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In this paper we apply for the first time a new method for multivariate equation solving
which was developed for complex root determination to thereal case. Our main result
concerns the problem of finding at least one representative point for each connected
component of a real compact and smooth hypersurface. The basic algorithm yields
a new method for symbolically solving zero-dimensional polynomial equation systems
over the complex numbers. One feature of central importance of this algorithm is the
use of a problem-adapted data type represented by the data structures arithmetic network
and straight-line program (arithmetic circuit). The algorithm finds the complex solutions
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6 BANK ET AL.

of any affine zero-dimensional equation system in nonuniform sequential time that is
polynomialin the length of the input (given in straight-line program representation) and
an adequately definedgeometric degree of the equation system.Replacing the notion of
geometric degree of the given polynomial equation system by a suitably definedreal (or
complex) degreeof certain polar varieties associated to the input equation of the real
hypersurface under consideration, we are able to find for each connected component of
the hypersurface a representative point (this point will be given in a suitable encoding).
The input equation is supposed to be given by a straight-line program and the (sequential
time) complexity of the algorithm is polynomial in the input length and the degree of
the polar varieties mentioned above.©1997 Academic Press

1. INTRODUCTION

The present article is strongly related to the main complexity results and
algorithms in [18–20]. Whereas the algorithms developed in these papers
concern solving polynomial equation systems over the complex numbers, here
we deal with the problem of real solving. More precisely, we consider the
particular problem of finding real solutions of a single equation
where is an -variate polynomial of degree over the rationals which
is supposed to be a regular equation of a compact and smooth hypersurface of

. Best known complexity bounds for this problem over the reals are of the
form counting arithmetic operations in at unit cost (see [1, 6, 22, 23,
26–28, 41, 42, 50]).

Complex root finding methods cannot be applied directly to real polynomial
equation solving just by looking at the complex interpretation of the input
system. If we want to use a complex root finding method for a problem over
the reals, some previous adaptation or preprocessing of the input data becomes
necessary. In this paper we show that certainpolar varietiesassociated to our
input affine hypersurface possess specific geometric properties, which permits
us to adapt the complex main algorithm designed in the papers [18–20] to the
real case.

This algorithm is ofintrinsic type,which means that it allows us to distinguish
between semantical and syntactical properties of the input system in order to
profit from both for an improvement of the complexity estimates compared with
more “classical” procedures (as e.g. [5, 6, 8–10, 14, 17, 24, 25, 30–32, 34, 35,
44]). The papers [18–20] show that thegeometric degree of the input systemis
associated with the intrinsic complexity of solving the system algorithmically
when the complexity is measured in terms of the number of arithmetic operations
in . The paper [18] is based on the somewhat unrealistic complexity model in
which certainFOR instructions executable in parallel count at unit cost. This
drawback of the complexity model is corrected in the paper [19] at the price
of introducing algebraic parameters in the straight-line programs and arithmetic
networks occurring there. These algebraic parameters are finally eliminated in
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the paper [20], which contains a procedure satisfying our complexity requirement
and is completely rational.

We show that the algorithmic method of the papers [18–20] is also applicable
to the problem of (real) root finding in the case of a compact and smooth
hypersurface of given by an -variate polynomial of degree with
rational coefficients which represents a regular equation of that hypersurface. It
is possible to design an algorithm ofintrinsic typeusing the same data structures
as in [20], namely arithmetic networks and straight-line programs over(the
straight-line programs—which are supposed to be division-free—are used for
the coding of input system, intermediate results, and output). In the complexity
estimates the notion of(geometric) degree of the input systemof [18–20] has
then to be replaced by the(complex or real) degree of the polar varietieswhich
are associated to the input equation.

The basic computation model used in our algorithm will be that of an
arithmetic network with parameters in (compare with [20]). Our first
complexity result is the following:

There is an arithmetic network of size with parameters in the field
of the rational numbers which finds at least one representative point in every
connected component of a smooth compact hypersurface ofgiven by a regular
equation of degree . Here denotes the size of a
suitable straight-line program which represents the input of our procedure coding
the input polynomial . Moreover, denotes the maximal geometric degree of
suitably defined polar varieties associated to the input equation.

The network size involves the maximal geometric degree of
certain complex polar varieties associated to the equation. The answer
concerning the algorithmic problem is satisfactory. However, this is not the case
with respect to the network size that measures the complexity of the underlying
algorithm, because the size depends, besides and on the parameter

which is related to complex considerations rather than to real ones. Our
second complexity result deals with a procedure showing a complexity that is
polynomial only in a suitably definedreal degree of the associated polar varieties
instead of their geometric degree.

