la Thom (see [11,



REAL EQUATION SOLVING 17

43]). From general considerations of Morse Theory (see e.g. [38]) or more
elementarily from the results and techniques of [26, 28] one sees that in the
case wher¢f is a regular equation of a bounded smooth hypersufacté R™,

the arithmetic network\" codifies for each connected componentiofit least

one representative point. This finishes the proof of TheoremiiB.

Roughly speaking, the arithmetic netwokk of Theorem 8 decides whether a
given polynomialf € Q[X, ..., X,,] is a regular equation of a bounded (i.e.,
compact) smooth hypersurfadé of R™. If this is the case\V' computes for
any connected component &f at least one representative point. The size of
N depends polynomially on the number of variablesthe degreel, and the
straight-line program complexity. of f, and finally on the degreé of certain
complex polar varietie$V; associated to the equatigh

The nature of the answer the netwaK gives us about the algorithmic
problem is satisfactory. However, this is not the case for the siz& oivhich
measures the complexity of the underlying algorithm, since this complexity
depends on the parameigibeing related rather to the complex considerations
than to the real ones. We are going now to describe a procedure whose
complexity is polynomial only in theeal degree of the polar varietied;
instead of their complex degree. The theoretical (not necessarily the practical)
price we have to pay for this complexity improvement is relatively high:

e our new procedure does not decide any more whether the input
polynomial is a regular equation of a bounded smooth hypersuifacé R™.
We have to assume that this is already known. Therefore the new algorithm
can only be used in order wolvethe real equatiory = 0, but not to decide
its consistency (solvingneans here that the algorithm produces at least one
representative point for each connected componenit)of

« our new algorithm requires the support of the following two external
subroutines whose theoretical complexity estimates are not really taken into
account here although their practical complexity may be considered as “poly-
nomial”:

—the first subroutine we need is a factorization algorithm for univariate
polynomials overQ. In the bit complexity model the problem of factorizing
univariate polynomials ovef is known to be polynomial ([37]), whereas in
the arithmetic model we are considering here this question is more intricate
([26]). In the extended complexity model we are going to consider, the cost
of factorizing a univariate polynomial of degre® over @, (given by its
coefficients) is accounted 3“1,

—the second subroutine allows us to discard nonreal irreducible
components of the occurring complex polar varieties. This second subroutine
starts from a straight-line program for a single polynomialgpXy, ..., X,]
as input and decides whether this polynomial has a real zero (however, without
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actually exhibiting it if there is one). Again this subroutine is taken into account
at polynomial cost.

* We call an arithmetic network ov&p extendedf it contains extra nodes
corresponding to the first and second subroutine.

Fix for the moment the natural numbens d, 6*, and L. We suppose that
a division-free straight-line program in Q[X7, ..., X,,] of length at mostL
is given such thag represents a nonconstant polynomfaé Q[Xq, ..., X,]
of degree at mostl. Let againA := E};l (0f/8X;)? and suppose that
is a regular equation of a (non-empty) bounded smooth hypersuvfaaeR™.
Let W := {z € C™; f(z) = 0} be the complex hypersurface @ defined
by the polynomialf and suppose that the variabl&s, ..., X,, are in generic
position. Fix0 < ¢ < n arbitrarily. Let as in Definition 4 the complex variety
W; be the Zariski closure €™ of the set

{QZEC” f(x):aéf)((ﬁ):'”:agg):o’ A(w)#o},

i.e., W, is the polar variety of the complex hypersurfadé associated to the
linear subspac&(® := {r € C"|X;41(z) =0, ..., X,,(z) = 0}.

Let V; := W,;NR" be the corresponding polar variety of the real hypersurface
V. Let éf be the real degree of the polar variely;, i.e., the geometric
degree ofi¥/;* (see Definition 1). By Theorem 6 the quantify is also the
geometric degree of the Zariski closure@rt of the real varietyl;, i.e., of the

complexification of;. Letr := n—(i+1). Since the variableXy, ..., X,, are
in generic position with respect to all our geometric data, they are also in Noether
position with respect to the complex variéfy;, the variablesXy, ..., X, being

free (see [18, 19] for details). Finally, suppose that> max {6*|0 < ¢ < n}
holds.

