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FOREWORD 

The Thermal Radiation Analyzer System (TRASYS) program marks the 

first instance that thermal radiation analysis has been put on the same basis 

as thermal analysis using program systems such as MITAS and SINDA. As with 

these thermal analyzer programs, the user is provided the powerful options of 

writing his own executive, or driver logic and choosing, among several 

available options, the most desirable solution technique(s) for the p=oblem at 

hand. In addition, many features never before available in a single radiation 

analysis program are provided. 

Among the more important are: 

• Up to 1000 node problem s~ze capability* with shadowing by 

intervening opaque or semi-transparent surfaces; 

6 Choice of diffuse, specular or diffuse/specular radiant 

interchange solutions; 

e Capability for time variant geometry ~n orbit; 

o Choice of analytically determined or externally supplied shadow 

data for environmental flux calculations; 

(I Form factors and. environmental fluxes computed using an 

internally-optimized number of surface grid elements, selected 

on the basis of user-supplied accuracy criteria; 

• Choice of an element to element double integration technique 

and a precision Nusselt Sphere technique for computing form 

factors; 

• A general edit capability for updating thermal radiation model 

data stored on tape. 

*Depending on Computer application. 
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o A plot package that provides a pictorial representation of the 

user's geometry, orbital/orientation parameters, and heating 

rate output data as a function of time. 

o Capability to automatically equate Form Factors for nodes that 

have been duplicated or imaged to the corresponding original 

node pair, to eliminate costly redundant computations. 

TRASYS is indebted to a number of predecessor programs in the 

thermal radiation analysis field. The major contributors were HEATRATE, MTRAP 

version 2.0, and RADFAC. 

This User's Manual represents a concerted effort to document the 

capabilities of TRASYS and will, hopefully, serve the twofold purpose of 

instructing the user in all applications and serve as a convenient reference 

book that presents the features and capabilities in a concise, easy-to-find 

manner. 

This User's Manual was generated under a series of NASA 

Contracts. The technical monitoring was provided by Mr. Robert A. Vogt of the 

Thermal Technology Branch of the Structures and Mechanics Division, NASA 

Lyndon B. Johnson Space Center. His helpful suggestions during the 

development of TRASYS are gratefully acknowledged. TRASYS would not exist 

without the superb design and programming efforts of Messrs. R. E. Paulson and 

R. J. Connor, who were responsible for generating the majority of the TRASYS 

code. Their efforts are gratefully acknowledged. Extensive thanks are also 

due Mr. G. M. Holmstead for his efforts in developing the direct irradiation 

program segment and for the valuable consulting effort he performed during the 

course of program development. Mr. R. G. Goble is also recognized for his 

praiseworthy efforts in developing the specular-diffuse radiation interchange 

segment, the orbit plotter segment, and for his solutions of many knotty 

problems that cropped up during program checkout. 
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1. INTRODUCTION 

1.1 WHAT IS TRASYS? 

The Thermal Radiation Analysis System is a digital computer software 

system with generalized capability to solve the radiation related aspects of 

thermal analysis problems. Wben used in conjunction with a generalized 

thermal analysis program such as the Systems Improved Numerical Differencing 

Analyzer (SINDA) program, any thermal problem that can be expressed in terms 

of a lumped parameter R-C thermal network can be solved. The function of 

TRASYS is twofold. It provides: 

a. Internode radiation interchange data; and 

b. Incident and absorbed heat rate data from 

environmental radiant heat sources. 

Data of both types is provided in a format directly usable by the thermal 

analyzer programs. 

One of the primary features of TRASYS is that it allows the user to 

write his own executive or driver program which organizes and directs the 

program library routines toward solution of each specific problem in the most 

expeditious manner. The user also may write his own output routines, thus the 

system data output can directly interface with any thermal analyzer using the 

R-C network concept. 

Other outstanding features of TRASYS include: 

a. A plot segment that provides pictorial plots of the 

problem geometry as well as output data; 

b. Restart capability that prevents loss of output and 

is very convenient to usej 

c. A generalized edit capability for conveniently 

changing data on the restart tape; 

d. Geometry may vary with time; 

e. Central processor memory required ~s adjusted 

dynamically according to problem size; 

f. A choice of solution techniques in the calculation 

of geometric form factors, depending upon whether 

~' high precision or m~n~mum computer run time is the 

primary objective. 
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Allowable problem size 1S limited by the amount of 

central memory available. At the Univac 1110 installation at 

Johnson Spaceflight Center, 65000 words of high speed core are 

available, which allows for problems up to approximately 650 

nodes. At this installation, larger problems require a program 

modification to utilize extended core for some data arrays. 

A definitive run time formula for TRASYS cannot be 

stated due to the strong dependence on the experience of the 

analyst, the number of shadowing surfaces in a given problem and 

the way the nodes are geometrically arranged relative to each 

other. Numerous shadowing nodes in close proximity to each other 

will add to run time. Also, heat rates for non-circular orbits 

generally require much more run time than for circular planet 

oriented attitude because form factors to the planet must be 

computed for each point in orbit. 

For example, form factors for a relatively large 500 

node model may require 2 to 20 hours of SUP time on a Univac 

1110. In general, run time 1S proportional to the third or 

fourth power of the problem size. Thus, a 100 node problem may 

only require 6 to 11 minutes for form factors. 

The TRASYS system consists of two major components: 
. . . 

(1) the preprocessor, and (2) the processor library. The 

preprocessor h~s two major functions. First, it reads and 

converts the user's geometry input data into the form used by the 

processor library routines. Second, it accepts the users driving 

logic written in the TRASYS modified FORTRAN language that 

directs user-provided and/or library routines in the solution of 

the problem. The processor library consists of FORTRAN language 

routines that perform the functions commonly needed by the user. 

The user has, 1n some cases, a choice of solution techniques to 

perform the same function. 

1.2 SYSTEM STRUCTURE 

In the usual engineering environment, a programmer 1S 

commissioned to prepare an applications program which is 

subsequently made available to the engineer on a production 

basis. The engineer supplies input data and receives output 

data, as shown in Figure 1-1. 
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FIGURE 1.1: BASIC FLOW IN USING AN APPLICATIONS PROG~l 

Changes to the logic and equations are difficult for the 

program user to implement conveniently since they must be written 

in a computer-oriented language and submittal may be required . 
through a formal programming organization. When TRASYS 1S used, 

however, the engineer need only calIon the programmmer to supply 

a standard deck of computer oriented "control cards" which will 

call the various elements of the system into action 1n the proper 

sequence. The engineer then formulates his problem 1n the 

engineering-oriented TRASYS language, assembling both data and 

solution techniques (i.e., logic and equations) into this card 

deck, which then serves as the complete input to the TRASYS 

system. Programmer support has been minimized since the bulk of 

the programming effort is already built into the TRASYS 

preprocessor and processor library. The engineering user need 

only specify the data and the order and type of "program building 

blocks" which he deems necessary for the solution of his problem, 

as illustrated in Figure 1-2. 

DATA 
IN 

LOGIC & 
EQUATIONS 

TRASYS 
DATA 

OUT 

FIGURE 1-2: BASIC FLOW IN USING TRASYS 

1-3 



It should then be evident that TRASYS is much more than 

an applications program. It has, in fact, all of the functions 

and capabilities of a special purpose operating system. Since 

most computers in current use in engineering environments already 

have operating systems built around a FORTRAN compiler, TRASYS 1S 

designed to augment the existing FORTRAN system. Hence, the 

TRASYS library serves as an extension to the existing FORTRAN 

library, and the TRASYS program serves as a preprocessor to 

(i.e., it preceeds) the existing FORTRAN compiler. This 

augmentation arrangement is illustrated in Figure 1-3. 

DATA IN 

LOGIC & EQUATIONS 

PRE
PROCESSOR 

SYSTEM 
FORTRAN 
COMPILER 

LOADER 

COMPRESSED 
DATA 

PROGRAM ~=========~ DATA OUT 

FIGURE 1-3: DETAILED INTERNAL FLOW OF TRASYS 
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When using the full capability of TRASYS, the eng1neer 

will be required to exert a programming effort of sorts, in a 

language consisting of FORTRAN statements and problem oriented 

TRASYS statements that are FORTRAN related. This, together with 

the wide variety of options and features offered by the system, 

suggests an appropriate word of caution: TRASYS 1S a 

comprehensive system which cannot be mastered overnight. The 

prospective user should not assume that a cursory review of the 

Instruction Manual will lead to immediate success, nor should he 

assume that this manual represents a "cookbook" which will 

eventually yield to a plodding and rigid adherence to each and 

every rule. In presenting instructions on the use of a computer 

program, it is not possible to completely avoid some 

"cookbook-like" sections; however, every effort has been made to 

explain the "why" and "how" behind each rule, option, and 

feature, with the intent of encouraging the reader to think about 

and understand TRASYS in depth. To help the novice user, an 

attempt has been made to default much of the required input to 

normally used values so that the user need not define them. 
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2.1 

2.1.1 

2. BACKGROUND INFORMATION 

TYPOGRAPHICAL CONVENTIONS 

Punched Cards 

The reader is (or soon will be) familiar with the standard 80 column 

punched card. It is the user's primary means of conveying his input data and 

logic to TRASYS. 

The program input format design is predicated on minimum dependence 

upon data/card column relationships. Most card input is covered by one column 

rule: card columns 1 thru 6 inclusive comprise the control field and columns 7 

through 72 comprise the data field. Data in the control field are used by 

read routines to identify the type of data to expect in the cards' data 

field. In this manual, the typographical convention shown in Figure 2-1 will 

be used to indicate the card columns of interest. (Card columns 1,7 and 12 in 

this case). 

CCI CC7 CC7 
2 

FIGURE 2-1: SAMPLE CARD COLUMN DESIGNATIONS 

Throughout the rest of the manual (in contrast to Figure 2-1) punched 

cards will not be identified as figures. Whenever material is presented with 

one or more indicators with the format CCX directly above, a punched card 1S 

indicated. The card data will always be presented as Gothic capitals and lor 

numerals. For example, a card format might be shown as follows: 

CC1 CC7 

TITLE THIS IS A SAMPLE TITLE CARD 

In general, the character directly below the column number begins the 

relevant data field. 

2.2 FILE AND TAPE CONVENTIONS 

S1nce TRASYS can be implemented on a variety of computers, it 1S 

necessary to refer to data storage media by some nomenclature which will be 

independent of the particular system configuration. FORTRAN "logical unit 

numbers" are often used for this purpose, but were rejected for use in this 
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manual because certain installations impose restrictions on the type of 

physical storage device which may be assigned. to a given unit. Instead, each 

serial access storage device referenced by TRASYS is given a proper name as 

follows: 

"PURPOSE tape" 

I Hence, for example, the Restart Output Tape referred to as the RSO tape, 

contains the. results of processing the user's data, and Edit Input Tape CMERG 

contains. input for merging, using the edit routine. "Tape" is used as part of 

the name only because a reel of magnetic tape is normally associated with 

computer storage •. However, any "Tape" may, in fact, be a disk file, a drum 

fi~e, a punched paper tape, or a magnetic tape, at the option of the user. 

AppendixG contains a list of the sy.tem-oriented unit designations for each 

of the "Tapes" mentioned in this manual, along with the recommended type of 

storage device to which these units should be assigned. 

On the other hand, when speaking in general about saving or 

retrieving data on or from a serial access storage device, the generic term 

"file" .will be used. 

, ,2.3. TERMS. AND DATA CONVENTIONS 

The words SUBROUTINE and, ROUTINE are generally used interchangeably. 

I Occasionally the .word."LINK" will appear in this manual. It is synonomous 

with SEGME.NT. A program SEGMENT is a specific collection of routines used to 

do a specific process1ng job, such as the calculation of radiation interchange 

factors. Generally, the routines comprising a segment are brought into core 

together, and in this sense, a segment can be thought of as an OVERLAY, where 

that concept is applicable to a particular computer operating system. INTEGER 

and FIXED POINT mean the same thing, as do REAL and FLOATING POINT. 
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The term HOLLERITH* is applied to strings of alphanumeric 

characters. The term DATA VALUE will be taken to mean one element of the set 

of all integers, floating point numbers, and 6-character** Hollerith strings. 

In the text, DV, DVl, DV2, etc. refer to floating point values. NDV, NDVl, 

NDV2, etc. are integer. 

A data value may also be any arithmetic FORTRAN expression, which may 

contain variable names. For example: 

ANAME = 6.8*4.3l7/CONl 

1S allowed. On the other hand, function calls such as: 

DNAME = 4.7* SIN(1.73) 

are not. The user is also cautioned to avoid mixed-mode expressions. 

A data value should not be split between cards unless it is a 

subroutine CALL Argument in which case a continuation FLAG in Col 6 must exist 

as in the Standard FORTRAN continuation. 

Integers will be shown in print as a sequence of digits preceded, 

optionally, by a plus or minus sign. Floating point numbers will appear in 

print as a sequence of digits with a leading, trailing, or imbedded decimal 

point, prefixed, optionally, by a plus or minus sign, and suffixed, 

optionally, by an exponent (to the base 10) denoted as the letter E followed 

by an integer. Hollerith strings of characters will be delineated in print by 

asterisks. These are necessary because blanks are valid characters and have a 

specific binary code (i.e., they do not appear on the printed page, but they 

do appear explicitly in the computer). 

*The Hollerith code is actually a binary code for representing ALPHANUMERIC 

CHARACTERS ON PUNCHED CARDS. Other common binary codes for representing 

alphanumeric characters include BCD, ASCII, EBDIC, and FIELDATA. The use of 

Hollerith to denote character strings in general is purely arbitrary. 

**A 6-character string may be stored in one UNIVAC computer word. TRASYS 

implementations on other computers may provide more or less characters per 

word. In the general case, a Hollerith data value would contain as many 

characters as will fit in one computer word. 
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In addition-to DATA VALUES, another entity; 'called an IDENTIFIER, 

REFERENCE FORM, or VARIABLE, will be used (ina programming'sense)~ For 

example, consider the following statement: 

~ PI = 3.14 

In this case, 3.14 is a floa'ting point data value, 'and PI is"an identifier. 

Note that PI is different from *PI* which isa Hollerith string. 

The data field of any card may be terminated' by thecharacer' $. This 

terminates any further data read operations for that card,and allows the user 

to enter comment data to the right of the $. This may tempt the user to enter 

a comment to the right of it in an otherwiseb18nk card.' This. results in' an 

empty data field and a fatal error. Instead, comment cards are formatted in 

the classic FORTRAN manner, that is, with ae in card columri!. Such cOmment 

cards may be used in any of the data blocks. " 

The terms and data conventions stated thus far hold for all 

situations except one. In the operations data block, a' portion of the i~put' 

is in classic FORTRAN statements which are processed only by the'FORTRAN 

compiler. Thus, Hollerith information must be supplied ina form compatible 

with 'the com'piler. For example:' 

a) CALL NDATAS (1, 3HALL,O,2HNO,3HYES) 

, FFPNCH = 3HPUN' 

are correct~'while 

b) CALL NDATAS (l,*ALL*,O,*NO*,*YES*) 
! 

FFPNCH = *PUN* 
l 

are not, and will result in FORTRAN errors in subroutine ODPROG, the routine 

generated from the users operations data block. 'This situation has resulted 

in a large number of errors over the years and it has been alleviated by 

putting all the Hollerith words commonly-used bY'TRASYS in DATA statements in 

subroutine ODPROG. 

c) CALL NDATAS 

FFPNCH = 

Thus, the following 

(1 ,ALL,O ,NO, YES) 

PUN 

is allowed: 
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The user is cautioned that this approach cannot possibly anticipate 

arbitrarily selected inputs such as configuration names. The cautious user 

has two options: check carefully the reserved word list (Appendix A) for the 

names in DATA statements, or always use the classic "H" format of example a) 

above. The examples supplied herein will always show the H format to 

emphasize this situation. 

A TRASYS "model" is a name (up to 6 characters) used to identify an 

input deck that has been written to a restart tape. When encountered herein, 

the words "TRASYS model" refer to an input deck, less the options and edit 

data blocks. 

A TRASYS configuration name is used to identify a particular 

geometric configuration defined within a run. If the variable geometry option 

is used, a TRASYS "model" may have reference to several configuration names. 

2.4 DEFINITIONS 

Albedo: The diffuse reflectivity of a planet ln the solar 

waveband. 

Direct irradiation (DI): The thermal energy, ln flux units (energy 

per unit time per unit area) incident upon a node. In general, 

direct irradiation consists of solar, planetary and planetary albedo 

components. 

Form factor (FF): The fraction of the total energy leaving a node 1 

that reached a node j in a straight line path. 

Gray body factor (GB): The fraction of the energy within a specified 

waveband emitted from a diffusely emitting, diffusely reflecting node 

i that reaches a similar node j by all possible paths. All nodes 

involved in reflections must also be diffusely emitting, diffusely 

reflecting. 
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Heat rate: The energy per unit time absorbed by a node. The 

components of heat rates are direct & reflected solar, direct & 

reflected albedo and direct & reflected planetary infrared. 

Node: A finite, regular portion of a rectangle, polygon, disk, 

cylinder, sphere, core or paraboloid that is expected to be 

isothermal (everywhere the same temperature) in the user's RC 

(resistance-capacitance) thermal model (interchangable with nodal 

surface) • 

Optical properties: The physical properties of a surface that 

interacts with radiant energy. See Appendix I for definitions of the 

properties used in the TRASYS thermal radiation model. 

Planetary IR or planetary infrared: The component of direct 

irradiation incident on a surface that is due to the thermal emission 

of the planet's surface. 

RADK, or radiation conductor: A single card 1mage ready for input 

into a thermal analyzer program that computes temperatures (e.g., 

SINDA). The information on the card consists of a conductor number, 

the numbers of the two nodes it connects and the value of the 

radiation conductor. 

Radiant interchange factor: Exactly analagous to a gray body 

factor, except that specular and specular-diffuse reflections are 

allowed. 
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Shadow factor: In direct irradiation, the quotient of the energy 

incident upon a node and the energy incident upon it if there were no 

intervening surfaces blocking the incoming energy. In form factors, 

the quotient of a form factor and the analogous form factor that 

would exist if there were no intervening surfaces between the two 

surfaces involved. 

Surface: A finite, regular portion of a rectangle, polygon, disc, 

cylinder, sphere, cone or paraboloid. May be subdivided into any 

number of nodes. 
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3.1 INPUT DECK 

3.1 Introduction to the Input Deck 

3.1.1 Basic Concepts 

TRASYS input decks consist of two fundamental parts. Part I consists 

of the EDIT/CONTROL blocks. These blocks do not participate at all in the 

definition of the mathematical model of the thermal radiation problem. This 

part provides basic program control and provides the user with his edit 

capability. Part II is referred to hereinafter as the TRASYS MODEL. This 

part is made up of the data blocks that describe the user's problem in terms 

of geometry definition and drive logic. The options and source edit data 

blocks comprise the EDIT/CONTROL portion of the input data. Examples of 

options data are problem title information, restart tape identification, input 

data punch/no punch, list/no list flags and a documentation data list/no list 

flag. A one line (CC7-72) problem title is entered in the options data 

block. This title will appear on each page of output printed by the standard 

library output routines during execution. The Edit Data block allows the user 

to do a line by line edit on previously taped input data. The edit capability 

also allows the user to conveniently merge portions of one or more models into 

his master input model. 

The MODEL portion of the input deck consists of the following blocks: 

Documentation Data 

Array Data 

Quantities Data 

Surface Data 

Block Coordinate System (BCS) Data 

Form Factor Data 

Shadow Data 
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Flux Data 

Correspondence Data 

Operations Data 

Subroutine Data 

In general, the largest block is the surface data. This block is the 

user's means to describe the geometry of the surfaces that participate in the 

radiant interchange of his problem. Because of the surface data block's size, 

a number of input options, differing 1.n format and concept, are provided. 

This allows the user to choose the most convenient means of defining the 

different parts of his geometry; thus easing his most laborious task. 

Another type of data that may comprise a large portion of the user's 

input may consist of information normally considered to be program ouput or 

interim output. A user may have, for example, a large portion of the form 

factors needed for his solution available from some external source. Using 

the form factor data block, he may enter this data and save much processing 

time. 

Another data block that allows the user- :to take advantage of large 

I blocks of previously known data is the shadow data block. If DI shadow factor 

tables are known for a portion of this model, the user may enter them through 

this block and avoid computing them- 1.n a shadow -factor generating run. 

The rema1.n1.ng data blocks used for general' alphanumeric input are the 

correspondence data, array data and quantities data blocks. The 

correspondence data provides the capability for the user to redesignate node 

numbers, and/or combine a number of nodes into single nodes. The array data 

block provides a convenient input point for any array data that the user may 

requ1.re. Array data may be integer or floating p6int data value strings, or 

Hollerith strings. The quantities data block performs the same function as 

the array data block except that single values are entered rather than 

strings. If the user desires, he may enter an extended written description of 

his problem in the documentation block. This will appear at the user's option 

at the beginning of his printed output and will be stored with the remainder 

of his input data on his RSO tape. 
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The user's driver logic is entered in the operations data and 

subroutines data blocks. The operations data block consists o~ a series of 

calls to user-addressable subroutines and computation segments arranged in a 

series of steps that are used for orderly handling of the output data in 

out-of-core storage. Operations block subroutine calls are primarily used to 

input and update appropriate problem parameters. The calls to the computation 

segments are what actually result'1n the generation of output data. The 

operations block subroutine calls are in classic FORTRAN format, and the user 

has at his disposal the FORTRAN V language for coding specialized operations 

block logic. In the operations block, the user has access to all variables he 

identified in his array and quantities data, plus an extensive list of program 

variables located in labeled common. 

The subroutines data block contains FORTRAN language subroutines that 

are either user-called or called by the various computation segments. 

Routines found in the subroutines block bearing the same name as processor 

library routines will compile in place of the library routine, thus giving the 

user the capability to override any program function he desires. 

3.1. 2 Basic Structure 

The basic structure of the TRASYS input deck is shown in Figure 3-1. 

This figure illustrates the two EDIT/CONTROL blocks and the 11 MODEL blocks in 

their correct input sequence. Format of the header cards that lead each block 

is defined in Figure 3-2. The data blocks must appear in the order shown in 

Figure 3-1. Any block may be omitted, along with its header card if it is not 

required for the problem at hand. 

The EDIT/CONTROL blocks are discussed in Section 3.2; the model data 

blocks in Section 3.3. 
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LOGIC BLOCKS -----' 

FORM FACTOR DATA BLOCK 

DATA BLOCKS--~ 

BCS DATA BLOCK 

SURFACE DATA BLOCK 

f--- EDITICOm'ROL DATA 

Figure 3-1 Input Deck Structure 
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3.2 EDIT/CONTROL Data Blocks 

3.2.1 Options Data Block 

3.2.1.1 BASIC CONCEPTS 

The Options data block provides the user with the following 

capabilities and operating options: 

1) An entry point for his problem title and model name 

2) Error plot option control 

3) Source deck list/n~ list control 

4) Source deck punch/no punch control 

5) Go-No-Go option (No Go for edit only, no execution) 

6) Print/no print for edit directives 

7) Relabel edit directives 

8) Print/no print of documentation data block 

9) Read/write directions for all input and output tapes 

10) Recomputation point ~n his operations data logic flow. 

3.2.1.2 Options Data Block Variables 

Table 3-1 lists the options data block variables together with their 

options, default values, and descriptions. 
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3.2.1.3 Options Data Block Example 

Figure 3-4 is an example of an options data block. 

3.2.1.4 Automatic Node Plots Option 

When surface data input rules are violated to the point where any 

surface is insufficiently defined to be usable, a fatal error flag is set and 

the run is terminated at the end of preprocessor execution. This 1S 

oftentimes undesirable because the primary objective of the first run on a 

newly defined model is usually to obtain plots of the problem geometry so that 

the user can visually verify his input. Time and effort can be saved if the 

surfaces that are usable ·to the node plotter are plotted in spite of the fatal 

errors. 

The automatic node plot routines eliminate this problem. This 

capability functions as follows: when the word ERPLOT appears in the options 

data block and fatal errors result from the surface data, an operations data 

block is generated by the preprocessor.. An example of such an operations data 

block is shown in Figure 3-3. This example is for a model that uses three 

block coordinate systems. The operations data block generated is then 

executed and the job terminates. Note that four automatically scaled plots 

are generated for each BCS. The views are from the x, y, and z axes, plus a 

3-D. Also note that any operations data entered by the user is ignored. 

HEADER OPERATIONS DATA 

I BUILD THING, ALLBLK 

CALL NDATAS(I,3HALL,O) 

L NPLOT 

CALL BUILDC(BCS2, 0) 

L· NPLOT 

CALL BUILDC(BCS3, 0) 

L NPLOT 

END OF DATA 

Figure 3-3 Sample Operations Data Block Generated for Automatic Node Plots 
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Table 3-1 Options Data Input Detail 

Options Data Input 

CCI CC7 

TITLE 

MODEL 

RSREC 

INFO 

MAXFL 

OPTIONS 
DEFAULT 
VALUE 

PROBLEM TITLE IN CARD NONE 
COLUMNS 7-72 INCLUSIVE 

= ANY 1-6 CHARACTER THING 
MODEL NAME 
= NAMEI - NAME2 NONE 

POSITIVE INTEGER 0 

A, N A 

POSITIVE INTEGER 64000 

LIST SOURCE - ACTIVE NONE 
- INACTIVE NONE 
- ALL NONE 
(NOT INPUT) NONE 

PUNCH SOURCE- ACTIVE NONE 
- INACTIVE NONE 
- ALL NONE 
(NOT INPUT) NONE 

NOGO (INPUT) NONE 
(NOT INPUT) NONE 

NO PRINT - EDIT NONE 
(NOT INPUT) NONE 

-) ) 

DESCRIPTION 

PROBLEM TITLE 

PRIMARY MODEL NAME 

CHANGE MODEL NAMEI TO NAME2 

DEFINES THE RSI TAPE RECORD NUMBER BEYOND 
WHICH RECOMPUTING SHOULD BEGIN IF THERE IS AN RSI 
TAPE READ ERROR (SEE SECTION 3.3.9.7: RESTART 
OPERATIONS 

A - PRINT THE INFOR}~TION DATA FILE 
N - DO NOT PRINT THE INFO~TION DATA FILE 

DEFINES THE FIELD LENGTH (CORE) AVAILABLE 
IN THE COMPUTER (UNIVAC ONLY) 

LIST ACTIVE CARDS IN MODEL 
LIST INACTIVE CARDS IN MODEL 
LIST ALL ACTIVE AND INACTIVE CARDS 
NO LIST 

PUNCH ACTIVE CARDS IN MODEL 
PUNCH INACTIVE CARDS IN MODEL 
PUNCH ALL ACTIVE AND INACTIVE CARDS 
NO PUNCH 

EDIT, BUT DO NO PREPROCESS OR PROCESS 
EDIT, PREPROCESS, AND PROCESS 

DO NOT PRINT EDIT DIRECTIVES 
PRINT EDIT DIRECTIVES 



Table 3-1 (continued) 

Options Data Input 

DEFAULT 
CC1 CC7 OPTIONS VALUE DESCRIPTION 

RELABEL (INPUT) NONE CHANGE MODIFIER LABEL TO (AA) AND DELETE 
(NOT INPUT) NONE ALL INACTIVE CARDS 

DMPDOC (INPUT) NONE PRINT DOCUMENTATION DATA BLOCK 
(NOT INPUT) NONE NO PRINT 

RSI TXXXX
1 

SEE NOTE 2 PROGRAM WILL READ RSI TAPE TXXXX IF CONTROL CARD 
ASSIGNMENT IS MADE PRIOR TO EXECUTING PREPROCESSOR 

RTI TXXXX NONE PROGRAM WILL READ RTI TAPE TXXXX IF CONTROL CARD 
ASSIGNMENT IS MADE PRIOR TO EXECUTING PROCESSOR 

w 
I ...... RSO TXXXX SEE NOTE 3 PROGRAM WILL WRITE TO RSO TAPE TXXXX IF CONTROL CARD 0 

ASSIGNMENT IS MADE PRIOR TO EXECUTING PREPROCESSOR 

RTO TXXXX NONE PROGRAM WILL WRITE TO RTO TAPE TXXXX IF CONTROL CARD 
ASSIGNMENT IS MADE PRIOR TO EXECUTING PROCESSOR 

BCDOU TXXXX BLANK PROGRAM WILL WRITE TO BCDOU TAPE TXXXX WHETHER OR NOT 
BCDOU IS LISTED IN OPTIONS BLOCK IF CONTROL CARD 
ASSIGNMENT IS MADE PRIOR TO EXECUTING WRITE STATEMENTS 
CREATED BY THE USERS' HEADER OPERATIONS DATA BLOCK 

CMERG - TXXXX BLANK PROGRAM WILL READ CMERG TAPE TXXXX WHETHER OR NOT CMERG 
IS LISTED IN OPTIONS BLOCK IF CONTROL CARD ASSIGNMENT 
IS MADE PRIOR TO EXECUTING PREPROCESSOR AND CMERG EDIT 
DIRECTIVES ARE USED IN THE HEADER EDIT DATA BLOCK 

EMERG - TXXXX BLANK PROGRAM WILL READ EMERG TAPE TXXXX WHETHER OR NOT EMERG 
IS LISTED IN OPTIONS BLOCK IF CONTROL CARD ASSIGNMENT 
IS MADE PRIOR TO PREPROCESSOR AND EMERG EDIT DIRECTIVES 
ARE USED IN THE HEADER EDIT DATA BLOCK 

) -)-
- ; 

,) 
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Table 3-1 (continued) 

Options Data Input 
CCl CC7 

w 
• ..... ..... 

;;0 
fTl 
< 

N 

USERl 

TRAJ 

TAPENAME* 

NNMIN 

OPTIONS 

- TXXXX 

- TXXXX 

- TXXXX 

INTEGER NO. 

DEFAULT 
VALUE 

BLANK 

NONE 

NONE 

SEE NOTE 4 

) ) 

.~----- .. --

DESCRIPTION 

PROGRAM WILL WRITE TO USERl TAPE TXXXX WHETHER OR NOT 
USERl IS LISTED IN OPTIONS BLOCK IF CONTROL ASSIGNMENT IS 
MADE PRIOR TO EXECUTING WRITE STATEMENTS CREATED BY USERS' 
HEADER OPERATIONS DATA BLOCK 

PROGRAM WILL READ TRAJ TAPE TXXXX IF CONTROL CARD ASSIGN
MENT IS MADE PRIOR TO EXECUTING READ STATEMENT CREATED BY 
USERS' HEADER OPERATIONS DATA BLOCK 

PROGRAM WILL READ OR WRITE TAPE TXXXX DEPENDENT UPON 
FUTURE AND AUXILIARY APPLICATIONS 

CHANGES NODE ARRAY DIMENSION I 



Table 3-1 <continued) 

*See Appendix G for additional TAPE/FILE INFORMATION 

NOTES: 

1 UTILIZING THE RSI TAPE AS AN EXAMPLE THE ALLOWABLE FORMS FOR ALL TAPES ARE: 

W 
I ...... 

N 

;:0 
IT1 
< 

N 

COL 7 

RSI 

RSI - TXXXX 

RSI - TXXXX 

NO LABEL 

TXXXX IS ANY 6-CHARACTER USER LABEL (e.g., 
TAPE NUMBER). IT WILL BE PRINTED UNDER MODEL 
HISTORY FOR USER ONLY DOCUMENTATION PURPOSES 

SAME AS ABOVE 

2 RSI MUST ALWAYS BE LISTED IN OPTIONS DATA BLOCK IF IT IS TO BE USED, EXCEPT FOR A RESTART CASE IN WHICH NO 
OPTION DATA BLOCK IS INCLUDED IN DATA DECK BECAUSE THERE WERE NO OTHER REQUIREMENTS FOR IT AND THE ASSIGNED 
TAPE HAS THE MODEL DATA ON IT. 

3 RSO MUST ALWAYS BE LISTED IN OPTIONS DATA BLOCK EXCEPT WHEN AN RSI TAPE HAS BEEN ASSUMED (SEE NOTE 2). 

4 IF INPUT, THE NODE ARRAY WILL BE DIMENSIONED BY EITHER NNMIN OR THE TOTAL NUMBER OF NODES 
DEFINED IN THE SURFACE DATA, WHICHEVER IS LARGER. USED IN CONJUNCTION WITH FFNAC, (SEE SECTION 3.3.5: FORM I 
FACTOR DATA) THE USER MAY UTILIZE FORM FACTORS ON A RSI TAPE CREATED WITH A LARGER MODEL THAN ON THE CURRENT 
RUN . 

. ) ,) ) 
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3.2.2 EDIT DATA BLOCK 

3.2.2.1 Basic Concepts 

Figure 3-5 ii a block diagram of the edit portion of the 

preprocessor. Edit logic flow is shown, together with its relationship with 

the remainder of the program. The edit portion consists of the SOURCE EDITOR 

which deletes, inserts, merges, and yanks records and blocks of records to 

form a primary model or input deck. 

The source editor's function is to generate a complete input deck and 

pass it on to the data and logic preprocessors on the DATAl uni t. If desired, 

the user may obtain a permanent copy of the DATAl model on an RSO tape. 

Source editing can be done in several ways. The simplest mode 1S to read the 

user's cards and pass them on as a complete deck on the DATAl unit. 

Alternatively, the user supplied CMERG tape can be passed along directly if 

the CMERG tape is nothing more than the user's cards previously transferred to 

tape. The CMERG unit also provides an interface between any user supplied 

input processing routine(s) and the program. In the general edit case, the 

source-edit cards are used to generate an executable model from input data 

I found in card form and on the RSI, CMERG, or EMERG units. 

The product of the TRASYS editor is a single TRASYS input deck. This 

is either data selected from an RSl tape, or data in the card input stream. 

Edits can be in the form of record deletions and record insertions. Records 

for insertions can be obtained from these sources: (1) the card input unit 

(edit data block); (2) the card merge unit - CMERG; and (3) the edit merge 

unit - EMERG. 

The CMERG unit can be single or multifile tape, disk, or drum. The 

data contained on the CMERG unit must be in BCD mode, TRASYS card image form. 

This type of data is usually generated by: (1) card-to-tape by an off-line 

I computer; (2) TRASYS processor output to USER1; or (3) TRASYS input data 

conversion programs. 

The EMERG unit can be a single or multifile tape, disk, or drum. The 

data contained on the EMERG unit must be in the RSO tape format. The EMERG 

file is another RSO output tape from a previous run. 
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Figure 3-5 Edit Segment Logic Flow 
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Any record or group of records contained in any file on the CMERG or 

EMERG units can be merged into the primary input deck. Cards to be merged 

into the primary input deck can be In random order on the CMERG and EMERG 

units. Note that inserting data from the cards In the edit data block is 

possible only when the primary input comes from an RS1 unit. 

I Besides deleting, inserting, and merging cards into the input deck, 

the source editor has the capability of yanking modifications. Each time a 

I deck is ed~ted, the inserted and deleted cards are tagged with a modifier 

label and. deleted cards are maintained on an inactive status. A "yank" 

provides a simple means of returning a model to the condition it was before a 

given modification. For instance, yanking modification "A" will insert all 

-" cards deleted by "A" and delete all cards inserted by "A." More than one 

label can be yanked In one run. Cards deleted by a yank are not maintained on 

inactive status. 

3.2.2.2 Edit Data Block 

After an RSO tape has been generated, the user will have a source 

listing with edit numbers and edit labels. "This tape may then become an RS1 

or an EMERG tape that can be edited according to the source listing using edit 

directives in the ~dit data block. Table 3-11 presents details of the edit 
'. ~-

data block directives together with""iorinat information. Figure 3-6(a) is an 

example of an edit data block. 

NOTE: 

Rather" "than use th"e i'npu t deck on the RSI tape as is; or wi th 

modification via the Edit Data Block the user may input a complete Input Deck 

in card image form which will be used in place at the input deck on the RSI. 

This could be an alternate way to make changes to the input. 
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3.2.2.3 Edit Operations 

Edit operations are illustrated by the following examples, see Fig. 

3-6(b) and 3-6(c): 

1) Input On cards, edits directly from cards and from EMERG and I 
CMERG tapes. 

2) Input on an RSI tape, edits from cards, EMERG and CMERG tapes. . 
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Table 3-11 Edit Data Block Input Details 

EDIT DATA INPUT DESCRIPTION 

17:t·':-.~'ktt;"''''~\' 

(SEE nOTES AT EnD OF TABLE) 

*1, NI THE CARDS FOLLOWING THIS CARD WILL BE INSERTED AFTER EDIT NUMBER -Nl-
OR 

*INSERT, NI 

*D, NI DELETE PRIMARY DECK CARD WITH EDIT NUMBER -Nl-
OR 

*DELETE, NI 

*D, NI, N2 DELETE PRIMARY DECK CARDS WITH EDIT NUMBERS -Nl- THROUGH -N2-
OR 

DELETE, NI, N2 

*C, FI INSERT THE ENTIRE CARD FILE -Fl- FROM UNIT -CMERG- AT THIS POINT IN THE INPUT DECK 
OR 

*CHERG, FI 

*C, F 1, N 1, N2 INSERT LINES Nl THROUGH N2 FROM CMERG FILE Fl AT THIS POINT IN THE INPUT DECK 
OR 

*CHERG, Fl, Nl, N2 

*C, F l, N l, ALL INSERT ALL LINES FROM Nl TO END OF CMERG FILE Fl AT THIS POINT IN THE INPUT DECK 
OR 

*CHERG, Fl , Nl, ALL 

*E, NAME INSERT THE ENTIRE EDIT DECK, - NAME- FROM UNIT -EMERG- AT THIS POINT IN THE INPUT DECK 
OR 

*EMERG, NAME 

*EHERG, NAME Nl, N2 MERGE LINE Nl THROUGH LINE N2 OF EDIT DECK -NAME- AT THIS POINT IN THE INPUT DECK . 

*p PUNCH ACTIVE CARDS FROM THE UPDATED DECK (SEE NOTE 3) 
OR 

*PUNCH 

*P, INACTIVE PUNCH INACTIVE CARDS FROM THE UPDATED DECK (SEE NOTE 3) 
OR 

*PUNCH, INACTIVE 

*P, ALL PUNCH ALL ACTIVE AND INACTIVE CARDS FROM THE UPDATED DECK (SEE NOTE 3) 
OR 

PUNCH, ALL 

*L LIST ACTIVE CARDS FROM THE UPDATED DECK 
OR 

*LIST 

) 
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Table 3-11 (concl) 

EDIT DATA INPUT 
(SEE NOTES AT 
END OF TABLE) 

*L, INACTIVE 
OR 

*LIST, INACTIVE 

*L, ALL 
OR 

*LIST, ALL 

*S 

OR 
*SEQUENCE 

-j ) 

Description 

LIST .INACTIVE CARDS FROM THE UPDATED DECK 

LIST ALL ACTIVE AND INACTIVE CARDS FROM THE UPDATED DECK 

NUMERICALLY SEQUENCE PUNCHED CARDS. THIS CARD MAY APPEAR ANYWHERE IN THE EDIT DATA BLOCK 

I *Y, AB DELETE ALL CARDS FROM PRIMARY DECK THAT WERE INSERTED BY EDIT DIRECTIVE -AB- (SEE NOTE 4) 

OR 
*YANK, AB 

I *Y, AB, AD DELETE ALL CARDS FROM PRIMARY DECK THAT WERE INSERTED BY SOURCE EDIT DIRECTIVES 
-AB- THROUGH -AD- (SEE NOTE 4) 

I 

OR 
*YANK, AB, AD 

NOTES: 
1. AN ASTERISK (*) IN CARD COLUMN 1 DESIGNATES AN EDIT CONTROL CARD. 

2. EDIT CONTROL CARDS ARE FREE FIELD FORHATED IN CARD COLUMNS 2 THROUGH 72 WITH BLANK COLUMNS 
AND COLUMNS 73 THROUGH 80 IGNORED. 

3. THIS CARD MAY BE USED IN PLACE OF THE ~PUNCH SOURCE-OPTION IN THE OPTIONS DATA BLOCK. IF BOTH CARDS 
ARE INPUT, THIS CARD OVERRIDES THE OPTIONS DATA INPUT. THIS CARD MAY APPEAR ANYWHERE IN 
THE EDIT DATA BLOCK. 

4. ONLY ONE YANK DIRECTIVE CAN APPEAR IN THE EDIT DATA BLOCK, AND THAT CARD MUST IMMEDIATELY FOLLOW 
THE -HEADER EDIT DATA- CARD. 

5. A PRIMARY DECK IS THE INPUT DECK (ON A RSI TAPE) TO WHICH ALL INSERT & DELETE LINE NUMBERS 
REFER (*1 and *D CARDS ONLY) 

6. *c and *E CARDS ARE NOT RESTRICTED TO THE EDIT DATA BLOCK. THEY MAY ALSO APPEAR AT ANY POINT IN THE 
INPUT DECK WHERE THE MATERIAL THEY INSERT IS APPROPRIATE. 
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HEADER OPTIONS DATA 

TITLE EDITOR CHECK OUT-EXAMPLE 1 

MODEL - DATAl $ DATAl = MODEL NAME THAT WILL APPEAR ON RSO TAPE 

EMERG - TXXXX 

CMERG - TXXXX 

RSO - TXXXX 

HEADER SURFACE DATA 

(SURFACE DATA CARDS) 

C INSERT CARDS 199 THRU 998 FROM EMERGE MODEL SURFD1 INTO SURFACE 

C DATA BLOCK 

*EMERG,SURFD1,199,998 

(ADDITIONAL SURFACE DATA CARDS) 

HEADER FORM FACTOR DATA 

C INSERT FILE 4 FROM CMERG TAPE 

*CMERG,4 

HEADER FLUX DATA 

(FLUX DATA CARDS) 

HEADER OPERATIONS DATA 

C INSERT PART OF FILE 2 FROM CMERG TAPE 

*C,2,1,39 

END OF DATA 

(b) Edit Operations Example - Model on Cards 

Figure 3-6 (con't) 

3-21 



HEADER OPTIONS DATA 

TITLE EDITOR CHECK OUT EXAMPLE 2 

·MODEL = DOCKI - DOCK2 $ DOCKI = RSI MODEL NAME 

C 

EMERG - TXXXX 

CMERG - TXXXX 

RSI - TXXXX 

RSO - TXXXX 

HEADER EDIT DATA 

*D,2,6 

DOCK2 = RSO MODEL NAME 

(CARDS TO BE INSERTED IN LIEU OF CARDS 2 THRU6) 

*1,11 

(CARDS TO BE INSERTED AFTER CARD 11) 

*1,340 $CARD FOLLOWING INSERTS CARD 312 THRU 450 FROM MODEL DOCKA 

C ON EMERG AFTER CARD 340 

*E,DOCKA,312,450 

(c) Edit Operations Example - Model on RSI Tape 

Figure 3-6 (concl) 
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3.3 DATA BLOCKS 

3.3.1 Documentation Data 

Experience has shown that thermal mathematical models may have an extended 

useful life, especially if tape storage with convenient editing capability is 

available. The usual environment of sketchy and rarely updated documentation 

results 1n a waste of resources as these long-lived models are passed from 

analyst to analyst through project personnel changes. 

As an aid 1n alleviating this problem, TRASYS users may document their 

efforts 1n an easily edited and easily accessed form in the documentation data 

block. 

The documentation data block has the following format: 

CCl CC7 

HEADER DOCUMENTATION DATA 

Documentation Data Card 1 

Documentation Data Card 2 

Documentation Data Card N 

CC7 
2 

Documentation data cards have a data field from CC7 through 72 inclusive and 

have no restriction on their alphanumeric content. There is no practical 

limit on the number of documentation cards allowed. 
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The control field of documentation data cards is used for carriage 

control. The integer N appearing anywhere in CCl through 6 of a documentation 

data card results in N lines being skipped before printout of that card. If 

less than N lines are available on a page, the card will begin a new page. If 

a new page is desired, the letter P is placed in CC1. A documentation data 

printout is available at the user's option. The flag DMPDOC appearing in the 

options block results 1n a printout of the documentation data prior to any 

preprocessor or processor operations. 

3.3.2 Quantities and Array Data Blocks 

3.3.2.1 Basic Conc~pts 

The quantities and array data blocks have the primary function of 

providing the user with a convenient input point for any single variable and 

array data he plans to use during his execution. User constants are defined 

in the quantities data block and arrays in the array data block. A user 

variable or array may take any name not appearing in the program reserve name 

list or program control constant list (see Appendix A). Real, integer, or 

Hollerith data may be entered. Mode agreement is required for real and 

integer data names. Hollerith strings are limited to 6 characters in the 

quantities data block. 

The pre-processor provides default values for all program control 

constants, so no control constant input is required in the quantities data. 

Further, all control constants can be redefined in the operations block. 

Thus, defining.control.constants at the quantities data block merely has the 

effect of redefining the default values. In general, this practice is not 

recommended because it is easy for the user to forget that he has a 

non-standard default value in his quantities data block when he is defining 

control constants in the operations data block. 
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3.3.2.2 Rules for Input 

All quantities and array data are entered in the data field (Columns 

7 through 72) of the cards following the appropriate header card. Specific 

rules for input are: 

1) The general quantity data formats are: 

NAME = DV, (integer) 

ANAME = DV, (real) 

NAME (or ANAME) = DV where DV is a 1 to six character 

string. (Left justified, blank filled) 

2) The general array data formats are: 

NAME = DVl, DV2 - - - DVN (integer) 

ANAME = DVl, DV2 - - - DVN (real) 

NAME (or ANAME) = *1 AM A HOLLERITH ARRAY* (Hollerith) 

3) Array data values may be operated as follows: 

NAME = DVl, REPEAT, DV2, N, DVN+2 (Repeats DV2 N times, 

continues with DVN+2) 

Real array repeat format is identical. 

4) Variable names must consist of 3 to 6 alphanumeric characters, 

with an alphabetic character heading. 

5) Any number of quantities or array data values and names may be 

entered in Card Columns 7 through 72 inclusive. Input may 

continue to following cards with no data in the control field, 

provided the fields between commas are complete on each card. 

6) Commas are assumed at the end of each card. Commas may be 

entered at the beginning or end of cards at the user's option. 

The read routine igno~es these. 
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7) May end but not begin with equal signs. 

8) Empty fields (consecutive commas) are illegal. 

9) Mode agreement between names and data values must be maintained. 

3.3.2.3 Quantities and Array Data Accessing 

Quantities and array data are placed in common and are thus 

accessible from any user or program-called execution routines. The following 

are the rules for accessing this data: 

1) Quantities data are accessed by name only. 

For example, with 

ANAM = DV, 

in the quantities block, the statement 

VAL = ANAM 

1n any execution routine results in DV being stored under the 

name VAL. Mode must be preserved according to the rules of 

FORTRAN. 

2) Array data is accessed as illustrated by the following examples. 

Each example presumes that the array: 

ANAM = DV1, DV2 - DVN 

appears in the array data block. 

A. SUBROUTINE CALLS 

The statement: 

CALL SUBX (ARG1, ARG2, ANAM,ARG4 ---) 

in any execution routine will pass the entire ANAM array 

to subroutine SUBX. 
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B. INTEGER COUNT 

The integer count for any array is accessed through the 

following function call: 

IC = IACT (ANAM) 

C. INDIVIDUAL DATA VALUES 

Individual data values are accessed under the usual rules of 

FORTRAN. The statement: 

VAL = ANAM(6) 

results in DV6 being stored under the name VAL. 