The second complexity result relies on two algorithmic assumptions which are
very strong in theory, but hopefully not so restrictive in practice. We assume
now that a factorization procedure for univariate polynomials overbeing
“polynomial” in a suitable sense (e.g. counting arithmetic operations inat unit
cost) is available and that we are able (also at polynomial cost) to localize regions
where a given multivariate polynomial has “many” real zeros (if there exist
such regions). This second assumption may be replaced by the following more
theoretical one (which, however, is simpler to formulate precisely): we suppose
that we are able to decide in polynomial time whether a given multivariate
polynomial has a real zero (however, we donot suppose that we are able to
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exhibit such a zero if there exists one). We call an arithmetic networkextended
if it uses subroutines of these two types.

Let notations and assumptions be as before. Suppose furthermore thatrepre-
sents a regular equation of a nonempty smooth and compact real hypersurface.
Then there exists an extended arithmetic network which finds at least one rep-
resentative point for each connected component of the real hypersurface given
by . The size of this arithmetic network is where denotes the
suitably defined maximal real degree of the polar varieties mentioned above.

Complexity results in a similar sense for the specific problem ofnumerical
polynomial equation solving can be found in [49], following an approach
initiated in [45–48] (see also [12, 13]). In the same sense one might also want
to mention [7] and [15] as representative contributions for the sparse viewpoint.
For more details we refer the reader to [40] and [20] and the references cited
therein.

2. POLAR VARIETIES

As usual, let and denote the field of rational, real, and complex
numbers, respectively. The affine-spaces over these fields are denoted by

and respectively. Further, let be endowed with the Zariski
topology of -definable algebraic sets, where a closed set consists of all common
zeros of a finite number of polynomials with coefficients in. Let be
a closed subset with respect to this topology and let be its
decomposition into irreducible components with respect to the same topology.
Thus are algebraic subsets of . We call equidimensional
if all its irreducible components have the same dimension.

In the following we need the notion of (geometric) degree of an affine
algebraic variety. Let be an equidimensional Zariski closed subset of. If

is zero-dimensional, thedegreeof denoted by is defined as the
cardinality of (neither multiplicities nor points at infinity are counted). If
is of positive dimension then we consider the collection of all -
dimensional affine linear subspaces, given as the solution set inof a linear
equation system where for the equation is
of the form with being rational. Let be the
subcollection of consisting of all affine linear spaces such that the
affine variety satisfies and . Then the
geometric degree of is defined as .

For anarbitrary Zariski closed subset of let be its
decomposition into irreducible components. As in [24] we define its geometric
degree as . Let be a Zariski closed
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subset of of dimension given by a regular sequence of polynomials
.

DEFINITION 1. For the irreducible component is called a real
component of if the real variety contains a smooth point of . Let
us write

Then the (complex) affine variety is called thereal part of .
We call the real degreeof the algebraic
set .

Remark2.

(i) holds if and only if the real part of is empty.
(ii) Note that “smooth point of ” in Definition 1 is somewhat

ambiguous and should be interpreted following the context. Thus “smooth point
of ” may just mean that the tangent space of is of dimension at
such a point, or, more restrictively, it may mean that the hypersurfaces defined
by the polynomials intersect transversally in such a point.

PROPOSITION3. Let be a nonconstant and square-free
polynomial and let be the set of complex zeros of the
equation . Furthermore, consider for any fixed < the com-
plex variety

(here is understood to be ). Suppose that the variables
are in generic position with respect to. Then any point of being a
smooth point of is also a smooth point of . More precisely, at any
such point the Jacobian of the equation system

has maximal rank, i.e., the hypersurfaces defined by the poly-
nomials intersect transversally in this point.

Proof. Consider the nonsingular linear transformation where the
new variables are . Suppose that is given in the form

where and denote the unit and the zero matrix,
respectively, and where are arbitrary complex numbers for
and . Since the square matrix has full rank, the transformation
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defines a linear change of coordinates. In the new coordinates, the
variety takes the form

The coordinate transformation given by induces a morphism of affine spaces
defined by

For the moment let

Then the Jacobian matrix of in is given by

...

...
...

...
...

...