With these notations and assumptions, we have the followgafversion of
[19, Proposition 17]:

LEMMA 11. Letn, d, 6* L be given natural numbers as before and(fix ¢
< pandr:= n — (i + 1). Then there exists an extended arithmetic netwdrk
with parameters irQ of size(idé* L)°(1) which for any nonconstant polynomial
f € Q[Xy, ..., X,] satisfying the assumptions above produces a division-free
straight-line programg; in Q[X1, ..., X,] such that3; represents a nonzero
polynomialp € Q[X, ..., X,] and the coefficients with respect.; of cer-
tain polynomialsy, p1, ..., pn, € Q[Xy, ..., X,41] having the following prop-
erties:

(i) the polynomialg is monic and separable i,..;, and its degree
satisfiesdeg ¢ = degx , g =67 = deg W} < 6%,

(i) the polynomialp is the discriminant of; with respect to the variable
X,4+1 and its degree can be estimateddag o < 2(87)3,
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(iif)  the polynomialgy, ..., p, satisfy the degree bounds

max {degy, . pi|l <k <n} <&,

max {deg px|1 < k < n} =2(6)>,

(iv) theideal(q, oX1—p1, ..., 0X,—pn), generated by the polynomials
g, 0X1—p1, ..., 0Xn —pn inthe localizationQ[ X, ..., X,], is the vanishing
ideal of the affine varietyW}), := {z € W*|o(z) # 0}. Moreover,(W}), is
a dense Zariski open subset of the complex vaifigty

(v) the length of the straight-line progra is of the order(idé* L)),

Proof. The proof of this lemma follows the general lines of the proof of
Theorem 8 and is again based on the algorithm underlying [19, Proposition 17]
together with the modifications introduced by [20, Theorem 28]. By Theorem
8 above, we know that the polynomials /90X, ..., 8f/0X,—; form a
secant family, avoiding irC™ the hypersurface defined hy, and therefore the
algorithm of geometric solving due to [20, Section 3] is applicable. In particular,
the lifting procedureinvolved there can be exploited for our purpose.

First we observe that by [2] and [39] we are able to derive the straight-line
program 3 representing the input polynomigl at cost linear inL. Thus we
may suppose without loss of generality thiatepresents botlf and A.

We show Lemma 11 by the exhibition of a recursive procedur@ fhi < n
under the assumption that the first and second subroutines as introduced before
are available. First put:= 0 and let/, be the straight-line programi which
represents’ and A. Since the variables(;, ..., X,, are in generic position,
the polynomialsf and A are monic with respect to the variahlg, and satisfy
the conditionsd > deg f = degy f and2d > deg A = degy A.

Let Ry := Q[X1, ..., X,,—1] and consideff andA as univariate polynomials
in X,, with coefficients in Ry. Recall that they are monic. Interpolating
them in2d 4 1 arbitrarily chosen distinct rational points, we obtain a division-

free straight-line program iRy = Q[X1, ..., X,,—1] which represents the
coefficients of f and A with respect toX,,. This straight-line program has
length Ld°M),

We apply now [19, Lemma 8] in order to obtain the greatest common
divisor of f and A which is again a monic polynomial i®y[X,,], which we
may suppose to be given by a division-free straight-line progrankjn—=
Q[X1, ..., X,—1] representing its coefficients with respect X3,. Dividing
f by this greatest common divisor iRy[X,,] as in the Noether normalization
procedure in [19], we obtain a polynomigl € Ry[X,] = Q[X1, ..., X,]
whose coefficients with respect to the varialdlg are represented by a division-
free straight-line programB; in Q[Xy, ..., X,,_1]. The polynomialg is
monic in X, it is square-free, and it is a divisor gf. Moreover, we have
that Wy = {z € C*|g(zx) = 0} and g is the minimal polynomial of the
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hypersurfacé¥, of C™. The degree of the polynomiglsatisfies the condition
deg 7 = degx q = deg W.