3) The array data block serves as the only means of reserving space 

for the operations data block. The following example illustrates 

this with: 

ANAMA = DVl, DV2, - - - DVN, 

XARRAY = REPEAT, 0., N 

in the array data block, the statements: 

DO 1 I 1, IC 

1 XARRAY (I) = ANAMA (I) 

1n the operations data block will locate the ANAMA array in the 

first IC words of XARRAY. 
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3.3.3 SURFACE DATA 

3.3.3.1 BASIC CONCEPTS 

In its present state of development, TRASYS allows the user's 

geometric configuration to be made up of the following geometric shapes, or 

portions thereof: 

(1) Rectangles 

(2) Discs 

(3) Polygons 

(4) Right Circular Cylinders 

(5) Cones 

(6) Spheres 

(7) Paraboloids 

(8) Rectangular Parallelepipeds with 5 or 6 faces 

The surface areas of these shapes are what TRASYS is concerned with. 

The volume within a sphere, for instance, has no bearing on the thermal 

radiation problem. Either or both sides of any surface can be defined as 

"active." Also, any surface 'can be defined as a "shadower" or "non shadower" 

depending on whether or not it is desired that it be considered in shadowing 

(blockage) calculations. 

A 

Active --< "= C 

B 

Active 
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The active side concept 1S illustrated 1n the sketch. If form 

factors were computed 1n this geometry, F
AC 

and F
BC 

would exist because the 

active sides involved are in view of each other. No FAB form factor will be 

computed, because surface A cannot see the. active side of surface B. 

Again referring to the sketch, if surface B is· defined as a shadower 

in form factor ~omputations, it will affect the calculation of F
AC

; reducing it 

accordingly. If not entered as a shadower, it would be totally "invisible" 

from surface A. Active side definition has no bearing on a surface's effect 

as a shadower. One further condition must exist for surface B to effect the 

value of FAC ' that is surfaces A and C must be flagged as "can be shaded" 

surfaces in form factor calculations. 

A similar logic is used in computations of direct irradiation. 

Surfaces defined as shadowers may affect the direct irradiation computed 

depending on direction to the incident flux source. 

Since all surfaces in nature can shade and be shaded, it may seem 

questionable to leave the shadowing definition up to the user. The reason for 

this is that significant amounts of computation time can be saved by flagging 

out surfaces that cannot enter into shadowing. It is also advantageous from 

the standpoint of computation time to minimize the number of surfaces to 

define a given configuration and nodal breakdown. 

Any surface may be subdivided into nodal surfaces of equal or unequal 

S1ze. In general, the nodal surfaces chosen should correspond with the 

isothermal nodes that appear in the user's thermal analyzer model. For 

various reasons, this may not be possible, so a convenient means for combining 

nodes is provided. 
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3.3.3.2 Coordinate System Definition 

The surface data is associated with four different, right-handed 

cartesian coordinate systems: 

Surface coordinate system 

Intermediate coordinate system 

Block coordinate system 

Central coordinate system 

Their definitions are as follows: 

Central Coordinate System (CCS) - This is the single coordinate 

system to which all vehicle surfaces must be related. This coordinate system 

is also used to orient the spacecraft relative to the sun, planet, or a star. 

This coordinate system is analogous to the body coordinate system used in 

trajectory tapes. 

Block Coordinate System (BCS) - Any "block" of surfaces that will be 

moved relative to other surfaces during execution must be related to a named 

block coordinate system. Similarly, if it is desired to activate and/or 

deactivate a block of surfaces during the course of the problem, these 

surfaces are related to a separate block coordinate system. 

Intermediate Coordinate System (ICS) - An intermediate coordinate 

system is used when it is convenient to relate a group of surfaces to a 

coordinate system distinct from any BCS or the CCS. 

Surface Coordinate System (SCS) - Each surface is related to its own 

SCS in a manner that provides a convenient means of input. The surface must 

then be related to the CCS by defining the rotations and translations 

necessary to make the SCS and CCS coincide. 
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3.3.3.3 Coordinate System Hierarchy 

Each surface and hence nodal surface defined in the surface data 

block may undergo three transformations, as follows, before processing begins: 

SCS ~ ICS - BCS - CCS 

where, for example the symbology SCS--.-ICS indicates a transform from 

SCS-defined 3-space to ICS defined 3-space. These transforms must be 

performed because all processing is done assuming surface definition in 

CCS-defined 3-space. 

Depending on the "complexity of each particular surface definition 

problem, the user mayor may not concern himself with all the transforms. In 

the simplest case, "the user defines a surface in terms of x, y, z coordinates 

in CCS 3-space. The program automatically generates an SCS for each surface 

and also generates the transforms necessary to describe the surface in CCS 

3-space. In the most complex case, the user defines his surface in SCS 

3-space, defines six rotation and translation variables for the SCS--"- ICS 

transform, defines six ~rot~tion and translation variables for the ICS~ BCS 

transform, and finally six more variables for the BCS ~ CCS transform. For 

cases of intermediate complexity, for instance when an ICS is not needed, the 

ICS ~ BCS transform variables will default to zero and the user's SCS- ICS 

transform variables will, in reality define an SCS -.- BCS transform. 

Further, if nei ther an ICS or BCS is required, the SCS ~ ICS and ICS ~ BCS 

transforms will default to zero, and the user's SCS~CS transform 

definition will, in reality, define an SCS~CCS transform. 
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3.3.3.4 Surface Data Input Philosophy 

The user 1S provided with two distinct methods of defining his 

surface. He may define a surface relative to an SCS, then relate it to the 

remainder of the surfaces by defining the SCS-CCS translations and rotations; 

or he may locate the surface directly in relation to the.CCS by entering the 

x, y, z coordinates of up to 19 points on his surface (point method). His 

choice of these methods depends on the particular surface being considered and 

its relationship to the remainder of the vehicle. In general, i~ is easy to 

define a surface relative to an SCS. This requires five numbers. It mayor 

may not be convenient to determine the translation and rotation data (up to 6 

numbers) needed for the SCS ICS, SCS BCS, or SCS ecs 
relationship. When the computation of these rotation and translation 

parameters is laborious, the point method 1S usually a better choice. Except 

for polygons, this requires up to 5 point definitions per surface (15 

numbers), but generally these points are on the surface involved and may be 

easily scaled from an engineering drawing. 

3.3.3.5 Surface Data Variables 

The variable names devoted to surface data definition are defined in 

Table 3-111.· Also tabulated are their default values, and the allowable range 

of each variable, where applicable. Figure 3-7 illustrates the relationship 

of the dimension surface data variables to each geometric figure. Both the 

surface coordinate system methods and point methods of input are shown. A 

careful study of Table 3-II1 and Figure 3-7 will pay dividends to the new 

TRASYS user. 
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Table 3-111 Surface Data Input Detail 

VARIABLE NAME 

GENERAL DATA: 

SURFN 

NNX 

UNNX 

NNY 

UNNY 

NNZ 

UNNZ 

NNAX 

UNNAX 

NNR 

UNNR 

TYPE 

IDUPSF 

IHAGSF 

RANGE OR 
OPTIONS 

1-99999 

1-999 

O. < UNNX s;'(XHAX-XHIN) 

1-999 

O. < UNNY::;(YHAX-YMIN) 

1-999 

o. < UNNZ:S (ZHAX-ZMIN) 

1-999 

0.< UNNAX:$(AXHAX-AXMIN) 

1-999 

0.< UNNR :$ (RHAX-RMIN) 

RECT, TRAP 
DISK, CYL 
CONE, SPHER 
PARAB, BOXS 
BOX6, POLY 

1-99999 

1-99999 

DEFAULT VALUE 

NONE 

1 

NONE 

1 

NONE 

1 

NONE 

1 

NONE 

1 

NONE 

NONE 

NONE 

NONE 

) 

DESCRIPTION 

(REF. Fig 3-10) 

a. INTEGER ARRAY OF NODE NUMBERS 
ASSOCIATED WITH SURFACE 

b. INITIAL NODE NO. ON SURFACE 

NO. OF NODES IN X DIRECTION 

X-DIMENSION ARRAY FOR UNEQUAL NODE 
BOUNDARIES 

SAFE As NNX EXCEPT Y-DIRECTION 

SAME AS·UNNX EXCEPT Y-DIRECTION 

SAME AS NNX EXCEPT Z-DIRECTION 

SAME AS UNNX EXCEPT Z-DIRECTION 

SAME AS NNX EXCEPT AX-DIRECTION 

SAME AS 'UNNX EXCEPT AX-DIRECTION 

SAME AS NNX EXCEPT R-DIRECTION 

SAME AS UNNX EXCEPT R-DIRECTION 

SURFACE TYPE 

NUMBER OF PREVIOUSLY INPUT 
SURFACE TO BE DUPLICATED 

NUMBER OF PREVIOUSLY INPUT 
SURFACE TO BE IMAGED 
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Table 3-111 (continued) 

VARIABLE NAME 

GENERAL DATA: 

ACTIVE 

BCSN 

COM 

SHADE 

BSHADE 

RANGE OR 
OPTIONS 

TOP, BOTTOM 
BOTH (PLANAR 
SURFACES) 

IN, OUT, BOTH 
(SURFACES, OF REV
OLUTION, AND BOXES 

1-6 CHARACTER NAME 

NIA 

FF, DI, BOTH, 
NO, ONLY 

FF, DI, BOTH, NO 

') 

DEFAULT VALUE 

NONE 

ALLBLK 

BLANKS 

BOTH *FF 

BOTH 

DESCRIPTION 

ACTIVE SIDE DEFINITION 
SCS METHOD: TOP = +Z FACE OF 
PLANAR SURFACES 

POINT METHOD: REF. FIGURE 3-7 

BLOCK COORDINATE SYSTEM NAME -
IDENTIFIES SURFACE WITH A BCS 

30 CHARACTERS OF COMMENT TO 
DESCRIBE SURFACE 

SURFACE CAN SHADE FLAG 

FF: SHADES IN FORM FACTOR 
CALCULATIONS ONLY 

DI: SHADES IN DIRECT IRRADIATION 
CALCULATIONS ONLY 

BOTH: SHADES IN BOTH FF AND DI 
CALCULATIONS 

NO: SURFACE CANNOT SHADE 
ONLY: SURFACE IS A SHADOWER ONLY 

(FF AND Dr) 

SURFACE CAN BE SHADED FLAG 

FF: CAN BE SHADED IN FF 
CALCULATIONS ONLY 

DI: CAN BE SHADED IN DI CALCULA
TIONS ONLY 

BOTH: CAN BE SHADED IN BOTH FF AND 
DI CALCULATIONS 

NO: SURFACE CANNOT BE SHADED 

) 
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Table 3-111 (continued) 

VARIABLE NAME 

'DIMENSIONS DATA: 

AXMIN 

AXMAX 

ZMIN 

ZMAX 

RMIN 

RMAX 

R 

Z 

Pl, P2 - ETC. 

PROPERTIES DATA: 

ALPHA 

EMISS 

TRANI 

TRANS 

SPRI 

SPRS 

RANGE OR 
OPTIONS 

-270. ~AXMIN<4S0. 

-270. ~AXMAX~4S0. 

N/A 

NIA 

NIA 

N/A 

NIA 

NIA 

Pl - P1S 

O. ~ ALPHAS 1.0 

O. S;; EMISSS 1.0 

-1.0:STRANIS 1.0 

-1. 0 :S;rRANS:::; 1. 0 

o. SSPRI:S; 1.0 

O. :=;; SPRS ::;;. 1. 0 

DEFAULT VALUE 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 

NONE 

0.0 

0.0 

0.0 

0.0 

) 

DESCRIPTION 

MIN. X-ANGLF 
·SURFACES OF. REVOLUTION 

MAX. X-ANGLE 

MIN. DIMENSION - Z DIRECTION 

MAX. DIMENSION - Z DIRECTION 

MINIMUM.RADIUS ~ DISK SECTION 

MAXIMUM RADIUS - DISK SECTION 

RADIAL DIMENSION 

Z DIMENSION 

CARTESIAN POINT INPUT (GENERAL 
FORM: PN E XN, YN, ZN) 

ABSORPTIVITY - SOLAR 

EMISSIVITY - IR 

TRANSMISSIVITY - IR 

TRANSMISSIVITY - SOLAR 

SPECULAR REFLECTIVITY - IR 

SPECULAR REFLECTIVITY - SOLAR 

) 
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Table 3-111 (continued) 

VARIABLE NAME 
RANGE OR 
OPTIONS 

) 

DEFAULT VALUE 

POSITION DATA: (NOT APPLICABLE TO POINT METHOD INPUT) 

TX 

TY 

TZ 

ROTX 

ROTY 

ROTZ 

ICS DEFINITION 

N/A 

N/A 

N/A 

-360.< ROTXS360. 

-360.<ROTY,S 360. 

-360 .<ROTZ S 360. 

(I CARD) DATA: (MUST PRECEDE ALL S-CARDS) 

ICSN 

TX 

TY 

TZ 

1-99999 

N/A 

N/A 

N/A 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

NONE 

0.0 

0.0 

0.0 

DESCRIPTION 

TRANSLATION DISTANCE FROM ORIGIN OF 
CCS, BCS OR ICS TO ORIGIN OF SCS, 
MEASURED ALONG CCS, BCS, OR ICS 
X-AXIS. 

SAME AS TX, EXCEPT ALONG Y-AXIS 

SAME AS TX, EXCEPT ALONG Z-AXIS 

ROTATION ANGLE TO ROTATE CCS, BCS 
OR ICS INTO SCS; ROTATES ABOUT CCS, 
BCS OR ICS X-AXIS, Y TOWARD Z 
POSITIVE 

SAME AS ROTX, EXCEPT ROTATES 
ABOUT Y, Z TOWARD X POSITIVE 

SAME AS ROTX, EXCEPT ROTATES 
ABOUT Z, X TOWARD Y POSITIVE 

INTERMEDIATE COORDINATE SYSTEM NUMBER 

TRANSLATION DISTANCE FROM ORIGIN OF 
CCS OR BCS TO ORIGIN OF ICS, MEASURED 
ALONG CCS OR BCS X-AXIS 

SAME AS TX, EXCEPT ALONG Y-AXIS 

SAME AS TX, EXCEPT ALONG Z-AXIS 

) 



w • w 
00 

-) 

Table 3-111 (concluded) 

VARIABLE NAME 

ICS DEFINITION 
(I CARD) DATA: 

ROTX 

ROTY 

ROTZ 

R-CARD DATA: 

REFNO 

D-CARD DATA: 

DV 

N-CARD DATA: 

INC 

RANGE OR 
OPTIONS 

-360. < ROTX:::;;J60. 

-360. <: ROTY:::;; 360. 

-360.<:ROTZ$360. 

1-99999 

FLOATING POINT 

INTEGER 

DEFAULT NAME 

0.0 

0.0 

0.0 

NONE 

1.0 

0.0 

DESCRIPTION 

ROTATION ANGLE TO ROTATE CCS OR BCS 
INTO ·ICS; ROTATES ABOUT CCS OR BCS 
X-AXIS, Y TOWARD Z POSITIVE 

SAME AS ROTX, EXCEPT ROTATES ABOUT 
Y, Z TOWARD X IS POSITIVE 

SAME AS ROTX, EXCEPT ROTATES ABOUT 
Z, X TOWARD Y POSITIVE 

NUMBER OF REFLECTING PLANE SURFACE 

LENGTH UNIT MULTIPLIER 

SURFACE NUMBER CHANGE VALUE 
(SURFN = SURFN + INC). 

*If the surface has a component of specular reflectance and the can-shade flag is either unspec
ified or set to "NO," the flag is reset to "FF." If the flag is set to "DI" it is reset to "BOTH." 
(Specular surfaces must be shadowers in the FF segment. 

) ) 



o RECTANGLE 

SCS 
METHOD 

POINT 
METHOD 

SCS ORIGIN 

x 

(POSITION DATA NOT ALLOWED) 

7 
~. 

x* 

*IISurface" coordinate system as 
generated bv program. 

x 

z 

z 

EXAMPLE: PI = 2.0, 3.0, 0.0 
NNX = 2 

NOTE: 

/ 

NNY = 2 

ONE CORNER MUST BE ON THE Z 
AXIS WITII RECTANGLE 
PARALLEL TO X-Y PLANE 

y 

THE FOLLOIHNG INPUTS ARE 
NOT ALLOWED (EITHER METHOD): 
NNZ, UNNZ. llliAX, UNNAX, NNR, UNNR, 

Y, Z DIMENSIONS OR PN WITH N GREATER 
THAN 3. 

EXAMPLE: PI Xl, Yl, Zl 

z* 
P2 X2, Y2, Z2 
P3 X3, Y3, Z3 
NNX = 2 
NNY = 2 

POINTS NUMBERED CCW AS 
VIEWED FROM THE "TOP" 
SIDE OF THE SURFACE 

PI 

\Y* y 

CCS, BCS, OR ICS 
ORIGIN 

Figure 3-7 Surface Geometry Definition 
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SCS 
METHOD 

X 

POINT METHOD 
(POSITION DATA NOT 
ALLOWED) 

Z 

z 

./ 
./ 

EXAMPLE: P1 = Xl, Y1, Z 
P2 X2, Y2, Z' 
NNY = 2 
NNAX = 2 

r Pi 

P2 z 

__ ---I_y 

I NOTE: TRAPEZOID IS ALWAYS GENERATED 
FROM P 1 TOWARD P2 IN X TOWARD Y 
DIRECTION. PARALLEL SIDES OF 
TRAPEZOID MUST BE PARALLEL TO 
SCS X-AXIS. TRIANGLES ARE INPUT 
AS POLYGONS. 

THE FOLLOWING INPUTS ARE 
NOT ALLOWED (EITHER METHOD): 
NNX, UNNX, NNZ, UNNZ, NNR, UNNR, 
DIMENSIQNS, OR PN WITH N 
GREATER THAN 4. 

y* 

P2 

NOTE: 

CCS, BCS OR ICS /" .-- 1'l/ 
O~~G~~ ___ _ 

POINTS ARE NUMBERED CCW 
AROUND FIGURE AS VIEWED 
FROM THE "TOP" SIDE OF 
THE SURFACE. 'Pl-P4 MUST 
BE SHORTER THAN AND 
PARALLEL TO P2-P3. 

x 

x* 
EXAMPLE: 
P1 Xl, 
P2 = X2, 
P3 = X3, 
P4 X4, 
NNY 2 
NNAX = 2 

Y1, Zl 
Y2, Z2 
Y3, Z3 
Y4, Z4 

y 
FOR A TRIANGLE, p1 
AND P4 ARE ENTERED AS 
DUPLICATE POINTS 

*"Surface" coordinate system as generated by 
program. 

TRAPEZOID Figure 3-7 (continued) 
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EXAMPLES: 
DIMENSIONS 
NNAX = 2 
NNR = 2 
OR: 

12. ,10. ,15. ,25. ,45. 

SCS 
METHOD 

x 

POINT 
METHOD 
(POSITION DATA NOT ALLOWED) 

EXAMPLE: (PIE-SECTION) 
PI Xl, Y1, Zl 
P2 X2, Y2, Z2 
P3 X3, Y3, Z3 
P4 X4, Y4, Z4 
NNAX = 2 
NNR = 2 
NOTE: 
PI = DISC CENTER, P2, P3 & P4 
ENTERED CCW, AS SEEN FROM 
"TOP" SIDE 

x 

Z - 12. 
RMIN 10. 
RMAX 15. ALTERNATE 
AXMIN 25. 
AXMAX = 45. 
NNAX 2 
NNR 2 

Y 

SCS ORIGIN 

z 

THE FOLLOWING INPUTS ARE 
NOT ALLOWED (EITHER METHOD): 
NNZ, UNNZ, NNX, UNNX, NNY, UNNY, OR 
PN WITH N GREATER THAN 5. 

Y 

'-- CCS, BCS, OR ICS ORIGIN. 
EXAMPLE: (ANNULAR SECTION) 
PI Xl, Y1, Zl 
P2 X2, Y2, Z2 
P3 X3, Y3, Z3 
P4 X4, Y4, Z4 
P5 X5, Y5, Z5 

~("Surface" coordinate system as NNAX = 2 
generated by program. NNR = 2 

y* 

NOTE: PI, P3, P4, AND P5 NUMBERED CCW AS VIEWED FROM THE "TOP" SIDE OF THE SURFACE. 
LINE P2-PI MUST BE PERPENDICULAR TO LINE P4-Pl AND ALL OR PART OF THE- ACTIVE 
SURFACE MUST LIE BETWEEN P2 AND P4. 

DISC Figure 3-7 (con1t) 
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EXAMPLES: z DIMENSIONS 11.5,10.,22.,25.,45. 
NNAX 2 
NNZ Z 
OR: 
R 

ALTERNATE 
SCS AXNIN --.l...L::7--,,1D1e. AXMAX 

ZMIN 
ZMAX 
AXMIN = 
AXMAX = 
NNAX 
NNZ 

11. 5 
10. 
22. 
25. 
45. lreTHOD -

ZNAX 

X 

POINT 
METHOD 
(POSITION DATA NOT 
ALLOWED) 

x 

2 
2 

ses ORIGIN 

~-------------------y 

z 

X·I( 

THE FOLLOWING INPUTS ARE NOT 
ALLOWED (EITHER METHOD): 
NNX, UNNX' NNY, UNNY, NNR, UNNR 
OR PN WITH N GREATER THAN 4. 

Y~': EXAMPLE: 
PI = Xl, Y1, Zl 
P2 = X2, Y2, Z2 
P3 X3, Y3, Z3 
P4 X4·, Y4, Z4 
NNZ 2 
NNAX = 2 

y 

"- ees, BeS, OR IeS ORIGIN 

>':"Surface" coordinate system as generated 
by program. 

NOTE: SURFACE GENERATED FROM P2 TO P3, CCW ABOUT AXIS AS VIEWED FROM 
Pl END. 

CYLINDER Figure 3-7 
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SCS 
.METHOD 

x 

FOUR POINT INPUT 
NNAX = 2 
NNZ = 2 

POINT METHOD 
(POSITION DATA 
NOT ALLOT;]ED) 

P3 

y* 

SCS 

Z 

EXAMPLE: 
DIMENSIONS 15.,20.,31.5,24.2,47. 
NNAX 2 
NNZ 2 
OR: 
R 15-. 
ZMIN 20. 
ZMAX 31.5 ALTERNATE 
AXMIN = 24.2 
AXMAX = 47. 
NNAX 
NNZ 

ORIGIN 

2 
2 

Y 

THE FOLLOWING INPUTS ARE 
NOT ALLOWED (EITHER METHOD): 
NNX, UNNX, NNY, UNNY, NNR, 
UNNR, OR PN WITH N GREATER 
THAN 5. 

FIVE POINT INPUT 
NNAX = 2 
NNZ = 2 

y 

CCS, BCS, OR ICS ORIGIN 

i:"Surface" coordinate system as generated 
by program. 

NOTE: SURFACE GENERATED FROM P2 TO P3, CCW ABOUT AXIS AS VIEWED FROM PI 
TOWARD P4 

CONE Figure 3-7 (can't) 
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SCS 
METHOD 

POINT 
METHOD 

Z 

x 
Z~': 

z 

EXAMPLES: 
DIMENSIONS 
NNZ 2 
NNAX . 2 
OR: 
R 20. 
ZMIN 11. 
ZMAX 15. 
AXMIN 52. 
AXMAX = 60. 

y NNZ 2 
NNAX = 2 

~ 20 . , 11. , 15 . ,52 . , 60 . 

ALTERNATE 

THE FOLLOWING INPUTS ARE 
NOT ALLOWED (EITHER METHOD): 
NNX, UNNX, NNY, UNNY, NNR, UNNR,. 
OR PN WITH N GREATER THAN 6. 

(POSITION DATA NOT 
ALLOWED) 

CCS, BCS OR .rCS ORIGIN 

X 

NOTES: 0 PI defines the "North Pole" of the sphere. 

6 POINT INPUT 
NNAX 2 
NNZ = 2 

Y 

o P2 and P3 define the equatorial plane of the sphere and the extremities 
of the active portion of the sphere in the angular direction about the 
polar axis. Surface is generated from P2 to P3 CCW as viewed from 
PI toward P4. 

o P4 defines the center of the sphere. 
o P5 and P6 must lie on the longitudinal line defined by PI and P3. P5 

and P6 define the extremities of the active portion of the sphere as 
measured along the polar axis. 

o All six points must be input for any partial definition of a spherical 
surface. 

o A complete sphere is generated from 3 points: PI - North Pole, P2 -
Center, P3 - Point on Equator where node generation begins. 

oJ: "Surface" 'coordinate system as generated by program. 

SPHERE Figure 3-7 (con't) 
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~. 

SCS 
METHOD 

FOCAL POINT 

x 

FOUR POINT INPUT 

POINT 
METHOD 
(POSITION DATA 
NOT ALLOWED) 

":\:"Surface II coord ina te 
system as generated by 
program. 

p2 

Z 
EXAMPLES: 
DIMENSIONS 9.3,21.,32.5,41.,57. 
NNAX 2 
NNZ 2 
OR: 
R 9.3 
ZMIN 21. 
ZMAX 32.5 ALTERNATE 
AXMIN = 41. 
AXMAX = 57. 
NNAX 2 