Suppose that we are given a point which
belongs to the fiber and suppose that is a point of the
hypersurface in which the equation is regular (i.e., we suppose that not all
partial derivatives of vanish in that point). Let us consider the Zariski open
neighborhood of consisting of all points of in which at least
one partial derivative of does not vanish. We claim now that the restricted
map
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is transversal to the origin of . In order to prove this as-
sertion we consider an arbitrary point of

which satisfies . Thus belongs to
and is therefore a point of the hypersurfacein which the equation is regu-
lar. Let us now show that the Jacobian matrix ofhas maximal rank in . If
this is not the case, the partial derivatives must vanish
in the point . Then the relation implies that the deriva-
tives at the point vanish, too.

This contradicts the fact that the equationis regular in that point. Therefore
the Jacobian matrix of has maximal rank in which means that is a regular
point of . Since was an arbitrary point of our claim
follows. Applying the algebraic-geometric form of the Weak Transversality
Theorem of Thom-Sard (see e.g. [21]) to the diagram

one concludes that the set of all matrices for which
transversality holds is Zariski dense in . More precisely, the affine space

contains a nonempty Zariski open set of matrices such that the
corresponding coordinate transformation (1) leads to the desired smoothness of

in points which are smooth in .

The proof of Proposition 3 could also be given using a linear transformation
of the variables with a generic nonsingular matrix instead of the generic
one in “triangular form” used here. However, our transformation is sufficiently
generic to show Proposition 3 and exhibits the benefit that it invokes only “sparse
transformations” of the equations, which is necessary in the following.

Let be a nonconstant square-free polynomial and let
again be the hypersurface defined by. Let

be the polynomial . Consider the
real variety and suppose that:

• is nonempty and bounded (and hence compact),
• the gradient of is different from zero in all points of (i.e., is a

smooth hypersurface in and is its regular equation),
• the variables are in generic position.

Under these assumptions the following problem adapted notion of polar
variety is meaningful and remains consistent with the more general definition
of the same concept (see e.g. [36]).

DEFINITION 4. Let < . Consider the linear subspace of
corresponding to the linear forms i.e.,
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. Then the algebraic subvariety of
defined as the Zariski closure of the set

is called the (complex)polar varietyof associated to the linear subspaceof
. The respective real variety is denoted by and called thereal

polar varietyof associated to the linear subspace of . Here is
understood to be the Zariski closure of the set
and is understood to be .

Remark5. Since by assumption is a nonempty compact hypersurface of
and the variables are in generic position, we deduce from

Proposition 3 and general considerations on Lagrange multipliers (as e.g. in
[26]) or Morse Theory (as e.g. in [38]) that the real polar varietyis nonempty
and smooth for any < . In particular, the complex variety is not empty
and the hypersurfaces of given by the polynomials
intersect transversally in some dense Zariski open subset of(observe that
any element of is a smooth point of and
apply Proposition 3).

Let us observe that the assumptionsmoothimplies that the polar variety
can be written as
for any .

THEOREM 6. Let be a nonconstant square-free poly-
nomial and let . Let
be the hypersurface of given by the polynomial . Further, suppose that

is a nonempty, smooth, and bounded hypersurface ofwith
regular equation . Assume that the variables are in generic po-
sition. Finally, for any < let the complex polar variety of
and the real polar variety of be defined as above. With these notations and
assumptions we have:

• with if and only if and are coprime;
• is a nonempty equidimensional affine variety of dimension

being smooth in all its points which are smooth points of;
• the real part of the complex polar variety coincides with the

Zariski closure in of the real polar variety

• the ideal is radical.
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Proof. The first statement is obvious, because is the union of all
irreducible components of on which does not vanish identically.

We show now the second statement. Let < be arbitrarily fixed. Then
the polar variety is nonempty by Remark 5. Moreover, the hypersurfaces
of defined by the polynomials intersect any
irreducible component of transversally in a nonempty Zariski open set. This
implies that the algebraic variety is a nonempty equidimensional variety of
dimension and that the polynomials
form a regular sequence in the ring obtained by localizing by
the polynomials which do not vanish identically on any irreducible component
of . More exactly, the polynomials form a regular
sequence in the localized ring . From Proposition 3 we
deduce that is smooth in all points which are smooth points of and that
the hypersurfaces of defined by the polynomials
intersect transversally in these points.