The straight-line programB,; which represents the coefficients gfwith
respect to the variabl&,, has length(dL)°). In order to finish the recursive
construction for the case:= 0, it is sufficient to find the factor; of g which
defines the real pai¥’§ of W,. For this purpose we consider the projection map
C"™ — C™! which maps each point @i onto its firstn — 1 coordinates. Since
the variablesX, ..., X,, are in generic position, the projection map induces a
finite surjective morphismr: W, — C™"~1. We choose a generidting point
t=(t1, ..., ta_1) € Q"1 with rational coordinates,, ..., t,_; (this is here
a generic point € Q*~! for the hypersurfacéV, of the finite morphismr for
which the zero-dimensional fiber—*(¢), the lifting fiber, contains only smooth
points of Wy; for more details see [20, Section 3]). Observe that the irreducible
components oW, are the hypersurfaces &" defined by theQ-irreducible
factors ofg which we denote by, ..., ¢.

Without loss of generality we may assume thatfox m < s the irreducible
polynomialsqy, ..., ¢, define the real irreducible componentsigf. Thus it
is clear that the factog of § we are looking for isg := q1 -+ qm. It suffices
therefore to find all irreducible factorg, ..., ¢gs of g and then to discard the
factorsgm+1, - - qs-

In order to find the polynomialsy, ..., g5, we specialize the variables
X1, ..., X,_, into the coordinates, ..., t,_; of the rational point € @1,

We obtain thus the univariate polynomiglt, X,,) := q(t1, ..., th—1, Xn) €
Q[X,] which decomposes intg(t, X,,) = q1(¢, X,,) -+ ¢s(¢, X,,) in Q[X,,].
Since the lifting point was chosen generically i@ ~1, Hilbert’s Irreducibility
Theorem (see [33]) implies that the polynomialgt, X,), ..., ¢:(t, X,,) are
irreducible overlQ. Specializing the variableXy, ..., X,,_; in the straight-line
programf3; into the valuegy, ..., t,_; we obtain an arithmetic circuit i1
which represents the coefficientsgt, X,,). By a call to the first subroutine we
obtain the coefficients of the polynomiajs(t, X,), ..., ¢;(t, X,.). Applying

to these polynomials the lifting procedure which we are going to explain below
in a slightly more general context, we find a division-free straight-line program
in Q[X1, ..., X,_1] of size (dL)°® which represents the coefficients of the
polynomialsqy, ..., ¢, with respect to the variablé,,.

In order to finish the casé = 0 we have to identify algorithmically the
polynomialsgi, ..., ¢ that define the irreducible real componentdif and,
hence, those oWW*. Then, the producy = ¢; --- ¢ IS easily obtained.
Observe thay is the minimal polynomial of the hypersurfad®,. From the
assumption thal” = W N R™ is a smooth real hypersurface one deduces that
Vo = Wi NnR* = Wy nR™ holds. Sincef is a regular equation of” and
since the polynomialg andq are factors off, one sees immediately thatand
q are also regular equations &f. This implies that each of the polynomials
qi, -- ., qs admitting a real zera € R has a nonvanishing gradientin Thus,
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any polynomial ofgy, ..., g; admitting a real zero belongs @, ..., gn.
Hence, by a call to the second subroutine, we are able to find the polynomials
qi, .-+, ¢m, and therefore the polynomial=¢; --- gn..

Now we extend the division-free straight-line program representing the
polynomialsqy, ..., ¢, to a circuit inQ[X1, ..., X,] of size (dL)°) which
computes the polynomiaj = ¢; --- ¢,. Interpolatingq in the variable X,
as before, this circuit provides a division-free straight-line programin
Q[X1, ..., X,] of size (dL)°®) which represents the coefficients @fwith
respect to the variablél,,. Without changing its order of complexity we
extend3; to a division-free circuit inQ[Xy, ..., X,—;] that computes also
the discriminantp of ¢ with respect to the variabl&l,, and the polynomials
Qle L) zQXn—l-