R NNZ = 2 

~~~------~--------- y 

z* 

x 

~ S(;S ORIGIN 

z 

THE FOLLOWING INPUTS ARE 
NOT ALLOWED (EITHER METHOD) ~. 
NNX, UNNX, NNY, UNNY, NNR, UNNR, 
OR PN WITH N GREATER THAN 5. 

FIVE POINT INPUT 

x* 

ORIGINy 

PI = Xl, Y1, Zl 
P2 X2, Y2, Z2 
P3 - X3, Y3, Z3 
p4 X4, Y4, z4 (APEX OF PARABOLOID). 
P5 = X5, Y5, Z5 
NNZ = 2 
NNAX = 2 

NOTE: PI AND P4 DEFINE AXIS OF REVOLUTION 
SURFACE IS GENERATED FROM P2 TO P3 
CCW AS VIEWED FROM PI TOWARD P4. 

CIRCULAR PARABOLOID Figure 3-7 (con't) 
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'". : 

SINGLE POINT 
1'1ETHOD 

I FOUR 
POINT 

. HETHOD 

X 

X 

Z 
NOTE: Face in X-Y plane Deleted 
for 5-sided box 

(S) Pl= X, Y, Z 

ees, BeS, OR IeS ORIGIN 
..3 

~--~------~--~--Y 

z 

X 

-CCS· . , 

EXAHPLE: 
Pl = Xl, 
P2 = X2, 
P3 = X3, 
p4 - ;:4, 

THE FOLLOWING INPUTS ARE NOT 
ALLOWED (EITHER HETHOD). 
NNX, UNNX, NNY, UNNY, NNZ, UNNZ, 
NNAX, UNNAX, NNR, UNNR, DIMENSIONS, 
POSITION, OR PN WHERE N IS GREATER 
THAN 4. 

BCS, OR ICS ORIGIN 
Y 

Yl, ZI 
Y2, Z2 
Y3, Z3 
Y4, Z4 

NOTE: PI, P2 AND p3 HUST ALL LIE ON SAME FACE OF 
FIGURE, WITH p4 DIAGONALLY OPPOSITE PI. FACE 
CONTAINING Pl, P2 and P3 DELETED FOR 5-SIDED BOX. 

5 & 6 SIDED BOXES Figure 3-7 (Can't) 
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ees, BeS OR res 
ORlGIN 

x 

Z 

THE FOLLOWING INPUTS ARE NOT 
ALLOWED: 
NNX, UNNX, NNY, UNNY, NNZ, UNNZ, 
NNR, UNNR, DIMENSIONS, POSITION, 
OR PN WITH N GREATER THAN 19. 

EXAMPLE: 
PI = Xl, 
P2 = X2, 
P3 = X3, 
P4 = X4, 
P5 = X5, 

Pl~P5 . P4 
Q) ~ 

P2 
pJ 

Yl, Zl 
Y2, Z2 
Y3, Z3 
Y4, z4 
Y5, Z5 

~------------------Y 

NOTE: POINTS MUST BE NUMBERED IN 
CONSECUTIVE ORDER ABOUT FIGURE, CCW 
AS VIEWED FROM "TOP" SIDE OF SURFACE. 
TRIANGULAR NODES ARE GENERATED IN THE 
ORDER INDICATED BY THE CIRCLED NUMBERS. 

N SIDED POLYGON Figure 3-7 (concl) 
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The variables found ~n the surface data block can be grouped as 

follows: 

- general data 

- dimensional data 

- properties data 

- position data 

- les definition data 

A summary of the function of each data group follows: 

General data - this "catch all" data group is used to define: 

1) node identification numbers 

2) surface type (disk, sphere, etc.) 

3) active side information 

4) shadowing information, and 

5) nodal breakdown and dimension information. 

Dimensional data - This data group is used to define the desired boundaries 

of the geometric surfaces and portions of same. 

Properties data - This data group is used to define the optical properties 

of the surfaces. Properties allowed are diffuse solar 

absorptivity and transmissivity, diffuse infrared emissivity 

and transmissivity, specular solar reflectivity, and 

specular infrared reflectivity. 

position data - These data are the s~x rotation and translation variables 

necessary to locate an SCS relative to an lCS, BCS, OR CCS. 
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3.3.3.6 Nodal Surface Identification 

When a surface 1S subdivided into nodal surfaces, the user has the 

option of numbering the nodal surface consecutively, beginning with the 

identification number he used for the surface, or arbitrarily, uS1ng a node 

number array. In either case, he must understand the scheme used by TRASYS to 

identify nodal surfaces. Figure 3-8 illustrates this process with examples of 

surfaces with single and dual active sides. 

The user will no doubt quickly discover from Figure 3-7 that the node 

numbering schemes are related to the SeS-referenced method but have no 

relation to the eCS-referenced point method. The number scheme functions with 

point input, however, because the first step in processing a point-defined 

surface is to provide it with an internally generated sese Once this is done, 

the node numbering scheme can proceed. It is necessary, therefore, for the 

user to understand how the internally generated surface coordinate system 

relates to his point input. This is illustrated for each surface type in 

Figure 3-7. 
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YMAX,ZMAX 

RMAX 

NNZ = 4 
NNAX = 3 
SURFN -,: 1 

YMAX, ZMAX 
RMAX 

\ 

YMlli. ZMIN, RMIN 

~ 
XMm. AXHm 

XHAX, AXMAX 

XHAX, 

SINGLE ACTIVE 
SIDE. (VIEW FROM 
OUTSIDE OR TOP) 

BOTH SIDES ACTIVE. 
FIRST, THIRD. FIFTH. 
ETC. NODES ARE ON INS IDE 

OR BOTTOM. SECOND, 
FOURTH, SIXTH, ETC. NODES 

ARE ON OUTSIDE OR TOP. 

Figure 3-8 Node Generation Order 
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An understanding of Figures 3-7 and 3-8 should enable the user to properly 

number his nodal surfaces when using point input to define the surface. 

The user should realize that the generalized node breakdown schemes 

involving NNX, NNY, UNNX, UN NY , etc., do not pertain to the BOX and POLYGON 

surface types where a fixed node generation scheme exists. If a user desires 

to subdivide the faces of a box, the faces must be input as rectangles. 

Subdividing a polygon requires entering the individual triangles desired. The 

user may wonder at the capricious-looking node breakdown that results from his 

polygon input. This occurs because shadowing solutions exist for triangles, 

but not polygons. After processing, the polygon's triangles are combined for 

output as one node, but the user should be aware of this subdivision process 

in order to avoid duplication of node numbers. 

3.3,3.7 Dimensional Units 

Nodal areas are carried in data storage for direct irradiation and 

radiation conductor calculations. For this reason, surface data length inputs 

must be in feet, the standard TRASYS length unit. Convenient means of units 

control are provided by D-cards (Ref. 3.3.3.9.1), 

In regard to the surface data block, the user needs to remember that 

all the linear dimensions he uses in defining the surfaces of his model must 

be in feet (after D-card manipulations) and that all angular measurements 

must be in degrees (and decimal fractions of degrees) of arc. 

3.3.3.8 Properties Data 

In its present state of development, TRASYS is restricted to the 

assumptions that all surfaces are "gray", all surfaces emit diffusely, and all 

surfaces reflect with diffuse and specular components of reflectance. 

That is: 
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where: 

+ T 
s 

1.0 

a = d~ffuse absorptivity 

P = diffuse reflectivity component 

pS = specular reflectivity component 

T = transmissivity 

subscripts: 

IR = infrared waveband 

s = solar waveband 

It might be observed that since semitransparent materials and 

specular surfaces are allowed, the form factors are not, in general, surface 

property independent but a function of the transmissivities and specular 

components of reflectivity. 

Material transmissivity plays a part in form factor calculations 

where blockage by a semitransparent surface is involved. The assumption made 

for these calculations is that any element to element configuration factor 

with an intervening semitransparent surface is multiplied by a shadow factor 

equal to the value of the blocking surface's transmissivity. This is a 

reasonable approach for thin intervening bodies. 

Since only surfaces, rather than bodies, are used in TRASYS 

calculations, only one face of the semitransparent body will "count" as a 

shadower. If two surfaces are input for one body, the square root of the 

transmissivity can be used as the shadow factor to avoid having the shadowed 

configuration factors erroneously multiplied by the square of the 

transmissivity. In this case, the user must enter a negative transmissivity 
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value. This is detected by the program and the absolute value of the square 

root of the transmissivity used as the shadow factor. Note: if two sides of 

a semitransparent body are generated using ACTIVE = BOTH, negative 

transmissivities are not required because only one shadowing surface is 

generated. 

Specular reflectivity comes into play in the form factor calculations as a 

result of the imaging techniques used and the definition of an "image factor" 

as described in Appendix I. 

T ~ 
IR 

It might be noted that the presence of semitransparent surfaces where 

T and/or the presence of specular surfaces where p \' pS results ~n 
s IR s 

different form factor matrices for the infrared and the solar wavebands. Both 

of these matrices are carried in program data storage and are printed ~n the 

standard output. It should be noted that even when there are no 

semi-transparent surfaces present both form factor matrices are carried in the 

program data storage, however they will be identical. 
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3.3.3.9 Surface Data Format 

3.3.3.9.1 Control Field Formats 

Eight different types of cards containing control field information 

are allowed in the surface data block. The card types are: 

1. New Surface Card (S Card) 

2. BCS Identifier Card (B Card) 

3. ICS Definition Card (I Card) 

4. Constant Definition Card (K Card) 

5. Linear Dimension Units Card (D Card) 

6. Node identification number increment card (N card) 

7. Reference plane for imaging surfaces and/or BCSs (R Card) 

(Ref. para. 3.3.3.10). 

8. Comment Cards 

S Cards are used to signal the completion of the input for a surface 

and the beginning of a new surface. Their general format is: 

CCI CC7 CC7 
3 

S Any surface Data Card ID Information 

Any data encountered beginning with an S card and ending with the card 

preceding the next S or R card ~s presumed to apply to a single surface and ~s 

defined as a surface description. If insufficient data to define a surface ~s 
/ 

found following an S card, either default will be supplied or an error message 

results. If redundant data is entered an error message results. 
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B cards are used to identify surfaces with the desired block 

coordinate system. Their general format is: 

CC1 CC7 CC7 
3 

BCS Block Coordinate System Name Card ID 

All surface descriptions encountered between two B cards will be keyed 

to the BCS name found in the leading B card. Any surfaces not preceded by a B 

card will be automatically keyed to a block coordinate system named ALLBLK. 

BCS ALLBLK defaults to zero rotation and translation parameter values. That 

is, it coincides with the CCS. It may be redefined by the User with 

appropriate data in the Header BCS Data Block. 

See Sections 3.3.3.10.3 and 3.3.3.10.4 for Alternate B Card formats 

for duplicating and imaging Blocks of Surface Data. In addition see Section 

3.3.3.10 if the automatic generation of equivalent form factor for Duplicated 

and/or Imaged BCS feature is desired. 

I Cards are used for definition of intermediate coordinate systems. 

Their general format is: 

CCl CC7 

I Intermediate Coordinate System Data 

CC7 
3 
Card ID 

Continuation cards are allowed for ICS definition. In other words, 

all information encountered between an I card and another card containing 

information in CC1 (except for comment cards) is presumed to pertain to a 

single res. 

NOTE: A general surface data deck structure rule 1S that all I cards must 

precede all S cards. 
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K cards are used for definition of user constants referred to in 

surface data. Their general format is: 

CCl CC7 

K Constants Data 

CC7 
3 
Card ID 

Continuation cards are allowed for constants definition. All cards 

between a K card and the next card with data in CCl (excepting comment cards) 

can be thought of as a data subblock that defines surface data constants. 

NOTE: A general surface data deck structure rule ~s that all K cards must 

precede all S cards. 

It should be noted that a basic difference exists between K-card 

constants and constants entered in the quantities data block. Unlike 

quantities data constants, K-card constants are used for surface data 

manipulation only, and are not avail'able during processor execution. 

D-cards are used for linear dimension units control. Since TRASYS 

computations cannot be made independent of .dimensional units, it was necessary 

to choose a standard units system for compatibility between the various 

computation segments and subroutines. The TRASYS standard length unit is 

feet, which is oftentimes inconvenient when the user is working from 

engineering drawings in inches, or perhaps a metric unit. This problem has 

been eliminated by allowing for dimension change (D-cards) in the surface data 

input. These cards function as follows: when a D-card is encountered in the 

surface data, all linear dimensions in the surface (S-card) data following 

will be multiplied by the floating point data value on the D-card. This holds 

true until another D-card is encountered or· until the end of the surface data 

block. All intermediate coordinate systems referenced by surfaces being 

modified by a D-card are also modified by the D-card. This means that the 
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following rule must be observed carefully: the linear dimensions on any ICS 

referred to in a surface description must agree with the linear dimensions of 

the pertinent surface data, prior to modification by aD-card. 

This D-Card format is: 

CC1 

D 

CC7 

DV (floating point) 

A surface data block using D-cards 1S shown 1n Figure 3-10. 

N-cards are used for node number redefinition. The thermal analysis 

of large vehicles frequently involves combining several TRASYS models into 

one. The component models will generally have been generated independently, 

perhaps by different contractors, and node/surface number duplication in the 

various surface data blocks will be cornmon. The laborious task of renumbering 

nodes to eliminate duplication is alleviated considerably by use of the N-card 

option. When an N-card is encountered in the surface data, all node and 

surface numbers in the surface (S-card) data following will be changed 

accordingly to: 

SURFN SURFN + NINC 

where: 

NINC is an integer value found on the N-card. 

This holds true until another N-card 1S encountered or until the end of the 

surface data block. Changing SURFN for a surface means that all node numbers 

associated with that surface are changed, whether automatically generated or 

input as an integer array. 
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HEADER OPTION DATA 
TITLE CLASSES FOLLY 

NODEL=CLAS 

HEADER SURFACE DATA 
D 1./12. $ FOLLOWING LINEAR DIMENSIONS ARE MULTIPLIED BY 1./12. 
S SURFN=201 ,_ . 

TYPE=CYL, 
R=I.0,ZMIN=3.0,ZMAX=15.0,AXMIN=0.0,AXMAX=360.0,NNZ=I,NNAX=1, 
ACTIVE~OUT, ALPHA=0.3,EMISS=O.9, 
TY=5.0, 

S SURFN=301 
TYPE=SPHER 
R=3.0,ZMIN=0.0,ZMAX=3.0,AXMIN=0.0,AXMAX=180.0,NNZ=I,NNAX=1, 
TZ=20. , 
ACTIVE~OUT,ALPHA=0.2,EMISS=0.9, 

S SURFN=401, 
TYPE=CONE 
R=I.0,ZMIN=0.0,ZMAX=2.0,AXMIN=0.0,AXMAX=360.0,NNZ=I,NNAX=1, 
TZ=17.0,ROTY=180., 
TY=5.0, 
ACTIVE=OUT,ALPHA=0.9,EMISS=0.9, 

S SURFN=501 
TYPE=CONE, 
R=3.0,ZMIN=I.0,ZMAX=3.0,AXMIN=0.0,AXMAX=180.0,NNZ=I,NNAX=1, 
TZ=2.0, 
ACTIVE=OUT,ALPHA=0.9,EMISS=0.9, 

D 1. $ TERMINATES EFFECT OF PREVIOUS D-CARD 
N 10 $ REMAINING NODE NUMBERS ARE INCREASED BY 10 
S SURFN=701 

TYPE=CONE 
R=1.O,ZMIN=1.O,ZMAX=2.0,AXMIN=O.O,AXMAX=360.0,NNZ=1,NNAX=1, 
TZ=l.O,TY=5.0, 
ACTIVE=OUT,ALPHA=O.9,EMISS=0.9, 

S SURFACE=901 
TYPE=TRAP 
Pl=0.707*4.0,O.707*5.0,4.0, 
P2=O.707*3.0,O.707*3.0,5.0, 
P3=O.707*3.0,O.707*3.0,8.0, 
P4=0.707*5.0,O.707*5.0,6.0, 
ACTIVE=BOTH,ALPHA=0.2,EMISS=O.9, 

S SURFN =905,TYPE=POLY 
Pl=-.707*5.,.707*5.,4. 
P2=-.707*3.,.707*3.,5. 
P3=0.707*3.0,.707*3.0,8.0 
P4=O.707*5.,.707*5.,6. 
ACTIVE=BOTH,PROP=.2,.9 

HEADER OPERATIONS DATA 
BUILD CLAS,ALLBLK 
L NPLOT 
END OF DATA 

FIGURE 3-10 D-Card and N-Card Operations Example 
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The following N-card restriction must be observed: the variable NINC 

may take on any positive or negative integer value such that 

1 SURFN + NINC 99999 

1S true for all values of SURFN involved. 

The N-card format is: 

CC1 CC7 to CC 72 

N NINC 

A surface data block using N-cards is shown 1n Figure 3-10. 

Comment cards, with the following format: 

CC1 CC7 

C Comment Information 

CC7 
3 
Card ID 

may appear anywhere 1n the surface data block. Another means of entering 

comment information is to delimit a data field (CC7-72) with a $ and enter 

comment information to the right of it, as follows: 

CC7 

Surface Data $ Comment Data 

CC7 
3 

Card ID 

This may tempt the user to place a $ in the data field of an otherwise blank 

card and enter a comment. This is illegal. It results in a blank data field 

and an error mes~age. 
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3.3.3.9.2 Single Variable Input Format 

Any single variable recognized 'as surface data may be entered in a 

card data field according to the general format: 

CC7 CC7 
2 

NAMEl = DV, NAME2 = DV, ---

NAMEl and NAME2 may be any variable name defined by the surface data variables 

list (Table 3-I), plus in the case of K cards, the names may be as defined by 

the user, limited only by the mode and word length limit of 6 characters. 

Single variable input is the only means available for defining the 

following list of surface data variables. 

TYPE 

ACTIVE 

SHADE 

BSHADE 

SPRI 

SPRS 

Notes: 1. 

NOTE 1 

NOTE 2 

NNX 

NNY 

NNAX 

ICSN (in a surface 

description) 

SURFN 

IREFSF 

IDUPSF 

IMAGSF 

REFNO 

If ACTIVE = BOTH and SHADE = NO, the SHADE Flag applies only to 

the "bottom" or "inner" surface. SHADE = NO automatically for 

the "top" or "outer" surface. 

2. Values of either or both of these variables greater than zero 

requires: 

NNX = NNY = 1 (one node allowed per specular surface) 

TYPE = RECT, DISC, TRAP, BOX5, BOX6, or POLY (specular surfaces 

must be planar) 
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SHADE = FF or BOTH (specular surfaces must be shadowers in FF 

segment. This flag is reset by the program to "FF" if 

unspecified or specified as "NO" and is reset to "BOTH" if 

specified as "DI.") 

All other surface data variables may be defined ~n convenient "short form" 

array formats per subsections 3.3.3.9.3 through 3.3.3.9.9. 

3.3.3.9.3 Intermediate Coordinate System Data Format 

Ies data may be entered ~n array format as fo11O\.s: 

CC1 CC7 

I ICSN, TX, TY, TZ, ROTX, ROTY, ROTZ 

CC7 
2 

This array defines the translations and rotations necessary to transform a BCS 

(or CCS) into the ICS. The new user should refer to para. 3.3.3.9.11 until 

defining this transformation becomes automatic. The three rotations, ROTX, 

ROTY, and ROTZ are performed in that order. If it is desired to alter the 

order of the rotations, the following hybrid format is used: 

CC1 

I 

CC7 

ICSN, TX, TY, TZ, ROTY = DV, 
ROTZ = DV, ROTX = DV 

CC7 
2 

for rotation first about the BCS Y-axis, second about the BCS Z-axis and third 

about the BCS X-axis. 

It should be noted that each ICSN value appears at least twice ~n the 

surface data block. Once ~n the I card defining the ICS, and aga~n ~n each 

surface description where an SCS/ICS transform is desired. 
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3.3.3.9.4 Surface Identification Format 

A single node surface is identified as follows, 1n single variable 

input format: 

CCl 

S 

CC7 

SURFN = DV (Integer) 

CC7 
2 

If a surface 1S to be subdivided into several nodes, and they are not to be 

numbered consecutively, the node number array may be entered according to the 

formats: 

CCl CC7 CC7 

2 

S SURFN DV1, DV2, ---DVN 

or for consecutively numbered nodes 

CCl 

S 

for an N-node surface. 

CC7 

SURFN = DV~ 

which generates node numbers DV1, DVl + 1, 

DVl + 2, DVl + (N-l) 

r 
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3.3.3.9.5 Properties Data Format 

The diffuse properties data may be defined using the following format: 

ee7 ee7 
2 

PROP = ALPHA, EMISS, TRANS, TRANI 

If values for TRANI and TRANS are not encountered, they will default to zero. 

Specular properties data must be input 1n the single variable format 

(see 3.3.3.9.2). 

3.3.3.9.6 Dimensions Data Format 

The dimensions data may be defined using the following format: 

ee7 ee7 
2 

DIMEN = R, ZMIN, ZMAX, AXMIN, AXMAX 

3.3.3.9.7 Point Data Format 

The x, y, z coordinates of point data input are defined using the 

following format: 

ee7 

PN = XN, YN, ZN 
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N values up to 19 are recognized, depending on the surface type (Ref. Figure 

3-7) • 

This is the only format allowed for point data. Single variable 

definitions are not allowed. 

3.3.3.9.8 position Data Format 

The position data may be defined uS1ng the following format: 

CC7 

POSIT TX, TY, TZ, ROTX, ROTY, ROTZ 

CC7 
2 

This array defines the translations and rotations necessary to transform an 

ICS, BCS, or CCS into the SCS. The new user should refer to para. 3.3.3.9.11 

until defining this transformation becomes automatic. The three rotations 

ROTX, ROTY, and ROTZ are performed in that order. If it is desired to alter 

the order of the rotations, the following format is used: 

CC7 

POSIT TX, TY, TZ, ROTY = DV, ROTZ .- DV, ROTX = DV 

CC7 
2 

The position Data is only applicable to the "scs method" of surface 

definition and not the point method. 

3.3.3.9.9 Comment Data Format 

A Hollerith string of up to thirty characters may be entered with each 

surface description according to the following format: 

CC7 

COM * Any Alphameric Data * 
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These comments will be passed to the processor and printed with the 

surface description output that results from the BUILDC and ADD calls in the 

operations data. 

3.3.3.9.10 Node Boundary Dimensions 

When it is desired to generate an unequal node breakdown on a surface, 

it 1S necessary to define the node boundaries using one or more of the UNNX, 

UNNY, UNNZ, UNNAX, and UNNR arrays. Figure 3-11 illustrates this scheme for 

UNNZ and UNNAX .. 
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1 

3 

AXMAX 

\ 5 

I 
ZMIN -+-----.f:!..:!.DV~lZ _-----...;~ \ 

ZMAX ---\ 

Figure 3-11 Example of Unequal Node Boundaries 

This example required the following unequal boundary arrays: 

UNNAX = DVIAX, DV2AX 

UNNZ = DVIZ 

3-66 



f" 
I 

These arrays are entered 1n the surface data block according to the following 

format: 

CC7 

UNNAX 
UNNZ 

The general format 

CC7 

UNNX 

DVIAX, DV2AX 
= DVIZ 

is: 

= DVl, DV2, .•. DVN 

where: N NNX -1. 
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3.3.3.9.11 Coordinate System Definition Process 

The definition of any coordinate system relative to another requires 

the user to input the variables TX, TY, TZ, ROTX, ROTY, and ROTZ. Assuming 

that it is desired to define an SCS in the CCS, BCS, or ICS, the required 

variables can be evaluated by the following procedure: 

3.3.3.10 

1. Mentally locate the SCS origin ~n CCS, BCS or ICS 3-space. 

2. The X, Y and Z coordinates, in CCS, BCS or ICS 3-space, of the SCS 

origin are TX, TY and TZ respectively. 

3. Mentally locate the CCS, BCS or ICS origin at the SCS origin, with 

the CCS, BCS or ICS axes parallel to their actual directions. 

4. Define up to three rotation angles ROTX, ROTY and ROTZ which can be 

performed ~n any order that will finish with the CCS, BCS, or les 
located per 3., coincident with the SCS. 

Enter the TX, TY, TZ, ROTX, ROTY and ROTZ values on the B-card in 

the HEADER BCS DATA block (to define the BCS relative to the CCS), 

and in the HEADER SURFACE DATA block on the I-card (to define the 

ICS relative to a BCS or the CCS), or in position data (to define 

the SCS relative to an ICS, a BeS, or the CCS), maintaining the 

order in which the rotations were performed. 

DUP and IMAGE Options 

Two options are available that enable the user to conveniently 

duplicate surfaces already defined in the surface data blocks or otherwise 

redefine them and add them to configuration or configurations ~n the surface 
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data. Using the surface nup option, single surfaces, consisting of one or 

more nodes can be created by referencing previously input surfaces. Using the 

BCS nup option, entire blocks of surfaces previously defined under a 

particular BCS name can be created by simply referencing a previously input 

BCS name. 

Similarly, images of single surfaces and blocks of surfaces can be 

created using the surface IMAGE option and the BCS IMAGE option. These 

options greatly reduce the user's effort if he is defining a bi-laterally 

symmetric configuration. 

The BCS nup and BCS IMAGE options are highly recommended whenever 

symmetry exists because the preprocessor logic that generates the symmetric 

surface descriptions also recognizes the equivalent form factors that exist 

due to symmetry. Equivalent form factor data is generated internally and 

passed on to the processor, thus eliminating redundant form factor 

calculations. Refer to para. 3.3.5.4 for guidance in using this feature. 

3.3.3.10.1 Surface nup Option 

The following rules and restrictions apply when using the surface nup 
option: 

a) Surfaces to be duplicated must appear in the surface data block before 

the surfaces that are to be created by duping. 

b) Any or all of the surface description variables of the surface being 

duplicated can be changed. 
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c) If the surface to be duplicated was input by the point method and any 

changes are to be made in the points, all points must be input for the 

surface being created. 

d) Generated surfaces such as boxes and polygons will be duped 1n their 

entirety. That is, the individual nodes generated by "box" or "polygon" 

cannot be duped. 

e) Surfaces created by the DUP option may later be imaged. 

f) The surface to be duplicated 1S specified by setting the variable IDUPSF 

equal to the surface number. 

g) Any correspondence data that applied to the nodes created by the Surface 

DUP option must be supplied by the user in the Correspondence data block. 

A sample input deck using the surface DUP option can be found 1n 

Figure 3-12. 

3.3.3.10.2 Surface IMAGE Option 

The IMAGE option allows the user to create surfaces by imaging 

previously input surfaces in some specified reference plane. The following 

restrictions and rules apply when using the IMAGE option: 

a) Surfaces to be imaged must appear in the surface data block before the 

surfaces that are to be created by imaging. 
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b) Reference planes (imaging planes) in which surfaces are to be imaged are 

special surfaces designated by R-cards. Each of these planes is assigned 

a unique identification number and is defined by specifying, in any 

order, any three non-colinear points lying on its surface. These points 

are defined with respect to the CCS. 

c) Generated surfaces such as boxes and polygons will be imaged in their 

entirety. That is, individual nodes generated by "box" or "polygon" 

cannot be imaged. 

d) Surfaces created by imaging cannot be duped. 

e) For purposes of imaging, the image surface i the reflecting plane, and the 

imaged surface are treated internally to the program as if they were 

defined with respect to the central coordinate system. 
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HEADER OPTIONS DATA 

TITLE DUP OPTION SAMPLE PROBLEM 

HEADER SURFACE DATA 

S SURFN =10 

TYPE =SPHERE 

R =10 

ZMIN =-9.99 

ZMAX =9.99 

AXMIN =0. 

AXMAX =360. 

TX =0. 

TY =10. 

TZ =20. 

ACTIVE =OUT 

PROP =0.2,0.9 

COM =* SURFACE 

S SURFN =20 

IDUPSF =10 

R =20. 

ZMIN =-19.99 

ZMAX = 19.99 

TZ =-20. 

PROP =0.5,0.8 

TO BE DUPED * 

COM =* DUPLICATE OF SURFACE 

HEADER OPERATIONS DATA 

BUILD FIG2, ALLBLK 

L NPLOT 

END OF DATA 

10 * 

Figure 3-12 Sample Problem Using the Surface DUP Option 
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f) The surface to be imaged is specified by setting the variable IMAGSF 

equal to the imaged surface number. The reference plane in which lMAGSF 

is to be imaged is specified by setting IREFSF equal to the reference 

plane number. 

g) When a surface 1S imaged, the nodes are also imaged resulting in a 

reversed order of node numbering. The active side of the surface also 

follows image rules. Figure 3-13 illustrates these phenomena. 

h) Any correspondence data that applies to the nodes created by the surface 

IMAGE opLion must be supplied by the user in the correspondence data 

block. 

A sample problem illustrating the surface IMAGE option can be found 1n 

Figure 3-14. 

3.3.3.10.3 Bes DUP Option 

The following rules and restrictions apply when using the BeS DUP 

option. 

a) All the surfaces comprising the BeS to be duplicated must appear prior 

to the BeS that exercises the BeS DUP option. 

b) All dimensional properties, surface properties and shadowing 

characteristics of each surface in the BeS generated by the BeS DUP 

option remain exactly the same as those in the BeS that was "DUPED". 

The new surfaces can be moved as a group by the parameters defining the 

new BCS in the BCS data block. The remaining properties may be altered 

in the operations data block by use of the "MOD" series of subroutine 

calls, (Reference Section 4.3.8). 
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c) Blocks of surfaces created by the BCS DUP option may be aga1n DUPED by 

another BCS DUP operation. 

d) Blocks of surfaces created by the BCS IHAGE option (see 3.3.3.10.4) cannot 

be DUPED. 

e) Surfaces defined in the usual manner that follow the BCS card that 

performs BCS duping will simply appear together with the surfaces created 

under the same BCS name. 

I f) BCSs may not be DUPED under the same BCS name. 

I 

g) User correspondence data for the surfaces generated under the BCS DUP 

option need not be defined as such in the correspondence data block. 

Correspondence data applying to nodes within a BCS to be "duped" may be 

entered with a BCS name reference in the correspondence data block. See 

Section 3.3.8.6 for guidance in using this feature. 

NOTE: Correspondence data for polygons created by BCS DUP 1S automatically 

generated. 

BCS DUP card format: 

CC7 CCl 

BCS BCSNAM, DUPBCS = INAME, NINC = NNN 
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CCS ORIGIN REFERENCE PLANE 50 

~~---------------- y 

SURFACE 11 
(IMAGE OF 
SURFACE 1) 

CCS ORIGIN 

IS " 
/3 /4-

II /1.. 

x 

z 

NOTE: NODE X+I0 IS THE IMAGE OF NODE X 

£- INPUT SURFACE 1 

~~INDICATES ACTIVE SIDE 

P3 

li
s INPUT 

4 3 
Z I 

PI P2 
y 

REFERENCE PLANE 50 

SURFACE 1 

Figure 3-13 Imaging of Nodes and Active Side (Image Option Sample Problem) 
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HEADER OPTIONS DATA 

TITLE IMAGE OPTION SAMPLE PROBLEM 

HEADER SURFACE DATA 

S 

S 

R 

SURFN 

TYPE 

ACTIVE 

NNX 

NNY 

PROP 

PI 

P2 

P3 

COM 

SURFN 

lMAGSF 

IREFSF 

ICSN 

COM 

REFNO 

PI 

P2 

P3 

COM 

HEADER OPERATIONS DATA 

BUILD FIG1,ALLBLK 

L NPLOT 

END OF DATA 

= 1 

= RECT 

= TOP 

3 

= 2 

0.5,0.9 

= 3.0, 4.0, 1.0 

1.0, 6.0, 1.0 

= 1.0, 6.0, 4.0 

= *SURFACE TO BE IMAGED* 

11 

= 1 

50 

100 

*IMAGE OF SURFACE 1* 

- 50 

= 0.0, 1.0, 0.0 

0.0, 1.0, 1.0 

1.0, 1.0, 1.0 

= *REFERENCE PLANE* 

Figure 3-14 Sample Problem Using the Surface Image Option 
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where: 

3-14A. 

BCSNAM = 

I NAME 

DUPBCS = 

NINC = 

Name of block coordinate system under which 

DUP-generated surfaces are placed. 

Name of block coordinate system under which surfaces to 

be "DUPED" are defined. 

Required control word. 

Node number increment applied to all nodes under BCS 

INAME to generate the node numbers under BCS BCSNAM. 

(Integer Number) 

A sample input deck using the BCS DUP option can be found ~n Figure 

3.3.3.10.4 BCS UfAGE Option 

The following rules and restrictions apply when us~ng the BCS IMAGE 

option. 

a) All the surfaces compr~s~ng the BCS to be imaged must appear prior to 

the BCS that exercised the BCS image option. 

b) All surface properties and shadowing characteristics of each surface in 

the BCS generated by the BCS IMAGE option remains the same as those of 

the surfaces that were imaged. All dimensional properties appear as 

mirror images of the original surfaces, as seen in the "reflecting" 

plane. The 
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surface properties and shadowing characteristics may be altered using 

the MOD subroutines in the operations data block. (Reference Section 

4.3.8) 

c) Blocks of surfaces created by the BeS IMAGE option may be again IMAGED 

by another BeS IMAGE operation, but they may not be DUPED. 

d) Surfaces defined in the usual manner that follow the BeS card that 

performs Bes imaging will simply appear together with the surfaces 

created under the same BeS name. 

e) Automatic generation of correspondence data applies to both the BeS DUP 

& BeS IMAGE features. Refer to para. 3.3.8.5 under correspondence data 

for guidance. 

Bes cards that exerc~se the BeS IMAGE option have the following format 

and variable definitions: 

eel 

BCS 

ee7 

BCS'NAM,IMGBCS INAME,NINC=NNN,IREFSF=NNN 

BeSNAME, INAME and NINC are defined the same as on BCS cards that exercise 

I duping. Imaged surfaces may become part of a previously defined BCS system 

(INAME) by making BCSNAM identical to INAME. IREFSF ~s the number of the 

reflecting plane surface. (Integer 1-99999) IMGBeS ~s a required control word. 
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HEADER OPTIONS DATA 
TITLE GOBLES FIRST FOLLY 

HODEL=FIGI 
HEADER SURFACE DATA 
Bes RIGHT 
S 

S 

S 

S 

SURFN = 201, 
TYPE=CYL, 
R=1.0,ZMIN=3.0,ZMAX=lS.0,AXHIN=0.0,AXMAX=360.0,NNZ=1,NNAX=1, 
ACTIVE=OUT,ALPHA=0.3,EMISS=0.9, 
TY=S.O 
SURFN=301 
TYPE=SPHER 
R=3.0,AMIN=0.0,ZMAX=3.0,AXMIN=0.0,AXMAX=180.0,NNZ=1,NNAX=1, 
TZ=20. , 
ACTIVE=OUT,ALPHA=O.2,EMISS=0.9, 
SURFN=401, 
TYPE=CONE 
R=1.0,AMIN=0.0,ZMAX=2.0,AXMIN=0.0,AXMAX=360.0,NNZ=1,NNAX=1, 
TZ=17.0,ROTY=180., 
TY=S.O, 
ACTIVE=OUT,ALPHA=0.9,EMISS=0.9, 
SURFN=SOl 
TYPE=CONE, 
R=3.0,AMIN=1.0,ZMAX=3.0,AXMIN=0.0,AXMAX=180.0,NNZ=1,NNAX=1, 
TZ=2.0, 
ACTIVE=OUT,ALPHA=0.9,EMISS=0.9, 

Bes LEFT,DUPBCS=RIGHT,NINC=SOO 
C ABOVE CARD GENERATES SURFACES 701,801,901, AND 1001. 
C BY DUPLICATION OF SURFACES UNDER BCS RIGHT. 
C 
HEADER BCS DATA 
Bes RIGHT, ° . , ° . , ° . , ° . , 0. , ° . 
Bes LEFT, ° . , ° . ,0 • , ° . ,0 . ,0 . 
HEADER OPERATIONS DATA 

CALL CHGBLK(LEFT,0.,0.,0.,0,0,0,0.,0.,180.) 
BUILD FIGl,RIGHT,LEFT 
L NPLOT 
END OF DATA 

Figure 3-14A BCS Duping Operations Example 
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HEADER 
TITLE 

HEADER 
BCS 
S 

S 

S 

S 

BCS 
C 
C 
C 
C 

,R 

HEADER 

OPTION DATA 
GOBLES SECOND FOLLY 
MODEL FIG1 

SURFACE DATA 
RIGHT 
SURFN=201, 
TYPE=CYL, 
R=I.0,ZMIN=3.0,ZMAX=IS.0,AXMIN=0.9,AXMAX=360.0,NNZ=I,NNAX=1, 
ACTIVE=OUT,ALPHA=0.3,EMISS=0.9, 
TY=S.O 
SURFN=301 
TYPE=SPHER 
R=3.0,ZMIN=0.0,ZMAX=3.0,AXMIN=O.O.AXMAX=180.0,NNZ=I,NNAX=1, 
TZ=20. , 
ACTIVE=OUT,ALPHA=0.2,EMISS=O.9, 
SURFN=401, 
TYPE=CONE 
R=I.0,ZMIN=0.O,ZMAX=2.0,AXMIN=0.0,AXMAX=360.0,NNZ=I,NNAX=1, 
TX=17.0,ROTY=180., 
TY=S.O, 
ACTIVE=OUT,ALPHA=0.9,EMISS=0.9, 
SURFN=501 
TYPE=CONE 
R=3.0,ZMIN=I.0,ZMAX=3.0,AXMIN=0.0,AXMAX=180.0,NNZ=I,NNAX=1, 
TZ=2.0, 
ACTIVE=OUT,ALPHA=0.9,EMISS=0.9, 
LEFT,IMGBCS=RIGHT,NINC=500,IREFSF=999 
ABOVE CARD GENERATES SURFACES 701,801,901, AND 1001. 
THEY ARE IMAGES OF 201,301,401, AND 501 AS SEEN 
IN REFLECTING SURFACE 999. 

REFNO=999 
PI =0 • , 0. , ° . 
P2 =1.0,0.,0. 
P3 =0.,0.,1.0 

BCS DATA 
BCS RIGHT, 0. , 0. , 0. ,0. , 0. , 0. 
BCS LEFT, 0., 0. ,0. , 0. , 0. ,0. 
HEADER OPERATIONS DATA 
BUILD FIGl,RIGHT,LEFT 
L NPLOT 
END OF DATA 

Figure 3-14B BCS Imaging Operations Example. 
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A sample input deck uSing the BCS IMAGE option can be found in Figure 

3-14B. Careful examination of Figures 3-14A and 3-14B will show that they 

define the same configuration in a different manner. 

3.3.3.11 Automatic Generation of Equivalent Form Factors 

When the BCS dup or BCS image feature is used 1n surface data input, a 

symmetry situation is usually created, wherein a good many form factors are 

equivalent to each other. This is illustrated as follows: In Figure 3-16a, 

nodes 11, 12, 13, and 14 in BCS2 were created by duplication of nodes 1, 2, 3, 

and 4 in BCS 1 plus offsetting BCS2 and BCSI by BCS data block or CHGBLK 

input. In this situation, FIl-I2 = Fl-2, Fll-I3 = FI-3, and so on. The 

tedious task of writing the necessary form factor equivalence data has been 

taken over by software within TRASYS. This feature is implemented by an 

additional parameter on the BCS dup card. For the situation in Figure 3-l6a, 

the card: 

CCI CC7 

BCS BCS2, DUPBC~ = BCSl, NINC = 10, IGEN PART 

will create nodes 11 thru 14 and also the equivalent form factor data needed 

to avoid calculating all of the form factors between nodes 11, 12, 13, and 

14. Note that the form factors between 1 thru 4 and 11 thru 14 (e.g., Fl-12, 

Fll-2, etc.) must still be calculated because there is no predictable symmetry 

involved. 

There are situations where this auto-generation of equivalent form 

factors is not appropriate. In figure 3-l6b, the necessary symmetry is not 

present due to intervening surfaces. In this case, the card: 

CCI ce7 
BCS BCS2, DUPBCS = BCSl, NINC = 10 

is used to prevent auto-generation of equivalent form factors. 
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Figure 3-16. Equivalent Form Factors 

When the BCS image feature is used, the symmetry shown in figures 

3-16a and 3-16b exists. In addition, a second type of symmetry may exist 

because of the image relationship between the two groups of nodes. In figure 

3-17a, the same equivalent form factors as in 3-16a exist. In addition, note 

that Fl-12 = Fll-2, Fl-13 = Fll-3, and so on for the form factors "looking" 

across the reflecting plane. In this case, the appropriate BCS card is: 

CC1 CC7 

BCS BCS1, IMGBCS = BCS1, NINC = 10, IGEN ALL 

Note that the image of BCS1 is placed in BCS1. This 1S the only way that the 

"ALL" equivalence situation can be guaranteed, so if BCS2 = BCS1 and IGEN = 

ALL, the program will nevertheless set IGEN = PART. 
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When surfaces intervene between the two imaged groups, the second type 

of symmetry is not present (figure 3-17b) and the appropriate card is: 

CC1 CC7 

BCS BCS2,IMGBCS BCSl,NINC = 10, IGEN = PART 

If BCS1 and BCS2 are not defined identically in the BCS data block, or 

one 1S moved relative to the other by a CHGBLK call, the second type of 

symmetry again does not exist (figure 3-17c) and the card appropriate for 

figure 3-17b should be used. 

Intervening surfaces located within one or the other set of nodes 

destroys all symmetry (figure 3-17d) and the following card must be used: 

CC1 CC7 

BCS BCS2, IMGBCS = BCS1, NINC 10 

~ Please note that if the IGEN variable does not appear on the BCS card, no 

equivalent form factor generation will be done; thus, the program is still 

compatible with input decks created before this feature was incorporated. 

BCS1 1 I 11 BCS2 

BCS1 
1 

I 
I 
I , 
a. 

c. 

l 12 13 
4 

BCS2 
11 

\12 

.113 
~ 

rv"" 

~;-y~~~ 
~ I\At 

BCS1 I 31 
b. 

1 I 11 

~ (/ I )213 
~ I 14 , 

d. 

Figure 3-17. Equivalent Form Factors 
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3.3.3.12 Shadower-Only Surfaces 

In many radiation-dominated thermal analysis problems, there are 

surfaces which are so remote from the region of interest that they do not 

actively enter into the radiation network. These surfaces, however, block 

incoming radiation and the view to space for the nodes of interest. The use 

of shadower-only surfaces permits the user to account for this blockage 

without increasing the complexity of his problem in the region of interest. 

The following rules apply 1n the use of shadower-only surfaces: 

a) Shadower-only surfaces provide blockage in both the FF and the DI 

segments. They appear no where in the program output of the 

User's problems, however. 

b) Form factors from node i to both sides of shadower-only surfaces 

are summed and added to F .. to conserve energy (infers T 
11 shadowers 

= T.). 
1 

Flag IFFSHO can be set equal to 2HNO in the Quantities Data Block 

or in the Operations Data Block to bypass the calculation of form 

factors to shadower-only surfaces. IFFSHO defaults to 3HYES. 

c) Because these surfaces are not active 1n the problem, neither the 

active side nor the surface optical properties need be input. 

d) Shadower-only surfaces are specified by setting the shade flag; 

SHADE = ONLY. 

e) Shadower-only surfaces must be added after all active surfaces. 

It is recommended that shadower-only surfaces be input in separate 

BCS(s) and that these BCS(s) be added last in the BUILD-ADD 

sequence. (Reference Appendix D, Pg D-2, D-6.) 

f) Shadower-only surfaces may appear or not appear in node plots, at 

the User's option. This is controlled by the ISHO argument in 

subroutine NDATA (reference Appendix D). 

3-84 

."\ 



3.3.4 BCS Data 

Each block coordinate system named in the surface data block must be 

defined in the BCS data block. An exception is the default BCS "ALLBLK" where 

all surfaces in the Surface Data block that are not preceeded by a "B" CARD 

(see para. 3.3.3.9.1) are assumed to be a part of BCS "ALLBLK". BCS "ALLBLK" 

is assumed always to be coincident with the CCS. If all surfaces defined in 

the surface data block are in BCS "ALLBLK" and the assumed coincidence with 

the BCS system is acceptable then No Header BCS Data block is required. If 

the user wishes to change the position and/or orientation of BCS "ALLBLK" it 

can be accomplished as if it was a BCS named by the user. Block coordinate 

systems are defined according to the following formats: 

CCl 

B 

CC7 

BCSNAM, TX, TY, TZ, ROTX, ROTY, ROTZ 

CC7 
2 

If the rotations are not to be performed 1n the standard x, y, z, order, the 
hybrid format: 

CCl CC7 

B BCSNAM, TX, TY, TZ, ROTZ = DV, 
ROTX = DV, ROTY, = DV 

CC7 
2 

may be used. Rotations in this example are performed first about Z, then X, 

then Y. Arithmetic expressions can be used for data values (reference Section 

2.3). 
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The variable names entered in the BCS data block are defined in Table 

3-IV. Note that these definitions are almost identical to the ICS and 

position data of the surface data block, even to variable names. This creates 

no ambiguity, because the position and ICS variables are used in the 

preprocessor only, and unlike the BCS variables, are not addressable from the 

processor routines. In common with position and ICS data, these translation 

and rotation variables appear to translate the CCS into the Bes. The new user 

should refer to para. 3.3.3.9.11 until defining this transformati~n becomes 

automatic. 

VARIABLE 
NAME 

BCSN 

RANGE OR 
OPTIONS 

ANY 6 
CHARACTER 
NAME 

TX N/A 

TY N/A 

TZ N/A 

ROTX -360. < ROTX < 360. 

ROTY -360. < ROTY < 360. 

ROTZ -360 < ROTZ < 360. 

DEFAULT 
VALUE 

NONE 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

DESCRIPTION 

BLOCK COORDINATE SYSTEM NAME 

TRANSLATION DISTANCE FROM ORIGIN OF CCS TO 
ORIGIN OF BCS, MEASURED ALONG CCS X-AXIS. 

SAME AS TX, EXCEPT ALONG Y-AXIS 

SAME AS TX, EXCEPT ALONG Z-AXIS 

ROTATION ANGLE TO ROTATE CCS INTO BCS; 
ROTATES ABOUT CCS X-AXIS, Y TOWARD Z 
POSITIVE. 

SAME AS ROTX, EXCEPT ROTATES ABOUT Y, Z 
TOWARD X IS POSITIVE. 

SAME AS ROTX, EXCEPT ROTATES ABOUT Z, X 
TOWARD Y IS POSITIVE. 

Table 3-IV BCS Data Input Detail 
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3.3.5 Form Factor Data 

The Form Factor Data block provides a punched card and/or CMERG tape 

(see Section 3.2.2.3) BCD formatted entry point, so that the user can control 

the form factor data computations performed to/hen either the FFCAL or NFCCAL 

links are called in the Operations Data Block. 

A Form Factor Data block 1S required when: 

1. With or without an RSI tape the user wants to by-pass the 

computations of some form factor * area (FA) products (or data which 

is stored 6n the RSI tape), and instead utilize hand input data 

values, or selected values on a CMERG tape from a previous run that 

the user has determined to be applicable. 

2. The user wants to override some of the data values on the RSI tape 

and have the program recompute new values, perhaps because of a need 

to specify a tighter form factor accuracy criteria in subroutines 

FFDATA or NFDATA. 

A Form Factor Data Block is not required for normal restart operations 

when all the form factor area (FA) products already stored on the RSI tape are 

applicable to the configuration being run. 

The user may override the check the program normally makes to see if 

the active node array matches the node array for the FA matrix stored on the 

RSI tape. This is accomplished with the argument FFNAC in subroutines FFDATA 

or NFDATA. Overriding this check in the program will allow the user to: 

1. Remove nodes/surfaces anywhere by changing the Surface Data block 

and/or Operations Data block. The program will delete the directly 

related FA data and will arrive at utilizing a reduced FA matrix. 

This reduction may be done with or without a Form Factor Data block. 

If in the surfaces removed there are surfaces which had affected the 

remaining stored values, i.e. blockers, then it is up to the user to 

utilize a ,Form Factor Data block to selectively set or recompute those 

data values significantly impacted by the model change. 
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2. Add nodes/surfaces with un~que identification numbers by changing 

the Surface Data block and/or Operations Data block. This can be done 

with or without a Form Factor Data block. Without a Form Factor Data 

block the program will utilize all the values previously computed and 

stored on the RSI tape, and will set up a request matrix to compute 

the remaining FA data values. As was the case with deletions it is 

left up to the user to decide if a form factor data block is required 

to correct or recompute some of the data values read in from the RSI 

tape. 

A caution must be observed when attempting to recover FA data on a 

restart tape when the total number of nodes is being reduced. This is 

illustrated by the following example. The original run computed form factors 

for a 300 node model, including a large cylinder subdivided into nodes. In 

the run now being prepared, 20 new nodes are being added, but the detail in 

the area of the cylinder is not required and the surface data defining the 

cylinder will be edited to reduce its number of nodes to one. Thus, the new 

configuration being defined will consist of 273 nodes. This is an acceptable 

procedure. The problem that crops up is that the maximum possible number of 

active nodes, as determined by analysis of the surface data block is 273 and 

the node data storage arrays will be sized accordingly. When the FA products 

from the 300 node model are read from the RSI tape, there will be insufficient 

core to receive them and the run will terminate on an error. The user must 

recognize this situation, if it is being created, and use the variable NNMIN 

in the Options Data block to provide for it. (See Table 3-1: Options data 

input detail) • For the hypothetical case described, the card: 

CC7 

NNMIN = 300 

must appear in the Options Data Block. 

A CMERG tape with the FA data in an acceptable input format for the 

form factor data block can be generated from a TRASYS run by specifying the 

tape option in subroutine FFDATA or NFDATA (see Sections 4.3.3.1 or 4.3.3.2). 

The correct implementation of this option will cause the FA products that are 

computed and/or read in (normally written only to the RSO tape) to be written 

to the BCD formatted USER1 tape. 
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From the standpoint of TRASYS operations, information in the form 

factor data block is used by the preprocessor to define two form factor 

,~ request matrices. If a form factor data block is not encountered in the input 

stream, the form factor request matrices default everywhere to -1.0. The two 

request matrices provide for both the solar and infrared wavebands. They are 

identical unless semi-transparent surfaces with different infrared arid solar 

transmissivities are present. 

A form factor request matrix is a triangular matrix of the same form 

as a form factor matrix. It is used for detail direction of form factor 

computations, and finally for storage of the form factors. This is done as 

follows: prior to computing each form factor, the corresponding value in the 

request matrix is examined; if it is zero or greater than zero, it is presumed 

to be a valid form factor and is left in the matrix unchanged; if less than 

zero, the form factor is computed and stored in place of the negative number. 

The user should never attempt to try and use FA data on a restart tape 

if it is necessary to change the node numbers from those associated with the 

FA data when it was originally generated. In the process of setting up the 

~ request matrices, the node array on the restart tape is compared, node by 

node, with the currently active node array. When a difference is encountered, 

the "new" number in the currently active node array will override and -1.0 

values will be placed in the request matrices so that the FA products to/from 