Let us show the third statement. The Zariski closure ofin is contained
in (this is a simple consequence of the smoothness of). One obtains the
reverse inclusion as follows: let be an arbitrary point, and let be an
irreducible component of containing this point. Since is a real component
of the set is not empty and contained in . The polar variety

is contained in the algebraic set
. Therefore, we have . Moreover, the

hypersurfaces of defined by the polynomials cut
out transversally a dense subset of . Thus we have

(Here denotes the set of smooth points of and denotes
the complexification of .) Thus,
and, hence, . Moreover, is contained in the Zariski
closure of in which implies that is contained in the Zariski closure of

as well.
Finally, we show the last statement. Let us consider again the algebraic set

which contains the polar variety . Let be any irreducible component of
. Then is also an irreducible component of . Moreover, the polynomial
does not vanish identically on . By Remark 5 there exists now a smooth

point of which is contained in and in which the hypersurfaces of
given by the polynomials intersect transversally.
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Let be fixed in that way. Consider the local ring
of the point in the variety (i.e., is the ring of germs

of rational functions of that are defined in the point ). Algebraically the
local ring is obtained by dividing the polynomial ring

by the ideal which defines as an affine variety,
and then localizing at the maximal ideal of the
point . Using now standard arguments from commutative
algebra and algebraic geometry (see e.g. [4]), one infers from the fact that
the hypersurfaces of given by the polynomials
intersect transversally in the conclusion that is a regular local ring
and, hence, an integral domain. The fact that is an integral domain

implies that there exists a uniquely determined irreducible component of
which contains the smooth point (this holds true for the ordinary, -defined
Zariski topology as well as for the -defined one considered here). Therefore,
the point is uniquely contained in the irreducible componentof (and
of ).

Since the local ring is an integral domain, its zero ideal is prime.
This implies that the polynomials generate a prime
ideal in the local ring . Hence, the isolated
primary component of the polynomial ideal in

which corresponds to the irreducible component is itself a
prime ideal. Since this is true for any irreducible component ofand since

is defined by discarding from the irreducible components contained in
the hypersurface of given by the polynomial we conclude that the ideal

of is an intersection of prime
ideals and, hence, is radical. This completes the proof of Theorem 6.

Remark7. Under the assumptions of Theorem 6, we observe that for any
< the following inclusions hold among the different nonempty

varieties introduced up to now, namely

Here is the bounded and smooth real hypersurface we consider in this pa-
per, and are the polar varieties introduced in Definition 4, is the real
part of according to Definition 1, and is the complex affine variety intro-
duced in the proof of Theorem 6. With respect to Theorem 6 our settings and
assumptions imply that holds.
By our smoothness assumption and the generic choice of the variables we have
for the respective sets of smooth points the inclusions

(Here is the affine hypersurface of .)
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3. ALGORITHMS AND COMPLEXITY

The preceding study of adapted polar varieties enables us to state our first
complexity result:

THEOREM 8. Let be natural numbers. Then there exists an arith-
metic network over of size with the following properties:

Let be a nonconstant polynomial of degree at most
and suppose that is given by a division-free straight-line program in

of length at most . Let
and suppose that the

variables are in “sufficiently generic” position. For < let
be the Zariski closure in of the set

(thus is the polar variety of associated to the linear space
according to Definition 4). Let

be the geometric degree of and assume that < holds.
The algorithm represented by the arithmetic network starts from the

straight-line program as input and decides first whether the complex algebraic
variety is zero-dimensional. If this is the case the networkproduces a
straight-line program of length in which represents the coefficients
of univariate polynomials satisfying the following
conditions:

(1)
(2) <
(3)

Moreover, the algorithm represented by the arithmetic networkdecides
whether the semialgebraic set is nonempty. If this is the case the
network produces not more than sign sequences of which
codify the real zeros of “ à la Thom” ([11]). In this way, describes the
nonempty finite set .

From the output of this algorithm we may deduce the following information:

• If the complex variety is not zero-dimensional or if is
zero-dimensional and is empty we conclude that is not a compact
smooth hypersurface of with regular equation .

• If is a compact smooth hypersurface of with regular equation
then is nonempty and contains for any connected component of
at least one point which the network codifies à la Thom as a real zero of the
polynomial .
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Remark9. The hypothesis that the variables are in “sufficiently
generic” position is not really restrictive since any-linear coordinate change
increases the length of the input straight-line programonly by an unessential
additive term of . Moreover, by [29, Theorem 4.4], any genericity
condition which the algorithm might require can be satisfied by adding to the
arithmetic network an extra number of nodes which is polynomial in the
input parameters .