Let p1 = oXi,..oypn1 = 0Xn1, e = 0X, €
QX1 .-y X1, X4 One sees immediately that the polynomials
0 €Q[Xy, ..., Xnq]andgq, p1, ..., pp € Q[X1, ..., X—1, X,,] satisfy the
conditions (i)—(iv) of Lemma 11 foi = 0. Furthermoreg; is a division-free
straight-line program inQ[Xy, ..., X,_1] of size (dL)°*) which computes
¢ and the coefficients of, py, ..., p, With respect to the variablé&,. By
construction the output circuig; can be produced from the input circyi
by an extended arithmetic network ov@rof size (dL)°V). This finishes the
description of the first stage in our recursive procedure.

We consider now the case of 0i< n and set := n— (i+1). Suppose that

there is given a division-free straight-line prograf, in Q[X, ..., X;y1]
of size A;_; that represents a nonzero polynomale Q[X1, ..., X,1] and
the coefficients with respect t&,.,, of certain polynomialsy, pj, ..., p), €

Q[X1, ..., X;q1, X,42]. These polynomials have the following propertigs:
is monic and separable X, and satisfies the degree conditidag ¢ =
degx ., ¢ = 6;_y, o' is the discriminant ofg’ with respect toX, ., the
polynomialsp, ..., p, satisfy the degree boundax {degy , p;|l <k <n}

< &, and the idealq’, ¢’ X, — p,, ..., 0’X,, — pl,) Of the localized ring
Q[X1, ..., X,], is the vanishing ideal of the affine varieti¥;* ;),,. Observe
that (W;"_,),, is a Zariski open dense subset(@¥;"_,). Let Z be the Zariski
closure inC™ of {x € W} ,|(0f(x)/0X;) = 0, A(z) # 0}. We have
Wi Cc Z C W, and thatZ is at least the union of all real irreducible components
of W;. In particular, all irreducible components gfare irreducible components
of W;. Moreover, we haveleg Z < d6; ;.

Now we apply the procedure underlying [19, Proposition 15] to the straight-
line programs3;_; and 3 representing the polynomials, ¢, pf, ..., p/, and
af/0X; in order to produce an explicit description of the algebraic variety
{z e Wr_|(8f(x)/8X;) = 0}. By means of the algorithm of [19, Subsection
5.1.3], we clear out the irreducible components of this variety contained in the
hypersurface{z € C*|A(z) = 0}. Finally, we obtain a division-free straight-
line programpz in Q[X, ..., X,] of sizei(L 4+ A;—1)(d6;_,) which represents
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a nonzero polynomiap € Q[Xy, ..., X;] and the coefficients with respect
to X4, of certain polynomialsj, o, ..., D, € Q[X1, ..., X;41]. The latter
polynomials have the following propertieg:is monic and separable with respect
to X, and satisfies the degree conditidag ¢ = degy . 7 = degZ, 0
is the discriminant ofg with respect toX,;, the polynomialsp,, ..., D,
satisfy the degree boundax {degy, ,, Px|l < k < n} < deg Z, and the ideal
(@, 9X1 — Py, ..., 0Xn — P, )5 Of the localized ringQ[X,, ..., X,.]; is the
vanishing ideal of the affine variet¥;. Observe again th&; is a Zariski open
dense subset af. By [19, Proposition 15 and Subsection 5.1.3], there exists
an arithmetic networld/; with parameters ir@ which produces from the input
circuits 3;_; and the output circuitz and has sizé(ds? | LA;_;)°W).

Let g1, ..., ¢s € Q[X1, ..., X;41] be theQ-irreducible factors of;. Since
7 is monic and separable i, ;, we haveg = ¢; --- ¢,. From the assumption
that the variablesXy, ..., X,, are in generic position we deduce that each
irreducible component of the algebraic varigtyis represented by exactly one
of the irreducible polynomialg,, ..., ¢s. This means thaZ hass irreducible
components, sag’;, ..., Cs, such that forl < < s the irreducible component
C; is identical with the Zariski closure iE™ of the set

{o=(X1,.... Xn) € Co(Xy, ..., X)) X1 =Py (X1, 00, Xogd) =0,
) @(X‘v ) X?)Xn _ﬁn(le ) X7‘+1) =0,
QI(X17 sy X?) =0, E(le sy X?) 7& 0}

Now suppose that the real irreducible componentsZofand hence, the one
of W;) are represented in this way by the polynomials ..., ¢,, and let
g == @1 ...9n. The polynomialg is monic and separable iX,; and
satisfies the degree conditiateg ¢ = degx ., g = é;. Moreover, we have
Wr=0C U .- UCp,.