the "new" node will be computed. The correct way to utilize the data on the 

restart tape is to retain all the old numbers for which valid FA data exists 

on the restart tape, then use the Correspondence Data block to change node 

numbers for the final output. 

Prior to any form factor calculations, the following operations are 

performed on the request matrix, in the order indicated. 

1. Matrix set everywhere to -1.0. 

Z. Matrix overwritten with all form factor * area (FA) products on 

RSI/RTI tapes. 

3. Values of 0.0 set per ZERO cards. 

4. Values of 0.0 set per ONLY cards. 

5. Values of -1.0 set per RECOMP cards (overrides values on restart tape). 

6. Set individual FA values per form factor data cards. 
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Operations 3 through 6 happen only if a form factor data block is 

present. Note that these operations enable the user to: a) Arbitrarily set 

all form factors from a given node to zero if it is known to be "out of sight" 

of the remaining nodes; b) Compute only the form factors from selected nodes, 

setting all other form factors to zero; c) Recompute FA values known to be ln 

error on the restart tape(s); and d) Set individual FA values to any value 

desired. If no RSI tape is present, operation 2 of course does not occur and 

operation 5 is meaningless. The remaining operations occur as listed. 

The above discussion applies to a single problem geometry. If more 

than one geometry exists in a given job, multiple seL3 of request matrices are 

involved. The form factor data block provides for definition of as many 

request matrices as required. 
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~3.3.5.1 Variable Definitions 

Form factor data block designators are defined 1n Table 3-V. 

Table 3-V Form Factor Designators Definition 

COL. 1 DESIGNATOR DEFAULT 

VARIABLE NAME 

FIG 

NODEA 

IR, SOL, BOTH 

or BLANK 

ONLY 

ZERO 

RANGE 

Hollerith, 6 

Characters, Max. 

1-99999 (Integer 

Array) 

N/A 

N/A 

N/A 

VALUE 

None 

None 

Both 

None 

None 

DESCRIPTION 

Configuration Name. 

Must follow Header Card*. 

Node Identification 

No. Array. If required. 

Indicates data for 

IR, Solar or Both 

Request Matrices. 

Indicates "ONLY" option. 

Zero's entire matrix. 

*FIG Cards immediately follow the header card and also begin each set of form 

factor data in a multi-configuration run. 

3-91 REV. 2 

I 

I 

I 



I 

3.3.5.2 Form Factor Data Formats 

1) FIG cards are entered according to the following format: 

CC1 

FIG 

CC7 

CNAME 

CC7 
2 

2) The NODEA array is entered according to the following format 

CCl 

NODEA 

CC7 

NN1, NN2, ••• NNN, END 

CC7 
2 

for an N-Node matrix. The NODEA array, if required, must follow 

the FIG card. If either the BCS dup or 1mage option was used in 

the surface data block, the node numbers must be entered in the 

same order they appear in the surface data, provided they are under 

active BCS names. If BCS dup or image was not used, the node 

numbers must appear in the order that results from the BUILD cards 

or BUILDC/ADD sequences. For these reasons, the chances of a 

user-written node number matrix being valid for a large problem are 

remote. When a node array is needed, use Subroutine FFNDP (Ref. 

Section 3.3.5.5). 

NOTE: The node array is required only when individual form factors 

are to be defined in the form factor data block, or when equivalent 

form factors (Section 3.3.5.4) appear. If all rec0rds in the FORM 

FACTOR DATA BLOCK utilize one of the condensed formats pertaining 

to an entire row and column, then a Node Array is not required. 
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3) The ZERO card is entered according to the following format: 

CCI CC7 

ZERO 

The ZERO card will put 0.0 into the entire Form Factor * area matrix. 

4) The ONLY option is implemented as follows: 

CCI CC7 

ONLY NA, NB, NC, ND ••• 

CC7 
2 

Results in only the form factor rows from each node in the list NA, 

NB, NC, etc. being computed. All other form factors in the 

matrices will be set to zero. Applies to both wavebands. 

5) Single FA products are entered according to the following format: 

CCl 

WBAND 

CC7 

NA, NB, DV 

where: NA, NB, and DV correspond 

respectively to I, J and the FA 

product in the expression: 

DV 

CC7 
2 

6) Multiple-repeated FA products involving a single node are 

entered according to the following format: 

CCI CC7 CC7 
2 

WBAND NA, NB, NC, DV 
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I 
or 

I 
or 

I 

I or 

This will result in an FA product equal to DV being entered in the 

row of the request matrix corresponding to node NA, for columns 

corresponding to nodes NB through NC, inclusive. 

7) A request to recompute FA products is implemented as follows: 

CCl CC7 

WBAND NA, NB, RECOMP 

WBAND NA, NB, R 

Recomputes FA product from NA to NB. 

WBAND NA, RECOMP 

WBAND NA, R 

CC7 
2 

Recomputes FA products to/from NA from/to all other nodes. 

8) To zero FA products by individual node pairs or for all node 

for a specific node can be implemented as follows: 

CCl CC7 CC7 
2 

WBAND NA, NB, 0.0 

Results in zero value for form factor from NA to NB. 

CCl 

WBAND 

WBAND 

CC7 

NA, ZERO 

NA, Z 

CC7 
2 

Results in zero form factors from NA to all other nodes. 
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3.3'.5.3 Form Factor Data Block Example 

An example of a form factor data block 1S presented 1n Figure 3-17a. 

3.3.5.4 Equivalent Form Factors 

Many radiation enclosures involve geometry that is symmetric in some 

manner and may, therefore, have many form factors that are exactly equivalent 

to other form factors because the node pairs involved are the same size and 

shape and "see" each other in the saine way. The analyst can identify these 

situations, and if he can conveniently enter this information, a considerable 

amount of computer time may be saved in form factor computation. This 

capability has been provided, and the following sections describe the required 

form factor data block input. 

3.3.5.4.1 Equivalence Data Formats 

Form factor equivalence data records appear 1n the form factor data 

block in the following format: 

CCl CC7 

WBAND NNI, NNJ, NNK, NNL, DV 

If the FA product DV is absent, the FA product from NNI to NNJ will be I 
computed or obtained from a restart tape. 

The first four variables are integer node numbers. The four numbers 

are interpreted to mean the form factor from NNI to NNJ is equal to the form 

factor from NNK to NNL. In cornmon with the other form factor data, only one 

record of five numbers or less with the comma delineators may appear on a card 

(except for the node array). 

In addition equivalent form factors can be generated automatically by 

the program for duplicated and imaged block coordinate systems. This can be 

implemented via the "B" card in the surface data block (see Sections 

3.3.3.10: Dup and Image Options and Section 3.3.3.11: Equivalent Form 

Fac tors). 
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CC1 CC7 

HEADER 

FIG 

NODEA 

IR 

O~Y 

SOL 

ZERO 

FORM FACTOR DATA 

AFTEND 

10,17,20,24,32,END 

10,20,12.4 $ DEFINES FA FROM NODE 10 TO NODE 20 (BOTH BANDS) 

10,32,6.2 $ DEFINES FA FROM NODE 10 TO NODE 32 (IR WAVEBAND) 

24,ZERO $ ZEROS ALL FA'S FROM NODE 24 (BOTH WAVEBANDS) 

10,32,17,20 

10,20,24,32 

10,RECOMP 

32,U 

17,20,U 

$ 

$ 

$ 

$ EQUIVALENT FORM FACTORS 

$ COMPUTE ALL FF'S FROM AND TO LIST OF NODES 

$ RECOMPUTE SOLAR FORM FACTORS FROM NODE 10 

COMPUTE FFS FROM NODE 32 BY UNIT-SPHERE METHOD 

COMPUTE FF FROM 17 TO 20 BY UNIT-SPHERE METHOD 

ZERO'S ENTIRE MATRIX 

Figure 3-17a Form Factor Data Examples 

3.3.5.5 Selective Unit Sphere Form Factor Computations 

In the form factor data block the user has an option to specify that 

selected form factor computations be performed utilizing the Nusselt Unit 

Sphere method. This feature is only available for nodes that are planar and 

nonshadowed. Although its utility is limited it is a very accurate and fast 

solution. The user may specify this option as follows: 

CC7 

NA, NB, U 

NA, U 

In the first example if nodes NA, NB are planar, an unshadowed form 

factor between nodes NA and NB will be computed by the unit sphere method. In 

the second example, assuming all planar nodes, the form factors from/to node 

NA will be computed utilizing the unit sphere method. 
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These computations \'lOuld override <1ny corresponding RSI data and 

require the user to specify the FFCAL link in the operations Data block. 

3.3.5.6 Punching a Node ArraY--Subroutine FFNDP 

Writing a node array for a large complex problem is exceedingly prone 

to error, yet a node array may be required (reference Section 3.3.5.2) in the 

form factor data hlock, shadow factor Jata block (reference Section 3.3.6) or 

flux data hlock (reference Section 3.3.7). Subroutine FFNDP may he used to 

obtain a node array punched in form factor datn format. Thifl may be done in a 

preliminary run, (Hhen node plots are generated for instance) and the User 

will then have an error-free node array to use. The operations data calting 

sequence is: 

CC7 

CALL FFNDP 
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3.3.6 Shadow Factor Data 

3.3.6.1 Basic Concepts 

Shadow factors are fractional numbers that describe the amount of 

shadowing (blockage) encountered by collimated energy incident on a nodal 

surface. A shadow factor of one indicates no blockage, zero indicates 100 

percent blockage. Blockage results from other parts of the spacecraft or from 

the surface itself, if nonplanar. 

Shadow data consists of tables of shadow factors, one table per node. 

These are 171-point bivariate tables. When the direction to an energy source 

is specified, us~ng clock and cone angles, (see Figure C1 - Energy Source 

Direction for Shadow Tables) the clock and cone angles are used as arguments 

in a double-linear interpolation that returns a shadow factor to be used ~n 

computing Solar, Albedo and Planetary direct irradiation according to: 

Dr = SF * Dr shadowed nonshadowed 

The 171 points result from all combinations of 19 clock angles and n~ne cone 

angles, spaced as described in Appendix C. 

Precomputing Dr shadow factors for a given configuration is an 

approach that should be utilized with caution, for there are no straight 

forward ways to define its practical limitations. The concept is to save 

computer time by minimizing the repetitious or near repetitious computations 

that normally occur in the direct incident flux for any given node when one 

considers the look angles to the sun and to each node on the earth for every 

orbit point evaluated within a given execution, and from one execution to the 

next. Whether the approach is a practical one for the user, depends upon: 

1. How sensitive the critical areas of the model are to accurate heat 

rate computations. Obviously, for example, if the model is enclosed 

with external insulation the external surfaces will be considerably 
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more sensitive than the internal parts where the heat will be reradiated, and 

stored in the structure and/or removed by an active thermal control system. 

In this situation if there are no critical external surfaces there is a 

reasonable chance the model is insensitive to the errors that would be 

introduced with the application of the shadow tables. 

2. The complexity of the shadowing may require smaller look angle 

(clock and cone) increments than currently used in TRASYS. The linear 

interpolation between the discrete points in the table may introduce 

significant errors. The program has a built in safeguard to limit the error 

whenever the interpolation involves shadow table differences greater than 

0.5. In this situation the program will not use the tables, but instead 

compute the shadowed flux values by using the usual shadow routines in the 

program's DI segment. This will take greater computer time, and some of the 

advantage 1n computational speed with the application of the shadow table will 

be lost. 

3. The error associated with the interpolation also biases the 

accuracy towards those that would have large unshadowed data values. The 

accuracy of flux and temperature predictions will be greater as the magnitude 

of the unshadowed incident heat flux increases. 

Note that although the shadow factor data originally was rounded off 

and carried with one significant decimal place the program no longer packs the 

data, and instead stores the shadow factors with no loss in accuracy. 

The shadow factor data block functions to provide a punched card entry 

point for shadow factor data that is known in advance, and to direct the 

B updating of existing shadow factor data on a restart tape (RSI). 
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3.3.6.2 Variable Definitions 

3.3.6.3 

VARIABLE NAME 

FIG 

NODEA 

RECOMP 

TABLE 

WBAND 

DESCRIPTION 

Configuration Name (Hollerith, 6 characters, max.). 

Node Number Array 

Indicates RECOMP option 

Indicates a complete shadow table input 

Indicates energy waveband options: IR, SOL, 

BOTH. Defaults to BOTH. The shadow factors should 

be the same for both wavebands except when surfaces 

with transmissivities greater than zero are utilized. 

Shadow Data Formats 

MODEL and NODEA are entered according to the following formats: 

CC1 

FIG 

NODEA 

CC7 

CONFl $ (any Hollerith name up to 6 characters) 

DVl, DV2, DV3 --- DVN, END $ (integer node 

numbers). The user may have the program 

regenerate the Node Array (see Section 3.3.5.5: 

Punching a Node Array -- Subroutine FFNDP) in a 

preliminary run. 
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Instructions to recompute shadow factor tables for a specified list of 

nodes are entered as follows: 

CCl CC7 

RECOMP DVI $ (integer node numbers) 

RECOMP DV2 

Note that this input only applies when an RSI tape with shadow data 1S present. 

A complete shadow factor table for one node is entered according to: 

CCI CC7 

TABLE WBAND, NN, Cl, DVl, DV2, DV19 

C2, DV1, DV2, DV19 
II II II II 

II II II II 

II II II II 

II II II II 

C9, DVl, DV2, DV19 

The mnemon1CS Cl through C9 refer to the 9 cone angles in a shadow 

factor table. The 19 data values following are for the 19 clock angles 1n a 

shadow factor table. If a cone number mnemonic is omitted, the 19 data values 

associated with it default to zero (100 percent shadowed). If less than 19 
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data values are entered following a CX mnemonics, the data values encountered 

are stored consecutively beginning with Clock 1. For example, if 

CX, DVl, DV2, DV3 --- DVN (N 19 or less) 

is encountered, the shadow factors for cone angle X, clock angles 1 through N 

will be DVI through DVN. The shadow factors for clock angles N + 1 through 19 

will default to zero. 

Repeated data values may be entered using the repeat option for array 

data. For example, the card: 

CC7 

C6, REPEAT, 0.5, 12, REPEAT, 0., 7 

will enter shadow factors of 0.5 for clock angles 1 through 12 and O. for 

clock angles 13 through 19 in the cone angle 6 array. 

The user is referred to the description of the shadow factor table 

format tAppendix C) for an explanation of the way the clock and the cone 

angles relate to the energy source/vehicle orientations used in shadow factor 

generation. If a punched node array is desired to avoid error, subroutine 

FFNDP may be used (See Section 3.3.5.5: Punching a Node Array - Subroutine 

FFNDP) • 

3.3.6.4 Shadow Factor Operations Detail 

Examples of shadow factor operations are shown in Figure 3-18. 
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(a) Shadow Factor Data, No Restart (-RSI-) Tape 

HEADER SHADOW DATA 

FIG AFTEND 

NODEA 

C 

TABLE 

C 

TABLE 

101, 102, 103, 104, 105, 110, 120, 130, 140, END 

INFRARED SHADOW TABLE 

IR, 101, C2, REPEAT, .1,5, .5, .4, .4, .3 

C9, REPEAT, .4,19 

SHADOW TABLE FOR BOTH WAVEBANDS 

105, C1, REPEAT, 4, .5, REPEAT, 15, o. 

(b) Shadow Factor Data With Restart Tape 

HEADER SHADOW DATA 

FIG PLOAD 

NODEA 10, 21, 22, 23, 24, 25, 31, 32, 33, 70, END 

C RECOMPUTE DIRECTION 

RECOMP 21 

RECOMP 24 

C SHADOW DATA TO OVERRIDE DATA ON -RSI-

TABLE 31, C6, REPEAT, 19, O. 

TABLE 32, C6, REPEAT, 19, o. 

Figure 3-18 Shadow Factor Operations Detail 
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3.3.7 Flux Data 

3.3.7.1 Basic Concepts 

The Flux Data block provides a punched card and/or CMERG tape (see 

Section 3.2.2.3) entry point so that the user can selectively control the 

Direct Incident (DI's) Flux data computations. If an RSO tape is assigned 

while the DICAL segment or DIREAD subroutine is executed the DI's will be 

written to the RSO tape and can be read if that tape is assigned as an RSI 

tape on a subsequent run. No Flux Data block is required for a restart run if 

no changes have been made in the number of active nodes, their numbers and 

sequence and the user desires to: 

1. Use the previously stored data on the RSI tape in its entirety or 

2. With the utilization of ' CAll RSTOFF and CALL RSTON (see Section: 

3.3.9.7) 1n the Operations Data block the Flux data stored in specific 

step(s) can be selectively read or by-passed as complete step(s) • 

A flux data block is required when: 

1. The user wishes to recompute some of the data values stored on a 

valid RSI tape. The reason for wanting to do this might be that a 

better DI accuracy needs to be specified by the user in subroutine 

DIDT1 (see Section 4.3.5.4) or the geometry was changed some because 

one or more node(s) were moved. 

2. The user wishes to set specific flux data values to override the 

associated data values read from a valid RSI tape and by-pass the 

program computions normally performed. 

3. The node array stored on the RSI tape for a given configuration 

name will not match the node array of the active configuration created 

by the "BUILD" card (see Section 3.3.9.4). This would occur if after 

the user created the RSI tape, changes were made to the model that 

changed the number of nodes, or the node numbers, or the sequence. 
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If the user can determine that a significant portion of the data is 

still valid, the data can best be retrieved by utilizing the appropriate CMERG 

tape as a means of selective data entry in the Flux Data block. A suitable 

CMERG. tape with the data in an acceptable' input format for direct input to the 

Flux Data block can be created by specifying the tape option in subroutines 

DIDTl or DIDTlS (see Section 4.3.5.4). The appropriate implementation of this 

option will cause the OIls computed and/or read in from the RSI tape to be 

written to the USERI tape on a preliminary run. This former USERl output tape 

can be used as a CMERG tape on subsequent runs, to allow the user to 

selectively input data in the flux data block (see Section 3.2.2.3). After 

the last write to the USERl tape the user should include in the operations 

data block an END FILE NUSERl and a CALL LIST with the appropriate user 

furnished arguments (see Appendix D). The LIST subroutine will list all the 

data stored on the USERI tape and number each record (line) so the line counts 

will be known for CMERG edit commands. 

From the standpoint of TRASYS operations, information in the flux data 

block is used to define the flux data request matrix. If a flux data block is 

not encountered 1n the input stream, the flux request matrix is set everywhere 

to -1.0. If it is desired to force the recomputation of fluxes, (overriding 

flux data on a restart tape, for instance), flux data values equal to -1.0 are 

entered for the appropriate nodes. 

The variables NODEA and STEPN are required in addition to the flux 

data. These variables allow the input data to be stored according to the 

proper node numbers and points in orbit (step numbers). If a punched node 

array is desired to avoid errors, use subroutine FFNDP (Reference 3.3.5.5: 

I Subroutine FFNDP). 
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3.3.7.2 Variable Definitions 

VARIABLE NAME 

NODEA 

INITL 

STEPN 

DESCRIPTION 

Node identification number array 

Value that fluxes may be initialized to (Optional) 

The input value for INITL will override the RSI data 

values unless set to -2.0 

Step number that following flux data applies to 

A FIG card is not used ~n the flux data block because step numbers are 

the significant label for flux data storage. 

3.3.7.3 Flux Data Formats 

1) NODEA, STEPN, and INITL are entered for each step according to the 

following order and formats: 

CC1 

NODEA 
STEPN 
INITL 

CC7 

NN1, NN2, 
NDV 
DV 

NNN, END 

CC7 
2 

The user may have the program generate the node array (see section 
3.3.5.5) in a preliminary run. 

2) Flux values may be entered ~n either of two formats. The 

quadruplet format is as follows: 

CC7 

NODID, DV1, DV2, DV3 

101,232., 114., 99.*.317 $ example 
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where: 

NODID = node identification number 

DV1 = incident solar flux 

DV2 incident albedo flux 

DV3 = incident planetary infrared flux 

Restrictions: 

One quadruplet only per card. 

All four data values are required. No default logic applies. 

Flux values must be in TRASYS standard units (Btu/hr-ft
2
). 

The single value formats are as follows: 

ee7 

NODE = NDVl, SUN = DV2, ALB = DV3, PLAN = Dv4 
or 

NDVl, S = DV2, A = DV3, P = DV4 

Where: 

NDVl node identification number (integer) 

DV2 = incident solar flux 

DV3 = inc~dent albedo flux 

DV4 = planetary infrared flux 

Restrictions: 

ee7 
2 

All data values encountered between NODE values pertain to the 

preceding node number. 

3.3.7.4 Flux Data Block Example 

An example of a flux data block is shown in Figure 3-19. 
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HEADER 

f" .. NODEA 

STEPN 

NODEA 

STEPN 

FLUX DATA 

10, 17, 20, 24, 32, END 

10 

10,2.79 ,', 144.,0., O. $ FLUX ON SUN-ORIENTED SURFACE 

17, 0., 25.74, 14.8 

NODE = 20, SUN = 0., ALB = 25.74, PLAN = 14.8 

10, 17, 20, 24, 32, END 

11 

32, -1., -1., -1. $ RECOMPUTE FLUXES FOR NODE 32, STEP 11 

Figure 3-19 Flux Data Block Example 
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3.3.8 Correspondence Data 

3.3.8.1 Basic Concepts 

The correspondence data block performs the function of providing the 

user with an input point for the node numbering data necessary to make his 

thermal radiation model correspond on a one-to-one basis with his thermal 

analyzer RC (Resistance Capacitance) model. 

The user has the choice of using the information in this block in the 

form factor segment to combine form factors or waiting to use it in the 

absorbed heat output (QOCAL) and radiation exchange output (RKCAL, RCCAL) 

processor segments. Two sources of error arise with form factor combining, 

however. If surfaces with differing optical properties are combined the 

radiation interchange computations are approximate because they proc~ed on the 

basis of area-weighted average optical properties. The second source of error 

is the so-called "fence" problem. Consider the 4-node configuration: 

3 4 

1 2 

Clearly, form factors between nodes 4 and 1 and 3 and 2 do not exist. If 

nodes 1 and 2 were combined, however, form factors F3- 1 ,2 and F4- 1 ,2 would 

exist, and GBCAL calculations would produce a radiation interchange factor 

between 3 and 4, obviously incorrect. Obviously this can cause erroneous ab

sorbed heating computations also. 

3-110 





The user may avoid these situations by splitting his correspondence 

data. One set of correspondence data, with no optical property combination or 

fence problems, is entered and used in form factor combining. The remaining 

correspondence data necessary to make the TRASYS model agree with the RC model 

is entered separately, and will be applied only in the absorbed heat and 

radiation interchange output segments. This assumes the user can identify 

correctly all of the potential errors inherent with form factor combining. 

The from factor combining capability was developed to minimize the 

partitioning for the matrix inversion in the gray body (GB) segment, by 

reducing the matrix size, and thus the I/O cost associated with partitioning 

1n the original version. Subsequent development and experience has shown that 

it has outlived its usefulness even for models as large as 800 nodes, 

especially when one considers the pitfalls associated with form factor 

combining. The program was originally designed to operate in 65000K decimal 

core. For the gray body segment the program dynamically assigns all of the 

available core to the matrix inversion solution. When the number of nodes 

exceeds between 200 ~nd 250 for 65K core the catrix must be partitioned on a 

disc file with only a portion resident in core. Additional core can be 

utilized to eliminate or further reduce the degree of partitioning. Even when 

partitioning is necessary two improvements to the original program have 

eliminated, even for the 700 to 800 node models currently considered, most of 

the advantages of form factor combining. The most significant improvement to 

the Univac version was to replace the inefficient standard Fortran I/O 

operations involved with the partitioning with a system utility routine 

(NTRAN) that will transfer an entire array so that each operation requires one 

I/O transfer with no restrictions on block size. In addition the program was 

modified so that the partitioned matrix inversion can be restarted at 

intermediate stages if RTO/RTI tapes are used. This feature minimizes the 

losses if the matrix solution is not complete, due to maximum time, etc. The 

form factor combining capability will be retained because it is feasible that 

as models grow, form factor combining may again become an attractive 

alternative. 
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Another set of correspondence data, not entered by the user, but 

implicit to the program, is the correspondence data file that automatically 

recombines polygons. The user has control of whether or not this is done in 

the CMCAL link (reference Section 5.11.). Another automatic application of 

correspondence is the optional capability to apply the equivalent 

correspondence generated for Auto BCS DUP and Auto BCS IMAGE Options 

(reference Section 3.3.3.10.3 and 3.3.3.10.4). Again the user has control of 

whether this is accomplished in the CMCAL link. To utilize this option the 

user should refer to Section 3.3.8.5: Automatic Generation of Correspondence 

Data. 

3.3.8.2 Variable Definitions 

Correspondence data block variables are defined in Table 3-VI. 

VARIABLE NAME 

RANGE OR 

OPTIONS 

DEFAULT 

VALUE DESCRIPTION 

FIG 

CF 

CNAME 

BLANK OR 

FF 

NONE 

BLANK 

CONFIGURATION NAME 

FLAG DESIGNATING TYPE OF 

CORRESPONDENCE DATA 

OPTIONS: 

FF: CORRESPONDENCE DATA WILL 

BE APPLIED TO FF's IN CM LINK 

BLANK: CORRESPONDENCE DATA WILL 

BE APPLIED IN THE QO LINKS AND 

RADIATION CONDUCTOR LINKS 

Table 3-VI Correspondence Data Variable Definition 
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3.3.8.3 Correspondence Data Formats 

1) FIG cards are entered according to the following format: 

CCl 

FIG 

eC7 

CNAME, CF 

ce7 
2 

2) Node corresponde~ce data is entered according to the following 

format: 

CC7 

NODID = DV1, DV2, --- DVN 

NODID is an RC model node number (one to six digits, integer) and DVl 

through DVN are the TRASYS node numbers that will be combined into node NODID. 

3.3.8.4 Correspondence Data Block Structure 

The correspondence data found between a card defining a configuration 

name and the next configuration name definition card can be thought of as a 

correspondence data sub-block. One of these sub-blocks is required for each 

unique geometry of the User's problem, assuming node combine operations are 

required for each geometry. 
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3.3.8.5 Automatic Generation of Correspondence Data 
• 

BCS duping and imaging frequently leads to a situation where a good 

deal of correspondence data can be automatically generated. Code to do this 

is now in TRASYS, and the feature is exercised by a new correspondence data 

block input. The expanded correspondence data input formats are: 

NRCI = NI, N2----NN I NRC 2 , NINC2, NRC2, NINC3 ----

or: 

NRCl = NI, N2---NN I NRC2, BCSN2 I NRC3, BCSN3 ---

where: 

NRCl = the RC (resistance capacitance) model node number desired for 

the combination of TRASYS nodes NI through NN. 

NRC2 = the RC model node number desired for the combination of nodes 

Nl + NINC2 through NN + NINC2. 

BCSN2 is the BCS name used the first time the BCS containing Nl 

through NN was duplicated or imaged. BCSN3 is the BCS name for the second dup 

or image, and so on. 

NINC2 is the increment value specified on the BCS2 card; NINC3 is the 

increment on the BCS3 card, and so on. 

Note that the two inputs are equivalent in function. The first format, using 

the increment value, is recommended. In the second format the BCS names 

stated are checked against the list of BCS names that appear in the surface 

data and the increments used on the appropriate BCS cards is then applied. If 

a BCS name match is not found, an error is generated. If the increment is 

specified, per the first option, no check can be made. The increment option 
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~ must be used, however, when the BCS containing nodes Nl thru NN is not a 

"root" BCS, that is Nl thru NN were created by a BCS dup or image operation. 

The following are examples of implementing the correspondence data generation 

feature. 

Referring to figure 3-20a, assume that the user wants to combine nodes 

1, 2, and 3. Quite likely, nodes 11, 12,13, and 21, 22, and 23 should also 

be combined. Normally this would requ1re the following three cards in the 

correspondence data block: 

CC7 

101 = 1, 2, 3 

III = 11, 12, 13 

121 = 21, 22, 23 

Either of the following single cards is now equivalent to the above three: 

CC7 

101 = 1, 2, 3' Ill, 10' 121, 20 

101 1, 2, 3' Ill, BCS 2' 121, BCS3 

where nodes 1, 2, and 3 were duped/imaged under BCS2 and again duped/imaged 

under BCS3. Note that each time nodes 1, 2, and 3 are duped and/ or imaged-, 

another apostrophe delineator is required. 

21 22E 121 
23 

BCS3 

24 
1 11 

:~ ~2 

-113 

BCS1 4 14 BCS2 

Figure 3-20a. Correspondence Data Generation 
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In figure 3-20h nodes 1, 2, and 3 were defined under BCS1 and duped 

within the same BCS as 11, 12, and 13. BCS1 was then imaged in its 

entirety, creating nodes 21, 22, 23, and 31, 32, and 33. In this 

case, automatic correspondence data must be generated by: 

CC7 

101 1,2,3' 111, 10' 121,20' 131,30 

1n the correspondence data block. The more complex "family tree" 

involved precludes the use of the BeS name option. 

1 21 

3 r- f3 BCS1 BCS2 

11 31 

F ~ 131 

13 33 

Figure 3-20h. Correspondence Data Generation 
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CCI CC7 ' 

HEADER CORRESPONDENCE DATA 

FIG YSIDE $ (NOT TO BE COMBINED IN CMCAL) 

50 = 10,17 

32 40,41,42 

6 = 61,62,7 = 71,74 

18 1,11'1018,20 $ DUP OR IMAGE AUTO-CORRESPONDENCE 

FIG YSIDE $ FFS TO BE COMBINED IN CMCAL 

25 = 2,4,6 

35 = 3,5,7 

Figure 3-21 Correspondence Data Block Example 
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3.3.9 Operations Data Block 

3.3.9.1 Basic Concepts 

The operations block can be thought of as a digital computer program 

coded in a somewhat modified FORTRAN language. The most powerful statements 

in the block are calls to processor library subroutines followed by "link" 

calls to primary processor program segments. Interspersed with these 

statements might be FORTRAN statements used to redefine any of the program 

I variables in the reserve name list (see Appendix A) or control constant list, 

calls to user-supplied routines in the subroutines block, and any branching 

statements required for direction of problem solution logic. The operations 

data block is converted by the preprocessor to subroutine ODPROG. This 

routine serves as the driver for processor execution. In general, the 

conversion is a one-to-one passover of FORTRAN statments. The segment 

execution calls (L cards) however, result in the operating system dependent 

language necessary to define an overlay execution. 

An operations data block for a problem involving one or more 

configurations of the model and/or more than one point in orbit consists of a 

series of modified FORTRAN statements which are divided into logical sections 

each of which begins with the definition of a new problem geometry (identified 

by a unique configuration name) and/or a new point in orbit (identified by a 

unique STEP number). Calculated data required for subsequent processor 

operations (with the exception of fluxes output by DICAL, DRCAL and AQCAL) is 

placed in out-of-core storage under the appropriate configuration name. 

I (Reference Figure 3-22). Fluxes are placrd¥in out-of-core storage under the 

STEP number that identifies the appropriate point in orbit. 

The operations data block logic is processed in the order 

encountered. Each logical section (as defined above) must be serially 

executable, that is, no branching from one section to another is allowed. 
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CARD INPl'T 

PREPROCESSOR \-____ ...... 

STEP 2 

o 
• • 

STEP LAST 

, , 

I 
I I;, r:Oh~: 
I EXECrTIO~ 

I 
I 
I 
I 

) 

I. __________ J 

Figure 3-22 Program Data Storage Scheme 
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DO-loops may be used, but they must be located entirely within a section, that 

is, BUILDC/ADD cards and STEP cards must not be contained within a DO-loop. 

In addition,L-cards must not fall within a DO-loop because the indices are 

lost when the ODPROG segment is overlaid and·removed from core. Also, 

multiple executions of any program segments other than NPLOT, OPLOT, or PLOT 

within a section will make later data retrieval impossible for that section. 

Statement numbers from 1 to 9999 may be used, and each statement number must 

be unique in the operations data block. All program control constants and 

variables in common at execution of the operations data block (subroutine 

ODPROG) may be found in Appendix A. This list is automatically extended by 

the program to contain any constants and arrays entered in the quantities and 

array data blocks. 

3.3.9.2 ORBGEN Option 

Writing an operations data block for the calculation of direct 

irradiation and absorbed heats for an extensive series of points in orbit can 

be a tedious, repetitive job. To alleviate this, the ORBGEN option LS 

available. When an ORBGEN card is encountered in the operations data block, a 

package of preprocessor routines use th~ data on the card to generate the 

operations data code necessary to compute and/or read direct irradiation, 

absorb~d heats, and print a set of heat rate vs time tables and integrated 

average heat rates in standard SINDA input formats. These tables may be 

thought of as a default output that prevents loss of computed data. All flux 

and absorbed heat data computed using the generated code is stored in the 

usual manner and may be retrieved, manipulated, and output in any way the user 

desires (see Section 3.3.7: Flux Data). More than one ORBGEN card can be 

used in the Operations Data Block. The initial Step Number is incremented by 

500 each time an ORBGEN card is encountered. 

The preprocessor generated card images created by the ORBGEN will be 

written to the first RSO file al~ng with the rest of the input data, and given 

edit numbers. This will allow the user to edit the standard ORBGEN output to 

accomplish a non-standard operation. For example, through the Edit Data block 

specific steps of the direct incident data from a previous ORBGEN run can be 
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selectively utilized via calls to subroutine RSTOFF and RSTON. Only the data 

not common to both runs would have to be computed. NOTE: Editing ORBGEN 

output is a feature not yet available on the CDC version of TRASYS. 

ORBGEN cards are defined as follows: 

Format 

CC1 

ORBGEN 

Defini tions 

CC7 

TYPE, TRUANI, TRUANF", NPT, IFO 

TYPE is a Hollerith variable defining the spacecraft orientation reference and 

pertinent orbit characteristics. Options are: 

INER: Spacecraft is 1n planetary orbit, inertial (sun or star) oriented. 

PLAN: Spacecraft is planet oriented. 

CIRP: Spacecraft is planet oriented, in a circular orbit. 

NOPL: Spacecraft is in a heliocentric orbit (no planet). 

TRUANI is the true anomaly* at the first point in orbit ° TRUANI 360. 

TRUANF is the true anomaly at the final point in orbit. If TRUANF = TRUANI + 

360, data for a complete orbit will be generated. 

NPT is the number of equal true anomaly increments between the points for 

which fluxes and direct irradiation will be computed. If the planet shadow is 

not encountered by the orbit, NPT + 1 points will be computed. If the planet 

shadow is encountered, NPT + 5 points will be computed, thus describing the 

flux discontinuities at the planet shadow points. 

*Reference Figure 4-7 
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IFO defines the Optional Input/Output Subroutines. Options for IFO are AQ, 

DI, DIR, ZEROI and ZEROS. If AQ, the incident and absorbed fluxes are 

computed. If DI, the incident fluxes only are computed. If ZEROI, all 

absorbed infrared flux values will be zero. If ZEROS, absorbed solar fluxes 

will be zero. If DIR, the incident fluxes will be read in directly from a RSI 

(restart) tape, and absorbed fluxes will be computed. The DIR option requires 

a complete set of flux values on the restart tape, because the DICAL segment 

is not loaded. 

Options and Restrictions 

1} Prior to entering an ORBGEN card, the orbit must be defined 

through a call to ORBIT1 or ORBIT2. 

2} Orientation must be defined through a call to ORIENT. 

3) Spin must be defined, if applicable, through subroutine SPIN. If 

spin is not zero, INER and CI~P are not allowable for TYPE. 

4) Problem geometry must be defined prior to any ORBGEN card. 

5) Punch/tape flags and accuracy parameters must be defined through 

subroutine DIDT1 or DIDT1S prior to an ORBGEN card. 

6) The QO segment is limited to 100 time-points. 

7} Multiple ORBGEN cards are permissible. 
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3.3.9.3 TRJGEN Option 

TRJGEN cards provide a function similar to ORBGEN when computing 

fluxes and absorbed heats to match time points on a NASA/JSC MPAD trajectory 

tape. TRJGEN cards are used in the same way as ORBGEN cards and are defined 

as follows: 

CCl 

TRJGEN 

Definitions 

TSTART -

CC7 

TSTART, ISTRRC, TSTOP, ISTPRC, ISKIP, IPLOT, IFD 

First time value on MPAD tape at which calculations are 

required. 

ISTRRC - Relative record flag. Some MPAD tapes leave more than one 

record per time point. If the first or only record per time 

point is required, enter 1, if the second, enter 2, and so 

on. 

TSTOP - Last time point for calculations. 

ISTPRC - Relative record flag for TSTOP. Enter relative record 

number desired for TSTOP time point. 

ISKIP -

IPLOT -

IFD -

Number of time points on MPAD tape to skip between 

calculation time points. (Enter zero o~ any positive 

integer). A 0 will compute every time point. 

Orbit plot control flag. 

YES for plots and fluxes 

NO for fluxes only 

ONLY for plots only 

Calculation control flag. Same options and function as IFO 

on ORBGEN card. 
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Options and Restrictions 

3.3.9.4 

1) ORBITI or ORBIT2 must be called prior to TRJGEN cards with zeros 

in all but the first argument to define SOL, WSS & WDS. 

2) ORIENT and SPIN calls are not applicable. 

3) TRAJ must appear in the options data block. 

4) Multiple TRJGEN cards are permissible. 

It is recommended that the user obtain a dump of the trajectory tape 

contents for guidance in setting up TRJGEN cards. TRASYS is limited 

to 100 time points per TRJGEN card. 

BUILD Option 

This option provides the user the convenience of defining the geometry 

for a configuration (in terms of block coordinate system names) with a single 

card rather than through a series of user calls to subroutine BUILDC and ADD, 

as previously required by TRASYS I. 

Format 

CCI 

BUILD 

CC7 

FIG, BLKl, BLK2, BLK3 , 

This is equivalent to the sequence: 

CC7 

CALL BUILDC (BLKl, 3HFIG) 

CALL ADD (BLK2) 

CALL ADD (BLK3) 
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(\ Note that the configuration name (FIG in the example) must begin to the right 

of card column 6. The BUILD option may continue for as many cards as required 

to list all of the Block Coordinate System (BCS) names that make up the 

desired configuration. A continuation flag is required when more than one 

card is needed. A BCS name should not be split between cards. 

A BUILD card with columns 7-72 blank will automatically default the 

Configuration name to the Model name given in the Option Data Block and all 

BCSs specified in the Surface Data Block will automatically be listed to 

comprise the configuration. If there is no Model name in the Options Data 

Block, then the Model name will default to THING. 

If the configuration name is the same as a BCS name and the BCS name 

does not exist in the configuration the preprocessor will flag the 

configuration name as an error. For example, if in the Surface Data Block 

there are BCSs with the names NEW, BLK1, BLK2, and it is desired ~o build a 
\ 

~, configuration' in the Operations Data Block with only BLKl and BLK2 this 

.~. 

configuration cannot be called NEW. 

3.3.9.5 Operations Block Formats 

1) Step number cards are punched according to the following format 

CCl CC7 CC7 
2 

STEP DV (integer) 

where DV 1S the integer step number, with the allowable range 1 

to 9999. positive step numbers are required in the Operations 

Data Block for only the DI and DR computation links. They must 

be specified by the user for each orbit point; or if ORBGEN or 

TRJGEN is used, they will be specified by the program. For other 

than DI and DR computations, the user may use positive step 

numbers as in TRASYS I. If they are omitted the program will 
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insert negative step numbers only where required. This 

eliminates the confusion TRASYS I users previously had on what 

constitutes a Step. The elimination of user step numbers was 

possible by replacing it with the more meaningful label, the 

configuration name. 

2) Subroutine calls are made in the classic FORTRAN format, with the word 

CALL beginning in CC7. Calling sequences for each user-accessible 

processor routine can be found in Appendix D. 

3) Computation segment (link) calls are made uS1ng the following format: 

3.3.9.6 

CCI 

L 

CC7 

SEGNAM 

CC7 
2 

Where SEGNAM is the name of one of the program segments contained in 

the processor library. Appendix E describes the processor segments 

and their functions. Currently allowable options for SEGNAM are: 

NPLOT, OPLOT, SFCAL, FFCAL, NFFCAL, RBCAL, CMCAL, DICAL, DRCAL, GBCAL, 

RKCAL, RCCAL, AQCAL, QOCAL, and PLOT. 

Operations Block Examples 

Operations block structure and function 1S illustrated by the listings 

of sample operations blocks in Figure 3-23. 

Sample I of Figure 3-23 is a single step operations block that 

generates three node plots of a single geometry. Sample 2 is a two-step 

operations block that generates form factor matrices for two geometric 

configurations. Sample 3 is a 17-step operations block that generates direct 

irradiation data at 16 points in orbit, including the planet shadow in/out 

points. A geometry change at the shadow in/out points is involved. Sample 4 

is a listing of the operations data block for a restart run that recalculates 

shadow factors, reads form factors, combined form factors, and gray body 

factors from the RSI tape, calculates radiation conductors (RADKs, AQ's and 

QO's are always calculated Slnce they are not saved for restart), and 

recalculates direct fluxes using shadow factor tables. 
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SAMPLE 1 -- OPERATIONS BLOCK FOR PLOT OPERATIONS 

HEADER OPERATIONS DATA 

C BUILD GEOMETRY 

BUILD CNAME1,BNAME1,BNAME2,BNAME3 

C INITIALIZE FOR PLOT 1 
CALL NDATA(1,3HGEN,O,O,O,A20,1,3,2,O.,O.,37.,O) 

C INITIALIZE FOR PLOTS 2 AND 3 
CALL NDATAS (2,3H3-D,O,O,O) 
CALL NDATAS (3,lHX,O,O,O) 

C MAKE PLOTS 1,2 AND 3 
L NPLOT 

SAMPLE 2 -- OPERATIONS BLOCK FOR FORM FACTOR OPERATIONS 

HEADER OPERATIONS DATA 

BUILD CNAME1,BNAME1,BNAME2,BNAME3 

C SET FF CALCULATION PARAMETERS (PRINTS FF'S, DOES NOT PUNCH) 
CALL FFDATA(O.,.2,O,O.,1.E-3,3HYES,O,O) 

C COMPUTE FORM FACTORS 
L FFCAL 
C MOVE BNAME2 SURFACES 

CALL CHGBLK(BNAME2,O.,O.,25.,1,2,3,O.45.,O.) 
BUILD CNAME2,BNAME1, BNAME2 

C CALCULATE FORM FACTORS WITH SAME PARAMETERS AS FOR CNAME1 
L FFCAL 
END OF DATA 

Figure 3-23 Sample Operations Data Blocks 
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SAMPLE 3 -- OPERATIONS BLOCK FOR TWO GEOMETRY-ABSORBED HEAT PROBLEM 

HEADER OPERATIONS DATA 
STEP 1 
BUILD CNAME1,BNAME1,BNAME2,BNAME3 

C 

L 
C 

L 
C 

C 
L 
C 

C 

C 

C 
L 
L 
STEP 
C 

L 
L 
STEP 

L 
L 
STEP 

L 
L 
STEP 
C 

L 
L 
STEP 

L 
L 
STEP 

_L 
L 

SET FF CALCULATION PARAMETERS, PUNCH FFS 

CALL FFDATA(0,.2,0,0,1.E-3,0,3HYES,O) 
FFCAL 

CALCULATE GREY BODY FACTORS 
CALL GBDATA(4HBOTH,0,2HFF) 
GBCAL 

SET RADK CALCULATION PARAMETERS, PUNCH RADKS 
CALL RKDATA(0,0,0,1000,5HSPACE,999,0,0,0,0) 

COMPUTE RADKS 
RKCAL 

DEFINE ORBIT AND LOCATE SUN 
CALL ORBIT2(3HEAR,O.,90.,0,0,0,120.*6080.,0.) 

ORIENT VEHICLE (CCS Z-AXIS TOWARD SUN) 
CALL ORIENT(3HSUN,1,2,3,0.,90.,0.) 

SET DI COMPUTATION DATA 
CALL DIDT1S(O.,0,0.,3HYES,0) 

COMPUTE DIRECT IRRADIATION (DICOMP PARAMETERS DEFAULT TO COMPUTE ALL) 

DICAL 
AQCAL 

2 
UPDATE TRUE ANOMALY, SET UP TO COMPUTE PLANET AND ALBEDO FLUXES 

TRUEAN = 30. 
CALL DICOMP(l,O,O) 
DICAL 
AQCAL 

3 

4 

TRUEAN =60. 
CALL DICOMP(1,0,O) 
DICAL 
AQCAL 

TRUEAN =90. 
CALL DICOMP(1,0,0) 
DICAL 
AQCAL 

5 
SKIP OVER PLANET SHADOW 

TRUEAN =270. 
CALL DICOMP(1,0,0) 
DICAL 
AQCAL 

6 

7 

TRUEAN =300. 
CALL DICOMP(l,O,O) 
DICAL 
AQCAL 

TRUE AN = 330. 
CALL DICOMP(1,0,0) 
DICAL 
AQCAL 

Figure 3-23 (con It) 
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STEP 8 
C STUFF TRUEAN = 0. DI and AQ VALUES (DUPLICATE POINT) 

CALL STFAQ(360.,0,1) 
STEP 9 
C 

L 
L 
STEP 

COMPUTE DATA AT SHADOW ENTRY POINT (DAYS IDE GEOMETRY) 
TRUEAN =SHADIN - .1 
CALL DICOMP(I,O,O) 
DICAL 
AQCAL 

10 
C COMPUTE DATA AT SHADOW OUT POINT (DAYS IDE GEOMETRY) 

TRUEAN =SHAOUT + .1 
CALL DICOMP(I,O,O) 

L DICAL 
L AQCAL 
C PUNCH AQAVG,AQ VS. TIME TABLES - DAYSIDE 

CALL QODATA(3HALL,0,2HNO,3HYES,0,0,0,4HBOTH) 
L QOCAL 
STEP 11 
C BUILD DARKS IDE CONFIGURATION 

BUILD CNAME2,BNAMEl,BNAME2,BNAME4 

C 
L 
C 

L 
C 

L 
C 

L 
C 
L 
STEP 
C 
C 

STEP 

STEP 

STEP 

STEP 
C 

STEP 

CALCULATE FFS (FFDATA PARAMETERS SET IN STEP 1) 
FFCAL 

CALCULATE GREY BODY MATRICES 
CALL GBDATA (4HBOTH,O,2HFF) 
GBCAL 

SET RADK CALCULATION PARAMETERS, COMPUTE RADKS 
CALL RKDATA(0,0,0,1000,5HSPACE,999,O,0,O,0) 
RKCAL 

REORIENT TO PLANET 
CALL ORIENT(4HPL~N,I,2,3,0.,90.,0.) 
TRUEAN =120. 
DICAL 
COMPUTE ABSORBED HEATS 
AQCAL 

12 
UPDATE TRUE ANOMALY, STUFF HEAT DATA FROM STEP 11 BECAUSE ORBIT 
IS CIRCULAR, PLANET-ORIENTED 

CALL STFAQ(150.,0,11) 
13 

CALL STFAQ(180.,O,II) 
14 

CALL STFAQ(210.,0,11) 
15 

CALL STFAQ(240.,0,11) 
16 

STUFF DATA FOR SHADOW ENTRY POINT (DARKS IDE CONFIGURATION) 
CALL STFAQ(SHADIN + .1,0,11) 

17 
C STUFF DATA FOR SHADOW OUT POINT (DARKS IDE CONFIGURATION) 

CALL STFAQ(SHAOUT - .1,0,11) 
C PUNCH AQAVG,AQ VS TIME TABLES - DARKS IDE 

CALL QODATA(ISARY,0,2HNO,3HYES,0,0,0,4HBOTH) 
L QOCAL 
END OF DATA. 

Figure 3-23 (cant) 
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Sample 4 --- Orbit Generation from an ORBGEN Card 

C ORBIT GENERATION CARD FOLLOWS 
ORBGEN CIRP, 0.0, 360.0, 4, AQ 

C * * * * * * * * * * * 
STEP 10000 

ORBIT GENERATION STARTS HERE * * * * * * * * * 

TRUEAN 0. 
TRUANF 360.000 
TRUANI = o. 
IAI ° 
lAS = ° 
PLTYPE = 6HPLSAVE 
CALL DICOMP(O,O,O) 

L DICAL 
NSPFF = 10000 
PLTYPE = 6HPLREAD 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
STEP 10001 

CALL STFAQ (TRUANF,0,0,1000) 
STEP 10002 

TRUEAN = 90.000 
CALL DICOMP(0,0,10000) 

L DICAL 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
STEP 10003 

TRUEAN = 180.000 
CALL DICOMP(O,0,1000) 

L DICAL 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
STEP 10004 

TRUEAN = 270.000 
CALL DICOMP(0,0,10000) 

L DICAL 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
STEP 10005 

IF(SHADIN.LT.O.) GO TO 90400 
TRUEAN = SHADIN-O.l 
IF(TRUEAN.LT.TRUANI.OR. 

ITRUEAN.GT.TRUANF) GO TO 90000 
CALL DICOMP(O,4HZERO,10000) 

L DICAL 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
90000 CONTINUE 
STEP 10006 

TRUEAN = SHADIN+O.l 
IF(TRUEAN.LT.TRUANI.OR. 

ITRUEAN.GT.TRUANF) GO TO 90100 

Figure 3-23 (con't) 
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Sample 4 --- Orbit Generation from an ORBGEN Card (continued) 

CALL DICOMP(O,O,lOOOO) 
L DICAL 

CALL AQDATA(IAI,IAS,O,O,O) 
AQCAL 