Remark 10. From the Bézout Theorem we deduce the estimation
< < . Moreover, can always be evaluated

by a division-free straight-line program in of length . Thus,
fixing and one is concerned with a worst-case
situation in which the statement of Theorem 8 just reproduces the main
complexity results of [1, 6, 22, 23, 26–28, 41, 42] in case of a compact smooth
hypersurface of given by a regular equation of degree. The interest
in Theorem 8 lies in the fact that may be much smaller than the “Bézout
number” and smaller than in many concrete and interesting
cases.

Proof of Theorem8. Since by [2] and [39] we may derive the straight-
line program representing the polynomial in time linear in we may
suppose without loss of generality that represents also the polynomial

. Applying now the algorithm underlying [19, Proposition 18] together
with the modifications introduced by [20, Theorem 28] (compare also [20,
Theorem 16 and its proof]), we find an arithmetic network with pa-
rameters in of size which decides whether the polynomials

form a secant family avoiding the hypersurface
of defined by the polynomial . This is exactly the case if is zero-
dimensional.

Suppose now that the polynomials form
such a secant family. Then the arithmetic network which we obtained
before applying [19, Proposition 18] and [20, Theorem 28] to the input

and produces a straight-line program in
which represents the coefficients of polynomials
characterizing the part of the complex variety

which avoids the hypersurface
. More precisely, the output of the network

satisfies the conditions (1)–(3) in the statement of Theorem 8.
Now applying for example the main (i.e., the only correct) algorithm of

[3] (see also [43] for refinements) by adding suitable comparison gates for
positiveness of rational numbers, we may extendto an arithmetic network

of asymptotically the same size which decides whether the
polynomial has any real zero. Moreover, without loss of generality the
arithmetic network codifies any existing zeros of à la Thom (see [11,
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43]). From general considerations of Morse Theory (see e.g. [38]) or more
elementarily from the results and techniques of [26, 28] one sees that in the
case where is a regular equation of a bounded smooth hypersurfaceof
the arithmetic network codifies for each connected component ofat least
one representative point. This finishes the proof of Theorem 8.

Roughly speaking, the arithmetic network of Theorem 8 decides whether a
given polynomial is a regular equation of a bounded (i.e.,
compact) smooth hypersurface of . If this is the case computes for
any connected component of at least one representative point. The size of

depends polynomially on the number of variablesthe degree and the
straight-line program complexity of and finally on the degree of certain
complex polar varieties associated to the equation.

The nature of the answer the network gives us about the algorithmic
problem is satisfactory. However, this is not the case for the size ofwhich
measures the complexity of the underlying algorithm, since this complexity
depends on the parameterbeing related rather to the complex considerations
than to the real ones. We are going now to describe a procedure whose
complexity is polynomial only in thereal degree of the polar varieties
instead of their complex degree. The theoretical (not necessarily the practical)
price we have to pay for this complexity improvement is relatively high:

• our new procedure does not decide any more whether the input
polynomial is a regular equation of a bounded smooth hypersurfaceof .
We have to assume that this is already known. Therefore the new algorithm
can only be used in order tosolve the real equation but not to decide
its consistency (solvingmeans here that the algorithm produces at least one
representative point for each connected component of).

• our new algorithm requires the support of the following two external
subroutines whose theoretical complexity estimates are not really taken into
account here although their practical complexity may be considered as “poly-
nomial”:

—the first subroutine we need is a factorization algorithm for univariate
polynomials over . In the bit complexity model the problem of factorizing
univariate polynomials over is known to be polynomial ([37]), whereas in
the arithmetic model we are considering here this question is more intricate
([16]). In the extended complexity model we are going to consider, the cost
of factorizing a univariate polynomial of degree over (given by its
coefficients) is accounted as .

—the second subroutine allows us to discard nonreal irreducible
components of the occurring complex polar varieties. This second subroutine
starts from a straight-line program for a single polynomial in
as input and decides whether this polynomial has a real zero (however, without
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actually exhibiting it if there is one). Again this subroutine is taken into account
at polynomial cost.

• We call an arithmetic network over extendedif it contains extra nodes
corresponding to the first and second subroutine.

Fix for the moment the natural numbers and . We suppose that
a division-free straight-line program in of length at most
is given such that represents a nonconstant polynomial
of degree at most . Let again and suppose that
is a regular equation of a (non-empty) bounded smooth hypersurfaceof .
Let be the complex hypersurface of defined
by the polynomial and suppose that the variables are in generic
position. Fix < arbitrarily. Let as in Definition 4 the complex variety

be the Zariski closure in of the set

i.e., is the polar variety of the complex hypersurface associated to the
linear subspace .