Now we try to find a straight-line program whose length is of order
(idsy L)Y (hence, independent of the length_; of the circuit 3;_;) and
which represents the coefficients of the polynomials.. ., ¢, and, finally, the
polynomial ¢. Adding to the arithmetic network/; order of (idéf LA;_1)°®)
extra nodes we find as in the proof of [20, Proposition 30], a “sufficiently
generic” lifting pointt = (¢1,...,¢.) € Q" for the algebraic varietyZ
(see [20, Definition 19], for the notion of a lifting point). By the generic
choice of the pointt we deduce from Hilbert's Irreducibility Theorem that
a1 (t, Xoy1, -+, gs(t, X,11) are irreducible polynomials @§[X,.,1]. Thus the
identity g(¢, X,4+1 = q1(¢, X;41) - -~ ¢s(¢, X;-41) represents the decomposition
of the polynomialg(¢, X,+1) € Q[X,41] into its irreducible factors.

Specializing in the straight-line program the variablesX;, ..., X,. into
the valuesty, ..., t, we obtain an arithmetic circuit i that represents the
coefficients of the univariate polynomia{¢, X,.,;). Adding some extra nodes
to the arithmetic network, without changing its asymptotic size, we may suppose
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that V; represents the nonzero rational numpér) and the coefficients of the

univariate polynomialsg(t, Xy 41), By (¢, Xr41), -+, Dp(t, Xpq1). Observe
that deg q(t, X,41) = degy ., @ = degg < dé_; holds. Therefore
we are able to find the irreducible factogg(t, X,.11), ..., ¢s(¢t, X41) Of

q(t, X,-41) by a call to the first subroutine at a supplementary cost of
(dsz_)°Y). Adding some extra nodes to the arithmetic netwarfk without
changing its asymptotic complexity, we may suppose iRatrepresents for
eachl < [ < s the rational numberg(t) and the coefficients of the
pOIynomiaISql(tv X1‘+1)7 ﬁl(tv X1‘+1)7 ceey ﬁn(tv X1‘+1)' Observe that/\/; is

now anextendedhrithmetic network. For a fixel 1 <1 < s, the setC;n({t} x
C™ ") is the lifting fiber of the pointt in the irreducible componend; of Z.

The polynomialsg(t, X,41), (1/8(£) 51 (t, Xot1), ..., (1/8()) P, (¢, Xoi1)
represent a geometric solution of this lifting fiber. This means that the identity

G x ) =

uw€eC, qt, u) = 0}

holds.

Applying the algorithm underlying [20, Theorem 28] to the input
/37 t = (tlv L) t?‘)v @(t)v QI(@ Xr-l—l)v ﬁl(tv Xr-l—l)v L) ﬁn(tv Xr-l—l)v we
obtain a division-free straight-line program @[Xy, ..., X,] having a length

of order (id deg C;L)°) representing the coefficients of the polynomial
qi with respect toX,,;. Doing this for eachl, 1 < [ < s, again we have

to add to the extended arithmetic netwatk some extra nodes which do
not change its asymptotic size. Then we may suppose Ahaproduces

a division-free straight-line program ir}[Xi, ..., X,] representing the
coefficients of the polynomialg;, ..., ¢; with respect to the variablée,..