90100 CONTINUE 
STEP 10007 

TRUEAN = SHAOUT+O.l 
IF(TRUEAN.LT.TRUANI.OR. 

ITRUEAN.GT.TRUANF) GO TO 90200 
CALL DICOMP(0,4HZERO,10000) 

L DICAL 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
90200 CONTINUE 
STEP 10008 

TRUEAN = SHAOUT-O.1 
IF(TRUEAN.LT.TRUANI.OR. 

1TRUEAN.GT.TRUANF) GO TO 90300 
CALL DICOMP(0,0,10000) 

L DICAL 
CALL AQDATA(IAI,IAS,O,O,O) 

L AQCAL 
90300 CONTINUE 
90400 CONTINUE 

CALL QODATA(3HALL,0,0,0,O,0,0,0,) 
L QOCAL 
C 

C * * * * * * * * * * * * ORBIT GENERATION ENDS HERE * * * * * * * * * * * 

Sample 5 --- Operations Block for Restart Run 

HEADER OPERATIONS DATA 
STEP 1 
BUILD CNAME,BNAME 

CALL RSTOFF 
L SFCAL 

CALL RSTON 
CALL FFDATA(0,0,0,0,0,0,0,2HNO) 

L FFCAL 
CALL CMDATA(0,5HFFNEW,FF, 0, 0) 

L CMCAL 
CALL GBDATA(4HBOTH,0,2HCM) 

L GBCAL 
CALL RKDATA(0,2HNO,0,100,5HSPACE,999,0,0,2HNO,0) 

L RKCAL 
CALL ORBIT2 (3HEAR,0.,90.,0.,O.,O.,100.*6080.,0.) 
CALL DIDT2S(O,0.,180.,0.,0.,O.,lOO.*6080.,2HNO,0) 
CALL RSTOFF 

L DICAL 
END OF DATA 

Figure 3-23 (conc luded) 
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3.3.9.7 Restart Operations 

The simplest restart operation is picking up a run interrupted by a 

system abort (e.g., time limit) where there is no requirement to modify the 

input deck. This is accomplished by specifying RSI in the Options Data, using 

the previously generated RSO tape as an RSI tape and submitting the same deck 

I used on the previous run. If the data from the new run is to be saved RSO 

must also be specified in the Options Data block. The same thing can be 

accomplished by submitting an input deck consisting only of an Options Data 

block which must, of course, specify an RSI tape. _ This is possible because 

the entire input deck resides on the RSI tape. If the interrupted run used an 

I 

I RTO tape, it should be specified and mounted as an RTI tape when making the 

restart run. This enables the user to reclaim interim data from the FF, NFF, 

GB, Dr and SF segments. 

All restart operations involving more than a simple resumption of an 

interrupted run are accomplished through edit commands. All input decks used 

in this type of restart run will consist only of an options data block and an 

edit data block. Any data (numerical or logic) may be inserted or deleted 

from the input deck using edit commands. The editing is conveniently 

accomplished using the usual edit commands (see Section 3.2.2.2: Edit Data 

Block) while ref~rring to the output listing from the previous run for line 

number information. The user should keep in mind that the input deck, as 

edited 1S written to the RSO tape. Therefore, when restarting from a tape 

generated by a previous restart/edit run, the previously used edit commands 

are not required, and will in fact probably generate errors. 

Calls to subroutines RSTOFF and RSTON are edited into the operations 

data block to give the user direct control over the reading of the processor 

phase data on the RSI tape. CALL RSTOFF says in essence, do not read the RSI 

tape until further notice. CALL RSTON says read it until further notice. The 

operations data begins as if an RSTON call was in effect. The use of RSTOFF 

can be illustrated using a common parametric study situation. Say that a user 

has generated radiation interchange factors for a particular model and has the 
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pertinent form factors and gray body factors on a restart tape. He desires to 

change some surface properties and generate new radiation conductors. This, 

of course, involves editing in calls to subroutine MODPR prior to the L GBCAL 

card. However, if a call to RSTOFF is not inserted ahead of the L GBCAL card, 

the gray body matrix residing on the restart tape will be read in, and the 

radiant interchange factors obtained will be identical to those of the 

previous run. For further background on RSTOFF and RSTON the reader is 

referred to Section 4.3.9: Restart Control Subroutines. 

The user should keep in mind that significant amounts of data may be 

lost when executing without an RTO tape. This is illustrated by the following 

explanations of the RSO/RTO write sequences: 

a) 

b) 

The FFCAL and NFFCAL segments write to the RSO tape at the end of each 

row of form factor computations. It writes to the RTO tape after every 

10 form factors are computed. The same is true of image factors in the 

RBCAL link. 

The form factor combining link writes to the RSO after each row of form 

factors are combined. It does not write to the RTO tape. 

c) The DICAL and DRCAL segments write to the RSO tape at the end of each 

orbital time point (step). They write to the RTO tape after each 10 flux 

calculations. 

d) The SFCAL segment writes to the RSO tape after each nodal shadow factor 

table computation 1S complete. It does not write to the RTO tape. 

e) The GBCAL segment writes to the RSO tape at the end of the matrix 

inversion process for each waveband. It writes to the RTO tape at the 

end of each of three steps in the process of inverting the matrix. 

Once the data from the RTO is passed on to the RSO tape, the RTO tape 1S 

~ rewound, and the next set of computations are written to the RTO tape to be 
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saved temporarily until the time the data is aga1n passed on to the RSO tape. 

In reading a RTO created tape back in as a RTI tape, the program will first 

read what it can from the RSI tape and then read the BTl tape if available. 

After the one read it dynamically frees the RTI unit. 

The following paragraph applies to restart operations uS1ng UNIVAC EXEC 8 

operating systems only. 

In all TRASYS processor printout, when an RSO tape 1S used, restart tape 

record numbers are printed whenever information is written to the RSO tape. 

When this run ends, whether from time limit, abort or normal exit, there will 

be some record number, say for instance 100, near the end of the printed 

output. This means that presumably 100 records of valid information exist on 

the RSO tape. It is a peculiarity of the Univac system, as applied to TRASYS, 

that it cannot reliably differentiate between a parity error and the end of 

information on an RSI tape. Thus, if this 100 record tape were used on a 

restart run, and a parity error was encountered at record 50, calculations 

would begin at record 50 and much of the data generated on the first run would 

be recomputed. This may be necessary if there is a true parity error on the 

tape, but if the error was generated by the tape drive, half of a perfectly 

good tape would be wasted. 

the user to specify RSREC. 

This potential problem is the reason for allowing 

Had the card RSREC=100 been in the Options Data 

block on the second run, the parity error would have resulted in an abort 

rather than recomputing. The abort would provide the option to try the run 

again to see if the parity error was spurious or really on the tape. If not 

specified, RSREC defaults to zero. 
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3.3.9.8 Description of Restart Files 

3.3.9.8.1 Permanent Restart Output Tape - RSO 

A complete RSO tape consists of two files. The first file contains 

images of all cards 1n the input data that were present in the original run. 

In addition, this file contains the edit information that allow editing of the 

input data in subsequent runs. After editing, this file is processed by the 

preprocessor in the usual manner in preparation for processor operations. The 

second file contains data that was output by the processor segments as the 

user-defined Operations Data logic was processed. 

An alternate program and control card runstream for the Univac allows 

recovery from a system crash without loss of data, and bypasses the 

preprocessor when the run is re-initated after the crash. This version has 

nine files. For this version the first and last file (ninth file) are 

identical to the first and second files defined above. The second file 

contains the processor absolute element created in the previous run, and a 

copy of the first of eight temporary files used to pass data from the 

preprocessor to the processor. The third through eighth files are copies of 

the seven remaining temporary files. 

3.3.9.8.2 Permanent Restart Input Tape - RSI 

The RSI tape is an RSO tape from a previous run that is now to be used as 

input for a restart run. Input from this tape can be edited as required using 

edit statements. Data from tapes other than the RSI tape may be merged into 

the TRASYS model (first file of RSI tape) by adding CMERG or EMERG statements 

to the TRASYS model as required. As a reminder, CMERG files are TRASYS input 

data in BCD form. EMERG files are the first files of other RSI/RSO tapes. 
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3.3.9.8.3 Temporary Restart Output Tape - RTO 

The RTO tape 1S used to save partially completed calculated data 1n the 

DICAL, DRCAL, FFCAL, RBCAL, and GBCAL segments to minimize the amount of data 

lost upon run abort due to time limit, equipment failure, etc. 

3.3.9.8.4 Temporary Restart Input Tape - RTI 

The RTI tape is an RTO tape from a previous run that is now to be used as 

input for a restart run. 
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3.3.10 Subroutine Data Block 

3.3.10.1 Basic Concepts 

The subroutine data block is a collection of FORTRAN language 

subroutines supplied by the user in order to extend or modify TRASYS 

capabilities for the problem at hand. These subroutines may be either 

user-addressable (from the operations block) or program-addressable, from the 

various computation segments. 

Unless the user is creating what amounts to a major rewrite of a 

computation segment, the program subroutines in his subroutine block will bear 

the same name as processor library subroutines. The effect of his name 

duplication is that the user-supplied routine in the subroutine data block is 

compiled in lieu of the processor library subroutine prior to execution. 

Removal of such a routine reactivates the like-named library routine. 

Three deviations from FORTRAN language are defined for the subroutine 

data block. L-cards are used to identify subroutines with particular 

processor segments, R-cards are used to alert the program to the beginning of 

a new subroutine (UNIVAC only) and the TRASYS COMMON cards are used to 

automatically supply program common to the subroutines. 
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3.3.10.2 Subroutine Block Formats 

Subroutine data block format is illustrated in Figure 3-24. The 

segment names on the L-cards are strictly order-dependent. The L-cards with 

their associated subroutines need not all be present, but they must be 

encountered in the order shown below. Subroutines in the leading sub-block, 

with no L-card, are addressable only from the operations data block. 

No L-card 

L FFCAL 

L SFCAL 

L NPLOT 

L OPLOT 

L DICAL 

L GBCAL 

L AQCAL 

L QOCAL 

L RBCAL 

L PLOT 

L RCCAL (or RKCAL) 

L DRCAL 

L CMCAL 

L NFFCAL 
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TRASYS COMMON cards are optional. When used, they serve to insert all 

labeled and blank common lists, associated with the segment named on the 

preceding L-card, into the subroutine. Appendix A-1 defines the variable 

names in common for subroutine ODPROG and the various segments. 

NOTE: Subroutines immediately preceded by TRASYS COMMON cards will be 

compiled with both the operations data (ODPROG) common blocks and the common 

blocks associated with the preceding L-card. This means that all quantities 

data and array data, which are normally accessed only in ODPROG, are available 

to all subroutines in the subroutines data block. 

Note that TRASYS COMMON cards preclude beginning a subroutine block 

comment card with the word COMMON. 

R-cards must immediately precede each subroutine name card (UNIVAC 

only), with no intervening L-cards or TRASYS COMMON cards. 

3.3.11 End of Data Card 

The input deck should conclude with an END OF DATA card. If it is 

missing it will assume one and write a caution message. 
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4. USER CALLED ROUTINES 

4.1 Basic Concepts 

User called routines may be defined as those subroutines and 

computation segments callable from the operations block. Unless one or more 

subroutines of this type are entered in the user's subroutine data block, the 

user callable subroutines contained in the processor library comprise the 

entire list of user callable subroutines. Segments cannot be entered in the 

input stream. 

4.2 Processor Library 

The user callable processor library routines are listed below. In 

general, they are grouped according to their association with each of the 

processor computation segments. Page references for the subroutine 

descriptions in Appendix D are included. 

4.2.1 Library Listing of Subroutines 

General Subroutines 

Plot Package 

Subroutines 

Name 

BUILDC 

CHGBLK 

LIST 

NDATA 

NDATAS 

PLDATA 

Page 

D-7 

D-9 

D-29 

D-40 

D-40 

D-51 
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Name Page 

ADD D-2 

FFNDP D-25 

NODDAT D-43 

ODATA D-44 

ODATAS D-44 



Name Page Name Page 

Form Factor FFDATA D-23 ADSURF D-3 

Subroutines CMDATA D-lO RBDATA D-57 

NFDATA D-42 

Direct Irradiation ORBITl D-46 ORBIT2 D-48 

Subroutines DIDTl D-13 DIDTlS D-13 

DIDT2 D-l5 DIDT2S D-l5 

SPIN D-65 ORIENT D-50 

DICOMP D-ll DITTP D-20 

DITTPS D-20 DRDATA D-22 

Restart RSTON D-63 RSTOFF D-63 
~ FFREAD D-26 DIREAD D-l9 

Radiation Inter- GBDATA D-28 RKDATA D-6l 

change Subroutines GBAPRX D-27 RCDATA D-58 

Absorbed Heat AQDATA D-5 STFAQ D-67 

Subroutines 

Absorbed Heat QODATA D-54 QOINIT D-56 

Output Subroutine 

Data Modification MODAR D-30 MODPR D-32 

Subroutines MODTR D-38 MODPRS D-33 

MODSHD D-36 

Planet Surface DIDT3 D-l7 DIDT3S D-l7 

Subroutines SURFP D-68 
~. 
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4.2.2 Library Listing of Processor Segments 

Name Page Name Page 

Plot Package NPLOT E-2 OPLOT E-2 

Segments PLOT E-2 

Form Factor FFCAL E-3 CMCAL E-4 

Segments NFFCAL E-3 RBCAL E-3 

Direct Irradiation DICAL E-S DRCAL E-S 

Segments 

Shadow Factor SFCAL E-6 

Generator Segment 

Radiation Inter- RKCAL E-7 GBCAL E-8 

change Segments RCCAL E-7 

Absorbed Heat AQCAL E-8 

Segment 

Absorbed Heat QOCAL E-9 

Output Segment 
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4.3 Subroutine Descriptions 

4.3.1 Basic Concepts 

The user-callable subroutines in the proce"ssor library fall into two 

functional groups. The most numerous group consists of subroutines used to 

define the program variables and set the logic flags that are required before 

a computational segment can be linked into the processor and executed. 

Variable definition in this manner, as opposed to definition from the data 

blocks, achieves two important goals. First, 1n any complex problem many 

segment calls are made, necessitating frequent redefinition of program 

variables. Under these conditions, data block input would be redundant. 

Second, the subroutine calls, in classic FORTRAN format, form natural groups 

of input variables, and as the calls are input serially in the user's 

operations block, he is provided a highly visible presentation of the variable 

definitions existing at each stage of his execution. Thus, if the user 

carefully proofreads a listing of his operations block, his logic and variable 

definitions should be error-free. If his geometry inputs have been verified 

using the plot package, the user may proceed with some confidence to consume a 

large block of computer time. It is the hope of the TRASYS designers that 

these features will ease somewhat the all to prevalent garbage in - garbage 

out syndrome. 

The second group of processor library subroutines perform data handling tasks 

that eliminate redundant calculations. For example, direct irradiation may be 

required at 15 orbit points for a sun-oriented spacecraft. Armed with the 

knowledge that his solar flux is everywhere constant (outside the planet 

shadow), the user may compute the solar flux in Step 1, then use the STFAQ 

routine to retrieve the data from Step 1 and place it in data storage for any 

of the other 14 steps he desires. 

Appendix D is composed -of summary descriptions of each user 

subroutine. Definitions of each variable in the calling sequences are given, 

together with their default values, where applicable. The additional material 



necessary 

section. 

to use the subroutines 1S presented 1n the remainder of this 

After achieving a working knowledge, the user shout~ find Appendix D 

'"" sufficient for his quick-reference needs. 

4.3.2 General Subroutines 

Subroutines BUILDC and ADD and the BUILD card (see Sections 3.3.9.4: 

Build Option) are used to choose, from the various blocks of surfaces in che 

surface input data, what blocks are to be assembled to create (build) the 

problem geometry (active configuration). Also, the relative spatial positions 

of the surfaces and nodes in the active blocks may be changed using subroutine 

CHGBLK, prior to building the active configuration. 

4.3.2.1 Subroutine BUILDC 

~ Calling Sequence: CALL BUILDC (BCSNAM, CONFIG) 

This subroutine begins the process of assembling the geometry desired 

from the blocks of surfaces 1n the surface data block. BCSNAM is any block 

coordinate system name found 1n the surface data block. If no BCS 1S named in 

the surface data block, CALL BUILDC (ALLBLK, NAME) will define a geometry 

consisting of the entire surface data block. CONFIG is any name (1 to 6 

character Hollerith string) chosen by the user to identify his active model 

configuration. This call must be made for geometry definitions or after Block 

Coordinate System redefinition via subroutine CHGBLK. 

Important Note: A BUILD card or a BUILDC call voids any previous BUILD/ADD 

calls and any previous Surface Property Modification Subroutines calls, (e.g., 

MODAR, MODPR). 
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4.3.2.2 Subroutine ADD 

Calling Sequence: CALL ADD (BCSNAM) 

This subroutine adds another block of surfaces to the geometry defined 

by previous BUILDC and ADD calls. One BUILDC call must precede any ADD call 

~n the operations block. 

Note: 

4.3.2.3 

Direct calls to BUILDC and ADD have been made essentially obsolete by 

the BUILD card. See Section 3.3.9.3: Build Option, and Related 

Information for subroutine BUILDC in Appendix D. 

Subroutine CHGBLK 

Calling Sequence: CALL CHGBLK (BCSNAM, TX, TY, TZ, IROTX, IROTY, 

IROTZ, ROTX, ROTY, ROTZ) 

This subroutine is used to spatially relocate blocks of surfaces by 

redefining a block coordinate system's location and orientation in central 

coordinate system 3-space. BCSNAM is the name identifying the block 

coordinate system being changed. Its spelling must be exactly as called out 

in the BCS data block. 

The arguments TX, TY, TZ, ROTX, ROTY, ROTZ are the translation and· 

rotation parameters necessary to transform the central coordinate system into 

the block coordinate system in its new position. These parameters are further 

I discussed in Section 3.3.4.: BCS Data 

The arguments IROTX, IROTY and IROTZ control the order in which the 

rotations ROTX, ROTY, and ROTZ are performed. They may take on the integer 

values 1, 2, or 3. For example, for IROTX = 3, IROTY = 1, and IROTZ = 2, the 

rotations will be performed in the order ROTY first, ROTZ second, and ROTX 

third. If zero is passed for all three arguments, the default values IROTX = 
1, IROTY = 2, and IROTZ = 3 will resul t and the rotations will be performed 

ROT X first, ROTY second, and ROTZ third. 
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('\ 4.3.3 Form Factor Subroutines 

The subroutine FFDATA is used to set the variables and control 

constants required before executing the FFCAL computation segment. An FFDATA 

call prior to all FFCAL executions ~s not mandatory because each FFDATA 

argument assumes a default value (ref. Appendix D). The variables defined by 

an FFDATA call will hold for any subsequent FFCAL executions in the operations 

block. 

Subroutine NFDATA accomplishes the same function for the precision 

form factor segment, NFFCAL. 

Subroutine CMDATA accomplishes a similar function pr~or to execution 

of the form-factor combining segment, CMCAL. 

4.3.3.1 Subroutine FFDATA 

~ Calling sequence: CALL FFDATA (FFACC, FFACCS, FFNOSH, FFRATL, 

FFMIN, FFPRNT, FFPNCH, FFNAC) 

FFACC 1.S the variable that provides user control of the node surface 

elemental breakdown used for double integration form fac tor calculations. In 

general, the accuracy of a form factor calculation is proportional to the 

ratio of each elemental area divided by the ~quare of the distance between 

each elemental area pa1.r involved. Thus, if the element count for each node 

were chosen so that a given value of this ratio were never exceeded, then the 

I 

error of each non-shadowed form factor calculation would similarly be I 
limited. The form factor segment logic provides for this, and FFACC is the 

upper limit allowed for the area - distance squared ratio. The default value 

used, (FFACC = .05) provides form factor accuracy of approximately 2 percent 

for parallel flat plates. Background information for this accuracy 

relationship can be found 1.n Appendix B. The user is cautioned that his 

problem run time 1.S tied directly to his nodal element count, and 

indiscriminate reduction in the value of FFACC can be costly. The recommended 

f" approach to accuracy improvement 1.S to selectively re-compute suspect form 

factors using a reduced FFACC value, or utilize the NFFCAL computation segment. I 
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When node pairs are situated such that the interelement distances vary 

a great deal, it is sometimes necessary to temporarily subdivide node pairs in 

order to obtain sufficient accuracy. The parameter FFRATL controls this. The 

number of elements is dictated by a weighted average distance and compared to 

FFRATL. If this value exceeds FFRATL, the node pair is subdivided. When 

accuracy problems are encountered with node pairs having large interelement 

distance ,variation (nodes with congruent edges, for instance), the recommended 

procedure is to enter an FFRATL value lower than the default value (FFRATL = 
15.), and selectively recompute the form factors. No change in FFACC should 

be required for this operation. Additional descriptive material on this 

technique can be found in Appendix B. 

The elemental breakdown of node pairs also influences form factor 

accuracy when shadowing by intervening surfaces is involved. For large 

magnitude form factors, the node pair element breakdown required to satisfy 

shadowing considerations is computed and used if it exceeds that dictated by 

separation distance (see Appendix B). If the unshadowed Form Factor in both 

directions is less than FFMIN the computations associated with form factor 

shading are by-passed. The element count dictated by shadowing is inversely 

proportional to the parameter FFACCS. The default value for FFACCS (FFACCS = 
.1) was chosen based on experience. If the user knows that one or more of his 

significant form factors will be heavily influenced by shadowing, the 

recommended procedure is to selectively compute such form factors using a 

reduced value of FFACCS. 

The parameter FFMIN is used to reduce the bulk of the BCD Card output 

that results when a large form factor matrix is punched in form factor data 

block input format for re-use. The form factor in both directions must be 

less than FFMIN before it is discarded, (results in a 0.0 data value). 

Significant preprocessor time can be saved if the insignificant form factors 

are eliminated from the form factor data block. Determining what is 

insignificant may be a problem though. The default value, I.E-6 is 

sufficiently small that it does not materially affect,the energy balance of 

most problems. 
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The FFNOSH parameter has t\.JO options 4HSHAD, 4HNOSH. The program will 

default FFNOSH = 4HSHAD. If by-passing the shadow calculation is acceptable 

(program won't allow it for specular surfaces - see Section 3.3.3.9.2: Single 

V.1riable Input Format) FFNOSH = t~l!NOSH Hill overide the Surface Data SHADE and 

BSHADE flags and \Till pro:,ably save considerable computer time. Consideration 

of shadoHing, even Ilhen none acutally exists, is the most expensive aspect of 

the form factor computations. For checkout of the proper geometry, and active 

side inputs etc., it may he ~eneficial to make a short run with FFNOSH = 
I~HNOSH, prior to a long run where shading is considered. 

FFNAC is the flag to eliminate the usual check of the 

currently-defined node number array against the node array on the restart(RSI) 

t:lpe. This allows ,1 user to make use of form factors computed [or a different 

geometry. This t-lill be of benefit only when the user knmls the geometry 

change will not !ldve :my significant effect on the form factors being reused. 

(See Section 3.3.5: Form Factor Data). 

TIle remalnlng FFDATA parameters, FFPRNT, and FFPNCH are used to 

provide print and punch/tape output options. The tape option of FFPNCH will 

Hrite the Form Factor * Area products to the USERI tape Hith formatted Hrites 

acceptable to the Form Factor Data block (see Section 3.3.5: Form Factor 

Data). The USERI tape must be referenced in the Option Data block and he 

actively assigned to the run. 

An FFCAL or NFFCAT~-related variable, IFFSHO, is used to control 

whether or not form factors to shadower-only nodes will be computed. The 

statement IFFSHO = NO prior to FFCAL or NFFCAL will bypass form factor 

calculations to the shadowcr-only nodes (see Section 3.3.3.12: S~ladoHer-only 

Surfaces). 

4.3.3.2 Subroutine NFDATA 

Calling sequence: CALL NFDATA (NELCT, FFNOSH, FFMIN, FFPRNT, FFPNCH, FFNAC) 



I 

NELCT provides user control over computation accuracy in the NFFCAL 

segment through control over the TlUmDer of elements used in form factor 

calculation. NELCT is the total numher of elements aIIO\I1ed, divided ":>etueen 

the i and j nodes accordi<1g to their area. The nllml1able range is from 16 to 

200, \-lith a default of 50. Regardless of NELCT, elements on surfaces of 

revolution are forced to suhtend no more than 15 degrees of arc. For example, 
o 

a 160 cylindrical node will usc at least 24 elements. The last five 

arguments are identical to the corresponding arguments in FFDATA. See Section 

4.3.3.1.: Subroutine FFDATA. 

An FFCAL or NFFCAL-related variable, IFFSHO, is used to control 

whether or not form factors to shadm'ler-only nodes will be computed. The 

statement IFFSHO = NO prior to FFCAL or NFFCAL will bypass form factor 

calculations to the shadoHer-only nodes (see Section 3.3.3.12: Shadower-only 

Surfaces) • 

4.3.3.3 Suhroutine CMDATA 

Calling sequence: CALL CHDATA (NFIGFF, NFIGCO, NFFTYP, IAUTOC, FFPRNT) 

Before utilizing the CHeAL Segment the user should refer to Section 

3.3.8: Correspondence Data to read the words of caution on the proper 

application of form factor combining. 

NFIGFF and NFIGCOare configuration names. The CHCAL segment will 

retrieve form factors (or image factors) stored under the name NFIGFF, combine 

them by applying CORRESPONDENCE DATA defined under configuration NFIGCO and 

store the resulting matrix under the current configuration name. Both these 

variables default to the current configuration name, as defined on the most 

recent BUILD Card. NFFTYP alerts CHCAL to the type of form factors to he 

found under NFIGFF. FF means ordinary form factors. RB means image factors, 

as generated by the RBCAL segment. If IAUTOC is entered as NO, polygons will 

remain uncombined. FFPRNT is the print/no print flag for the combined form 

factors. FFPRNT def.'lults to YES. If CMDATA is not called, CHCAL proceeds on 

the basis of default values. 
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4.3.3.4 Adiabatic "Closure" Surfaces 

It 1S sometimes desirable to conserve energy in computing the IR 

radiation interchange factors in a thermal radiation problem that does not 

constitute a complete enclosure. The usual means of doing this is to complete 

the enclosure wi th an adiabatic reflector surface. This can be accomplished 

by entering a rudimentary closure surface in the surface data and using 

subroutine ADSURF to add the closure surface to the form factor matrix after 

form fac tors have been computed for the real surfaces in the problem. The 

ADSURF call should be followed by a GBDATA and a RKDATA or RCDATA call. An 

example of the application of this technique is shown in Appendix J. 

Subroutine ADSURF 

Calling sequence: CALL ADSURF (BCSN, NFIGFF, AREA) 

BCSN is the block coordinate system name under which the closure 

surface appears in the surface data. Only one side of the closure surface can 

be active. NFIGFF is the configuration name under which the new modified form 

factor matrix is to be stored. 

When ADSURF is called, the form factor matrix 1S read under the 

current configuration name, and form fac tors from each node to the closure 

surface are computed by subtracting the form-factor row sums from 1.0. This 

new row of form factors is added to the form factor matrix and the resulting 

matrix is stored under the name given for NFIGFF. 

AREA is the area of the adiabatic closure surface. 

area 1n square feet may be entered as this argument. 

If desired, the 

If it is more 

convenient, the closure surface can be defined with the correct dimensions in 

the surface data block and the area will thus be computed. To use the 

computed area, enter o (zero) for this argument. 

A subsequent GBDATA call must be made with the First and Last 

arguments always as shown. Call GBDATA (2HIR,6HNFIGFF,2HFF) 
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4.3.3.5 Subroutine RBDATA 

Calling sequence: CALL RBDATA (NFIGFF, FFACC, FFACCS, FFRATL, FFPRNT) 

Subroutine RBDATA 1S used to define the parameters necessary to 

execute the RBCAL program segment that computes form factors (also known as 

image factors) that include the one bounce effects of specular surfaces in the 

model. NFIGFF is the configuration name used by RBCAL to retrieve the 

ordinary form factors previously computed by FFCAL and/or NFFCAL. NFIGFF 

defaul ts to the current model name. The remaining RBDATA parameters are the 

same as defined under FFDATA and carry the same default values. If RBDATA is 

not called, RBCAL proceeds on the basis of default values. Note that 

currently even if the NFFCAL Segment is utilized to compute Form Factors, the 

imaged portion of the Form Factors will use the double summation method 

internally to the RB Segment. Thus, the 1mage factors are computed with a 

combination of the two form factor methods. 

4.3.4 Ploc Package Subroutines 

4.3.4.1 Subroutines NDATA, NDATAS 

Calling sequences: CALL NDATA (NV, VU, SCL, NACT, ISHO, SELN, TIT, IROTX, 

IROTY, IROTZ, ROTX, ROTY, ROTZ) 

CALL NDATAS (NV, VU, SCL, NACT, ISHO) 

These calls are used to define plot parameters prior to executing the 

NPLOT program segment. A call to one of these routines prior to an NPLOT 

execution is not mandatory, because all arguments have default values (ref. 

Appendix D). The variables defined by NDATA or NDATAS calls will hold for any 

subsequent NPLOT execution in the operations block. 
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The NV parameter allows the user to make up to 6 NDATA or NDATAS 

calls, thereby defining up to 6 plot operations, before executing NPLOT. One 

NPLOT execution will execute all the plot operations defined. 

VU defines the type of plot desired. The options are 3H3-D, 1HX, 1HY, 

1HZ, 3HALL, and 3HGEN. 3-D results in a 3-dimensional pictorial plot. X,Y, 

and Z produce orthographic projections of the geometry as seen from the X, Y, 

and Z axes of the CCS, respectively. ALL results in four frames, 3-D, X, Y, 

and Z. GEN 1S a general 3-D plot, where the user has control of the 

orientation of the CCS axes relative to his point of view. 

SCL is the plot scale factor, defined by: 

SCL length on plot frame/length of surface where 

lengths of surfaces are as defined in the sur

face data block. 

The user should keep in mind that his hardcopy plot frames are 

probably about 17.8 cm (7 inches) square. 

NACT is the flag that controls whether or not active side indicating 

arrows appear on the plots. NACT defaul ts to NO. If YES is entered as this 

argument, arrows will be shown. 

Shadow-only surfaces (Section 3.3.3.12: Shadower-Only Surfaces) are 

not included in the node plots unless argument ISHO is entered as YES. 

SELN is the name of the array that contains a list of the integer node 

identification numbers the user desires to plot selectively. The selective 

node number array is entered in the array data block. 

TIT is the name of the Hollerith array containing any title the user 

desires on his plot frame. Up to 66 characters are allowed. 
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IROTX, IROTY, IROTZ, ROTX, ROTY, and ROTZ are the group of S1X 

parameters defining point of V1ew from which the user will "see" his problem 

geometry in a general view. For ROTX, ROTY, and ROTZ identically zero, the 

central coordinate system appears in plots as shown in Figure 4-1. 

ROTX is the rotation angle about X, that rotates the plot reference 

coordinate system into the Central Coordinate System, Y toward Z positive. 

ROTY is the corresponding angle, about Y, Z toward X is positive. ROTZ is the 

corresponding angle, about Z, X toward Y positive. 

Y 

z X 

Figure 4-1 Node Plot Coordinate System Reference 
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Using Figure 4-1 a~ the reference position, the user may arbitrarily 

relocate the axes by defining ROTX, ROTY and ROTZ to relocate the reference 

system so that it coincides wi th the desired systems location. The order of 

the rotations is defined using IROTX, IROTY, and IROTZ. 

4.3.4.2 Subroutines ODATA, ODATAS 

Calling sequences: CALL ODATA (NV, VU, SCL, SCLR, RPLN, TRUEAN, 

TIMEST, TIME, SELN, TIT, IROTX, IROTY, IROTZ, 

ROTX, ROTY, ROTZ) 

CALL ODATAS (NV, VU, SCL, SCLR, RPLN, TRUEAN, 

TIMEST, TIME) 

These subroutines are functionally analogous to NDATA and NDATAS 1.n 

relation to execution of the orbit plotter segment, OPLOT. 

NV is defined and functions identically with the similarly named 

parameter in NDATA. VU defines the plot type. Options are 3H3-D, 4HBETA, 

5HCIGMA, 3HSUN, 3HALL, and 3HGEN. 3H3-D results in a 3-dimensional pictorial 

plot of the planet and spacecraft. 

orbit plane, with the BETA angle 

4HBETA results in an edge-on view of the 

shown true. The 5HCIGMA view places the 

orbit plane in the plot frame, as seen from north of the celestial equator. 

3HALL produces four frames, 3-D, CIGMA, BETA, and SUN. GEN results in a plot 

with the orbit coordinate system axes rotated according to user definition. 

SCL relates the user's geometry dimensions to plot scale according to: 

where 

SFAC = SCL/OPMAX (NNS) 

SFAC 1.S the absolute surface scale factor (same as SCL in NDATA). 

OPMAX (NNS) is the maximum extension of any surface point from the 

CCS origin (user surface data units). 
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The user should generally enter a value of SCL equal to about 1/2 the 

desired planet radius in inches of plot frame. 

SCLR is the distance from the planet center where the user desires to 

see his CCS origin (in inches on plot frame). 

RPLAN is the planet radius as plotted in inches. The planet radius 

default value used is 3.56 cm. 0.4 inches). The default values for SCL and 

SCLR are related to RPLAN according to the relationships: 

SCLR 8 • * RPLAN /7 . 

SCL (3.15 - SCLR)/2. 

The user may note that his spacecraft's altitude, as it appears in the 

plots, is not related in any way t~ actual orbit altitude. This is because 

the primary reason for orbit plots is for visualization of orientation. Orbit 

radius is, however, available in common as the variable RTHET 1n the 

operations block. Therefore, if the user cares to consider the scaling 

involved, he may write operations block logic to relate SCLR to actual orbit 

radius. 

TRUEAN is the true anomaly at the orbit point being defined for 

plotting (degrees from periapsis passage). Reference Figure 4-7: definition 

of True Anomaly, and Shadow Entry/Exit Points. 

TIME is the time at which the orbit point plot is desired, in hours 

(required only if TRUEAN is not defined). 

TIMEST is time of periapsis passage, 1n hours (required only if TRUEAN 

is not defined). 

The remaining ODATA arguments, SELN, TIT, IROTX, IROTY, IROTZ, ROTX, 

ROTY, and ROTZ, are exactly analogous to the identically named NDATA arguments 

(ref. Section 4.3.4.1: Subroutines NDATA, NDATAS). Figure 4-2: Orbit Plot 

Coordinate System Reference depicts the orbit coordinate syst.em as plotted for 

ROTX = ROTY = ROTZ = o. 
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4.3.4.3 

y 
o 

z x 
o 0 

Figure 4-2 Orbit Plot Coordinate System Reference 

Subroutine PLDATA 

Calling sequence: CALL PLDATA (IPLUNT, IPLSN, IPLNA, PLCRVF, PLLABX, 

PLLABY, PLTITl, PLTIT2, PLXMPF, PLYMPF, PLCMB) 

This subroutine is used to define parameters necessary to execute the 

output data plotter segment PLOT. Refer to Appendix D: Subroutine PLDATA, for 

argument definitions. 

4.3.5 Direct Irra,".iation Subroutines 

The direct irradiation subroutines are used to spatially locate the 

spacecraft relative to energy sources. The various calls give the user the 
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option of locating his spacecraft uS1ng classical orbit parameters, with a 

modified sun-referenced set of orbit parameters, with look angles, or with 

trajectory tape parameters. Subroutines are also available for defining 

spacecraft orientation and spin rate. 

4.3.5.1 Subroutine ORBITl 

Calling sequence: CALL ORBIT1 (PNAME, ALAN, APER, OINC, TIMEST, HP, HA, 

SUNRA, SUNDEC, STRRA, STRDEC) 

or: 

CALL ORBITl (PNAME, ALAN, APER, OINC, TIMEST, HP, ECC, 

SUNRA, SUNDEC, STRRA, STRDEC) 

This subroutine defines an orbit using classic orbit parameters and 

locates the sun in the same celestial coordinate system referenced to the 

Vernal Equinox (reference Figures 4-3 and 4-4). 

In the case of a star-oriented spacecraft, the star 1S located 1n the 

celestial coordinate system, in the same manner as the sun. 
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Xc-Y c Plane 
Contains 
Planet 
Eq;.!ator 

Xc 

To 

Equinox 

ALAN - Longitude of ascending 
node measured from Xc 
axis to line of nodes; 
positive toward Yc 

APER - Argument of perifocus. 
measured in orbit Xo·-Yo 
plane in direction of SIG 
motion from ascending node 
to periapsis 

Ascending 
Node 

Line of 
Nodes 

HP 

Periapsis 

HP - Altitude at periapsis 

OING - Orbit inclination (angle 
between Xc-Yc plane and 
orbit plane as seen from 
ascending node; O. < OING ~ 181 

o (OING > 90 for retrograde 
orbits) 

Figure 4-3 Orbit Definition in a Celestia1.Coordinate System. 
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SUNRA or 
STRRA 

To Vernal 
Equinox 

SUNRA, STRRA - Right ascension 
of sun/star; measured in Xc-Y c 
plane from Xc axis; positive 
toward Yc axis; O. < RA < 360 

Sun or Star 

or 

SUNDEC, STRDEC - Declination of 
sun/star; positive from Xc-Y c 
plane toward Zc; -90 < DEC 4 90 

Figure 4-4 Sun and Star Locations in Celestial Coordinate System 
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PNAME is a Hollerith name used as a flag to direct the definition of the 

planet-dependent parameters. The allowable PNAME options are: 3HMER, 3HVEN, 

3HEAR j 3HMOO, 3HMAR, 3HJUP, 3HSAT, 3HNEP, 3HURA, and 3HSUN. These names serve 

to define the following variables which are set by the ORBITl or ORBIT2 call. 

If the User wants to change any of the variables they must be redefined to the 

new values after one of the ORBIT Subroutine Calls in the OPERATIONS DATA 

Block. 

PRAD 

SOL 

PALB 

WDS 

WSS 

GRAV 

planet radius 

solar constant at the average planet-sun distance 

planet albedo value (surface solar reflectance) 

infrared emissive power at planet surface, dark side 

infrared emissive power at planet surface, subsolar point 

acceleration of gravity at planet surface 

The values obtained from the different planet name arguments are 

tabulated in Table 4-1. Note that the values tabulated are in metric units. 

The values stored in core, however, are in the TRASYS base units sytem, that 

is, length in feet, time in hours, energy in British thermal units. If the 

user desires to manipulate these quantities using his own operations block 

FORTRAN code, he would expect them to be in the ft - hour - Btu units. 

Note that only Mercury and the Earth's moon are treated as bodies with 

nonuniform surface temperatures. This is correct for airless, slow-rotating 

planets. For these two bodies, the emissive power is considered everywhere 

constant on the dark side. On the sunlit side, the emissive power reduces 

from the subsolar value to the darkside value at the terminator, according to 

a COS1ne law. 
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The user is cautioned that his results using PNAME = 3H}ffiR may be 

extremely misleading. This planet's eccentric orbit, plus its nearness to the 

sun, results in a solar constant variation of from approximately 6 to over 10 

Earth "suns" during the Mercury year. Corresponding variations in the 

subsolar emissive power occur. The recommended procedure for PNA}ffi = 3HMER is 

for the user to properly define SOL and WSS according to his knowledge of the 

planet-sun distance. This is done using two FORTRAN statements immediately 

following his ORBITI call. This same technique is available, of course, 

whenever the user desires to change WDS, WSS, or SOL to values other than the 

built-in nominals. The user's values will hold until another ORBIT call is 

encountered. 

ALAN, APER, OINC, HP, and HA are the longitude of the ascending node, 

argument of perifocus, orbit inclination, and periapsis and apoapsis 

altitudes. These are the five parameters ~ecessary to define an orbit 1n the 

celestial coordinate system. The alternate ORBITI call allows the input of 

eccentricity (ECC) 1n lieu of apoapsis altitude. TIMEST is the time of 

per1apS1S passage, 1n hours. 

The angular measurement arguments are in decimal degrees of arc. The 

altitudes must be specified in feet. Note that FORTRAN allows arithmetic 

operations within argument lists; thus the following ORBITI call might be used 

where HP is known to be 150 nautical miles: 

CALL ORBITI OHEAR, 32.,90. ,22.5,0.,6080. *150.,.94,-41. ,18.,0. ,0.) 

SUNRA and SUNDEC are the right ascension and declination of the sun, 

respectively, input in decimal degrees of arc (See Figure 4-4). 

STRRA and STRDEC are the right ascension and declination, 

respectively, of a star for a star-oriented mission (see Figure 4-4). Zero or 

dummy arguments are passed for non-star-oriented missions. 

For heliocentric orbits, (PNAME = 3HSUN) ALAN, APER, OINC, SUNRA, and 

SUNDEC have no meaning and are passed as zero or dummy arguments. 
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Table 4-I Stored Planet Property Values 

Solar Constant Planet 
Planet at Mean Darkside Subso1ar Gravitational 
Radius Planet Distance Emissive Power Emissive Power Constant 

Planet {km2a 
{ft2 Albedo 

2 b 2 2 c 2 
{w/m 2 {B/Ft -hr2 (w/m 2 {B/ft -hr) 

2 c 2 
{w/m 2 {BLft -hr2 

2 d 2 
{m/s 2 (ft/s 2 

Mercury 2485. (8.153 E06) 0.058 8920; (2830) O. (0. ) 8402. (2666. ~ 3.513 (11.49) 

Venus 6199. (20.34 E06) 0.76 2570. (815.5) 154.2 (48.93) 154.2 (48.93) 8.462 (24.68) 

Earth 6370. (20.90 E06) 0.30 1352. (429) 236.6 (75.08) 236.6 (75.08) 9.844 (32.20) 

Moon 1738.( 5.702 E06) 0.047 1352. (429) 6.5 (2.060) -1288. (408.7) 1.622 (5.306) 

Mars 3314. (10.87 E06) 0.148 577 .3 (183.2) 123.0 (39.03) 123.0 (39.03) 3.921 (12.83) 

Jupiter 69885.(229.3 E06) 0.51 49.6 (15.74) 6.1 (1. 936) 6.1 (1. 936) 26.04 (85.18) 

.p. 
I 

Saturn 57515. (188.7 E06) 0.50 14.7 (4.66) 1.8 (.5711) 1.8 (.5711) 11.17 (36.54) 
N Uranus 25482.(83.61 E06) 0.66 3.65 (1.16) .31 (.0983) .31 (.0983) 11.52 (37.68) w 

Neptune 24850. (81.53 E06) 0.62 1.48 (.47) .14 (.0444) .14 (.0444) 8.977 (29.36) 

Sun 698500. (2291. E06) 6.262 x 10 7 6.262 x 10 7 273.8 (895.6) 

aVa1ues stored in program are in ft. 

b 2 2 Referenced to 1352 w/m (429 Btu/hr-ft ) at 1 AU. Values stored in program are in Btu/ft2-hr. 

cVa1ues stored in program are in Btu/hr-ft2. 

dVa1ues stored in program are in ft/hr.2 



4.3.5.2 Subroutine ORBIT2 

Calling sequences: CALL ORBIT2 (PNAME, CIGMA, BETA, CIG}~S, BETAS, 

TIMEST, HP, HA) 

or: 

CALL ORBIT2 (PNAME, CIGMA, BETA, CIGMAS, BETAS, 

TIMEST, HP, ECC) 

This subroutine defines an orbit uS1ng sun-referenced parameters 1n 

the orbit coordinate system. The orbit coordinate system has its X-and Y-axes 

in the orbit plane and its Z-axis completes a right-handed set. The 

spacecraft travels from X towards Y. 

PNAME functions identically with ORBITl. 

CIGMA and BETA locate the solar vector in the orbit coordinate system 

(see Figure 4-5). CIGMAS and BETAS locate a star 1n the orbit coordinate 

system (see Figure 4-5). Again, these arguments are zero or dummy for 

non-star-oriented missions. 

For heliocentric orbits, (PNAME = 3HSUN) ORBIT2 1S not applicable. 

4.3.5.3 Subroutine ORIENT 

Calling sequence: CALL ORIENT (TYPE, IROTX, IROTY, IROTZ, ROTX, ROTY, ROTZ) 

This subroutine is used to define the spacecraft orientation relative 

to space-environment heat sources. Orientation is accomplished by relating 

the spacecraft central coordinate system to a vehicle coordinate system (VCS) 

that remains fixed, relative to a heat source or a star reference. 
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TYPE is a Holleri th name used as a flag to define orientation of the 

ves. Allmvable options for TYPE are 4HPLAN, 3HSUN, 4HSTAR, or 4HTAPE. Figure 

4-6 depicts the ves relationship to the heat sources, star reference, and 

orbit coordinate system for the PLAN, SUN, and STAR option. The X -axis 
v 

points to the planet, sun, or star and the Z -axis is in the same half-space 
v 

as the Z -axis. The Y -axis lies in the orbital plane and completes the 
o v 

right-handed set. The TAPE option allows orientation to be defined from a 

trajectory tape. (See Section 3.3.9.3: TRJGEN Option or Section 4.3.5.8: 

Subroutine DITTP and DITTPS) 

An ambiguity exists for the sun or star oriented options when the sun 

or star vector is parallel to the Z -axis. In this case, the Y -axis is 
o v 

defined to be in the direction of the velocity vector. 

IROTX, IROTY, IROTZ, ROTX, ROTY, and ROTZ are the rotation parameters 

necessary to locate the spacecraft ees relative to the ves and, hence, the 

heat source(s). ROTX is the rotation angle to rotate the ves into the ees; it 

rotates about X -axis, Y toward Z positive. ROTY is the same as ROTX, 
v v v 

except about the Y-axis, Z toward X positive; ROTZ is the same as ROTX, 
v v v 

except about the Z -axis, X toward Y positive. 
v v v 
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Zo 

PERIAPSIS 

CIGMA Angle from Xo axis to sun vector projection in 
Xc - Yo plane. Measured CCW as seen from Zo 
axis (in direction of sic motion). 
o. ~ CIGMA ~ 360 

CIGMAS - Same as CIGMA except to star vector projection 

BETA Angle from Zo axis to sun vector 
o <. BETA ~ 180 - -

BETAS - Same as BETA, except to star vector 

Figure 4-5 Orbit Definition ~n Orbit Coordinate System 
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L ~CS/VCS Origin 
Zv /1 L. CCS /VCS Origin Yv I , 

TYPE = 4HPLAN 
TYPE = 3HSUN TYPE = 4HSTAR 

Orientation Example 
(CCS Z-axis locked to sun): 
TYPE = 3HSUN 

tr Z IROTX = 1 

-'6: Y~ I ROTY 2 
", ... IROTZ 3 Rotates VCS into CCS, -2700 
, , 
I'~ Xc ROT X O. about Y axis 
~ \ '7 Y r ROTY = -270. 

ROTZ ;:: 900 Rotates 90° about Z axis 

Figure 4-6 Vehicle Orientation with Subroutine ORIENT 



IROTX, IROTY, and IROTZ control the order in which the rotations are 

performed. Integers 1, 2, and 3 are the allowed options. For example, IROTX 

= 1, IROTZ = 2, and IROTY = 3 results in rotation first about X , then about 
v 

Z , and then about Y • 
v v 

4.3.5.4 Subroutines DIDTI and DITlS 

Calling sequences: 

or: 

CALL DIDTl (DINOSH, DIACC, DIACCS, TRUEAN, NSPFF, 

TIMEPR, DIPNCH, ISFAC) 

CALL DIDTIS (TRUEAN, NSPFF, TIMEPR, DIPNCH, ISFAC) 

These subroutines allow the user to define the form factor and 

shadowing accuracy parameters used in his direct irradiation calculations. 

Additionally, these routines can be used to update the spacecraft position in 

orbit by defining true anomaly (reference Figure 4-7). True anomaly can be 

defined directly or by defining a current time. 

DINOSH is a shadow/no shadow flag for direct irradiation 

calculations. DINOSH = 4HSHAD retains shadowing calculations. DINOSH= 

4HNOSH bypasses shadowing calculations. If by-passing the shadowing 

calculations is acceptable to the user DINOSH = 4HNOSH will over ide the 

Surface Data SHADE and BSHADE flags and may save considerable computer time. 

Determining the existance of shadowing even when none actually exists is the 

most expensive aspect of the DI computations. For checkout of the proper 