Let be the corresponding polar variety of the real hypersurface
. Let be the real degree of the polar variety i.e., the geometric

degree of (see Definition 1). By Theorem 6 the quantity is also the
geometric degree of the Zariski closure in of the real variety i.e., of the
complexification of . Let . Since the variables are
in generic position with respect to all our geometric data, they are also in Noether
position with respect to the complex variety the variables being
free (see [18, 19] for details). Finally, suppose that <
holds.

With these notations and assumptions, we have the followingreal version of
[19, Proposition 17]:

LEMMA 11. Let be given natural numbers as before and fix
< and . Then there exists an extended arithmetic network
with parameters in of size which for any nonconstant polynomial

satisfying the assumptions above produces a division-free
straight-line program in such that represents a nonzero
polynomial and the coefficients with respect to of cer-
tain polynomials having the following prop-
erties:

(i) the polynomial is monic and separable in and its degree
satisfies

(ii) the polynomial is the discriminant of with respect to the variable
and its degree can be estimated as
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(iii) the polynomials satisfy the degree bounds

(iv) the ideal generated by the polynomials
in the localization is the vanishing

ideal of the affine variety . Moreover, is
a dense Zariski open subset of the complex variety.

(v) the length of the straight-line program is of the order .

Proof. The proof of this lemma follows the general lines of the proof of
Theorem 8 and is again based on the algorithm underlying [19, Proposition 17]
together with the modifications introduced by [20, Theorem 28]. By Theorem
8 above, we know that the polynomials form a
secant family, avoiding in the hypersurface defined by and therefore the
algorithm of geometric solving due to [20, Section 3] is applicable. In particular,
the lifting procedureinvolved there can be exploited for our purpose.

First we observe that by [2] and [39] we are able to derive the straight-line
program representing the input polynomial at cost linear in . Thus we
may suppose without loss of generality thatrepresents both and .

We show Lemma 11 by the exhibition of a recursive procedure in <
under the assumption that the first and second subroutines as introduced before
are available. First put and let be the straight-line program which
represents and . Since the variables are in generic position,
the polynomials and are monic with respect to the variable and satisfy
the conditions and .

Let and consider and as univariate polynomials
in with coefficients in . Recall that they are monic. Interpolating
them in arbitrarily chosen distinct rational points, we obtain a division-
free straight-line program in which represents the
coefficients of and with respect to . This straight-line program has
length .

We apply now [19, Lemma 8] in order to obtain the greatest common
divisor of and which is again a monic polynomial in which we
may suppose to be given by a division-free straight-line program in

representing its coefficients with respect to . Dividing
by this greatest common divisor in as in the Noether normalization

procedure in [19], we obtain a polynomial
whose coefficients with respect to the variable are represented by a division-
free straight-line program in . The polynomial is
monic in it is square-free, and it is a divisor of. Moreover, we have
that and is the minimal polynomial of the
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hypersurface of . The degree of the polynomialsatisfies the condition
.

The straight-line program which represents the coefficients of with
respect to the variable has length . In order to finish the recursive
construction for the case it is sufficient to find the factor of which
defines the real part of . For this purpose we consider the projection map

which maps each point of onto its first coordinates. Since
the variables are in generic position, the projection map induces a
finite surjective morphism . We choose a genericlifting point

with rational coordinates (this is here
a generic point for the hypersurface of the finite morphism for
which the zero-dimensional fiber the lifting fiber, contains only smooth
points of ; for more details see [20, Section 3]). Observe that the irreducible
components of are the hypersurfaces of defined by the -irreducible
factors of which we denote by .

Without loss of generality we may assume that for the irreducible
polynomials define the real irreducible components of . Thus it
is clear that the factor of we are looking for is . It suffices
therefore to find all irreducible factors of and then to discard the
factors .

In order to find the polynomials we specialize the variables
into the coordinates of the rational point .

We obtain thus the univariate polynomial
which decomposes into in .

Since the lifting point was chosen generically in Hilbert’s Irreducibility
Theorem (see [33]) implies that the polynomials are
irreducible over . Specializing the variables in the straight-line
program into the values we obtain an arithmetic circuit in
which represents the coefficients of . By a call to the first subroutine we
obtain the coefficients of the polynomials . Applying
to these polynomials the lifting procedure which we are going to explain below
in a slightly more general context, we find a division-free straight-line program
in of size which represents the coefficients of the
polynomials with respect to the variable .