As in the case ofi = 0 we discard by a call to the second subroutine
the polynomialS¢,,+1, ..., gs which do not have any zero iR™. From
the remaining polynomialsyy, ..., ¢,, Wwe generategq = ¢; -+ ¢. The
additional costs of discarding,,,+1, ..., ¢s and producingqg is of order
(35—, id deg CLLYOD) = (id deg ZL)OW = (ids;_, L)V, Thus, without
loss of generality, we may suppose that the extended arithmetic network
N, produces a division-free straight-line program @j.X, ..., X,] of size
(> id deg CLLYOM) = (idé;_, L)°™) which represents the coefficients of
the polynomialg with respect to the variabl&,.. We observe that the point

t € Q" is a lifting point of the algebraic variet’;” = U;_, (i, too. Therefore,
the lifting fiber of ¢ in W} is given by the rational numbeg(t) and the
coefficients of the polynomialg(¢, X,41) andp, (¢, Xot1), ..., p(t, Xpq1),
which, in principle, have already been computed by the arithmetic network
N;. Again applying the procedure underlying [20, Theorem 28] to the
inDUt /37 t = (tlv (RS t?‘)v @(t)v (J(tv Xr-l—l)v ﬁl(tv Xr-l—l)v LR ﬁn(tv Xr-l—l)v

we obtain a division-free straight-line program; in Q[Xy, ..., X,] of
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size A; = (idé;*L)O(U. The straight-line progran®; represents a nonzero
polynomial o € @Q[Xi,..., X,] and the coefficients with respect to
X,41 of the polynomial ¢ and certain other polynomialgy, ..., p, of
Q[X1, ..., X, X,41] having the properties (i)—(iv) stated in Lemma 11.

The extended arithmetic network; over @ which produces this outpuyg;
from the input3;_; andj has size(ids} | LA;_1)°W).

Observe that the lengtiA; of the straight-line progran®; is independent
of the length A;_; of the input circuit 3,_;. More precisely, we have
A; = (idsrL)°M). Taking into account thaty < déf , and A;_; =
((i — 1)ds_, L)°® holds, we conclude that the size of the extended arithmetic
network A; which produces from the input circuit8;_; and 3 the output
circuits is of order(ids? L)°(Y). Concatenating the networks, ..., A; we
finally obtain an extended arithmetic netwaiK over Q@ which produces the
straight-line programs; from the input circuit3. The networkA is of size
(ids*L)°D. 1

From Lemma 11 one now easily deduces our main result.

THEOREM 12. Letn, d, §*, L be natural numbers. Then there exists an ex-
tended arithmetic network/" over @ of size (ndé* L)) with the following
properties:

Let f € Q[Xy, ..., X,,] be a nonconstant polynomial of degree at most
d and suppose thaf is given by a division-free straight-line prograg in
Q[Xy, ..., X,,] of length at mosLL. LetA := Y7 | (9f/0X;)2, W = {z €
C*f(z) =0}, V = WnR* = {& € R*|f(z) = 0}, and suppose that
the variablesXy, ..., X,, are in “sufficiently generic” position. Furthermore,
suppose thatV” is a (nonempty) bounded smooth hypersurfaceRdf with
regular equationf. For 0 < i < n, let W; be the Zariski closure of the set
{z € C"|f(z) = Of(x)/0Xy = --- = If(x)/0X; = 0, A(z) # 0} and
Wi* = W; NR".

Let6F ;= deg™ W, := deg W be the real degree of the complex vari&ty
and assume that* > max {60 < ¢ < n} holds.

The algorithm represented by the extended arithmetic netwbstarts from
the straight-line progranB as input and produces a straight-line programan
of size(ndé* L)), This straight-line program represents the coefficients of
n + 1 univariate polynomialsy, p1, ..., pn € Q[X,] satisfying the following
conditions:

() degg=267_,

(i) max{deg p;|]1 <i<n}<é:_;

(iii)  Any connected component of the real hypersuffdees at least one
point contained in the set

Pi={(p(w), ..., pa(w))lu € R, g(u) = 0}.
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Moreover, the extended algorithmic netwokk codifies each real zera of the
polynomialg (and hence, the elements Bf) “a la Thom.”

Proof. Just apply Lemma 11, setting= n — 1. The remaining arguments
are the same as in the proof of Theorem &

10.

11.

12.

13.

14.

15.

16.
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