orbit/orientation and active side inputs etc., it may be beneficial at times 

to make a short run with DINOSH = 4HNOSH prior to a long run where shading is 

considered. For the user faced with the need for a more in-depth 

understanding of the shadowing as it applies to a specific model the program 

has the optional feature of printing out for each DI computation the list of 

surface numbers it considered as possible shadowers. This is accomplished by 

adding in the Operations Data block ITRC70 = 2HON prior to the DI segment 

call. (This feature is available on the UNIVAC version only). 
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DIACC is the element selection accuracy factor for node planet form 

factor calculations. Its function is similar to FFACC in form factor 

calculations and its default value 1S 0.25. (ref. Section 4.3.3.1: 

Subroutine FFDATA and Appendix B). 

DIACCS is the element selection accuracy factor for shadowing 

calculations (not applicable when DINOSH = 4HNOSH). Its function is similar 

to FFACCS in form factor calculations and its default value is 0.1. (ref. 

Section 4.3.3.1: Subroutine FFDATA and Appendix B). 
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TRUEAN 1S the true anomaly of the spacecraft measured in decimal 

degrees of arc from periapsis passage'in direction of spacecraft motion. 

TIMEPR 1S used to define true anomaly in terms of time; TIMEPR is 

current time, in hours. If TIMEPR is defined, TRUEAN in decimal degrees is 

returned to the operations block in common. If TRUEAN is defined, current 

time'is returned to the operations block under the variable name TIMEPR. 

NSPFF specifies a step number within which a planetary flux 

calculation was made. If the FORTRAN statement: PLTYPE = 6HPLSAVE appears 

SHAOUT 

PERIAPSIS 

Figure 4-7 Definition of True Anomaly and Shadow Entry/Exit Points 
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~'prior to this calculation, the form factor matrix from the spacecraft to 

planet will be stored out of core under step NSPFF. If this form factor 

matrix is valid for additional orbit points (i.e., circular orbit, planet 

oriented), the FORTRAN statement PLTYPE = 6HPLREAD is made in the first step 

subsequent to NSPFF. This will result in the planet form factor calculations 

being bypassed for the subsequent steps, with a corresponding saving in 

computer time~ To reduce computation time for Restarts the Form Factor Matrix 

from the Spacecraft to the Planet is also saved on the RSO tape for circular 

Orbit-Planet oriented cases, when the CIRP option of the ORBGEN card is used 

(see Section 3.3.9.2: ORBGEN Option). 

DIPNCH is the flag for punching direct irradiation data in the flux 

data block format. Options are 3HPUN, 2HNO, and 4HTAPE. The tape option will 

write the DI's to the USER1 tape with formatted writes acceptable to the Flux 

Data block (see Section 3.3.7: Flux Data). USER1 must be referenced in Option 

Data block and actively assigned to the run. 

ISFAC is the flag that controls whether or not flux shadow factors are 

written to the RSO tape for subsequent printing 1n the Direct Incident Link 

for restart runs. Enter NO to inhibit writing the shadow factors on the 

Univac version of TRASYS. Enter YES to write the shadow factors on the CDC 

version. 

Subroutine DIDT1S is a short form version of DIDT1 to be used when the 

user does not desire to specify his accuracy and shadow/no shadow flag. See 

Appendix D for DIDTl and DIDTlS argument default values. 

4.3.5.5 Subroutines DIDT2 and DIDT2S 

Calling sequences: CALL DIDT2 (DINOSH, DIACC, DIACCS, NSPFF, SUNCL, 

SUNCO, PLCL, PLCO, TIMPEPR, ALT, DIPNCH, ISFAC) 

or: 

CALL DIDT2S (NSPFF, SUNCL, SUNCO, PLCL, PLCO 

TIMEPR, ALT, DIPNCH, ISFAC) 
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These subroutines are identical in function to DIDTl and DIDTlS in 

that they define the shadowing and accuracy parameters to be used in the 

subse~uent direct flux segment exec~tion, as well as furnish the parameters 

necessary to define the spacecraft's spatial relation with the sun and planet 

heat sources. 

The arguments DINOSH, DIACC, DIACCS, NSPFF and ISFAC are exactly as 

discussed in Section 4.3.5.4: Subroutines DIDTl and DIDTlS, and tabulated in 

Appendix D. 

SUNCL, SUNCO, PLCL, and PLCO are the clock and cone angles needed to 

define the direction of the sun and planet position vectors in vehicle 

coordinate system 3-space. Figure 4-8: Spacecraft Orientation with Subroutine 

DIDT2, shows how these parameters are defined. Their input units are decimal 

degrees of arc. 

ALT ~s the spacecraft altitude, above the planet, this argument must 

be input in feet. 

It should be noted that a DIDT2 call is not sufficient to define all 

the variables needed for a direct irradiation segment execution. In general, 

an ORBITI or ORBIT2 call must be made, or the variables PRAD, SOL, PALB, WDS, 

and WSS (ref. Section 4.3.5.1: Subroutine ORBITl) must be defined individually 

in operations block FORTRAN statements. The call to ORBITl or ORBIT2 need 

only define PNAME. The remaining arguments may be dummys. 

The user should also be aware that spacecraft spin as defined by 

subroutine SPIN, is not applicable when DIDT2 or DIDT2S are called, since 

DIDT2 and DIDT2S directly define spacecraft orientation as well as position in 

space. 
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4.3.5.6 

To Sun 

z vcs* 
To Planet 

Figure 4-8 Spacecraft Orientation with Subroutine DIDT2 

Subroutine SPIN 

Calling sequence: CALL SPIN (CLOCK, CONE, RATE, TRUANS, SPNTM) 

*If subrDutine ORIENT is not called prior to OIOT2 or DIOT2S, the vcs and ccs 

coincide. This is the recommended mode of use. "STAR" is not allowed as an 

orient type when using DIDT2 or OIOT2S. 
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This subroutine is used to define spacecraft spin. The arguments 

CLOCK and CONE define the spin axis with reference to the central coordinate 

system. RATE defines the spacecraft spin rate about the spin axis in 

I revolutions per hour. Figure 4-9: Spacecraft Spin Definition, illustrates the 

clock and cone angles, and the algebraic sign convention used with RATE. 

The time spin begins is defined through TRUANS or SPNTM. If the user 

knows the time his spin begins, he specifies it directly as SPNTM. If he 

knows the true anomaly where it begins he specifies TRUANS and passes zero for 

SPNTM. 

Spacecraft sp1n computations are done on the basis of the following: 

the spacecraft is assumed to be in the orientation defined by the last call to 

subroutine ORIENT at SPNTM. At any subsequent points in time, the spacecraft 

is reoriented, presuming a constant spin-rate, about the SPIN-defined spin 

axis, over the time elapsed since SPNTM. 

The user should note a restriction when uS1ng subroutine SPIN 1n 

conjunction with the ORBGEN card: The only allowable ORBGEN options, after a 

call to SPIN, are PLAN and NOPL. This 1S because particular orientations are 

assumed by the CIRP and INER options that are obviously violated by spacecraft 

spin. 

4.3.5.7 Subroutine DICOMP 

Calling sequences: CALL DICOMP (ISOLFL, IALBFL, IPLAFL) 

This subroutine allows the user to define the logic used in a 

subsequent DICAL execution. The choice of compu,ting, stuffing from another 

step, or zeroing out individual solar, albedo, and planetary fluxes 1S 

available. See Appendix D: Subroutine DICOMP, for argument definitions. 
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4.3.5.8 Subroutine DITTP and DITTPS 

Calling sequences: CALL DITTP (TIME, ITYPE, PLANAM, IDWDN, FIDEN, NTIM, 

NTYPE, NCLPL, NCOPL, NeLS, NCOS, NRAD, NWOR, ALTMF, 

IBOD, DIPNCH) 

or: 

CALL DITTPS (TIME, ITYPE) 

These subroutines allow the user to define his mission by reading 

trajectory tapes of the attitude timeline variety. The pertinent data are 

read from the tape and placed in storage for use by the DICAL segment through 

an internal call to DIDT2. 

Subroutine DITTP allows the user to define the trajectory tape format, 

identify the proper file on multifile tapes, define the attitude parameters 

for his first compute point, and position the tape for reading subsequent 

points. Subsequent points are read using DITTPS, which presumes that the tape 

is previously positioned to the correct file, and a call to DITTPS results 1n 

repeated reads of trajectory tape records until a time value equal to TIME 1S 

encountered. If ITYPE is defined (as an integer data value), repeated reads 

are made until TIME is encountered, then reading continues until a special 

event identifier equal to ITYPE is encountered. Note that this tape reading 

method precludes calling for a time value less than the time argument used in 

a previous DITTP or DITTPS call. 
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Note: Spin axis coordinates illustrated for the 
case clock = 180, cone = 90 

Figure 4-9 Spacecraft Spin Definition 
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Figure 4-10 is an operations data block segment that generates direct 

irradiation for three time points, using a trajectory tape. In Step 2, the 

trajectory tape 1S positioned to a file named ZLV1 and the data are read at 

TIME = 10.0 hours, which is not a special event point. The planet involved 1S 

Earth, flux output 1S punched, and the spacecraft altitude data on the tape 

are 1n nautical miles (ALTMF = 6080.). Trajectory tape format information is 

as follows: 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

h) 

i) 

j) 

Tape records are 58 words long (NWOR 58). 

Tape is for 1 body (IBOD = 0). 

File identification is found in word 1 of tape records 

(IDWDN = 1). 

Time is found 1n word 3 of tape records (NTIM = 3). 

Special event identifier is found in word 5 of tape records 

(NTYPE = 5). 

Planet center-to-spacecraft distance is found 1n word 13 of tape records 

(NRAD = 13). 

Clock angle-to-planet vector is found in word 9, (NCLPL = 9). 

Cone angle-to-planet vector is found in word 10, (NCOPL = 10). 

Clock angle-to-sun vector is found in word 11, (NCLS = 11). 

Cone angle-to-sun vector is found in word 12, (NCOS = 12). 

Step 2 reads trajectory tape information at time = 10.5 hours, which 

is not a special event. Step 3 reads trajectory tape information at a special 

event of type 2, which occurs just subsequent to 11.0 hours. 

This routine has not been tested because a compatible trajectory tape 

is not available. It 1S anticipated further updating and development would be 

required to make this subroutine a practical tool for analysis. At NASA JSC 

the TRJPRT option (see Section 3.3.9.3: TRJPRT Option, was developed since 

Subroutine DIDTP is not compatible with the Mission Planning and Analysis 

(MPAD) Common Format Trajectory Tapes utilized for the Space Shuttle project. 
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HEADER OPERATIONS DATA 

STEP 1 

CALL BUILDC (ALLBLK,O) 

L FFCAL 

L GBCAL 

STEP 2 

CALL DITTP(10.0,0,3HEAR,1,4HZLVl,3,5,9,10,11,12,13,58,6080.,0, 

13HPUN) 

L DICAL 

STEP 3 

CALL DITTPS(10.5,0) 

L DICAL 

STEP 4 

CALL DITTPS(11.0,2) 

L DICAL 

Figure 4~10 Trajectory Tape Operations Example 

4.3.5.9 Subroutine DRDATA 

Calling sequences: CALL DRDATA (NSTPDI, DIACCS) 

This subroutine defines the parameters necessary to execute the DRCAL 

program segment. NSTPDI is the step number that DRCAL will use for retrieving 

the direct solar fluxes computed by DICAL. DRCAL computes the solar 

irradiation resulting from one specular bounce. This specular reflection is 

added to the direct solar flux and the result is stored under the current step 

number. The diffuse component of the reflected energy is added to the total 

absorbed heat dat& later in an AQCAL execution, as in purely diffuse models. 

DIACCS is the shadowing accuracy parameter. (Reference DIDTl) NSTDPI 

defaults to the current step number and DIACCS defaults to 0.1. Default 

values are used by DRCAL if no call is made to DRDATA. 
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4.3.6 Radiation Interchange Subroutines 

4.3.6.1 Subroutine GBDATA 

Calling sequence: CALL GBDATA (GBWBND, 6HNFIGFF, NFFTYP) 

This subroutine defines the parameters necessary prior to executing 

the GBCAL segment to obtain a gray-body factor matrix. 

Argument GBWBND (Options: 3HSOL, 2HIR, 4HBOTH) defines the energy 
\ 

waveband--solar, infrared, or both--that will be used in gray-body factor 

calculation. 

Argument NFIGFF is the model name under which the form factor matrix 

desired for gray body calculations is stored. Defaults to current model name. 

Argument NFFTYP is the type of form factors stored under NFIGFF. FF 

for ordinary form factors, CM for combined form factors, and RB for image 

factors. 

4.3.6.2 Approximate Radiant Interchange Factors - Subroutine GBAPRX 

A routine is available in the processor library that computes 

diffuse-gray-body interchange factors according to the first-order 

approximation: 

~ ij = 

where 

PROPI*PROPJ*F .. 
1J 

PROPI and PROPJ are the diffuse surface properties, solar absorptivity 

or infrared emissivity; ~ .. is the approximate radiant interchange factor be-
1J 

tween surfaces i and j; F .. is the form factor. This equation is, of course, 
1J 

exact for a black enclosure (PROPI = PROPJ = 1 for all i, j). 
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A call to subroutine GBAPRX in lieu of executing the GBCAL segment 

will generate the approximate gray-body factor-data and store them in the same 

manner as GBCAL. This approach is theoretically correct when there are no 

reflections (e.g., surfaces are black). The greatest error is for a complete 

enclosure with very low emittances. The error will be reduced as a 

configuration becomes more "open" and the emittances become higher. In 

general the application of this routine will be for very special cases. 

Calling sequence: CALL GBAPRX (GBWBND, 6HNFIGFF, NFFTYP) 

This subroutine calculates gray-body radiant interchange factors using the 

approximate relationship described above and stores the results in data 

storage under the current configuration name. 

Argument Name 

GBWBND 

NFIGFF 

NFFTYP 

Description 

Waveband definition 

name 

Configuration name for 

form factor access 

Form factor type to 

be used in GB calcu

lations 

Note: Input zero for default action. 

4.3.6.3 Subroutine RKDATA 

Options 

2HIR, 3HSOL 

4HBOTH 

2HFF, 2HCM 

Default 

4HBOTH 

Current Con fig. 

Name 

Last type cal

culated under 

NFIGFF 

Calling sequence: CALL RKDATA (NFIGGB, RKPNCH, RKMIN, IRKCN, RKSP, 

IRKNSP, SIGMA, RKAMPF, RKTAPE, NFIGCO) 

This subroutine defines the parameters necessary prior to executing 

the RKCAL program segment to obtain radiation conductors (RADKs) in thermal 
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analyzer·format. The radiation conduct~rs S~~ uot stored on the RSO tape. 

The computer charges for computing the radiation conductors when IR gray-body 

factors are known is minimal. 

Argument NFIGGB identifies the configuration name under which the 

desired IR gray-body factor matriL c~~ b2 ~cc~5sed for computation of the 

desired radiation conductors. 

Argument RKPNCH (Options: 3HPU~I, 2l:~\\)) lS the punch/no punch flag for 

radiation conductors on BCD card format. 

Argument RKMIN defines the lower limit of the radiation conductor 

values that will be punched or put on the BCDOU tape. The way the heat 

balance is written in most thermal analyzers is the energy exchange for those 

connections dropped out will be lumped back into node 1. The radiation 

conductor to a space node is never dropped out unless 

~lS follows for a valid radiation conductor: 

0.0. RKMIN is defined 

where 

O'-f • • A. IE.A. < RKMIN 
..7'lJ 1 1 1 

:;tij is the gray-body factor from node i to J, 

E' is the infrared emittance of node i. 
1 

Argument IRKCN is the initial radiation conductor identification 

number. The radiation conductors are numbered consecutively from IRKCN. 

They can range from 1 to 6 digits. 

Arguments RKSP and IRKNSP provide the information to define radiation 

conductors to space for problems that do not form a complete enclosure. RKSP 

(Options: 5HSPACE, 2HNO) is the flag for calculation of radiation conductors 
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to space. When RKSP = 5HSPACE, radiation conductors to space for node i are 

computed according to 

i-space *Ai = A E 
i i 

for an N-node problem. IRKNSP is the user-defined identification number for 

his space node. 

SIGMA and RKAMPF are available for the user to obtain unit agreement 

between his radiation model and thermal analyzer model. SIGMA is the 

Stefan-Boltzmann constant that will appear on the radiation conductor and 

RKAMPF is an arbitrary multiplication factor available to change from the 

TRASYS standard area units (square feet) to the area unit the user desires. 

If RKAMPF is 1.0, the area unit associated with SIGMA must be square feet. 

Argument RKTAPE (Options: 4HTAPE, 2HNO) allows the user to write his 

radiation conductors to the BCDOU tape in a thermal analyzer format. 

Argument NFIGCO is the configuration name for correspondence data access. 

All RKDATA arguments have default values (see Appendix D) so that an 

RKDATA call before an RKCAL execution is not mandatory. 

4.3.6.4 Radiation Condenser - Subroutine RCDATA 

The radiation condenser segment provides the user with two methods of 

radiation model simplification. 

The first of these methods, which is referred to as the Multiple 

Enclosure Simplification Shield (MESS) technique, allows a complex radiation 

enclosure to be modularized into discrete sub-enclosures by the assignment of 

imaginary interface shield nodes. Each of these smaller enclosures can be 

analyzed independently of the others, resulting in more efficient use of 

computers and manpower. 
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The second method, referred to as the Effective Radiation Node (ERN) 

technique, is used to reduce the number of radiation couplings required to 

thermally model an enclosure by replacing small conductors from each node with 

a single conductor coupled to the enclosure ERN. 

The techniques and their application are described ~n more detail ~n 

Appendix F. 

Calling sequence: CALL RCDATA (NFIGGB, RKPNCH, RKMIN, IRKCN, RKSP, IRKNSP, 

SIGMA, RKAMPF, RKTAPE, NFIGCO, RFRAC, RTOL, NERN, IPRIl1E, 

ISECND) 

This is a user-called subroutine that defines the parameters used ~n 

RCCAL for the condensation and output of radiation conductors (RADKs). 

Variable Description Default Value 

f"'" NFIGGB Configuration name for IR gray-body factor 
access 

Current config. 
name , 

RKPNCH 

RKMIN 

IRKCN 

3.KSP 

IRKNSP 

SIGMA 

RKTAPE 

Punch/No Punch Flag. Options: 3HPUN, 
2HNO 

Minimun Value of ~ij Ai/Aiei 
that will result in a valid RADK. 
For ERN couplings, if NERN is positive 
the RKMIN test is applied to the sum 
of those connections discarded after 
the RFRAC requirement is satisfied. 

Initial Radiation Conductor Number 
(Conductor numbers may range from 1 to 
6 digits) 

Flag for Calculation of RADKs to Space 
See Section 4.3.5.3: Subroutine RKDATA 
Options: 5HSPACE, 2HNO 

Space Node Number 

Stefan-Boltzmann Constant 

Area Multiplying Factor 

Flag to write RADKs to BCDOU Tape. 
Options: 4HTAPE, 2HNO 
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3HPUN 

0.0001 

1 

2HNO 

32767 

1.713E-9 

1.0 

2HNO 
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NFIGCO 

RFRAC 

RTOL 

NERN 

IPRIME 

ISECND 

Configuration name for Correspondence 
data access 

Current Con fig. 
name 

Significant Radiation Fraction: Radiation None 
conductors of a node to be left intact 
divided by the sum of the node's conductors. 
Ref. Appendix F, Equation 6. 

Percentage of SLAST (last conductor .99 
saved to meet RFRAC criterion). Subse~ 
quent conductors are saved if their values 
are greater than RTOL*SLAST. 

Effective Radiation Node (ERN) Number. None 
Any negative value i.,ill cause the pro-
gram to print all ERN conductors but 
not punch or write them to tape. 

Array Name for Array of Primary MESS None 
Node Numbers and Special Node Numbers. 

Array Name for Array of Secondary MESS None 
Node Numi>ers. 

In the printout for both the RK and RC segment, after all the card 

"images of the radiation conductors are listed, the program prints out t\VO 

summary tables. The first table is <1 conservation check of each node in the 

model \.,i th any corre:;pondence data applied before the number of radiation 

couplings are reduced in these segments. The value printed for each node 

n 
is ~~ijAi/Ai13i. For a complete enclosure theoretically it should be 

J :./ 
1.0. Tf there is a space node it should also be 1.0. The second summary 

ta?le is the conservation check made after the numher of radiation couplings 

have been reduced. TIlese two tables can he very helpful in finding input 

errors, and in evaluating the effects of radiation coupling reduction 

techniques. 

Restrictions: 

1. RCDATA must be called prior to ReCAL execution because all of the 

variables are not defaulted. 
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~ 2. IPRIME and ISECND arrays must be input in the array data block (see 

Section 3.3.2: Quantities and Array Data Blocks) to specify MESS node 

pairs and special nodes. IPRIME contains a list of all primary MESS 

nodes and all special nodes in that order. ISECND contains a list of 

all secondary MESS nodes in a one-to-one correspondence with the 

primary MESS nodes in IPRIME. 
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4.3.7 Absorbed Heat Subroutines 

4.3.7.1 Subroutine AQDATA 

Calling sequence: CALL AQDATA (IAQGBI, IAQGBS, RSOLAR, RALB, RPLAN) 

This subroutine defines the parameters necessary pr~or to executing 

the AQCAL program segment to compute absorbed heats. 

IAQGBI (Options CONFN, FZEROI) CONFN ~s the Hollerith configuration 

name ~n effect when the appropriate infrared grey-body factors were computed. 

FZEROI is the zero flag for infrared absorbed heat. When IAQGBI = 4HZERO, all 

infrared absorbed fluxes will be zero, and no infrared grey-body factor matrix 

is needed for AQCAL execution. 

IAQGBS (Options CONFN, FZEROS) is analogous to IAQGBI for the solar 

waveband. 

RSOLAR is a solar-heat rate multiplying factor (defaults to 1.0). 

NOTE: Albedo heat rates are multiplied by R solar also. 

RALB ~s an albedo-heat-rate multiplying factor (defaults to 1.0). 

RPLAN is a planetary-heat-rate multiplying factor (defaults to 1.0). 

Configuration name arguments will default to the current configuration 

name, so that an AQDATA call is not required if all necessary data are in 

storage under the current configuration name. 

Variable AQPRNT controls whether or not a detailed printout of 

absorbed heat data is obtained. Detailed prints consist of the direct and 

reflected components of the absorbed solar, albedo and planetary heat rates 

with applicable correspondence applied. To activate this print, enter the 

FORTRAN statement AQPRNT = YES prior to any ORBGEN card or L AQCAL card. 
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~\ Without AQPRNT the absorbedQ values do not get printed. The normal printout 

only informs the user that they have been computed. The absorbed heat output 

segment (QOCAL) is the normal means by which the user obtains a printout of 

the total absorbed heating rate (see Section 4.3.7.3: Subroutine QODATA). 

Although the AQ data values are written to the RSO tape, they are 

never utilized by a restart run. They are written to the RSO tape (as is 

other data in this category) to be used by other interface programs. The 

computational charges for the AQ and QO segments are very minimal once the 

direct incident and gray body factors are known. 

4.3.7.2 Subroutine STFAQ 

Calling sequence: CALL STFAQ (TRUEAN, TIMEPR, NSTP) 

This subroutine stuffs values of absorbed heat and/or direct flux 

computed in a previously executed step into out-of-core storage for the 

current step. It also stores time for the current step, defined either 

directly or from true anomaly. 

The argument NSTP is the step number from which the desired absorbed 

heat values will be obtained. 

The geometry, as defined by BUILDC and ADD calls, in effect at the 

time any STFAQ call is made must agree exactly with that in effect when step 

NSTP was executed. 

4.3.7.3 Subroutine QODATA 

Calling sequence: CALL QODATA (NSARRY, NTMARY, QOTAPE, QOPNCH, QOAMPF, 

QOFMPF, QOTMPF, QOTYPE) 

This subroutine defines the parameters necessary to allow absorbed 

~ heat data in thermal analyzer format to be generated in a subsequent QOCAL 

execution. 
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Argument NSARRY is the name of an array containing the previously 

executed step numbers where the desired absorbed-heat data can be found in 

storage. The Step Numbers in the array do not have to be in numerical or 

chronological order for the program to work correctly. Unless NSARRY = 3HALL, 

this array must be entered in the array data block. The user is referred to 

Section 3.3.2.2.: Quantities and Array Data Block, for examples of ways this 

array may be defined. If·the 3HALL option is used, the step numbers do not 

have to be listed in an array by the user. All absorbed heat data computed 

since the last call to QOINIT will be output. 

Argument NTMARY is the thermal analyzer array number the user desires 

for his time array when Q vs time tables are being .generated. The Q arrays 

generated will be numbered consecutively from NTMARY+1. 

Arguments QOTAPE and QOPNCH are flags to control the form of Q table 

output. Options are 4HTAPE, 2HNO for write/no write to the BCDOU tape, and 

3HPUN, 2HNO for punch/no punch control. 

Arguments QOAMPF, QOFMPF and QOTMPF are the mUltiplying factors for 

area, energy, and time, respectively. The default values of 1.0 result 1n 

time in hours, area in square feet, and energy in Btu/hr. 

Argument QOTYPE controls the type of output obtained. 3HTAB results 

in Q vs time tables; 2HAV results in an integrated average Q for the time 

period defined by NSARRY. 

4.3.7.4 Subroutine QOINIT 

Calling sequence: CALL QOINIT 

This subroutine rewinds the file containing the absorbed Q data, thus 

providing user control of the number of time points obtained with NSARRY 

3HALL. 
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f""'4. 3.8 Data Modification Routines 

A ser1es of routines are available that enable the user to change 

certain types of data from the operations data block. This provides a 

convenient way to perform many types of parametric studies without the 

necessity of making multiple runs and error-prone changes to the surface 

data. If "MOD" subroutines are used and then a new configuration is "built" 

the initial conditions passed from the preprocessor to the processor will 

override the previous MOD subroutine calls. 

The ser1es of routines allows 'the fo1lowing node properties to be 

changed: 

a) Area; 

b) Diffuse infrared emissivity and/or solar absorptivity; 

c) Specular infrared and/or solar reflectivity; 

~d) Infrared and/or solar transmissivities; 

. e) SHADE/BSHADE flags. 

Calling sequences are designed so that the properties may be changed for one 

or all active nodes with one call. T~e use and function of these routines is 

explained in the following sections. 

4.3.8.1 Subroutine MODAR 

Calling sequence: CALL MODAR (ND, AR) 

This subroutine changes the area of a designated node or the area of 

all currently active nodes by use of a multiplier, for utilization in the 

radiation conductor and QO segments. 

If this subroutine is misused it may give erroneous results. The 

intended and only valid application of this subroutine is very limited. If a 
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node always has the same number and distribution of elements, and the same 

elements are always shadowed in the FF and DI segments the MODAR approach is 

correct. In TRASYS, though the number of elements are seldom constant. If the 

number, however, is always large the error may be minimized. In general it is 

recommended that the MODAR subroutine be used only when a specific area of 

this node 1S always shadowed, and when there is always a sufficient element 

breakdown to closely define the boundaries of the shadow. The MODAR's do not 

affect the form factor * area, the script F * area matrices, or the DI's. 

MODAR does effect the radiation screening process, the radiation conductor 

value to space, and the absorbed heating rates in the QO segment. 

Argument Name 

ND 

AR 

Description 

Node Number 

Designator 

Desired Value 

for Area 

°Etions 

a) Any Active 

Node Number 

(Integer). 

b) 3HALL 

a) Floating-

Point Data 

Value 

b) Area Multi

pI ier 
1 

(3HALL 
Option Only) 

Default 

None 

None 

Note: 1. When ND = 3HALL, all active node areas are modified according to 

AREA = AREA*AR. 

Restriction: Call not valid prior to geometry definition through 

calls to BUILDC and ADD. 
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4.3.8.2 Subroutine MODPR 

Calling sequence: CALL MODPR (ND, ALPHA, EMISS) 

This subroutine modifies the diffuse infrared emissivity and/or the diffuse 

solar absorptivity of a designated node. 

Argument Name 

ND 

ALPHA 

EMISS 

Description 

Node Number 

Designator 

Diffuse Solar 

Absorptivity 

Diffuse IR 

Emissivity 

Note: 1. If ALPHA O. or EMISS 

Options Default 

Any Active None 

Node Number 

a) O. < DV < 1. None 

b) DV < 0. 1 

a) O. < DV < 1. None 

b) DV < 0.1 

0., current values are not changed. 

Restriction: Call not valid prior to geometry definition through calls 

to BUILDC and ADD. 

4.3.8.3 Subroutine MODTR 

Calling sequence: CALL MODTR (ISR, TRANS, TRANI) 

This subroutine modifies the solar and/or infrared transmissivity of a 

designated surface. 
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Argument Name 

ISR 

TRANS 

TRANI 

Description 

Surface Number 

Designator 

Solar Trans

missivity 

IR Transmis

sivity 

Options Default 

Any Active None 

Surface Number 

a) o. ~ DV ~ 1. None 

b) DV <0. 

a) o. <. DV < 1. None 

b) DV <0. 

Note: 1. TRANI and TRANS values less than zero are used to correctly account 

for the transmissivity of double-faced surfaces entered separately. 

A negative value is not required when the ACTIVE = BOTH option is used 

in the Surface Data block because. only one surface is considered to 

shadow even if both sides are active (Reference Section 3.3.3.8: 

Properties Data). 

2. Transmissivity changes affect the entire surface. 

Restriction: Call not valid prior to geometry definition through calls to 

BUILDC and ADD. 

4.3.8.4 Subroutine MODPRS 

Calling sequence: CALL MODPRS (ND, SPRS, SPRI) 

This subroutine ~odifies the solar and/or infrared specular 

reflectivity of a designated node. 
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Argument Name Description Options Default 

ND Node Number Any Active None 

Designator Node Number 

SPRS Specular Reflec- a) o.~ DV ~ l. None 

tivity, Solar 

b) DV -<. o. 1 

SPRI Specular Reflec- a) o. < DV :::'l. None 

tivity, Infrared 

b) DV <. O. 1 

Notes: 1. If SPRI ~ O. or SPRS < 0., current values are not changed. 

Restrictions: 1. This call is applicable only to nodes defined as specular 

reflectors in the surface data block. 

2. Call not valid pr10r to geometry definition through calls 

to BUILDC and ADD. 

4.3.8.5 Subroutine MODSHD 

Calling sequence: CALL MODSHD (ISR, SHADE, BSHADE) 

This subroutine modifies the SHADE/BSHADE flags for a designated 

surface. 
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Argument Name 

ISR 

SHADE 

BSHADE 

NOTE: 

Description Option Default 

Surface Number Any Active None 

Designator Surface Number 

Can Shade Flag FF, DI, BOTH, None 

NO, 0
1 

Can Be Shaded Flag FF, DI, BOTH, None 

NO, 0
1 

1. If SHADE or BSHADE data values are zero, their values are 

not changed. 

2. Shade flag changes affect the entire surface. 

Restrictions: 1. Call not valid prior to geometry definition through 

calls to BUILDC and ADD. 

2. Call not applicable to shad ower-only surfaces. 

4.3.8.6 Subroutine NODDAT 

Calling sequence: CALL NODDAT 

After a ser1es of calls to the "MOD" routines, it might be· 

desirable to obtain a printout of the nodal properties as a check. NODDAT 

provides this feature. A call to NODDAT anywhere in the operations data block 

will produce a printout of the optical properties assigned to each currently 

active node. 

4.3.9 Restart Control Subroutines 

Two routines are available in the processor library for use 1n 

stopping or resuming the reading of a Permanent Restart Input (RSI) tape 
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f"1 
during a restart run. The judicious use of RSTOFF and RSTON allows the user 

to insert new segment calls, delete segment calls or redo any part of the 

operations data. (Refer to Section 3.3.9.7: Restart Operations) 

4.3.9.1 Subroutine RSTOFF 

Calling sequence: CALL RSTOFF 

A call to this routine stops the reading of data from the RSI 

file and initiates the processing of the operation data logic following the 

call. 

4.3.9.2 Subroutine RSTON 

A call to this routine stops processing of operations data 

logic and causes the resumption of the reading of data from the RSIfile. 

r 4.3.9.3 Application of Restart Control Subroutine 

For TRASYS to read all of the data stored in a RSI tape, the 

user does not have to use subroutines RSTOFF and RSTON. For example, the 

situation where data is being computed and written to an RSO tape and aborts 

because of maximum time can be restarted and handled automatically by the 

program. With an RSI tape the program will always check, unless Subroutine 

RSTOFF has been called, to see first if there is valid data already available 

when executing those segments which take significant computer time. If the 

data can't be found, then the program will begin to compute the data. The 

data search on the RSI tape is always forward. If there has been a call to 

RSTOFF previously and then followed by a CALL RSTON just prior to the 

execution of the current segment of the program , the program will search 

forward through the pseudo files of each restartable processor segment (see 

Appendix C) until it comes to an end-of-file or finds the match it is looking 

for in the header record for the current segment. If a match is not found, 

then no further data can be read from the tape. The current and all 

f'\ subsequent segment executions will require the data to be computed. The 

extent of the data search on the RSI, if the current segment is not im-. 
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mediately preceeded by a call to RSTON, will be to advance only to the very 

next restartable processor pseudo file and look for a match. If one is not 

found, it will compute the data for the current segment. It will continue 

through the Operations Data block in sequence, executing each segment call in 

this manner. 

In the case of a restart from an abort, if the Operations Data 

block is not changed, or at least the sequence of segments which retrieve the 

data remain the same, the program will read all of the data stored by the 

aborted run and bypass the computation of the restartable processor segments 

until it can't read anymore. At this point if it reads an end-of-file or the 

variable RSREC (see Section 3.2.1: Options Data Block) is less than the 

number of the last record read, the program will begin computing any remain

ing operations data computations. If the end-of-file is reached, the 

computation would have picked up right where it last wrote to the RSO tape. 

An end-of-file should always be at the end, even from an aborted run, because 

the program always puts a end-of-file after each write to the RSO. Just 

before the next write it will backspace over it and write the new data 

followed by a new end-of-file. 

The RSTON and RSTOFF subroutines allow the user to skip over 

data on the RSO tape that is not wanted or is known to be bad. It will also 

allow the insertion of new segment executions in the Operations Data block 

while selectively retrieving the data available on the RSO tape. The user 

must be very cautious in retrieving data. What may be considered a match by 

the program may not really be a match. If the same model and configuration 

name is used, and the node array hasn't been changed, then for example, even 

though the form factors need to be recomputed because previous input errors 

have been corrected, or modeling changes have been incorporated, the program 

may still utilize the form factors data on the RSI that is known to be in 

error. In a like manner, a complete irrelevent set of DI data steps may be 

inadvertently retrieved from the run that created the RSI tape, even though 

the orientation and/or orbit definition may be different in the current run. 

An acceptable program match would occur if the same model name, configuration 

name, and master node array has been retained. In addition, the step num-
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ber(s) in the DI segments would have to be consistent. These risks exist of 

course, because of the extreme flexibility of the program to conveniently 

retrieve all useful data. In the examples cited, the user must make a call to 

subroutine RSTOFF prior to the segment call where the existing RSI data should 

be bypassed. 

The following is an example of a situation that may occur. 

First, assume an RSO tape is created by a run that went to completion with the 

following Operations Data block. 

HEADER OPERATIONS DATA 

BUILD 

L NPLOT 

L NFFCAL 

CALL GBDATA (2HIR,SHTHING,O) 

L GBCAL 

CALL RKDATA (5HTHING,O,O,O,3HYES,O,O,O,O,O) 

L RKCAL 

END OF DATA 

On a subsequent run, the RSO tape will be used as an RSI tape so the form 

factor and IR gray body matrices can be utilized to compute some orbital 

heating rates that are desired. If the following Operations Data block is 

used, there should be no problem. 
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HEADER OPERATIONS DATA 

BUILD 

L NPLOT 

L NFFCAL 

CALL GBDATA(2HIR,5HTHING,O) 

L GBCAL 

CALL GBDATA(3HSOL,5HTHING,O) 

L GBCAL 

CALL ORBIT2(3HEAR,O.,90.,O,O,O.,150.*6080.,150.*6080.) 

CALL ORIENT(4HPLAN,1,2,3,O.,90.,90.) 

ORBGEN PLAN,O.,360.,12, AQ 

END OF DATA 

The node plot segment would ignore the RSI tape plots since this is not a 

restartable processor segment. The form factor * area matrix and the IR gray 

body matrix will be obtained from the RSI file since they occur on the RSI 

tape in the same order as the current Operations Data block. In the original 

run, the IR gray bodies are the last segment which wrote to the RSO tape 

(RKCAL does not), so no more restartable data appears on the tape. The 

remaining segment calls (generated by the ORBGEN card) in the current 

Operation Data block will result in computations. 

If the user however, reasoned that the program really doesn't 

need the form factors until it is ready to compute the solar gray bodies and, 

instead of the preceeding, used the following Operations Data block, a program 

abort would occur. 
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HEADER OPERATIONS DATA 

BUILD 

L 

L 

L 

CALL GBDATA(2HIR,5HTHING,O) 

GBCAL 

NFFCAL 

GBDATA(3HSOL,5HTHING,O) 

GBCAL 

CALL ORBIT2(3HEAR,O.,90.,O,O,O.,150.*6080.,150.*6080.) 

CALL ORIENT(4HPLAN,1,2,3,O.,90.,90.) 

ORBGEN PLAN,O.,360.,12,AQ 

END OF DATA 

The abort would occur because the program would check the RSI file to see if 

IR gray bodies are available. Although IR gray bodies are present on the 

tape, it would not look past the form factor psuedo file so a mismatch 

occurs. It would then attempt to compute the IR gray bodies, but would 

~ quickly abort because the form factor * area matrix, which it must have if it 

is to compute the gray bodies, has not been loaded or computed at this point. 

The following Operations Data block would not result in an aborted run, 

but also has a serious shortcoming: 

HEADER OPERATIONS DATA 

BUILD 

CALL RSTON 

CALL GBDATA(2HIR,5HTHING,O) 

L 

L 

L 

GBCAL 

NFFCAL 

CALL GBDATA(3HSOL,5HTHING,O) 

GBCAL 

CALL ORBIT2(3HEAR,O.,90.,O,O,O.,150.*6080.,150.*6080.) 

CALL ORIENT(4HPLAN,1,2,3,O.,90.,90.) 

ORBGEN PLAN,O.,360.,12,AQ 

END OF DATA 
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In the first GB call, because of the RSTON subroutine call preceeding it, the 

program will not limit itself to look for a match in the header record of only 

the next available pseudo-file on the RSI tape. The program will search 

forward until it finds a match or the end-of-file. In this situation, it will 

find the IR gray bodies in the second psuedo file. When the form factor 

segment is executed, it will already be at the last psuedo file, so the 

program will recompute the form factors. The program would continue having to 

compute any remaining data. The form factor recomputation was unnecessary 

and, therefore, the first restart approach should be used. 

4.3.9.4 Subroutine FFREAD 

Calling sequence: CALL FFREAD 

When a complete set of form factors are on the RSI tape, a call to FFREAD in 

lieu of an L FFCAL or an L NFFCAL card will read the form factors on RSI into 

program data storage. This subroutine eliminates the need for loading the 

form factor segments. The subroutine is primarily proved to save core in the 

instructional banks and may provide additional core for data if the loading 

the alternative FF segment would have been the largest instructional bank. 

(This feature is available on the UNIVAC version only). 

Restrictions: The form factor matrices on the restart tape must be complete, 

and no form factor data block information will be used for the current 

configuration name. 

4.3.9.5 Subroutine DIREAD 

When a complete set of direct flux data for an orbit point is on the RSI 

tape, a call to DIREAD in lieu of an L DICAL card will read the flux 

information into current-step data storage. This routine is similar to FFREAD 

but is for flux data. The subroutine eliminates the need for loading the DI 

segment. The subroutine is provided to save core in the instructional banks 

and may provide additional core for data if loading the alternative DI segment 
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would have been the largest instructional bank. If the OIR Option is used for 

the IFO variable 1n ORBGEN, OIREAO is called in each step by the program. 

(This feature is available on the UNIVAC version only). 

Restrictions: Flux data for the step must be complete and no flux data block 

information will be used for the current configuration name and step number. 

4.3.10 Planet Surface Subroutines 

Subroutines SURFP, DIOT3, and OIOT3S provide a package that allows the 

user to locate his configuration on the surface of a rotating planet. Solar 

flux histories for a planetary day may then be computed by updating time of 

day and executing the OICAL segment. Planet rotation data and above 

atmosphere solar constants are provided internally for Earth, Mars, and the 

moon. The user controls atmospheric attenuation of the solar flux through a 

program variable called the atmospheric extinction factor. OICAL 

automatically avoids planetary albedo and infrared flux calculations for this 

option. A ground plane of arbitrary size and appropriate optical properties 

should be included in the configuration. Solar reflection from this plane is 

analogous to albedo flux, and infrared energy interchange calculations with 

this plane in the thermal analyzer will account for the infrared environment. 

4.3.10.1 Subroutine SURFP 

Calling sequence: CALL SURFP (PNAME, ALAT, SUNLAT, AEX) 

This subroutine spatially locates the sun vector relative to the 

configuration on the rotating planet, defines planet rotation rate, and sets 

variables used to compute the solar "constant" as attenuated by the atmosphere 

as a function of the time of day. A change in any of the SURFP arguments must 

be accomplished through a call to SURFP. 
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PNAME (options 3HEAR, 3HMAR, 3HMOO) defines the following variables: 

SOLO -

PER -

solar constant outside the atmosphere, BTU/hr ft
2 

(429.0 for Earth and moon, 183.2 for Mars) 

Rotation period of planet, hours 

If a value other than the built in nominal for SOLO is desired, SOLO is 

redefined as desired in the operations data block subsequent to the SURFP call. 

ALAT 1S the latitude of the configuration on the planet, degrees of arc. 

SUNLAT is the solar declination in degrees of arc. If PNAME = 3HEAR, 

SUNLAT must be a day of year (1. ~ SUNLAT ~365.) so that solar declination 

can be computed from an ephemeris equation. 

AEX 1S the atmospheric extinction factor that appears 1n the equation: 

SOL SOLO/EXP (AEX/COS(PHI) ) 

where: SOL = attenuated solar "constant" 

SOLO solar constant outside atmosphere 

PHI = angle from local vertical to sun vector 

Values for AEX may be found in the growing literature on solar energy 

converS10n. Representative values are 0.25 for the southwest desert and 0.45 

for southeastern coastal areas. An alternative to entering AEX is to enter a 

flux level, in Btu per hr-ft 2 that is desired at solar noon (300 Btu/hr-ft 2is 

typical). The argument AEX is tested by subroutine SURFP. If greater than 

1.0, noon solar flux is assumed, and a corresponding extinction coefficient 1S 

computed and stored for use. 

Note: The TRASYS approach to the planet surface environment does not yet 

include diffuse sources of solar energy such as clouds and atmospheric 

backscatter. 
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A call to SURFP computes the two program variables DAWN and DUSK, the 

times of day for sunrise and sunset, respectively. These may be used as 

points in the heat flux tables in the same way as SHADIN and SHAOUT for 

orbiting configurations. 

4.3.10.2 Subroutines DIDT3 and DIDT3S 

Calling sequences: CALL DIDT3 (DINOSH, DIACCS, ITOD, DIPNCH, ISFAC) 

CALL DIDT3S (ITOD, ISFAC) 

These subroutines provide accuracy parameters and control flag 

definition for the DICAL segment when using the planet surface option. 

DINOSH, DIACCS, DIPNCH and ISFAC are the usual direct irradiation 

accuracy parameters and control flags. (Ref. Section 4.3.5.4: Subroutines 

DIDT1, DIDT1S) ITOD is the time of qay since midnight, hours/minutes, 4-digit 

integer (e.g., 1537 for 3:37 PM, 0820 for 8:20 AM). Time of day may be input 

in decimal hours through the operations block statement TIMEPR DV. TIMEPR 

may also have "DUSK" and "DAWN" as data values. TIMEPR is the time of day 

since midnight, hours. 

4.3.10.3 Orientation on Planet Surface 

The planet surface option requires that the central coordinate system 

of the problem geometry be oriented as follows: 

a) the ccs z-axis LS the local vertical 

b) the ccs y-axis points true north 

c) the ccs x-axis points due east 

No capability exists to orient the configuration through subroutine 

ORIENT. If re-orientation is required, the block coordinate system capability 

may be used. 
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5. PROCESSOR SEG}lliNTS 

5.1 pictorial Plot Segments 

5.1.1 Node Plotter 

Calling sequence: L NPLOT 

This segment provides the user with 3-dimensional and/or orthographic 

projection pictorial plots of his problem geometry. Its primary use is to 

verify surface data input prior to proceeding with computations of radiation 

interchange or absorbed heat data. Examples of its ouput can be found in 

Appendix H. 

This segment has no provision for user intervention in the form of 

program called subroutines that the user may modify. Control is provided 

through the NDATA or NDATAS subroutines. 

5.1.2 Orbit Plotter 

Calling sequence: L OPLOT 

This segment provides the user with a pictorial representation of his 

spacecraft in relation to the body it orbits and the sun. 

The planet and its shadow are depicted, together with a pictorial V1ew 

of the spacecraft in orbit. The standard output enables the user to verify 

his orbit in relation to the sun, and spacecraft orientation relative to the 

sun, planet, or star. Examples of its output can be found in Appendix H. 

This segment has no provision for user intervention beyond that 

provided by subroutines ODATA and ODATAS. 
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5.1.3 Data Plotter 

Calling sequence: L PLOT 

This segment provides the capability to plot any computed or input data 

as x versus y plots. The segment automatically writes a binary plot data unit 

(disc or drum) for producing plots of incident or absorbed heat rates or 

fluxes as a function of time. 

The segment also provides a completely general plot capability if the 

user inputs operations data block FORTRAN to prepare the plot data unit prior 

to executing the PLOT segment. This type of plot operation is illustrated by 

the plot unit format described below. 

The plot segment flow diagram is shown in Figure 5-1. 

5.1.4 Binary Plot Unit Format 

Write format: NAME, N, (DATA (I), I = 1, N) 

where: 

NAME: type of record 

N number of words in data array 

DATA: array of data 

Record 1, TYPE FRAME 

word 1 5HFRAME 

2 4 

3 XMIN 

4 XMAX 

5 YMIN 

b YMAX 
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Record 2, TYPE = LABELX 