In order to finish the case we have to identify algorithmically the
polynomials that define the irreducible real components of and,
hence, those of . Then, the product is easily obtained.
Observe that is the minimal polynomial of the hypersurface . From the
assumption that is a smooth real hypersurface one deduces that

holds. Since is a regular equation of and
since the polynomials and are factors of one sees immediately thatand

are also regular equations of. This implies that each of the polynomials
admitting a real zero has a nonvanishing gradient in. Thus,
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any polynomial of admitting a real zero belongs to .
Hence, by a call to the second subroutine, we are able to find the polynomials

and therefore the polynomial .
Now we extend the division-free straight-line program representing the

polynomials to a circuit in of size which
computes the polynomial . Interpolating in the variable
as before, this circuit provides a division-free straight-line programin

of size which represents the coefficients ofwith
respect to the variable . Without changing its order of complexity we
extend to a division-free circuit in that computes also
the discriminant of with respect to the variable and the polynomials

.
Let

. One sees immediately that the polynomials
and satisfy the

conditions (i)–(iv) of Lemma 11 for . Furthermore, is a division-free
straight-line program in of size which computes

and the coefficients of with respect to the variable . By
construction the output circuit can be produced from the input circuit
by an extended arithmetic network overof size . This finishes the
description of the first stage in our recursive procedure.

We consider now the case of 0 << and set . Suppose that
there is given a division-free straight-line program in
of size that represents a nonzero polynomial and
the coefficients with respect to of certain polynomials

. These polynomials have the following properties:
is monic and separable in and satisfies the degree condition

is the discriminant of with respect to the
polynomials satisfy the degree bound
< and the ideal of the localized ring

is the vanishing ideal of the affine variety . Observe
that is a Zariski open dense subset of . Let be the Zariski
closure in of . We have

and that is at least the union of all real irreducible components
of . In particular, all irreducible components ofare irreducible components
of . Moreover, we have .

Now we apply the procedure underlying [19, Proposition 15] to the straight-
line programs and representing the polynomials and

in order to produce an explicit description of the algebraic variety
. By means of the algorithm of [19, Subsection

5.1.3], we clear out the irreducible components of this variety contained in the
hypersurface . Finally, we obtain a division-free straight-
line program in of size which represents
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a nonzero polynomial and the coefficients with respect
to of certain polynomials . The latter
polynomials have the following properties:is monic and separable with respect
to and satisfies the degree condition
is the discriminant of with respect to the polynomials
satisfy the degree bound < and the ideal

of the localized ring is the
vanishing ideal of the affine variety . Observe again the is a Zariski open
dense subset of . By [19, Proposition 15 and Subsection 5.1.3], there exists
an arithmetic network with parameters in which produces from the input
circuits and the output circuit and has size .

Let be the -irreducible factors of . Since
is monic and separable in we have . From the assumption

that the variables are in generic position we deduce that each
irreducible component of the algebraic varietyis represented by exactly one
of the irreducible polynomials . This means that has irreducible
components, say such that for the irreducible component

is identical with the Zariski closure in of the set

Now suppose that the real irreducible components of(and hence, the one
of ) are represented in this way by the polynomials and let

. The polynomial is monic and separable in and
satisfies the degree condition . Moreover, we have

.
Now we try to find a straight-line program whose length is of order

(hence, independent of the length of the circuit ) and
which represents the coefficients of the polynomials and, finally, the
polynomial . Adding to the arithmetic network order of
extra nodes we find as in the proof of [20, Proposition 30], a “sufficiently
generic” lifting point for the algebraic variety
(see [20, Definition 19], for the notion of a lifting point). By the generic
choice of the point we deduce from Hilbert’s Irreducibility Theorem that

are irreducible polynomials of . Thus the
identity represents the decomposition
of the polynomial into its irreducible factors.

Specializing in the straight-line program the variables into
the values we obtain an arithmetic circuit in that represents the
coefficients of the univariate polynomial . Adding some extra nodes
to the arithmetic network, without changing its asymptotic size, we may suppose
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that represents the nonzero rational number and the coefficients of the
univariate polynomials . Observe
that holds. Therefore
we are able to find the irreducible factors of

by a call to the first subroutine at a supplementary cost of
. Adding some extra nodes to the arithmetic network without

changing its asymptotic complexity, we may suppose thatrepresents for
each the rational number and the coefficients of the
polynomials . Observe that is
now anextendedarithmetic network. For a fixed the set

is the lifting fiber of the point in the irreducible component of .
The polynomials
represent a geometric solution of this lifting fiber. This means that the identity

holds.
Applying the algorithm underlying [20, Theorem 28] to the input

we
obtain a division-free straight-line program in having a length
of order representing the coefficients of the polynomial

with respect to . Doing this for each again we have
to add to the extended arithmetic network some extra nodes which do
not change its asymptotic size. Then we may suppose thatproduces
a division-free straight-line program in representing the
coefficients of the polynomials with respect to the variable .
As in the case of we discard by a call to the second subroutine
the polynomials which do not have any zero in . From
the remaining polynomials we generate . The
additional costs of discarding and producing is of order