word 1 6HLABELX 

2 MAXIMUM OF 5 

3 LABEL ARRAY 

4 

5 

6 

7 

Record 3, TYPE LABELY 

word 1 6HLABELY 

2 N(MAXIMUM OF 

3 LABEL ARRAY 

4 

5 

6 

7 

Record 4, TYPE = NODENO 

word 1 6HNODENO 

2 1 

7, 

(30 characters, maximum, per word) 

(1) 

(2) 

(3) 

(4) 

(5) 

30 characters, 

(1) 

(2) 

(3) 

(4 ) 

(5 ) 

maximum, per word) 

3 INTEGER NODE # 
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PLMAIN 

PLLOAD 

USER DEFINED £ INCIDENT 

PLOT DISC Y HEAT 

READ 
DATA 

I ABSORBED SORT 
DATA BY 

HEAT TIME 

FNDFLP 

GENERATE 
PLOT DISC 

PLDRIV 

DRAW GRID 

READ PLOT 
DISC 

APPLY 
MULTIPLIERS 

PLOT 

. 
RETURN 

Figure 5-1 PLOT Segment Flow Diagram 
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Record 5, TYPE TITLE 1 

word 1 6HTITLE 1 

2 N(MAXIMUM OF 10, 60 characters, maximum, per word) 

3 TITLE ARRAY 1 

4 2 

12 10 

Record 6, TYPE = TITLE 2 

\vord 1 6HTITLE 2 

2 N(MAXIMUM OF 12, 72 character, 

3 TITLE ARRAY 1 

4 2 

14 12 

Record 7, TYPE = INDEP, N = user supplied 

word 1 5HINDEP 

2 N (l ~ N < 1000) 

3 DATA (1) 

N+2 DATA (N) 

5-5 

maximum, per word) 



Record 8, TYPE = DEPEND, N = user supplied. (must agree with number of 

independent data values) 

word 1 6HDEPEND 

2 N (1 ~ N ":::'1000) 

Note: a) TYPE DEPEND can occur as many times on a file as desired 

for mUltiple plots on a frame. 

b) Any records but FRAME, INDEP and DEPEND types may be 

omitted. 

c) Record 8, words 3 through N + 2 same as record 7. 
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5.2 Form Factor Segment 

Calling sequence: 1. FFCAL 

This segment computes form factor matrices for any geometric enclosure 

uS1ng a numerical integration method. Internode blockage is accounted for 

with differing solar and IR transmissivities and, because semitransparent and 

specular surfaces are allowed, two form factor matrices are computed: FFS for 

the solar waveband and FFI for the infrared waveband. 

Blockage factors are also computed, printed and written to the restart 

tape. Blockage factors are defined as follows: 

BFij = Fij (shadowed) 
Fij (unshadowed) 

Provision for user intervention via the subroutine data block is 

available through three program-called subroutines: (1) prior to computation 

of each form factor through subroutine FFPRE, (2) at the completion of a row 

of form factors through subroutine FFROW, and (3) at the completion of the 

entire matrix through subroutine FFEND. The logic flow of the FFCAL segment 

is shown in Figure 5-2. 

FFCAL provides printed output, as well as punched cards or tape in FORM 

FACTOR DATA Block format, at the user's option. 

FFCAL employs two techniques to avoid inaccuracies inherent to the 

double-integration form factor computation technique. First, it tests the 

node areas involved before beginning a computation, and makes certain that the 

factors are always computed from the smaller node to the larger node. Second, 

if an area-distance criteria is violated, nodes are temporarily subdivided 

into sub-nodes for form factor calculation. See Appendix B for more detail on 

this subject. 
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FFMAIN 

t~ili FFRDIN 
CALL FFOUT 

IN=l 

IN=IN+l 
CALL FFRDRQ 

NO 

IN=JN+l NO 
CALL FFROW* 

."\. 

CALL FFPRE~'( 
NO 

CALL FFCAL 

* USER ROUTINES 

Figure 5-2 Segment FFCAL Flow Diagram 
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5.3 Precision Form Factor Segment 

Calling sequence: L NFFCAL 

This segment computes form factor matrices for any geometric enclosure 

using a modified double integration method wherein each elemental form factor 

is computed using the Nusselt-sphere calculation method. The Nusselt-sphere 

technique is generally implemented
1 

as a single integration method. This 

leads to extreme computation difficulties when accounting for shadowing, so 

the technique used in FFCAL, wherein the j-node as well as the i-node are 

broken down into elements, is retained. With this approach, shadowing 

calculations proceed in the same way as FFCAL, that is, with a check to see if 

the element-to-element vectors are interrupted by a shadowing surface. The 

Nusselt-sphere method, however, eliminates the inaccuracies encountered with 

FFCAL when closely adjacent surfaces are involved. 

The element selection technique used by NFFCAL is basically user controlled. 

A specified number of elements is divided among the i and j nodes according to' 

their areas. Along with the improved accuracy some increase in run time, 

compared to FFCAL, may be noted. 

The NFFCAL segment interfaces with other program segments and the 

restart tapes in exactly the same way as FFCAL. The printed output is also 

very much the same. At the level presented in Figure 5-2, the logic flow of 

the NFFCAL link is also the same as FFCAL. 

1 K. A. Toups, A General Computer Program for the Determination of Radiant 
Interchange Configuration and Form Factors, North American Aviation Inc., SID 
65-1043-2, October, 1965. 
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5.4 Radiation Interchange Segment 

Calling sequences: L GBCAL 

Segment GBCAL computes a matrix of diffuse gray-body (GB) radiation 

interchange factors and places them in out-of-core storage for later use in 

computing absorbed heat or radiation conductors. Solutions for either the 

solar and/or infrared wave bands may be requested. No user intervention 

provisions are made beyond that of subroutine GBDATA. The IR gray body 

solution is dependent upon form factors and emittances and the solar gray body 

solution is dependent upon the form factors and solar absorptivity. To 

compute the gray bodies, the Operations Data Block should call the appropriate 

subroutines to compute or load the form factors prior to the first GB segment 

call. 

5.5 Radiation Conductor Segment 

Calling sequence: L RKCAL 

Segment RKCAL computes radiation conductors for thermal analyzer models 

and provides output in punched card or BCD tape form for direct input to a 

thermal analyzer. A printout of the card/tape record images is also 

provided. Three program-called user routines are used to provide user 

intervention through his subroutines block. Subroutine RKPRE provides for any 

special initialization desired before computations begin. Subroutine RKPNCH 

I performs the actual punch and tape write operations to the BCDOU file. The 

user may obtain data in any thermal analyzer program format by altering format 

I 
statements in this routine. User routine RKEND provides for user intervention 

pr10r to return to operations block control. Figure 5-3 shows segment RKCAL 

logic flow. To compute the radiation conductors the IR gray bodies must be 

computed or loaded in the Operations Data block prior to the first call to the 

RK segment. 

An example of RKCAL output can be found in Appendix H. 
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5.6 Radiation Condenser Segment 

Calling sequence: L RCCAL 

Segment RCCAL computes radiation conductors, simplifies and condenses 

these conductors using the ERN and MESS techniques, and provides output in 

punched card and/or BCD tape form for direct input to thermal analyzer. A 

prirttout of the card/t'lpe record images, as well as the original (uncondensed) 

RADKs, is also provided. Three program-called user routines are used to 

provide user intervention through his subroutines block. Subroutine RCPRE 

provides for any special initialization desired before computations begin. 

Subroutine RCPNCH performs the actual punch and tape write operations to the 

BCDOU file. The user may obtain data in any thermal analyzer program format 

by altering format statements in this routine. User routine RCEND provides 

for user intervention prior to return to operations block control. Figure 5-4 

shows segment RCCAL logic flow. RCCAL theory is presented in Appendix F. To 

~, compute the radiation conductors the IR gray bodies must be computed or loaded 

in the Operational Data block prior to the first call to the RC segment. 

5.6.1 Sample Problem Using ERN/MESS Technique 

The optics housing of the High Altitude Observatory (HAO) solar 

telescope, which is mounted on the Skylab Apollo Telescope Mount, is shown in 

Figure 5-5. Both the original enclosure and the modularized enclosure are 

shown along with the ERNs and the MESS nodes. Figure 5-6 shows the nodal 

breakdown for the enclosure. 

TRASYS input for subenclosure 1 (see Figure 5-6) is shown in Figure 5-7. 
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RKHAIN 

CALL RKPRE 

FIND IR 
FACTORS 

CALL FINDST 

READ 
CORRE

SPONDENCE 
DATA 

COMBINE RADKS 

CALL RKCMBN 

USER 
ROUTINE 

YES 

USER 
ROUTINE 

USER 
ROUTINE 

NO 

COMPUTE 
RADKS 

TO 
SPACE 

PUNCH RADKS 

CALL RKPNCH 

CALL RKEND 

RETURN 

Figure 5-3 Segment RKCAL Flow Diagram 
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/". 
J 

USER ROUTINE 

YES 

READ 
CORRESPONDENCE 

DATA 

CALL RCINIT 

TRANSPOSE HALF FA 
MATRIX TO OBTAIN 

FULL MATRIX 

YES ... ~ __ < 

COMBINE FAs 

YES 

ARRANGE CO~~UCTORS 
IN DECREASING ORDER 
OF FA MAGNITUDE 

SET "SPECIAL NODE" 
SIGNIFICANT FRACTIONS 
TO 1.0 

GENERATE SIGNIFICANT 
CONDUCTOR SUMS 

FLAG CONDUCTORS TO 
BE SAVED 

B 

PUNCH REGULAR 
CONDUCTORS 

CALL RCPNCH 

B 

SUM UNFLAGGED CON
DUCTORS AND PUNCH 
CONNECTIONS TO ERN 

CALL RCPNCH 

YES 

PUNCH ONE-WAY 
MESS CONDUCTORS 

NO 

Figure 5-4 Segment RCCAL Flow Diagram 
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MODULARIZED ENCLOSURE 

SUBENCLOSURE_2_-,~ ././ 
ERN 92 ' ,. 

MESS NODES 

ORIGINAL ENCLOSURE 

SUBENCLOSURE 1 

r; ~N 91 
,. ... ,. .... 

./ .... 
'/ ....... ,. )" 

/' ....... , 
./ .... , 

./ ,. I 

,. 

1 
1 

,.J ,. 

Figure 5-5 HAD Experiment Optics Housing Modularized Enclosures 
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· 2242 

o Diffusion Nodes 

II Radiation Boundary 
Nodes 

Figure 5-6 Apollo Telescope Mount HAO Experiment 

Optics Housing Sample Problem 



~EAOE~ OPTIn~S DATA 
TITLE ~AI)IA"TIn~ CI)NDENSER SAMPLE PROBlE'" 

HEADER 

S 

"10DEl ~HAO 

=51 
~5 2 

A~P a Y f) AT A 
IPPI"lE 
ISECNIJ 
SUQI='AC:: DATA 

=1 SUQI='N 
TYPE 
ACTIVE' 
SH AI) E 
BS1-4ADE 
Pl 
pOOP 
SU?E'N 
TY~E 

ACTIVE 
SH A IJE 
BS 1-4hO!: 
Pl 
NNY 
UNNY 

:: REeT 
::TOP 
=FI=' 
=FI=' 
=10.,9.,0. 
=0.1,0;1 
=2 
=RE'CT 
=TOP 
~FI=' 

=FF 
=10.,77.9287 9,0. 
=15 
=1.3125,2.2875,3.2625,~.172~,11.15t,1~.5?75,25.50~5, 

ppop 
HEAQER FORI-4 

2~.65~5,Tl.5295,17.6~95,~5.558~,5~.4125,63.231R,72.0~55 
=0.9,0.9 

FACTOR CATA 

FIG HAO 

NODE A 1,2.3,~,5,&,7,8,9,10,11,12,13,1~,15,16,END 
1, Z, 0.1)17798 • 90. ~ 

1, 3, '1.005768 • 90. ~ 

1. 4, ().OOE289 • QO. ~ 

1, 6, 0.104575 • 90 • ~ 

1, 7, 0.118291 • 90. ~ 

1, S. O.1I601t.0 • 90. ~ 

1, 9, 0. l)~ 3 020 • 90. ~ 

1, 10, o. D32649 • 9n. ~ 

1, 11, a.UZ7951 • 90. ~ 
1, 12. 0.119425 • 90. ~ 

1, t 3, 0.151~25 • 90. 4': 

1, 14, 0.106645 • 90., ~ 

1, 15, 0.119568 .. 90. ~ 

1, 15, 0.05J506 • 9il. ~ 

2, 5, !].150~44 • 13.1211 ~ 

2, 7, 0.1140225 • 13.125 ~ 

Z, 11, a.O~lSS2 • 13.125 ~ 

2, 12, ° . Z15 0 51 • 13. 125 , 
2, 13, 0.021)062 • 13.125 ~ 
?, 14, IJ • 11 5 0 Sit • 13.125 ~ 

2, 15, (J. 025691 • n .1:?5 , 
2. 1&, O.D07440 .. 13.125 ~ 
3, 6, 0.021& 28 .. 9.75 ~ 

3, ~, 0.2.80861 • 9.75 ~ 

3, 11, 0.3 ° 0885 • 9.75 ~ 

J, 12. 0.17lt021 '" Q.75 ~ 

3, 14, 0.081130 • 9.i75 ~ 

4, ~, 0.1l04979 • 9.1'5 ~ 

4, 1. O. D499~O • 9.75 'F 
4, 8, 0.117956 • 9.7; ~ 

"', 9, 0. l! 5 0425 .. 9.71) ~ 
4, 10, 0.Ot0519 • 9.715 ~ 

4, 12, O. t 83472.. • <3.75 't 

Figure 5-7 RCCAL Sample Problem Input 
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It, 13, O.1~3r,90 .. 9 .15 ~ 

4, 14, O.12Lt24C; .. 9.75 « 
~ ft, 15, ().t~489C; .. 9.15 ~ 

4, 16, 0."8601"0 .. 9.75 , 
S, 6. O.D281114 .. 9.10 ~ 
5, 7, 0.008978 .. 9.10 ~ 
e;, q, 0.239230 .. 9 .10 ~ 

5, ~, 0.003409 .. 9.10 f 
5, 10, 0."00480 • 9. to ~ 

5, 11, lJ.n2Q43'l • q. to ~ 

5., 14, 0.548? 28 .. 9.10 '" 5, 15, 0.06~204 .. 9.10 ~ 

5, 16, O. D 04413 .. Q.l0 ~ 

6, 8, 0.111438 .. 71 .78S ~ 
11, 9, 0.024525 .. 71. "'8t; ~ 

F;, 10, 0.0091('4 .. 71.78t; " 6, 11, 0.166134 .. 71 • 113S ~ 
6, 1?, 0.2540 Q 5 .. 71.785 , 
6, 13, O.E2C??30 .. 71 .78t; ~ 
6, 14, o • 2 dO 0.°9 .. 71.78t; t 
6, 1;, 0.034727 .. 71 .18~ ~ 

6, 16, ,1].'1]045 .. 71.:785 ~ 
7, 8, 0.0"4039 .. 72.06; ~ 

", 9, 0.06 ~644 .. 12.06C; ~ 

1, 10, 0.nC;lt8ee .. 72.06; ~ 

7, 11, Od1131U7 .. 72.065 ~ 
'7, 12, 1).112_6111 .. 12.065 '1i 
7, n, 0.?63905 .. 72. 06 c; If; 

f" 7f, 14, 0.'lJJ4592 .. 12.065 ~ 
7, 1 t; , t). 280429 .. 72.065 '\Ii 

7" 16, 0.160389 .. 7?065 ~ 
~, 11, 0.154383 .. 69.470 ~ 

8, 12, 0.171;175 .. 69.'470 ~ 
8, 1~, 0.051308 .. 69.,470 ~ 

8, 14, 0.22lO80 • 69.470 ~ 

8, 15, O.1J54380 .. 6Q.470 ~ 

~, 16, O. It ft259 .. F;9.470 ~ 

9, 11, o. l] 0 9 5 65 .. 31.500 It 
g, 12, 0.1)2Q146 .. 7,31. SO 0 l 
q, 13, 0.2711 EJ .. :u. ~oo ~ 
g, 14, 0.0182ge .. ~1.C:00 ~ 

9, 1'; , 0.2-715746 .. ~1 • 50 0 ~ 
q, 16, 0.18c;091 .. 31.500 ct 

10, 11, 0.D06027 .. 29."'50 1t 

10, 12, 0.1108478 .. Z9.7150 ~ 

10, 13, 0.~41228 .. 2Cl.750 ~ 

10, 14, O. a 1 0166 .. 29.750 ~ 

10, 15, 0.251456 .. 29.7750 l 
10, 11;, 0.791733 .. 29.7750 l 
11, 12, 0.::'20815 .. 60.200 .~ 

11, 13, 0.010CJ74 .. 60.?OO 'i 
11, 14, 0.257?96 .. 60.200 'i 
11, 15, O. n 17 9 66 .. 60.200 l 
11, 16, n.D28121 .. 60.200 ~ 
12, 14, 0.154333 .. 79.093 'Ii 

,~ 12, 15, 0.114'+610 .. 79.093 ~ 

12, 16, ".D09757 .. 79.093 If; Figure 5-7 RCCAL Sample Problem Input (cont) 
ll, 14, 0.052702 .. d8.537 IS 
t t, 15, 0.198592 .. 88. '3:F 11; 
1,) , 16, 0.,-58 7 87 .. dd • ':::H ~ 5-17, 
14, 16, 0.013765 .. sS.tCn 'h 
tt), 1~, fl. 17il217 .. d8 .?~ 7 , 



HEADER CORRESPONDENCE Di.TA 
FIG HAO 

2266 
2270 
2255 
2254 
2252 
2243 
2253 
51 
2264 
2265 
2259 
2258 
2240 

=1 
=2,3,4,5 
=6 
=7 
=8 
=9 
=10 
all 
=12 
=13 
=14 
=15 
=16 

HEADER OPERATIONS DATA 
BUILD HAO, ALLBLK 

L 

L 

CALL FFDATA(O,O,O,O,O,O, PUN, NO) 
FFCAL 
CALL GBDATA(2HIR,3HHAO,2HFF) 
GBCAL 
CALL RCDATA(3HHAO,PUN,O,1000,O,999,0,1./144.,NO,O,0, 

1 0.9,91,IPRIME,ISECND) 
L RCCAL 
END OF DATA 

Figure 5-7 RCCAL Sample Problem Input (concl) 
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, - 5.7 Direct Irradiation Segment 

Calling sequence: L DICAL 

This segment computes the thermal radiation directly incident on 

external spacecraft surfaces due to the presence of the sun or a nearby 

planet. Three components are computed: direct solar, reflected solar from 

the planetary surface (albedo) and infrared planetary emission. Shadowing 

effects due to internode blockage are accounted for. Normally, shadowing is 

computed analytically by determining if each vector from each node element to 

a heat source (sun or planet element) is blocked by an ~ntervening surface. 

At the users option, shadowing may be computed by the use of shadow data on a 

restart (RSI) tape. This requires that the SFCAL segment be executed prior to 

any DICAL executions. If a restart tape is present, SFCAL will read the 

shadow data from it, make it available on a file used by DICAL, and set a 

DICAL flag that will bypass the analytical shadow calculations. If no RSI 

tape is present, SFCAL will compute the required shadow factor tables. 

When using the externally - supplied shadow factor tables, DICAL will 

revert to an analytic calculation each time a shadow factor table must be 

interpolated over a shadow factor range greater than 0.5. For additional 

background and detail the reader is referred to Section 3.3.6: Shadow Factor 

Data. 

Four program called subroutines are provided for user intervention 

through his subroutine data block. Subroutine DIPRES provides for special 

initialization prior to solar flux calculations. Similarly, DIPREP is called 

prior to planetary/albedo flux calculations. Subroutine DIENDS and DIENDP 

provide for user intervention subsequent to solar and planetary/albedo 

calculations, respectively. Figure 5-8 depicts the logic flow of segment 

DICAL. 

DICAL output 1S placed in out-of-core storage for later use in absorbed 

~~, flux calculations. In addition, direct irradiation data m~y be output to 

punched cards or the USERI tape in HEADER FLUX DATA block format at the User's 
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option. A printout of the direct irradiation data is provided also. An 

example of DICAL output obtained utilizing the ORBGEN option (Reference 

Section 3.3.9.2) can be found in Appendix H. 

To compute fluxes, the Operations Data block must contain the orbit and 

orientation parameter definitions, if applicable, prior to any DI segment call. 

If all of the flux values are already available on the RSI tape, the 

DIREAD subroutine (Reference Section 4.3.11: Subroutine DIREAD) may be used to 

load them in place of the DI segment call (UNIVAC only). 
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l!SER 
ROUTINE 

USER 
ROUTINE 

Figure 5-8 Segment DICAL Flow Diagram 
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5.8 Shadow Factor Segment 

Calling sequence: L SFCAL 

This segment computes shadow factor tables for each node of a 

spacecraft configuration to be used in direct irradiation calculations when it 

is desirable to save computation time at the expense of some accuracy. 

By including a L SFCAL call prIor to any OICAL call the program will 

compute shadow factor tables for the given configuration, and/or utilize 

precomputed shadow factor tables to obtain, by interpolation, the solar and 
-, 

planetary shadow factors for each node and at each orbit point. The entry 

points to the tables are the nodal clock and cone angles for the position 

vector to the sun or to a specific planetary element. Inaccuracies occur 

because the tables do not accurately reflect shadow entry and exit points for 

all nodes. The program minimizes this to a degree by computing a flux with 

shadowing entirely in the OICAL link whenever a shadow factor must be 

interpolated between points with data value differences greater than 0.5. 

Through utilization of the Shadow Factor Data Block (ref. Section 3.3.6) known 

shadow factors can be input and/or direction given' for the computation or 

recomputation of selected portions of the shadow factor table. 

Primary output for this segment is a file on the RSO tape containing 

shadow factor tables for each node. This file contains shadow data according 

to a format as presented in Appendix C. The shadow factor tables are also 

ouput in printed form as they are computed. Shadow factors for both the solar 

and infrared wavebands are comp·uted, because semitransparent shadowing 

surfaces are allowed. 

No user intervention is provided for this segment. Prior to an SFCAL 

call, the user may ~~t a flag to obtain punched shadow factor data through the 

statement SFPNCH = 3HPUN. Punched output obtained will be In shadow factor 

data block format. 
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When shadow factors are read from an RSI tape the printout of the 

shadow factor tables are normally suppressed. They may be printed by 

including the statement SFPRNT = YES before the SFCAL call in the operations 

data. For additional background and detail, the reader is referred to Section 

3.3.6: Shadow Factor Data. 

5.9 Absorbed Heat Segment 

Cdlling sequence: L AQCAL 

This segment utilizes direct irradiation and radiant interchange data 

in out-of-core storage as input. From this, it computes absorbed heat values 

for each external spacecraft node. Internode reflections are accounted for in 

both the solar and infrared wavebands. 
..,:'l 

No user intervention through the subroutine data block is provided. 

Segment AQCAL output is placed in out-of-core storage. Printed output 

of the Solar, Albedo and Planetary absorbed values with Correspondence Data 

applied is also provided as an option. An example of AQCAL output can be 

found in Appendix H. 

5.10 Absorbed Heat Output Segment 

Calling sequence: L QOCAL 

This segment utilizes absorbed heat data in out-of-core storage to 

provide heat source tables in thermal analyzer format. At the user's option, 

heat versus time tables and/or orbital average heat data are provided for each 

external node. 

Output is provided on punched cards or the BCDOU tape. Q versus time 

data is in thermal analyzer array data format, with a singlet time array and a 

corresponding singlet Q array for each node. Also punched are thermal 

~. analyzer interpolation subroutine cards for each node. Orbital average data 

is punched in source data block format. 
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Standard output ~s ~n SINDA thermal analyzer format. Subroutine 

DAIIMDA is used for the interpolation subroutine. Output for other thermal 

analyz"ers may be obtained by al tering the format statements in subroutine 

QOSAVE and entering the altered version in the subroutines data block. Card 

image printout of QOCAL output is provided. An example can be found in 

Appendix H. 

Segment QOCAL logic flow ~s shown ~n Figure 5-9. 

5.11 Form Factor Combining Segment 

Calling sequence: L CMCAL 

Segment CMCAL is used to apply correspondence data to a form factor or 
-. 

image factor matrix that was previously computed and placed in data storage. 

After applying the correspondence da,ta, the resulting matrix of combined form 

factors is written to data storage for later use by the GBCAL program 

segment. CMCAL will apply the auto-correspondence data (generated by polygon 

input) and/or users-supplied correspondence data at the option of the user. 

User control is applied through subroutine CMDATA. CMCAL can be used to 

combine form factor matrices, as computed and/or stored by the FFCAL segment, 

or it can combine image factor matrices, as computed and/or stored by the 

RBCAL segment. Please note, however, that it is not possible to combine FFCAL 

output, and then attempt to compute combined image factors using RBCAL. The 

execution sequence must be FFCAL, RBCAL and CMCAL, in that order. The CMCAL 

flow diagram is shown in Figure 5-10. The reader should refer to Section 

3.3.8: Correspondence Data for additional background and detail. 

5.12 Image Factor Segment 

Calling sequence: L RBCAL 

Segment RBCAL is used to compute one aspect of the effects of spec

ular-diffuse surfaces on radiant interchange factors. When specular-diffuse 

surfaces are present, the form factors may be considered to have two com

ponents: the direct or geometric form factor from node I to node J, plus 
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USER 
ROlITINE 

QOMAIN 

FIND AQ DATA 

CALL FINDS'!' 

SORT AQ DATA. 

CALL SORTDl. 

COMB. /DIVIDE 
AQ DATA 

CALL QOCMBN 

NO 

CALL QOSAVE ... ---! 

RETURN 

Figure 5-9 Segment QOCAL Flow Diagram 
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the "image" components resulting from the images of noue J as seen bj node I 

in nIl visible specular surfaces. In TRASYS, the direct form factors are 

computed by FFCAL or NFFCAL. RBCAL is then used to generate the nodal images 

in each specular surface, compute the various form factors to the ima~es by 

the dou:.,le summation method and add them to the direct form factors. The 

resulting modified form factors, dubhed image f;lctors, are \lritten to data 

storage. Segment GBCAL can then be used to generate radiant interchange 

factors from the image factor matrix and nodal surface properties. 

Segment RBCAL considers first order specular bounces only, that is, 

images of images are not generated and considered. Appendix I presents the 

theory used in RBCAL. The segment RBCAL flow di.~gram is shown in Figure 5-11. 

5.13 Direct Irradiation via Specular Surfaces - Segment ORCAL 

Calling sequence: L DRCAL 

The total direct irradiation that reaches a nodal surface consists of 

that reaching it directly from the sun or plnnet element plus that reaching it 

from im.1ges of the sun or planetary element as seen in specular surfaces. 

Segment ORCAL computes the irradiation resulting from the images in the same 

manner that segment OReAL computes the specular-bounce components of the image 

fac tors. 

In the present version of TRASYS, DR CAL does not compute the specular 

component of planetary irradiation because it is not felt that the compute 

time is justified. The flow diagram for segment ORCAL is shown in Figure 5-14. 
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CMMAIN 

CALL 
CMINIT 

READ 

COMB lNE FF' S 
AND NODE, ARE 
AND PROPERTIES 
ARRAYS 

CALL CMCMBN 

STORE 
COMBINED 

FF'S ON 
NFF FILE 

STORE NODE, 
AREA, AND 
PROPERTIES 
ARRAYS ON 
RANDOM FILE 

CALL CMSAVE 

RETURN 

YES 

Figure 5-10 Segment CMCAL Flow Diagram 
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IN=IN+1 

RB}IAIN 

CALL 
RBRDIN 

CALL 
RBRDRQ 

CALL 
RBNIMG 

NO 

'--_--. __ ----1 KN=KN+1 

CALL 
RBPRE 

CALL 
RBCAL 

NO 

NO 

NO 

CALL 
RB¢UT 

CALL 
RBRDW 

CALL 
RBEND 

RETURN 

Figure 5-11 Segment RBCAL Flow Diagram 
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KN=KN+l 

IN=l 

NO 

DRMAIN 

CALL DRRDRQ 

CALL DRIMAG 

KN=l 
IN=l 

CALL DRCALS 
IN=IN+l 

NO 

CALL DRENDS 

IN=l 

IN=IN-H CALL DROUTP 

NO 

YES 

DALL DREND 

RETURN 

Figure 5-12 Segment DRCAL Flow Diagram 
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Reserved Word List - All Segments 

ALAN ALPH 
APER AQPRNT ARAO AREA ASUN 
AT"1T BETA BETAS BOXINL BOXINR 
BOXOUT CIGMA CIGHAS CLOCI( CONE 

\ DAWN DELeT DI,Aec DIAees DIMS 
I OINOSH DIPNeH DLTLNE DaY DSTR 
; 
; OTE DTR DUSK DWP ECC 
i ELPBEA EHISS FFAee FFAees FFCMB 
if FFDISF FFMIN FFNAe FFNOSH FFPNCH 
:r FFPRNT FFRATL FFZERO FOG GAUSS 
~ 

~ GBWBND GRAV HA HP I A I 
IALBFL IAQGBI IAQGBS IAQSDA IAQSDP 
IAQSDS lAS IAUTOC leALFL IeMBL 
IOSTR IEQFF IFFSHO IFS IHSTEP 
IKS ILLUMN IMESS INeORE INDXN 
JNDXS INSHAD INTHF JOPNNP IOPNV 
IOPNVU I OPT IT IORBIT IORNT IOVL 
IPAGE IPLAFL IPLNA IPLSN IPLUNT 
IPRDHP JQOARY JQOCOR IQOTAB IQOTHE 
IRKCN IRKNSP IROTX IROTY IROTZ 
JRSI JRTJ ISFAC 15FT 15HO 
ISKIP ISKPSO ISOLFL ISPEC ISPND 
ISTPDR ISTRT ITRAL.L. ITRCAO ITRCBO 
ITReeo ITReoo [TRCIO {TRC20 [TRC30 
ITRC'fO ITRCSO ITRC60 ITRe70 ITRC80 
ITRe90 IIPLOT KBCDOU KRSI KRSO 
KRTJ KRTO KTRAJ LAQSEG LeMCOM 
LCMSEG LDISEG L.DRSEG LFFSEG LGBCOM 
LGBSEG l.IDINR LtDOUT LIDSP LINE 
UtFSEG LNPSEG LOOSEG LOPSEG LPLCOM 
LPLSEG LQOCOM L.QOSEG LRBSEG LRCCOM 
LRCSEG LRDSEG LSFSEG HAX6C HAXFL 
HB MESSL HESSR HFCO MFLUK 
MG H ITS I N MLINE MNND MODELN 
MRSRC MSRF NACT NBeDOU NBeDSK 
NBLKDR NBLKLN NCONT NCURFL NDI 
NDIR NELCT NELN NERN NFF 
NFFR NFFTYP NFIGCO NFIGFF NFJGGB 
NFRMC NGBIR NGBJRR NGBSO NJBBLE 
NJOB NLRIO NHESS NMIR NHODEL 
NMODIR NHODLS NN NNOD NNODe 
NNODU NODE NOUT NPLS NPLSR 
NPNNP NPT IT NPUN NPVU NRAN 
NRARR NRHOO NRSI NRSO NRSP 
NRSRCB NRSReE NRSRel NRSRCO NRSRCT 
NRTJ NRTO NS NSCRR NSCRI 
NseR2 NseR3 NSPEC NSPFF NSPNO 
NSQNTL NSSTEP NSTEP NSTPDJ NSTPL 
NSTSOL NSURF NTJTLE NTQ NTQR 
NTRAJ NUSE~l NUSER2 'ODTEMP OINC ."\ 
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f"\ Reserved Word List ~ Continued 

OPROT OPRPLN OPSCL OPSCLR OPTIMP 
OPTIfo1S OPTRUE ORNT PALB PERIOD 
PI PLCL PLCMF3 PLCO PLCRVf 
PLLABX PLLABY PLTITl PLTIT2 PLTYPE 
PLXMPF PLYMPF PNAME PR PRAD 
PSD PSH QOAt1PF QOFMPF QOPNCH 
QORMPF QOTAPE QOTMPF QOTYPE RALB 
RATE RFRAC RKAMPF RKMIN RKPNCH 
RKSP RKTAPE ROTX ROTY ROTZ 
RPLAN RSOLAR RSUN RTO RTHET 
RTOL SAOS SFPRNT SHADIN SHAOUT 
SIGMA SOL SOLO SPINT SREFLI 
SREFLS SRIR SRSO STRACK STROEC 
STRRA SUNCL SUNCO SUNDEC SUNPVO 
SUNRA TOIAH THGHT TIMEPR TIMEST 
TIMSP TITLE TME TRIR TRSO 
TRUANF TRUANI TRUEAN TSTR WOS 
wss WSUN ZNPROT ZNPSCL 

/". 
I 
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In addition to the reserved word list above, the following reserved 

words must be preserved when working in the particular segments noted. 

Segment AQCAL 

QDS, QDR, QDP, QAS, QAR, QAP, GBSO, GBIR, AQTEMP, ICATEG, ICOMB 

Segment CMCAL 

DATA, FFVALI, FFVALS, ICOMB, ICATEG, IX, SCRIR, SCRSO, SUM 

Segments DICAL, DRCAL 

QDS, QDR, QDP, ISHAD, DATA 

Segments FFCAL, NFFCAL 

FFVALI, FFVALS, BFE, BFA, I SHAD , SUM, INDXF, DATA 

Segment GBCAL 

FA, SPACE, XSPACE, IX 

Segment NPLOT 

MNP 

Segment OPLOT 

MSP, JSURF 

Segment PLOT 

IX 

Segment QOCAL 

NODET, QAVERG, ICOMB, IFIRST, AREAT, IX 

Segment RBCAL 

DATA, FFVALI, FFVALS, I SHAD , NRMSSl, NRMSS2, RBVALI, RBVALS 

Segment RCCAL or RKCAL 

ISPN, MSND, NDS, SF, SPACNO, EMIT, AREAT, IX 

Segment SFCAL 

ISHAD, QDP, QDR, QDS 

A-4 REV. 2 



APPENDIX B 
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A. ELEMENTAL GRID VARIATIONS 

The form factor for two finite areas, AI and A
J 

(Fig. B-1), is de
fined as 

1 
J 

cos 8. cos 8. 
1 ] 

TIr. . 2 dAJ dAr 
1J 

r .. 
1J 

Figure B-1 Determination of Form Factors 

A finite-difference approximation of Equation [B-1] is 

n m 

~I 2: 2: 
i=l j=l 

cos 8
i 

cos 8. 
] 

2 A. Ai' 
TIrij J 

Equation [B-2] approaches an exact representation of Equation 
[B-1] as the size of the elemental areas, A. and A., approach 

1 J 
zero. For identical, parallel, directly opposed rectangles, the 
empirical relationship of elemental area size-to-separation dis
tance versus form factor error shown in Figure B-2 is obtained. 
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~ 
I 
I 

• All elements are 
same size. 

o~ ______________________________________________ _ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

K A.IR .. 2 
J./ l'I.J.J 

P'[gul'e B-2 E1'1'o1' Chal'aateroistias fo1' IdenticaZ~ Pai'aZleZ~ 
DirectZy Opposed Rectar~Zes 

For this case, 

A· = K r··2 
~ ~J 

where K is a proportionality constant. 

A more general form of Equation (B-2), considering that 

cos a. cos a. 
:: ~ J dF 

ij 2 r .. J 
~J 

or 

dA. rrr .. 2 __ J__ = _______ ~~J ______ _ 

dF.. e e 
~J cos. cos . 

~ J 

2 
r .. FFACC 

A -;:::: ~J 

i cos e. cos O. 
~ J 
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I MTRAP verS10n 1.0, LOHARP, and TRASYS/FFCAL use Equation B-2, modified with a 

shadowing constant, to compute form factors. The total number (i.e., size) 

and distribution of elemental areas is left to the user to define in MTRAP 

version 1.0 and LOHARP. The number of elements to be selected is defined by 

the closest node a given node "sees." The selection of elements, however, 

usually ends up being somewhat arbitrary or simply a matter of economics; 

i.e., the finer the grid, the more machine time required. In reality, the 

selection of elemental areas is an independent problem for each form factor. 

The basic assumption for reasonably accurate form factors is, from Equation 

B-6, that the elemental area size is small compared to the separation distance 

between two elements. 

I TRASYS/FFCAL uses a technique using Equation B-6 to automatically select the 

element grid sizes of each node pair consistent with a user-defined accuracy 

parameter, FFACC. If all elemental areas on each of two nodes were the same 

size and had the same separation distance, r .. , the apparent number of ele-
1J 

ments on a node to satisfy the accuracy value FFACC would be (from Equation 

B-6) 

AI AI cos 9i cos 9 j 

NI = Ai:= (FFACC) r .. 2 
l.J 

B-7 

Since each element pair on the two nodes may have a different separation 

distance, a different apparent number of equal-sized elements will be required. 

The approach used in TRASYS/FFCAL is a simple arithmetic average of element 

contributions, i.e., 

cos 9icOS 9j 

r 2 
ij 

B-8 

where m. and m. are the initial number of elements arbitrarily chosen for nodes 
1. J 

I and J. 
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The initial number of elements is chosen just large enough for a 

representative sample. A similar optimum number of elements for node J can be 

defined. 

The total number of elements defined by Equation (B-8) is distributed 

uniformly over the node using a criterion that attempts to make the elements 

square. The arithmetic average technique assumes that the mean separation 

distance between nodes is large compared with the variation of separation 

distance over the two nodes. A check is made to see if this assumption is 

violated. The maximum number of elements defined by any element pair on the 

two nodes (Equation (B-7» is compared with the arithmetic average value 

(Equation (B-8». If the ratio of N IN t is greater than FFRATL, the 
maxj op 

two nodes are temporarily subdivided into subnodes. FFRATL is an input 

value defined by the user. The numbers of subnodes used are proportional to 

{NmfxNopt )Iand (Nml.xNopt); The optimum grid elements are computed inde-

pendently for each subnode using a separation-distance, weighted-average 

criterion, rather than an arithmetic one. The form factors resulting from the 

subnode pairs are then combined using form-factor algebra. Thus, elemental 

grids vary for each form fac tor and may be nonuniform ov'er a node as required 

to satisfy input accuracy requirements. 

B. NODAL PRELIMINARY SHADOWING CHECKS 

Shadowing checks between elemental areas account for considerable machine 

time. Machine time could be saved if unnecessary checks were eliminated. The 

usual procedure in MTRAP version 1.0 is to process all the surfaces until 

either the form factor contribution is reduced to zero by shadowing surfaces, 

or all surfaces identified as shadowers have been investigated. The function 

of the nodal shadowing checks is to eliminate from the element-to-element 

shadowing checks all surfaces that cannot cause shadowing on any portion of 

the two nodes under consideration. The technique used in TRASYS/FFCAL is a 

significant modification of the technique used in LOHARP. 
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The nodal shadowing checks consist of constructing a sphere around each node 

for which form factors are being evaluated and for each shadowing surface. 

The r~dii of the spheres are such that the node or surface is completely 

enclosed. A test cylinder or cone frustum, depending on the relative sizes of 

the two spheres in question, is constructed as shown in Figure B-3. For the 

cylinder, the radius is equal to the larger of the two spheres. The cylinder 

or cone frustum's axial coordinate is a vector between the centers of the two 

spheres plus the sum of the two sphere radii. Next, the shadowing surfaces' 

enclosing spheres are checked to determine whether they intersect the test 

cylinder or cone frustum. Only surfaces whose sphere intersects the test 

cylinder or cone frustum will be considered in the actual element-to-element 

shadowing checks for these two nodes. 

This technique of preliminary shadowing checks allows identification of any 

surface that shades the nodes in question. However, other marginal ones will 

also be identified. 

In the detailed element-to-element shadowing checks, an element pair 1S either 

completely shadowed or not at all. The accuracy, then, of representing the 

shadow is proportional to the total number of elements on both nodes. The 

number of elements on the shadowing surface{s) is of no consideration. In the 

TRASYS program it is assumed that accurate shadowing is required only for 

large-magnitude form factors. If the preliminary shadowing checks identify 

shadowing surfaces for the form factor in question, the number of elements 

defined to represent the shadow is 

NSI = FIJ B!'{FFACCS) 

NSJ = FJI B!'{FFACCS), 

where 

FFACCS is an input shadowing accuracy factor, and 

B is a proportionality constant determined by trial and error. 

(B-9) 

The number of elements used for any given node for form factors is taken as 

the maximum of that defined in Equation (B-8) or Equation (B-9). 
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Figure B-3 Nodal Preliminary Shadowing Techniques 
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APPENDIX C 

RESTART TAPE FORMAT 
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The master restart tape consists of two or nine data files, (see 

Section 3.3.9.8.1: Permanent Restart Output Tape - RSO). For Appendix C, two 

files will be assumed. The first file is written during preprocessor 

execution and the second during processor execution. The first file consists 

of edit history data and images of all active and inactive input data cards. 

The second file consists of one or more "pseudo-files" begun with a 

standard header record and ending with a standard trailer record. Each 

restartable processor segment (FFCAL, GBCAL, SFCAL, DICAL, RBCAL, CMCAL and 

DRCAL) writes a pseudo-file containing the data necessary ,to restart an 

interrupted job with minimum repeated calculations. Also, there is a , 
pseudo-file for each type of correspondence data, automatic, form-factor and 

GB. In addition, pseudo-files containing nodal property data are produced by 

CMCAL, from any BUILDC/ADD series, or from any series of calls to data 

modification routines (Ref. 4.3.8: Data Modification Routines). The 

correspondence data and property data pseudo-files are provided only for use 

by special TRASYS/thermal analyzer interface programs, and are not used in 

restart operations. Also, there may be a pseudo-file of direct-incident 

shadow factors for printout in restarted runs. 

HEADER RECORD FORMAT 

Word 

1 Record number {consecutive from beginning of file} 

2 DATE 

3 TIME 

4 6HHEADER 

5 CONFIGURATION NAME (6 characters, max.) 

6 RESTART POINT (restartable), ACCESS NO. (node, area, property arrays) or 

STEP NO. (absorbed fluxes and incident fluxes) 

7 One of the following LABEL words: FFCAL, GBIR, GBSO, SFCAL, CMCAL, RBCAL 

(with restart point); or PROPBD (from BUILDC, with access no.); or PROPCG 

(from mod routines with access no.); or PROPCM (from CMCAL, with access 

no.); or AQCAL, DICAL, DRCAL (with step no.); or CORRES, CORRFF, SHFAC. 

8 TYPE OF COMBINING (CM,AU,AUCM) For CMCAL, GBIR, GBSO, AQCAL files; job 

number for other files. 

9 NO. OF NODES for CMCAL, GBIR, GBSO, AQCAL files; date for other files. 

10 thru 12 - SAME AS 1 THRU 3 
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TRAILER RECORD FORMAT 

Words 1 through 3 contain record number, date, time 

Words 4 through 9 contain 3HEND 

Words 10 through 12 contain record number, date, time 

CORRESPONDENCE DATA PSEUDO-FILE FORMAT 

Record 

1 HEADER (contains CORRES or CORRFF as label) 

2 THRU N - Correspondence data records. Each record is 100 words or 

number of nodes words long, whichever is least. 

N + 1 Trailer Record 

PROPERTY ARRAY PSEUDO-FILE FORMAT 

Record 

1 HEADER (contains PROPBD or PROPCG as label). 

2 4HNODE, NNOD, (NODE(I), I = 1,NNOD)* 

3 4HAREA, NNOD, (AREA(I), I = 1,NNOD)* 

4 5HEMISS, NNOD, (EMISS(I), I = 1,NNOD)* 

5 5HALPHA, NNOD, (ALPH(I), I = 1,NNOD)* 

6 4HTRIR, NNOD, (TRIR(I), I = 1,NNOD)* 

7 4HTRSO, NNOD, (TRSO(I), I = 1,NNOD)* 

8 4HSRIR, NNOD, (SRIR(I), I = 1,NNOD)* 

9 4HSRSO, NNOD, (SRSO(I), 1= 1,NNOD)* 

10 Trailer record 

If label is PROPCM, records 10 and 11 contain: 

10 5HICOMB, ICMBL, (ICOMB(I), I = 1,ICMBL)* 

11 Trailer record 

where: 

NODE = Node identification numbers 

NNOD = Number of nodes in problem 

*Note: All data records begin and end with record number, date and time 
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AREA 

EMISS 

ALPHA 

TRIR 

TRSO 

SRIR 

SRSO 

Node surface properties (Ref. Table 111-3) 

ICMBL = Length of ICOMB array 

ICOMB = Array of combined node identification numbers 

DICAL PSEUDO-FILE FORMAT 

Record 

1 Header (label = 5HDICAL) 

2 NNOD, TIMEPR, TRUEAN, (NODE(I), I = I,NNOD)*. 

31 NEPT, SHADR, SHADP, «PLAVT(I,J), I = I,NEPT), J = 1,3)* 

41 (SUMR(I), SUMP(I), I = I,NEPT)* 

2*NNOD+2 NNOD, (QDS(I), I = I,NNOD)* 

2*NNOD+3 NNOD, (QDR(I), I = I,NNOD)* 

2*NNOD+4 NNOD, (QDP(I), I = I,NNOD)* 

2*NNOD+5 (SUNPV(I), I = 1,3), «PLDC(I,J), J = 1,3), I = 1,3) 

2*NNOD+6 NSURF, (IFS(K), IKS(K), (PR(I,K), I = 1,2), (DSTR(I,K), I = 1,5), 

(DIMS(I,K), I = 1,3), (PSH(I,K), I = 1,4), «(TSTR(I,J,K), J = 
1,3), I = 1,3) K = I,NSURF), NSPEC, (ISPEC(I), SREFLI(I), 

SREFLS(I), I = I,NSPEC) 

2*NNOD+7 Trailer record 

where: 

NNOD = Num',er of nodes 

TIMEPR = Orbit time 

TRUEAN = True anomaly 

NODE Node identification numbers 

NEPT = Number of elements on planet 
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SHADR = Node - planet shadow factor {solar waVeband)l NOTE: These 

SHADP = Node - planet shadow factor (IR waveband) are redundant 

PLAVT = Planet element area vectors (3 components) with SHFAC 

SUMR = Form factors from node to planet elements pseudo file. 

(solar waveband) 

SUMP = Form factors from node to planet elements (IR waveband) 

QDS, QDR, QDP = Incident solar, albedo and planetary flux values 

SUNPV = Sun position vector 

PLDC = Matrix to transform vectors ~n the CCS to vectors ~n the 

planet-oriented VCS. 

NSURF Number of surfaces 

IFS = Array of shadower suface input sequence numbers 

IKS = Array of shadower surface type flags 

PR 

DSTR 

DIMS 

= Array of shadower surface transmissivities in the infrared 

and solar wavebands 

= Array of shadower surface dimensions 

= Array of shadower surface SCS origin position vectors in 

CCS 

PSH = Array of radii of shadower surface encompassing spheres and 

TSTR 

CCS position vectors to the centers of those spheres 

= Array of matrices to transform vectors in the CCS 

to vectors in the shadower SCS's. 

ISPEC = Array of inp~t sequence numbers of specular surfaces 

SREFLI = Array of surface specular reflectivity in infrared waveband 

SREFLS = Array of surface specular reflectivity in solar waveband 

1 NOTES: Records 3 through 2*NNOD+l exist only for circular planet oriented 

orbits. Otherwise this pseudo-file contains 8 records only. 

*All data records begin and end with record number, date and time. 
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I 

DRCAL PSEUDO-FILE FORMAT 

Record 

1 Header (label = 5HDRCAL) 

2 NNOD, TIMEPR, TRUEAN, (QDS(I), QDR(I), QDP(I), I = 1,NNOD)* 

3 Trailer record 

Reference DICAL format for variable definitions. 

FFCAL or NFFCAL PSEUDO -FILE FORMAT 

Record 

1 

2 

3 

NNOD+2 

Header (label = 5HFFCAL) 

LBNODA, NNOD, (NODE(I), I = 1,NNOD) 

I ROW , J, K, FFSHOI, FFSHOJ, (FFVALI(I), I = J,K), (FFVALS(I), 

I = J,K), BFE (I), I = J,K), (BFA(I), I = J,K)* 

Trailer record 

where: 

IROW = "Emitter" node number 

J = Integer location (in node array) of emitter node 

(I.GE.J .LE.NNOD) 

NNOD = Number of nodes 

NODE = Node Numbers 

FFVALI = Infrared form factors from emitter node to receiver node 

FFVALS Solar form factors from emitter node to receiver node 

BFE = Blockage factors corresponding to each FFVALI 

BFA = Blockage factors corresponding to each FFVALS 

LBNODA = Node Array label (6HNODARY) 

**NOTE: All data records begin and end with record number, date and time. 
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AQCAL PSEUDO-FILE FORMAT 

Record 

1 

2 

3 

4 

5 

6 

where: 

Header (label = SHAQCAL) 

NNOD, TlMEPR, TRUEAN, (NODE(I), 

NNOD, (QAS(I), I = 1,NNOD) 

NNOD, (QAR(I), I = 1,NNOD) 

NNOD, (QAP(I), I = 1,NNOD) 

Trailer record 

NNOD = Number of nodes 

TIMEPR = Orbit time 

TRUEAN = True Anomaly 

I =1,NNOD) 

NODE Node identification numbers 

QAS, QAR, QAP = Absorbed solar, albedo and planetary heat values 
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SHFAC PSEUDO-FILE FORMAT 

This pseudo file follows each DICAL pseudo-file when ISFAC = YES and is used 

to printout the DI shadow factors for restart runs. 

Record 

1 Header Record (label = 5HSHFAC) 

2 (SHADS{I), I = 1,NNOD)* 

3 (SHADR{I), I = 1,NNOD)* 

4 (SHADP(I), I = 1,NNOD)* 

where: 

SHADS = Solar shadow factor 

SHADR = Albedo shadow factor 

SHADP = Planetary shadow factor 

*All data records begin and end with record number, date and time. 
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CMCAL PSEUDO-FILE FORMAT 

Record 

1 Header record (label = 5HCMCAL) 

2 NNODC, ICMBL, (ICATEG(I), I = 1,NNOD), (ICOMB(I), I = I,ICMBL), 

(NODEC(I), AREAC(I), EMISSC(I), ALPHC(I), TRIRC(I), TRSOC(I), 

SRIRC(I), SRSOC(I), I = 1,NNODC)* 

NNODC+2 Trailer record 

where: 

NNODC = Number of nodes after combining 

lCMBL = Length of lCOMB array 

ICATEG = Combining Category, array 

ICOMB = Correspondence data array 

NODEC = Node no. array after combining 

AREAC 

EMlSSC 

ALPHC 

TRIRC 

TRSOC 

SRlRC 

SRSOC 

Node property arrays after combining 

GBCAL PSEUDO-FILE FORMAT 

Record 

1 Header record (label = 4HGBIR or 4HGBSO) 

~' *NOTE: All data records begin and end with record number, date and time. 
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2 

NNOD+2 

IROW*, SPACE, (FA(I), I = J,NNOD*} 

Trailer record 

where: 

IROW = Number of emitter nodes 

SPACE = Radiation interchange factor to space 

FA = Array of radiant interchange factors from emitter node to 

receiver nodes 

NNOD = Number of nodes 

J = Integer locator number of node IROW 

*NOTE: If CMCAL has been executed, NNOD = NNODC and IROW = NODEC(J} 

RBCAL PSEUDO-FILE FORMAT 

Record 

1 

2 

NNOD+2 

Header Record (label = 5HRBCAL) 

IROW, (RBVALI(I), I = J,NNOD}, (RBVALS(I), I = J,NNOD}* 

Trailer record 

where: 

IROW = Node number of emitter node 

RBVALI = Array of "total" form factors from emitter to all receivers 

(infrared waveband) "total" form factor includes direct form factor 

to receiver, plus form factors to all images of receiver as seen in 

specular surfaces. 

RBVALS = Same, for solar waveband 

*NOTE: All data records begin and end with record number, date and time. 

C-IO 



J = Integer location for node IROW ~n NODE array 

NNOD = Number of nodes in problem 

SFCAL PSEUDO-FILE FORMAT 

Record 

I 

1 Header record (label = 5HSFCAL) 

2 NNOD, (NODE(I), I = 1,NNOD)* 

3 (TABSHA (ICO,ICL), ICL 1,19), ICO = 1,9 

4 (TABSHE (rCO, ICL) , ICL 1,19), ICO 1,9 

f" 2*NNOD+l (TABSHA (ICO,ICL), ICL 1,19), ICO 1,9 

2*NNOD+2 (TABSHE (ICO,ICL), ICL 1,19), ICO 1,9 

2*h'NOD+3 Trailer record 

where: 

NNOD No. of nodes 

NODE Node no. array 

TABSHA Shadow factor array - solar 

TABSHE Shadow factor array - infrared 

*NOTE: All data records begin and end with record number, date and time. 
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Clock angles 1 through 19 range from 00 to 360 0 in 20 0 increments 

about the central coordinate system z-axis, (See Figure C-l). o 
The 0 and 

360
0 

points are repeated to avoid wrap-around interpolation. Cone angles 1 

through 9 are 180., 157.5, 135., 112.5 90., 67.5, 45, 22.5, and O. degrees 

respectively. 
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APPENDIX D 

SUBROUTINE DESCRIPTIONS 

Subroutine Subroutine 
Name Page Name Page 

ADD . D-2 NDATA, NDATAS · D-40 

ADSURF · · · · D-3 NFDATA · · · · · · · · D-42 I 
AQDATA D-5 NODDAT D-43 

BUILDC · · · · · D-7 ODATA, ODATAS · · · · · · · D-44 

CHGBLK D-9 ORBIT1 · · · D-46 

CMDATA D-10 ORBIT2 · · · · · · · · D-48 

DICOMP · · · · · · D-ll ORIENT D-50 

DIDT1, DIDT1S · · · · · D-13 PLDATA D-51 

f". DIDT2, DIDT2S · · · · · D-15 QODATA · · · · · · · · D-54 

DIDT3, DIDT3S · · · · · D-17 QOINIT D-56 

B DIREAD D-19 RBDATA · · · · D-57 

DITTP, DITTPS · D-20 RCDATA · · · · D-58 

DRDATA D-22 RKDATA · · · · D-61 

FFDATA · · · · · D-23 RSTOFF · · · · D-63 

FFNDP . · · · · · · D-25 RSTON · D-63 

I FFREAD · · · · · D-26 SPIN D-65 

GBAPRX D-27 STFAQ · · · · · D-67 

GBDATA · · · · · D-28 SURFP · · · · · D-68 

LIST · · · · · · D-29 

MODAR • D-30 

MODPR . · · · · D-32 

MODPRS · · · · D-34 

MODSHD D-36 

MODTR • D-38 
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SUBROUTINE NAME: ADD 

PURPOSE: 

This subroutine adds to the problem geometry all nodes/surfaces 

contained in BCSNAM. 

VARIABLE NAME: 

BCSNAM ~s a Block Coordinate System name of up to 6 characters. 

RESTRICTIONS: 

Call valid only after previous calls to BUILDC or ADD within current 

step. BCSN~ must be a block coordinate system name as defined in surface 

data. 

CALLING SEQUENCE: 

CALL ADD (BCSNAM) 

EXAMPLE: 

CALL ADD (EXTANK) 

RELATED INFORMATION: 

See BUILD CARD information - Page D-8 
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SUBROUTINE NAME: AD SURF 

PURPOSE: 

This subroutine functions to add an adiabatic "closure" 

surface to the problem geometry and adds the pertinent form factors to the 

form factor matrix. 

Variable Name: 

BCSN 

NFIGFF 

AREA 

RESTRICTIONS: 

Description 

Name of a block coordinate system 

containing the "closure" surface 

Configuration name under which modi

fied form factor matrix is to be 

stored 

Area of adiabatic "closure" surface 

Default Values 

None 

Current configura

tion name 

Computed Area based 

on data in Surface 

Data Block 

Block coordinate system BCSN must appear in the surface data block with 

one and only one node (and, therefore, one surface). This surface must be 

completely defined in the Surface Data Block, including the surface properties 

desired for the "closure" surface. The concept to simulate an adiabatic 

condition would require a very small IR emissivity. 

In addition it requires for the third argument an area equivalent to 

the smallest possible area required to close out the configuration as a 

complete enclosure. Physically this area may consist of one or more parts, 

for example, the ends of a long cylinder. Only one surface is required since 
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only the true enclosure area is what needs to be preserved. If the last 

argument is zero, the program will use the area computed in the Surface Data 

Block. The dimension of this surface regardless of surface type must be such 

that the computed area will be equivalent to the smallest possible area 

required to close out the configuration as a complete enclosure with one or 

more areas. 

1. The call to GBDATA subsequent to an ADSURF call must have GBWBND = 2HIR 