. Thus, without
loss of generality, we may suppose that the extended arithmetic network

produces a division-free straight-line program in of size
which represents the coefficients of

the polynomial with respect to the variable . We observe that the point
is a lifting point of the algebraic variety too. Therefore,

the lifting fiber of in is given by the rational number and the
coefficients of the polynomials and
which, in principle, have already been computed by the arithmetic network

. Again applying the procedure underlying [20, Theorem 28] to the
input
we obtain a division-free straight-line program in of
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size . The straight-line program represents a nonzero
polynomial and the coefficients with respect to

of the polynomial and certain other polynomials of
having the properties (i)–(iv) stated in Lemma 11.

The extended arithmetic network over which produces this output
from the input and has size .

Observe that the length of the straight-line program is independent
of the length of the input circuit . More precisely, we have

. Taking into account that and
holds, we conclude that the size of the extended arithmetic

network which produces from the input circuits and the output
circuits is of order . Concatenating the networks we
finally obtain an extended arithmetic network over which produces the
straight-line program from the input circuit . The network is of size

.

From Lemma 11 one now easily deduces our main result.

THEOREM 12. Let be natural numbers. Then there exists an ex-
tended arithmetic network over of size with the following
properties:

Let be a nonconstant polynomial of degree at most
and suppose that is given by a division-free straight-line program in

of length at most . Let
and suppose that

the variables are in “sufficiently generic” position. Furthermore,
suppose that is a (nonempty) bounded smooth hypersurface of with
regular equation . For let be the Zariski closure of the set

and
.

Let be the real degree of the complex variety
and assume that < holds.

The algorithm represented by the extended arithmetic networkstarts from
the straight-line program as input and produces a straight-line program in
of size . This straight-line program represents the coefficients of

univariate polynomials satisfying the following
conditions:

(i)
(ii) <
(iii) Any connected component of the real hypersurfacehas at least one

point contained in the set
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Moreover, the extended algorithmic network codifies each real zero of the
polynomial (and hence, the elements of) “ à la Thom.”

Proof. Just apply Lemma 11, setting . The remaining arguments
are the same as in the proof of Theorem 8.
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26. Heintz, J., Roy, M.-F., and Solernó P. On the complexity of semialgebraic sets,in “Proc.
Information Processing ’89 (IFIP 89), San Francisco, CA, 1989,” (G. X. Ritter, Ed.), pp.
293–298, North–Holland, Amsterdam, 1989.
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49,Université de Nice, 1984.

40. Pardo, L. M. How lower and upper complexity bounds meet in elimination theory,in “Proc.
11th International Symposium Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, AAECC-11, Paris, 1995,” (G. Cohen, M. Giusti, and T. Mora, Eds.), Lecture Notes
in Computer Science, Vol. 948, pp. 33–69, Springer-Verlag, New York/Berlin, 1995.

41. Renegar, J. A faster PSPACE algorithm for the existential theory of the reals,in “Proc. 29th
Annual IEEE Symposium on the Foundation of Computer Science (FOCS),” 1988, pp. 291–
295.

42. Renegar, J. On the computational complexity and geometry of the first order theory of the
reals,J. Symbolic Comput.13, No. 3 (1992), 255–352.

43. Roy, M.-F., and Szpirglas, A. Complexity of computation with real algebraic numbers,J.
Symbolic Comput.10 (1990), 39–51.

44. Seidenberg, A. Constructions in algebra,Trans. Amer. Math. Soc.197 (1974), 273–313.

45. Shub, M., and Smale, S. Complexity of Bezout’s theorem. I. Geometric aspects,J. Amer.
Math. Soc.6 (1993), 459–501.

46. Shub, M., and Smale, S. Complexity of Bezout’s theorem II: Volumes and probabilities,in
“Proceedings, Effective Methods in Algebraic Geometry, MEGA’92, Nice, 1992,” (F. Eyssette
and A. Galligo, Eds.), Progress in Mathematics, Vol. 109, pp. 267–285, Birkhäuser, Basel,
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