2. ACTIVE == Both is not allowed for the adiabatic "closure" surface. 

CALLING SEQUENCE: 

CALL ADSURF (BCSN, NFIGFF, AREA) 

RELATED INFORMATION 

See Section 4.3.3.4: Adiabatic "Closure" Surface and Appendix J. Use 

of Adiabatic Closure Surfaces. 
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SUBROUTINE NAME: AQDATA 

PURPOSE: 

This subroutine defines parameters used in AQCAL for calculation of 

absorbed heats. Direct fluxes for AQ calculations are obtained from current 

step data storage. 

Variable Names Default Names 

IAQGBS - configuration name for solar grey-body matrix* Current Config. Name 

IAQGBI - configuration .name for IR grey-body matrix* Current Config. Name 

RSOLAR - multiplying factor for solar absorbed heat 1.0 

RALB - multiplying factor for albedo absorbed heat 1.0 

RPLAN - multiplying factor for planetary absorbed heat 1.0 

RESTRICTIONS: 

Must be called subsequent to a DICAL execution within same step. 

NOTES: If not called prior to an AQCAL execution (within same step), default 

values assumed. Individual default values obtained by passing zero 

arguments. 

CALLING SEQUENCE: 

CALL AQDATA (IAQGBI, IAQGBS, RSOLAR, RALB, RPLAN) 

D-S 



*NOTE: If IAQGBS or IAQGBI is input as 4HZERO, the absorbed solar or the 

absorbed infrared fluxes, respectively, will be set to 0.0. 

The reading of solar or infrared gray body factors will also be 

bypassed so that unused gray body factors need not be calculated. 

RELATED INFORMATION: 

If a comprehensive printout of absorbed fluxes is desired, the FORTRAN 

statement AQPRNT = YES should appear prior to any L AQCAL card or any ORBGEN 

card (reference Section 4.3.7.1: Subroutine AQDATA). 
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SUBROUTINE NAME: BUILDC 

PURPOSE: 

This subroutine is used to define as problem geometry all nodes and 

surfaces identified with a Block Coordinate System. BUILDC is the first call 

to define a new configuration. 

VARIABLE NAME: 

BCSN~~ is a block coordinate system name consisting of up to 6 

characters. (alphanumeric, beginning with an alphabetic character) 

CONFIG 1S a Hollerith name identifying the current active configuration. 

RESTRICTIONS: 

Must be called prior to any Subroutine ADD calls within a step. BCSNAM 

must be ALLBLK, or a block coordinate systems name as defined in surface 

data. CONFIG must be input as a Hollerith string of up to six characters. 

For example, 5HSHUTL. 

NOTE: If BCSNAM = ALLBLK, all surfaces in the surface data block become 

problem geometry. If CONFIG = 0 1n the first call to BUILDC, the 

configuration name defaults to the run model name input in the option~ 

data block. CONFIG must be input in subsequent calls to BUILDC. 

CALLING SEQUENCE: 

CALL BUILDC (BCSNAM, CONFIG) 
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RELATED INFORMATION: 

Sequences of calls to BUILDC and ADD may be accomplished with one card 

(reference Section 3.3.9.4: Build Option), formatted as follows: 

CCl 

BUILD 

CC7 

FIG,BLKl,BLK2,BLK3 

This is equivalent to the sequence: 

CC7 

CALL BUILDC(BLKl,3HFIG) 

CALL ADD(BLK2) 

CALL ADD(BLK3) 

Note that the configuration name, FIG, must begin to the right of card column 

6. If a continuation card 1S required to list all the BCS names involved, 

some character is required in CC6 of each continuation card. A BCS name may 

not be split between cards. 
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SUBROUTINE NAME: CHGBLK 

PURPOSE: 

This subroutine allows the user to change block coordinate system 

parameters where: 

BCSNAM - block coordinate system to be changed 

TX - translation along CCS X-axis 

TY - translation along CCS Y-axis 

TZ - translation along CCS Z-axis 

IROTX - order X rotation is to be performed (1,2,3) 

IROTY - order Y rotation is to be performed (1,2,3) 

IROTZ - order Z rotation 1.S to be performed (1,2,3) 

ROTX - angle of rotation about CCS X-axis 

ROTY - angle of rotation about CCs Y-axis 

ROTZ - angle of rotation about CCS Z-axis 

RESTRICTIONS: 

1. TX, TY, TZ, ROTX, ROTY, ROTZ must be floating-point numbers. 

IROTX, IROTY, IROTZ must be integers, 1, 2, or 3 

2. Must be called prior to the applicable BUILDC/ADD sequence. 

CALLING SEQUENCE: 

CALL CHGBLK (BCSNAM, TX, TY, TZ, IROTX, IROTY, IROTZ, ROTX, ROTY, ROTZ) 
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SUBROUTINE NAME: CMDATA 

PURPOSE: 

This subroutine is used to define parameters used by CHCAL in combining 

form factors according to correspondence data. 

Variable Names Options Default Value 

NFIGFF - Configuration name for uncombined N/A Current Config. 

form factor access Name 

NFIGCO - Configuration name for form factor N/A Current Config. 

correspondence data access Name 

NFFTYP - Form factor type flag 2HFF, 2HRB 2HFF 

!AUTOC - Flag to apply auto combining data 3HYES, 2HNO 3HYES 

FFPRNT - Print flag for combined form factors 3HYES,2HNO 3HYES 

NOTES 

I 
If not called prior to a CHCAL execution, default values are used. 

CALLING SEQUENCE: 

CALL CMDATA (NFIGFF,NFIGCO,NFFTYP,IAUTOC,FFPRNT) 

RELATED INFORMATION: 

See Section 3.3.8: Correspondence Data 
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SUBROUTINE NAME: DICOMP 

PURPOSE: 

This subroutine 1S used to define logic used in subsequent DICAL 

execution. 

DEFINITIONS: 

Variable Names 

ISOLFL - solar flux 

IALBFL - albedo flux 

compute/stuff 

flag 

IPLAFL - planetary flux 

compute/stuff 

flag 

RESTRICTIONS: 

Options 

a. 4HZERO - zeros out solar 

flux for all nodes 

b. 0 (integer) - results 

in computation of solar 

fluxes 

c. STEPN (integer step 

number) - stuffs solar 

fluxes from STEPN into 

current step storage 

Same as for ISOLFL 

Same as for ISOLFL 

Default 

o (compute) 

o 

o 

Cannot zero albedo flux if planetary is calculated (and vice versa). 
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NOTES: 

1. Compute/stuff flags are overridden by the planet shadow. 

Nonzero solar or albedo fluxes will never be stuffed into 

storage for a point within the planet shadow. 

2. Failure to call DICOMP prior to a DICAL exec~tion results in 

default values for all three flags. 

CALLING SEQUENCE: 

CALL DICOMP (ISOLFL, IALBFL, IPLAFL) 
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SUBROUTINE NAMES: DIDT1, DIDT1S 

PURPOpE: 

Calls to define direct irradiation shadowing and accuracy parameters 

and to compute heat source position vectors from true anomaly or time. 

DEFINITIONS: 

Variable Names 

DINOSH - shadow/no shadow flag (Options: 4HNOSH, 4HSHAD) 

Default Values 

4HSHAD (shadow 

calculations not 

bypassed) 

DIACC - element selection accuracy factor for node/planet 0.25 

form factors 

DIACCS - element selection accuracy factor for shadowing 0.10 

40 calculations 

TRUEAN - true anomaly. If TIMEPR is entered TRUEAN will be None 

computed 

NSPFF - step number reference to obtain node-planet form 

factors previously saved in reference 

step number 
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Variable Names Default Values 

TIMEPR - time None 

DIPNCH - flux punch flag (Options: 3HYES, 2HNO, 4HTAPE*) 2HNO 

ISFAC - flag to write shadow factor on RSO for printout 

on subsequent runs (Options: 3HYES, 2HNO) 

RESTRICTIONS: 

Either TRUEAN or TIMEPR must be defined in call. 

CALLING SEQUENCE: 

2HNO(CDC) 

3HYES(UNIVAC) 

CALL DIDTI (DINOSH, DIACC, DIACCS, TRUEAN, NSPFF, TIMEPR, DIPNCH, ISFAC) 

CALL DIDTlS (TRUEAN, NSPFF, TIMEPR, DIPNCH, ISFAC) 

RELATED INFORMATION: 

The statement ITRC70 = 2HON prlor to a call to the DICAL segment will 

print for each node the surface numbers considered as possible shadowers. 

NOTE: 

*Writes BCD output to USERI file ln Flux Data Block input Format. 
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SUBROUTINE NAMES: DIDT2, DIDT2S 

PURPOSE: 

Calls to define direct irradiation shadowing and accuracy parameters 

and to compute heat source position vectors from look angles. 

DEFINITIONS: 

DINOSH 

DIACC 

DIACCS 

NSPFF 

DIPNCH 

ISFAC 

Reference DIDTl 

SUNCL, SUNCO - look angles to sun (clock, cone) in the VCS.* 

PLCL, PLCO - look angles to planet (clock, cone) in the VCS.** 

TlMEPR - present time 

ALT - spacecraft altitude 

NOTE: 

*Allowable ranges of SUNCL, PLCL are 0 to 360 degrees. 

**Allowable ranges of SUNCO, PLeO are 0 to 180 degrees. 
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RESTRICTIONS: 

These calls must be preceded by a call to ORBIT! or ORBIT2. The 

purpose is to define the orbit-centered body and set the variables PRAD, SOL, 

PALB, WDS and WSS. A call to ORIENT is required if the CCS and the VCS are not 

coincident. 

Subroutine SPIN should not be used with DIDT2 or DIDT2S. 

CALLING SEQUENCE: 

CALL DIDT2 (DINOSH, DIACC, DIACCS, NSPFF, SUNCL, SUNCO, 

PLCL, PLCO, TIMEPR, ALT, DIPNCH, ISFAC) 

CALL DIDT2S (NSPFF, SUNCL, SUNCO, PLCL, PLCO, TIMEPR, ALT, DIPNCH, 

ISFAC) 
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SUBROUTINE NAME: DIDT3, DIDT3S 

PURPOSE: 

These subroutines are used to define and update direct irradiation 

parameters when using the planet surface option. 

DEFINITIONS: 

Variable Names 

DINOSH - shadow/no shadow flag (Ref. DIDT1) 

DIACCS - element selection accuracy factor for shadowing 

ITOD - time of day (military time), integer (e.g., 1435) 

DIPNCH - flux punch/no punch flag (Ref. DIDT1) 

ISFAC - flag to write shadow factors on RSO (Ref. DIDT1) 

RESTRICTIONS: 

Must be preceded by a call to subroutine SURFP. 

CALLING SEQUENCE: 

NOTES: 

CALL DIDT3(DINOSH;DIACCS,ITOD,DIPNCH,ISFAC) 

CALL DIDT3S(ITOD, ISFAC) 

Default Value 

4HSHAD 

0.1 

None 

2HNO 

2HNO(CDC) 

3HYES(UNIVAC) 

1. Use the statements TIMEPR = DAWN and TIMEPR = DUSK in the operation data 

to set current time to sunrise time and sunset time, respectively. 
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010T3 and 010T3S CANNOT be used with OAWN or ~USK as the first 

argument. The sequence: 

01DT3 (4HNOSH, .05,0,0,0) 

TIMEPR = DAWN 

is required to set D1NOSH, D1ACCS and T1MEPR 1S the time desired is 

DAWN. 
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SUBROUTINE NAME: DIREAD 

PURPOSE: 

This subroutine ~s used to expedite read-in of the DI information on 

RSI tapes. 

RESTRICTIONS: 

May be called ~n lieu of L DICAL on restart runs only when the DI 

pseudo-file is known to be complete and if no overrides from the flux data 

block are desired. 

CALLING SEQUENCE: 

CALL DIREAD 

RELATED INFORMATION: 

When IFO (last argument) is set to DIR on the ORBGEN card, all L DICAL cards 

normally generated by the ORBGEN call will be replaced by calls to DIREAD. 

(Ref. Sec. 3.3.9.2: ORBGEN option) 
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SUBROUTINE NAMES: DITTP, DITTPS 

PURPOSE: 

These subroutines read data from a trajectory tape and define 

spacecraft/heat source parameters through subroutine DIDT2. DITTP is called 

initially in order to define planetary parameters and position the tape for 

subsequent time points. DITTPS is used to update time and attitude/position 

data. 

DEFINITIONS: 

Variable Names 

TIME mission time 

ITYPE identifier for special event record 

PLANAM - name of orbit-centered planet (if applicable) 

(ref ORBIT!) 

IDWDN 

FIDEN 

NTIM 

NTYPE 

NCLPL 

NCOPL 

NCLS 

NCOS 

NRAD 

NWOR 

ALTMF 

number of word FIDEN in identification record 

file identification word Hollerith 

number of time word in information record 

number of word ITYPE 1n information record 

number of word containing clock angle-to-

planet vector 

number of word containing cone angle-to-

planet vector 

number of word containing clock angle-to-

sun vector 

number of word containing cone angle-to

sun vector 

number of word containing planet center-to

spacecraft distance 

number of words in tape record Integer 

multiplying factor to convert units of NRAD 

word to feet 
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Options 

Real no. 

Integer 

Hollerith 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Real no. 



Variable Names 

IBOD 

DIPNCH -

RESTRICTIONS: 

one-body/two-body flag 

o - One-body tape 

1 - Two-body tape, use body 1 

2 - Two-body tape, use body 2 

Punch/no punch flag for orbital flux output 

Options 

integer 

Hollerith 

a. Calls to DITTPS to update time and type can be made only after a 

call to DITTP is in effect. 

b. The TIME argument in DITTPS calls must be greater than any pre

viously defined TIME argument until the tape is repositioned 

~ through a call to DITTP. 

RELATED INFORMATION: 

See Section 4.3.5.8: Subroutine DITTP and DITTPS 

CALLING SEQUENCES: 

CALL DITTP (TIME, ITYPE, PLANAM, IDWDN, FIDEN, NTIM, NTYPE, NCLPL, 

NCOPL, NCLS, NCOS, NRAD, NWOR, ALTMF, IBOD, DIPNCH) 

CALL DITTPS (TIME, ITYPE) 
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SUBROUTINE NAME: DRDATA 

PURPOSE: 

This subroutine is used to define parameters used by DRCAL in computing direct 

irradiation with real body effects. 

Variable Names 

NSTPDI 

DIACCS 

NOTES: 

step number for flux data 

access 

accuracy parameter for 

flux shadowing 

Options Default Values 

Integer Current step no. 

Reference DIDTl 0.1 

If not called prior to DRCAL execution, default values are used. 

Calling Sequence: 

CALL DRDATA (NSTPDI, DIACCS) 
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SUBROUTINE NAME: FFDATA 

PURPOSE: 

This subroutine will define parameters used in FFCAL if other than 

default values are used. 

DEFINITIONS: 

Variable Names 

FFACC 

FFACCS 

FFNOSH 

FFRATL 

FFMIN 

FFPRNT 

FFPNCH 

FFNAC 

orientation accuracy factor 

shadowing accuracy factor 

shadowing override flag (4HNOSH, 4HSHAD) 

distance/area ratio factor 

eliminate small form factors 

flag to print form factors (3HYES,2HNO) 

flag to punch form factors (3HYES,2HNO,4HPALL*, 

4HTAPE**) 

node array check flag (3HYES,2HNO) 

* 4HPALL will punch all form factors (UNIVAC version) 

Default Values 

0.05 

0.1 

4HSHAD 

15.0 

1.E-6 

3HYES 

2HNO 

3HYES 

** Writes form factor output to the USER1 file in form factor data block 

format. 

RESTRICTIONS: 

NOTES: 

None 

Example: CALL FFDATA (0., 0., 4HNOSH, 0, 1.E-3, 0, 3HYES, 3HYES) 

Results in no shadowing computations, form factors below 0.001 ignored, 

form factors printed and default values used elsewhere. If value 

passed is zero, default value assumed. 
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RELATED INFORMATION: 

1. The statement IFFSHO = 2HNO prior to a call to the FFCAL link will 

bypass Form Factor computations to shadower only nodes. IFFSHO 

defaults to 3HYES. 

2. FFPNCH defaults to punch calculated form factors if RSO tape 1S not 

specified. 

3. The statement FFZERO = DV, pr10r to a call to the FFCAL or NFFCAL 

links will set the entire matrix to the Specified Data Valve (DV) 

and over-ride the form factor * Area matrix on the RSI file. It 

will not, however, override the Form Factor Data block. 

CALLING SEQUENCE: 

CALL FFDATA (FFACC, FFACCS, FFNOSH, FFRATL, FFMIN, FFPRNT, FFPNCH, 

FFNAC) 
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SUBROUTINE NAME: FFNDP 

PURPOSE: 

This subroutine is used to obtain a node number array, punched on cards 

in format used in form factor, flux data, and Shadow Factor data blocks. 

RESTRICTIONS: 

None 

CALLING SEQUENCE: 

CALL FFNDP 
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SUBROUTINE NAME: FFREAD 

PURPOSE 

This subroutine is used to expedite read-in of form factor information 

on restart tapes. 

RESTRICTIONS: 

May be called in lieu of L FFCAL or L NFFCAL on restart runs only when 

the form-factor pseudo-file is known to be complete and if no over-ride!-:ccomp 

information is desired from the form factor data block. 

CALLING SEQUENCE: 

CALL FFREAD 
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SUBROUTINE NAME: GBAPRX 

PURPOSE: 

This subroutine calculates gray-body radiant interchange factors using 

an approximate relationship and stores the results in data storage. Uses form 

factors and optical properties stored under current configuration name. 

Argument Name Description Options 

GBWBND 

NFIGFF 

NFFTYP 

NOTE: 

Waveband definition 2HIR, 

name 4HBOTH 

Configuration name for 

form factor access 

Form factor type to be 2HFF, 

used in GB calculations 

1. Input zero for default action. 

2. Gray body factor computed according to: 

~ ij = Fij€i€j 

where: Fij = form factor from i to j 

3HSOL 

2HCM 

Default 

4HBOTH 

Current Con-

fig. Name 

Last type calcu-

lated under CFIGFF 

€i = infrared or solar absorptivity, 1. 

Ej = infrared or solar absorptivity, J 

RELATED INFORMATION: 

See Section 4.3.6.2: Approximate Radiant Interchange Factors -

Subroutine GBAPRX 

CALLING SEQUENCE: 

CALL GBAPRX (GBWBND, 6HNFIGFF, NFFTYP) 
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SUBROUTINE NAME: GBDATA 

PURPOSE 

Defines parameters used by segment GBCAL in computing a grey-body 

factor matrix. Uses form factor * area matrix stored under configuration 

name, and the specified optical properties. 

Variable Names 

GBWBND - Waveband definition name (2HIR, 3HSOL, 4HBOTH) 

NFIGFF - Configuration name for form factor access 

NFFTYP - Form factor type to be used in GB calculations 

Options: 2HFF, 2HRB, 2HCM 

CALLING SEQUENCE: 

CALL GBDATA (GBWBND, 6HNFIGFF, NFFTYP) 

RESTRICTIONS: 

Default Value 

4HBOTH 

Current Config. 

name 

Last type cal

culated under 

NFIGFF 

1. GBDATA must be called prior to calculating gray body factors. 

2. Do not use a GBWBND of 3HSOL or 4HBOTH when used in conjunction 

with a call to ADSURF. 

3. Cannot use SOL in place of 3HSOL for Variable GBWBND. SOLAR is 

permissable. 
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SUBROUTINE NAME: LIST 

PURPOSE: 

This subroutine is used to obtain a printed listing of data on BCDOU 

and/or USERI tapes. 

Variable Names 

NAMEF - Name of tape to be listed 

N - Number of files to be listed 

NOTE: 

Options 

BOTH, USER 1 , 

BCDOU 

Integer, 3HALL 

Default 

BOTH 

None 

1. Call valid after writing data to BCDOU from RCCAL, RKCAL and/or 

QOCAL, or after writing data to USERI from FFCAL and/or DICAL. 

CALLING SEQUENCE: 

CALL LIST (NAMEF, N) 

RESTRICTIONS: 

Do not call Subroutine LIST until all writing to NAMEF Tape/file has 

been completed. 
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SUBROUTINE NAME: MODAR 

PURPOSE: 

This subroutine changes the area of a designated node, or changes the 

area of all currently active nodes by use of a multiplier. 

Argument Name Description Options Default 

ND 

AR 

NOTE: 

Node Number 

designator 

Desired value 

for area 

a. Any active node 

number (integer) 

b. 3HALL 

a. Floating-point 

data value 

b. 
. . 1 

Area mu1 t1ph.er 

(3HALL option only) 

None 

None 

1. When ND = 3HALL, all active node areas are modified according to: 

AREA = AREA*AR. 

RESTRICTIONS: 

1. Call not valid prior to geometry definition through calls to BUILDC 

and ADD. 

2. MODAR calls are cancelled by BUILD card or a subsequent BUILDC/ADD 

Sequence. Areas revert to those surface data. 
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RELATED INFORMATION: 

See Appendix D - Subroutine NODDAT. Also see Section 4.3.8.1: 

Subroutine MODAR. 

CALLING SEQUENCE: 

CALL MODAR (ND, AR) 
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SUBROUTINE NAME: MODPR 

PURPOSE: 

This subroutine modifies the diffuse infrared emmissivity and/or the 

diffuse solar absorptivity of a designated node. 

Argument Name 

ND 

ALPHA 

EMISS 

NOTE: 

Description 

Node number 

designator 

Diffuse solar 

absorptivity 

Diffuse IR 

emissivity 

1. If ALPHA O. or EMISS 

RESTRICTIONS: 

Options 

Any active 

node number 

a. 0.< DV< 1. 

b. DV < o. 

a. O. < DV < 1. 

b. DV < O. 

Default 

None 

None 

None 

0., current values are not changed. 

1. Call not valid pr10r to geometry definition through calls to BUILDC 

and ADD. 

2. MODPR calls are cancelled by BUILD card, or a subsequent BUILDC/ADD 

sequence. Properties revert to those in surface data. 
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CALLING SEQUENCE: 

CALL MODPR (ND, ALPHA, EMISS) 

RELATED INFORMATION: 

See Subroutine NODDAT - Page D - 42 
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SUBROUTINE NAME: MODPRS 

PURPOSE: 

This subroutine modifies the solar and/or infrared specular 

reflectivity of a designated node. 

Argument Name Description Options Default 

ND Node number 

designator 

Any active 

node number 

None 

SPRS Specular reflectivity, a. o. ~ DV < 1. None 

solar 

b. DV < 0.
1 

SPRI Specular reflectivity, a. o. ~ DV < 1. None 

infrared 

b. DV < 0.
1 

NOTES: 

1. If SPRI < O. or SPRS < 0., current values are not changed. 

RESTRICTIONS: 

1. This call applicable only to nodes defined as specular reflectors in 

the surface data block. 

2. Call not valid prior to geometry definition through calls to BUILDC 

and ADD. 

3. MODPRS calls are cancelled by a subsequent BUILD card or BUILDC/ADD 

sequence. Properties revert to those in surface data. 
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CALLING SEQUENCE: 

CALL MODPRS (ND, SPRS, SPRI) 

RELATED INFORMATION: 

See subroutine NODDAT - Page D-42 
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SUBROUTINE NAME: MODSHD 

PURPOSE: 

This subroutine modifies the SHADE/BSHADE flags for a designated 

surface. 

Argument Name Description Options Default 

ISR Surface number 

designator 

Any active 

surface number 

None 

SHADE "Can shade" flag FF, DI, BOTH, None 

BSHADE 

NOTES: 

NO, 0
1 

"Can be shaded" flag FF, DI, BOTH, None 

NO, 0
1 

1. If SHADE or BSHADE data values are zero, their values are not 

changed. 

2. Shade flag changes affect entire surface. 

3. MODSHD calls are cancelled by a subsequent BUILD card or BUILDC/ADD 

sequence. 



('\ 
RESTRICTIONS: 

Call not valid prior to geometry definition through calls to BUILDC and 

ADD. 

Call not applicable to shadower-only surfaces. 

Calls to MODSHD are cancelled by a subsequent BUILD card or BUILDC/ADD 

sequence. Properties revert to those in surface data. 

CALLING SEQUENCE: 

CALL MODSHD (ISR, SHADE, BSHADE) 
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SUBROUTINE NAME: MODTR 

PURPOSE: 

This subroutine modifies the solar and/or infrared transmissivity of a 

designated surface. 

Argument Name Description Options Default 

ISR 

TRANS 

Surface number 

designator 

Solar transmissivity 

Any active 

surface number 

a. o. < DV < 1. 

b. DV < 0.
1 

None 

None 

TRANI IR transmissivity a. O. < DV < 1. None 

NOTES: 

b. DV < 0.
1 

1. A negative TRANS or TRANI should be used if two TRASYS surfaces are 

input for one semitransparent body. This avoids having the shadow 

factors multiplied by the SQUARE of the Transmissivity. The pro

gram will use the SQUARE ROOT of the Transmissivity if the. user en

ters the transmissivities with a negative sign (Ref. Section 4 

3.3.3.8: Properties Data). 

2. Transmissivity changes affect entire surface. 
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RESTRICTIONS: 

Call not valid prior to geometry definition through calls to BUILDC and 

ADD. 

Calls to MODTR are cancelled by a subsequent BUILD Card or BUILDC/ADD 

sequence. Properties revert to those in surface data. 

CALLING SEQUENCE: 

CALL MODTR (ISR, TRANS, TRANI) 

RELATED INFORMATION: 

See Appendix D: Subroutine NODDAT 
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SUBROUTINE NAMES: NDATA, NDATAS 

PURPOSE: 

These subroutines may be called prior to a call to the node plotter 

segment to define optional views and miscellaneous parameters where: 

Parameter 

NV 

VU 

SCL 

NACT 

ISHO 

SELN 

TIT 

IROTX, IROTY 

IROTZ 

ROTX, ROTY 

ROTZ 

Description 

View number 

View 

Scale 

Flag for plotting ac

tive side of arrows 

Flag to plot shadower

only surfaces 

Name of array contain

identification numbers 

of nodes to be selectively 

plotted 

Array name of plot title 

Order of rotations (for 

VU = 3HGEN) 

View rotations (for VU 

.2: 3HGEN) 

*Input zero for default action 
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Options* 

1-6 

3HALL, 3H3-D 

1HX, 1HY, 1HZ, 

3HGEN 

Floating-point no. 

2HNO, 3HYES 

2HNO, 3HYES 

Array name 

Array name (array 

length 66 charac

ters max.) 

1,2,3 (any order) 

Real no. 

Default 

1 

3HALL 

Automatic scale 

2HNO 

2HNO 

Plot all nodes 

Uses job 

title 

1,2,3 

0.0,0.0, 

0.0 



NOTE: 

The NV parameter allows the user to define up to 6 plot operations that 

will be executed with one NPLOT segment call. Later in execution, 

(after a geometry change, for instance), he can execute the same 6 

operations or change one or more by reference to the appropriate NV 

before his NPLOT call. 

RESTRICTIONS: 

None 

CALLING SEQUENCE: 

CALL NDATA (NV, VU, SCL, NACT, ISHO, SELN, TIT, IROTX, IROTY, IROTZ, 

ROTX, ROTY, ROTZ) 

CALL NDATAS (NV, VU, SCL, NACT, ISHO) 
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SUBROUTINE NAME: NFDATA 

PURPOSE: 

This subroutine defines the parameters for the NFFCAL segment if other 

than default values are desired. 

DEFINITIONS: 

Variable Names 

NELCT 

FFNOSH -

FFMIN 

FFPRNT 

FFPNCH 

FFNAC 

total element count on a node 

(16 through 200 allowed) 

Reference subroutine FFDATA 

CALLING SEQUENCE: 

Default 

50 

4HSHAD 

1.E-6 

3HYES 

2HNO 

3HYES 

CALL NFDATA (NELCT, FFNOSH, FFMIN, FFPRNT, FFPNCH, FFNAC) 

RELATED INFORMATION: 

See Appendix D: subroutine FFDATA 
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SUBROUTINE NAME: NODDAT 

PURPOSE: 

This routine may be called at any time from the operations data block 

to print nodal areas and surface optical properties. This routine is 

particularly useful following calls to the "MOD" routines. 

RESTRICTIONS: 

May be called at any time after a model has been defined by calls to 

"BUILDC" and "ADD", or using the "BUILD" card. 

CALLING SEQUENCE: 

CALL NODDAT 
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SUBROUTINE NAMES: ODATA, ODATAS 

PURPOSE: 

These subroutines may be called prior to a call to the orbit plotter to 

define optional views and miscellaneous parameters where: 

Parameter 

NV 

VU 

SCL 

SCLR 

RPLN 

TRUEAN 

TIMEST 

TIME 

SELN 

Description 

View number 

View 

Spacecraft size measured 

from CCS origin in plot 

frame dimensions 

Orbit radius in plot 

frame dimensions 

planet radius in plot 

frame dimension 

True anomaly 

Time of periapsis 

passage 

Present time 

Name of array containing 

surface numbers to be 

selectively plotted 

Options* 

1-6 

3HALL, 3H3-D, 

4HBETA, 5HCIGMA, 

3HSUN, 3HGEN 

Real no. 

Real no. 

Real no. 

Real no. 

Real no. 

Real no. 

Array name (array 

length 66 charac

ters, max.) 
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Default 

1 

3HALL 

Computed auto-

matically 

Computed auto

matically 

1.4 inches 

None 

None 

Plots all 

surfaces de

fined as 

shadowers 



Parameter 

TIT 

IROTX, 

IROTY, IROTZ 

ROTX, ROTY, 

ROTZ 

Description 

Array name of plot title 

Order of rotations 

(for view = 3HGEN) 

View rotations to rotate 

plotter reference coor

dinate system (see Fig

ure 4-2 on P. 4-16) into 

user's desired view. 

*Input zero for default action 

Options* Default 

Array name Uses job title 

1,2,3 (any order) 1,2,3 

Real no. 0.0, 0.0, 0.0 

The NV parameter allows the user to define up to 6 plot operations that 

will be executed with one OPLOT call. Later in execution (after a geometry 

change, for instance), he can execute the same 6 operations or change one or 

more by reference to the appropriate NV before this OPLOT call. 

RESTRICTIONS: 

Calls valid only after orbit has been defined. 

CALLING SEQUENCE: 

CALL ODATA (NV, VU, SCL, SCLR, RPLN, TRUEAN, TIMEST, TIME, SELN, TIT, 

IROTX, IROTY, IROTZ, ROTX, ROTY, ROTZ) 

CALL ODATAS (NV, VU, SCL, SCLR, RPLN, TRUEAN, TIMEST, TIME) 
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SUBROUTINE NAME": ORBIT! 

PURPOSE: 

This subroutine defines spacecraft orbits in terms of classic orbital 

mechanics parameters and a celestial coordinate system. 

DEFINITIONS: 

Variable Names 

PNAME 

ALAN 

APER 

OINC 

TIMEST 

HP 

HA 

ECC 

SUNRA 

SUNDEC 

STRRA 

STRDEC 

RESTRICTIONS: 

None 

name of orbit-centered body 

longitude of ascending node 

argument of perifocus 

orbit inclination 

time of periapsis pa~sage, hours 

altitude at periapsis 

altitude at apoaps1s 

orbit eccentricity 

right ascension of sun 

declination of sun 

right ascension of star 

declination of star 

CALLING SEQUENCE: 

Default Values 

None 

None 

None 

None 

0.0 

None 

None 

None 

None 

None 

None 

None 

CALL ORBITl (PNAME, ALAN, APER, OINC, TIMEST, HP, HA SUNRA, SUNDEC, 

STRRA, STRDEC) 

CALL ORBITl (PNAME, ALAN, APER, OINC, TIMEST, HP, ECC, SUNRA, SUNDEC, 

STRRA, STRDEC) 
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NOTES: 

PNAME options are as follows: 3HMER, 3HVEN, 3HEAR, 3HMOO, 3HMAR, 3HJUP, 

3HSAT, 3HNEP, 3HURA, and 3HSUN. These names are used to key the follow

ing program variables: 

WDS 

PALB -

PRAD -

WSS 

SOL 

GRAV -

darks ide infrared emissive power at planet surface 

planet albedo value (solar reflectance) 

planet radius 

infrared emissive power at subsolar point 

solar "constant" at planet-sun distance 

planet gravitational constant at surface 

The Sixth argument is tested for magnitude. If it is < 1.0, ECC is 

assumed. 

If it 1.S > 1.0, HA assumed. 

Execution of this subroutine defines the planetary shadow entry and 

exit points (Ref. Figure 4-7). 

RELATED INFORMATION: 

Refer to Figure 4.3 and Figure 4.4 for definition of terms. 
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SUBROUTINE NAME: ORBIT2 

PURPOSE: 

This subroutine defines spacecraft orbits and sun/star position-orbit 

relationship in the orbit coordinate system. 

DEFINITIONS: 

Variable Names 

PNAME 

CIGMA 

BETA 

CIGMAS 

BETAS 

TIMEST 

HP 

HA 

ECC 

Default Values 

name of orbi t-centered body None 

clock angle - X axis to solar vector projection None 
o 

cone angle - Z axis to solar vector None o 

clock angle - X axis to star vector projection 
o 

cone angle - Z axis to star vector projection 
o 

time of periapsis passage, hours 

altitude of periapsis 

altitude of apoapsis 

orbit eccentricity 
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None 

None 

0.0 

None 

None 

None 



RESTRICTIONS: 

None 

CALLING SEQUENCE: 

NOTES: 

CALL ORBIT2 (PNAME, CIGMA, BETA, CIGMAS, BETAS, TIMEST, HP, HA) 

CALL ORBIT2 (PNAME, CIGMA, BETA, CIGMAS, BETAS, TIMEST, HP, ECC) 

See subroutine ORBITl. This call not applicable to heliocentric orbits. 

RELATED INFORMATION: 

Refer to Figures 4.3 and 4.5 for definition of terms. 
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SUBROUTINE NAME: ORIENT 

PURPOSE: 

To define spacecraft orientation relative to orbital heat sources. 

DEFINITIONS: 

Variable Names 

TYPE - orientation type 

IROTX - order of rotation about x-axis 

IROTY - order of rotation about y-axis 

IROTZ - order of rotation about z-axis 

ROTX - rotation about VCS x-axis to rotate VCS into CCS 

ROTY - rotation about VCS y-axis to rotate VCS into CCS 

ROTZ - rotation about VCS z-axis to rotate VCS into CCS 

NOTES: 

TYPE options are as follows: 4HPLAN, 3HSUN, 4HSTAR, 4HTAPE. 

Individual default values obtained by passing zero. 

RESTRICTIONS: 

Default Values 

None 

I 

2 

3 

O. 

O. 

O. 

Not recommended for use with DIDT2, DIDT2S. A call to ORIENT must 

precede a call to DIDTl or DIDTIS. 

RELATED INFORMATION: 

Refer to Figure 4.6 for definition of terms 

CALLING SEQUENCE: 

CALL ORIENT (TYPE, IROTX, IROTY, IROTZ, ROTX, ROTY, ROTZ) 
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SUBROUTINE NAME: PLDATA 

PURPOSE: 

This subroutine defines parameters necessary to execute the data 

plot;ter. 

DEFINITIONS: 

Variable Name Description 

IPLUNT Plot data flag 

(a composite 

Hollerith word) 

IPLSN Identifies steps 

to be plotted 

IPLNA Identifies nodes 

to be plotted 

PLCRVF Flag for curve

fitting 

Options 

Letter 1: A - Absorbed 

I -'Incident 

Letter 2: F - Fluxes 

R - Rates 

L~tters 3, 4, 5, & 6 (as 

required) 

S - Solar 

A - Albedo 

P - Planetary 

Default 

None 

T - Total (Sum of SAP) 

ALL - ALL 

A. 3HALL 3HALL 

B. Name of Array of step 

numbers. Steps do not 

have to be in any order 

A. 3HALL 3HALL 

B. Name of Array of node 

numbers 

3HYES, 2HNO 3HYES 
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PLLABX Plot label X Array name (array length Blanks 

28 characters max.) 

PLLABY Plot label Y Array name (array length Blanks 

28 characters max.) 

PLTITI Plot label title Array name (array length Blanks 

line 1 58 characters max.) 

PLTIT2 Plot label title Array name (array length Blanks 

line 2 70 characters max.) 

. PLXMPF X-axis mUltiplying Real no • 1.0 

factor' 

PLYMPF Y-axis mul tiplying' Real no. 1.0 

factor 

PLCMB Plots output with 3HYES, 2HNO 2HNO 

correspondence ap-

plied for current 

configuration name. 
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RESTRICTIONS: 

NOTE: 

None 

a. Examples of IPLUNT: 

3HARP; plots absorbed rates, planetary 

5HIFALL; plots all incident fluxes 

5HAFSAP; plots solar, albedo and planetary absorbed fluxes. 

b. Any set of dependent-and independent-variable data pairs may be 

plotted if IPLUNT = 1 and the data are written to disc/drum unit 1 in 

advance (reference Section 5.1.4). 

CALLING SEQUENCE: 

CALL PLDATA (IPLUNT, IPLSN, IPLNA, PLCRUF, PLLABX, PLLABY, PLTITl, 

PLTIT2, PLXMPF, PLYMPF, PLCMB) 
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SUBROUTINE NAME: QODATA 

PURPOSE: 

This subroutine used to define the absorbed heat output format to be 

obtained from the subsequent QOCAL execution. 

DEFINITIONS: 

Variable Names 

NSARRY 

NTMARY 

QOTAPE 

QOPNCH 

QOAMPF 

QOFMPF 

QOTMPF 

QOTYPE 

array of step numbers where absorbed Q data is 

stored. Any order allowed. Options: array name, 

3HALL. 

thermal analyzer time array number (Q arrays num

bered consecutively from NTMARY + 1) 

BCDOU tape output flag. Options: 4HTAPE, 2HNO 

punch output flag. Options! 3HPUN, 2HNO 

area multiplication factor 

energy multiplication factor 

time multiplication factor 

type of output flag. Options! 3HTAB for Q vs 

time tables, 2HAV for orbtial average Q data, 

4HBOTH for both 

*See Subroutine QOINIT 
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Devault Value 

3HALL* 

1 

2HNO 

3HPUN(CDC) 

2HNO(UNIVAC) 

1.0 

1.0 

1.0 

4HBOTH 



RESTRICTIONS: 

Current geometry definition must agree with geometry of all steps in 

NSARRY. 

NOTES: 

Sort is made to obtain monotonically increasing time array. Trapezoidal-rule 

average made for orbital average heat tables. 

QOAMPF applies only to areas on thermal analyzer subroutine call output. 

QOFMPF applies only to heat flux array output. 

QOTMPF applies to time array output and to value of period on subroutine call 

output. 

CALLING SEQUENCE: 

CALL QODATA (NSARRY, NTMARY, QOTAPE, QOPNCH, QOAMPF, QOFMPF, QOTMPF, 

QOTYPE) 
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SUBROUTINE NAME: QOINIT 

PURPOSE: 

This subroutine rewinds the absorbed heat (NTQ) data storage file, 

thus providing user control of the number of time points obtained with NSARRY 

= 3HALL in subroutine QODATA. This will make previously stored absorbed heat 

data inaccessible to the absorbed heat output (QOCAL) segment. 

CALLING SEQUENCE: 

CALL QOINIT 

RELATED INFORMATION: 

See Subroutine QODATA. 
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SUBROUTINE NAME: RBDATA 

PURPOSE: 

This subroutine is used to define parameters used by RBCAL ~n 

computing form factors with real-body radiation effects. 

Variable Name~ Default Value 

NFIGFF Configuration name for form factor access Current config. name 

FFACC 

FFACCS 
Reference FFDATA 

FFRATL 

FFPRNT 

NOTES: 

1. If not called prior to RBCAL execution, default values are used. 

2. Must utilize uncombined Form Factors. 

CALLING SEQUENCE: 

CALL RBDATA (NFIGFF, FFACC, FFACCS, FFRATL, FFPRNT) 
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SUBROUTINE NAME: RCDATA 

PURPOSE: 

This is a user-called subroutine that defines the parameters used 

in ReCAL for the condensation and output of radiation conductors (RADKs). 

VARIABLE DESCRIPTION AND DEFAULT VALUES: 

Variable 

NFIGGB 

RKPNCH 

RKMIN 

IRKCN 

RKSP 

IRKNSP 

SIGMA 

RKAMPF 

Description 

Configuration name for gray body factor access 

Punch/no punch flag. Options: 3HPUN, 2HNO 

Minimum value of '!:feA/ E A that will resul t in 

a valid RADK. RKMIN test is not made on con

ductors to the space node. If NERN is POSI

TIVE the RKMIN, test is applied to the sum of 

those connections discarded after the RFRAC 

requirement is satisfied. 

Initial radiation conductor number 

Flag for calculation of RADKs to space. 

Options: 5HSPACE, 2HNO 

Space node number 

Stefan-Boltzmann constant 

Area multiplying factor 
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Default Value 

Current Config. 

Name 

3HPUN 

0.0001 

1 

2HNO 

32767 

1.713E-9 

1.0 



RKTAPE 

NFIGCO 

RFRAC 

RTOL 

NERN 

IPRIME 

ISECND 

Flag to write RADKs to BCDOU tape. Options: 

4HTAPE, 2HNO.' See Subroutine LIST for Re

lated Information. 

Configuration name for correspondence data 

access 

Significant radiation fraction: radiation 

conductors of a node to be left intact 

divided by the sum of the node conductors 

Percentage of SLAST (last conductor value 

saved to meet RFRAC criterion). Subsequent 

conductors will be saved if their values are 

greater than RTOL * SLAST. 

Effective radiation node (ERN) number. If 

NERN is negative, all ERN conductors will 

be printed but not punched or written to tape. 

Array name for array of primary MESS node 

numbers and special node numbers 

Array name for array of secondary MESS node 

numbers 
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2HNO 

Current config. 

name 

0.7 

0.99 

None 

None 

None 



RESTRICTIONS: 

RCDATA must be called prior to RCCAL execution since all of the 

variables are not defaulted. 

IPRIME and ISECND arrays must be input in the array data block to 

specify MESS node pairs and special nodes. IPRIME ontains a list of. all 

primary MESS nodes and all special nodes in that order. ISECND contains a 

list of all secondary MESS nodes in IPRlME. 

CALLING SEQUENCE: 

CALL RCDATA (NFIGGB, RKPNCH, RKMIN, IRKCN, RKSP, IRKNSP, SIGMA, 

RKAMPF, RKTAPE, NFIGCO, RFRAC, RTOL, NERN, IPRIME, ISECND) 

, 
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SUBROUTINE NAME: RlCDATA 

PURPOSE: 

This subroutine defines para?eters used in RKCAL for output of 

radiation conductors (RADKs). 

Variable Names Default Value 

NFIGGB Configuration name for gray body factor access Current Config. name 

RKPNCH Punch/no punch flag. Options: 3HYES, 2HNO 

RKMIN 

IRKCN 

RKSP 

Minimum value oftr::l. ·A./ E.A. that 
J' 1.J 1. 1. 1. 

will result in a valid RADK. Test not applied 

to conductors to space nodes. 

Initial radiation conductor number 

Flag for calculation of RADKs to space 

Options: 5HSPACE, 2HNO 

IRKNSP Space node number 

SIGMA Stefan-Boltzmann constant 

RKAMPF Area multiplying factor 

RKTAPE Flag to write RADKs to BCDOU tape. Options: 

4HTAPE, 2HNO. See Subroutine LIST for Re

lated Information 

NFIGCO Configuration name for correspondence data 

3HYES 

0.0001 

1 

2HNO 

32767 

1. 713E-9 

1.0 

2HNO 

Current Config. 
access name 
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NOTES: 

If not called prior to RKCAL execution, default values will be 

assumed. Individual default values obtained by passing zero argu-

ments. 

CALLING SEQUENCE: 

CALL RKDATA (NFIGGB, RKPNCH, RKMIN, IRKCN, RKSP, IRKNSP, SIGMA, 

RKAMPF, RKTAPE, NFIGCO) 
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("'\ SUBROUTINE NAME: RSTOFF 

PURPOSE: 

This subroutine is used to discontinue the reading of data from an 

RSI tape during a restart run. All operations following a call to this 

routine are performed as though it was not a restart run, unless a call to 

subroutine RSTON is made later. 

RESTRICTIONS: 

Call valid only during a restart run from an RSI tape. 

RELATED INFORMATION: 

See Section 4.3.9: Restart Control Subroutines 

CALLING SEQUENCE: 

CALL RSTOFF 

SUBROUTINE NAME: RSTON 

PURPOSE: 

This subroutine is used to re-establish the reading of data from an 

RSI tape following a call to RSTOFF. 

RESTRICTIONS: 

Call valid only during a restart run from an RSI tape. 

RELATED INFORMATION: 

See Section 4.3.9: Restart Control Subroutines. 
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CALLING SEQUENCE: 

NOTE: 

CALL RSTON 

The judicious use of RSTOFF in conjunctin with RSTON allows the user 

to insert, delete, and/or recalculate any operations in his Operations 

Data Block. 
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SUBROUTINE NAME: SPIN 

PURPOSE: 

Subroutine to define spacecraft spin rate, spin axis, and time of 

beginning of spin. 

DEFINITIONS: 

Variable Names 

CLOCK 

CONE 

RATE 

TRUANS 

SPNTM 

clock angle - CCS x-axis to spin axis projection 

cone angle - CCS z-axis to spin axis 

spin rotation rate, revolutions/hour (positive 

clock-wise as viewed along spin axis from origin) 

true anomaly where spin begins 

time corresponding to TRUANS 

RESTRICTIONS: 

Default Values 

o. 
o. 
o. 

o. 
o. 

Must be called subsequent to orbit definition through subroutines 

ORBITl or ORBIT2. 

Subroutine SPIN cannot be used in conjunction with ORBGEN options INER 

and CIRP, and RATE not equal to zero. 
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NOTES: 

a. The time at which spin begins may be defined either directly 

through SPNTM or through TRUANS. If SPNTM = 0, SPNTM is com

puted from TRUANS. 

b. Spinning may be stopped only by a call to subroutine SPIN with 

RATE = o. and spin stop time or true anomaly defined. 

CALLING SEQUENCE: 

CALL SPIN (CLOCK, CONE, RATE, TRUANS, SPNTM) 
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SUBROUTINE NAME: STFAQ 

PURPOSE: 

This subroutine stuffs known values of direct flux and absorbed heat 

from a previously executed step into current step data storage. It also 

defines time of current step, either directly or from true anomaly. 

Variable Names 

TRUEAN 

TIMEPR 

NSTP 

current true anomaly, degrees 

current time, hours 

step number reference for known DI and AQ 

values 

RESTRICTIONS: 

Current geometry must agree with that of NSTP. 

CALLING SEQUENCE: 

CALL STFAQ (TRUEAN, TlMEPR, NSTP) 

NOTE: 

Default Values 

None 

None 

None 

If TRUEAN.GT.O., time 1S computed from TRUEAN; otherwise TIMEPR 1S 

passed directly to current step data storage. 
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SUBROUTINE NAME: SURFP 

PURPOSE: 

This subroutine defines parameters for computing solar fluxes on a 

configuration located on a planet's surface. 

DEFINITIONS: 

Variable Names Default Values 

PNAME name of planet (3HEAR, 3HMOO, 3HMAR) None 

ALAT location on planet surface, degrees of latitude None 

SUNLAT* - latitude of subsolar point, degrees None 

AEX Atmospheric extinction factor(or peak flux at None 

2 
RESTRICTIONS?olar noon, Btu/hr-ft )31 

None 

CALLING SEQUENCE: 

CALL SURFP (PNAME,ALAT ,SUNLAT ,AEX) 

NOTE: 

*For PNAME = 3HEAR, SUNLAT is input as day of year (1. SUNLAT 365.) 
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AI.»PENDIX E 

SEGMENT DESCRIPTIONS 

Segment Name PAGE 

NPLOT, OPLOT, PLOT E-2 

FFCAL, NFFCAL, RBCAL E-3 I 
CMCAL E-4 

DICAL, DRCAL E-5 

~ 
SFCAL E-6 

RKCAL, RCCAL E-7 

GBCAL, AQCAL E-8 

QOCAL E-9 
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SEGMENT NAME: NPLOT 

PURPOSE: 

This segment generates pictorial plots of nodal surfaces. 

RESTRICTIONS: 

None 

CALLING SEQUENCE: L NPLOT 

SEGMENT NAME: OPLOT 

PURPOSE: 

This segment generates pictoral plots of the spacecraft in orbit. 

RESTRICTIONS: 

None 

CALLING SEQUENCE: L OPLOT 

SEGMENT NAME: PLOT 

PURPOSE: 

This segment generates function vs time plots of absorbed and incident 

heat rates and fluxes. When used in conjunction with operations block FORTRAN 

that writes data to a plot data unit, this segment provides general x VB y 

plot capability. 

RESTRICTIONS: 

Reference Subroutine PLDATA 

CALLING SEQUENCE: L PLOT 
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SEGMENT NAME: FFCAL 

PURPOSE: 

This segment calculates all form factors for the active configuration. 

CALLING SEQUENCE: L FFCAL 

SEGMENT NAME: NFFCAL 

PURPOSE: 

This segment calculates high precision form factors using the 

Nusselt-sphere technique. 

CALLING SEQUENCE: L NFFCAL 

SEGMENT NAME: RBCAL 

PURPOSE: 

This segment computes all "image factors" for configurations 

containing one or more specular surfaces. It computes form factors from all 

nodes to images of all nodes, as seen in the specular surfaces, and adds these 

form factors to the "direct" form factors computed by FFCAL or NFFCAL to I 
create "total" form factors or image factors. 
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SEGMENT NAME: CMCAL 

PURPOSE: 

This segment combines form factor matrices according.to user-input 

correspondence data and auto-combine correspondence data for polygons. 

CALLING SEQUENCE: L CMCAL 

I RESTRICTION: Call is meaningful only after an FFCAL or NFFCAL execution under 

the configuration name defined in CMDATA. 
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SEGMENT NAME: DICAL 

PURPOSE: 

This segment computes solar, planetary, and albedo irradiatio~ 

incident on spacecraft nodes. 

RESTRICTIONS: 

Call valid only after previous calls have been made to define 

spacecraft geometry, location in space, characteristics and distances of heat 

source bodies, and computation accuracy parameters. 

CALLING SEQUENCE: L DICAL 

SEGMENT NAME: DRCAL 

PURPOSE: 

This segment computes the component of solar flux resulting from the 

image of the sun as seen in the specular-diffuse surfaces by each node. These 

components are added to the direct flux values computed by DICAL to obtain 

total direct flux. 

RESTRICTION: 

Call valid only after a previous call to DICAL, using the same 

configuration. 

CALLING SEQUENCE: L DRCAL 
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SEGMENT NAME: SFCAL 

PURPOSE: 

a. ,Segment computes analytically and stores on tape tables of inter

node blockage (shadow) factors for use in direct irradiation cal

culations. 

b. When a complete shadow factor file is supplied on the RSI tape, 

segment is executed in order to pass shadow tables into program 

storage and initialize nICAL to compute irradiation using shadow 

tables. 

RESTRICTIONS: 

None 

CALLING SEQUENCE: L SFCAL 
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SEGMENT NAME RKCAL 

PURPOSE: 

This segment computes radiation conductor values and punches (at 

user's option) output data in thermal analyzer format. Output card images are 

printed. 

RESTRICTIONS: 

Call valid after spacecraft geometry is defined and matching form 

factor matrix is computed. 

CALLING SEQUENCE: L RKCAL 

SEGMENT NAME: RCCAL 

PURPOSE: 

This segment computes radiation conductors, simplifies and condenses 

these conductors using the ERN and MESS techniques, and provides output in 

punched card and/or BCD tape form. 

RESTRICTIONS: 

Same as RKCAL 

CALLING SEQUENCE: L RCCAL 
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SEGMENT NAME: GBCAL 

PURPOSE: 

Segment computes and Stores gray-body factor matrix. 

RESTRICTIONS: 

Same as RKCAL 

CALLING SEQUENCE: L GBCAL 

SEGMENT NAME: AQCAL 

PURPOSE: 

This segment computes absorbed heat rates in two wavebands, accounting 

for diffuse reflection. 

RESTRICTIONS: 

Appropriate direct irradiation, gray-body factors, and surface 

. properties must be in system storage. 

CALLING SEQUENCE: L AQCAL 
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SEGMENT NAME: QOCAL 

PURPOSE: 

This segment accesses absorbed flux data and generates orbital average 

and absorbed flux vs time arrays. Arrays are output in thermal analyzer 

format on cards or BCDOU tape. 

RESTRICTIONS: 

None 

CALLING SEQUENCE: L QOCAL 
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APPENDIX F 

RADIATION CONDENSER SEGMENT THEORY 

F-l 



A. BASIC CONCEPTS 

The Multiple Enclosure Simplification Shield (MESS) technique and the 

Effective Radiation Node (ERN) technique are independent and can be discussed 

separately. Consider an N-node radiative enclosure that forms a section of a 

complex thermal model. The temperature of node i is a function of thermal 

radiation coupling and the applied heat load, Q l(assume that heat loads 

resulting from conduction and convection are included in Ql). The 

steady-state temperature of node i is then given by 

B. ERN TECHNIQUE 

(1) 

In applying the ERN technique, the enclosure radiation conductors for 

the ith node are divided into P. primary and N-P. secondary couplings. The 
1 1 

summation term in the numerator of Equation (1) can then be written as follows: 

N 4 L 6" A.F.jTj .. 
j=l 1. 1. 

N 

+:E 
.t=Pi+l 

(2) 

The number of radiation conductors can be reduced by arranging the conductors 

in decreasing order of the conductor value (A.F .. ) and replacing the secondary 
1 1J 

coupling summation of Equation (2) with a single conductor coupled to an ERN. 

That is, 

= r 1: A F'" ] T 4 
~ =p i +16' i i.Q ERN 

(3) 

-------------------------------------------------------------------------------
*In Appendix F, the letter F shall denote the gray-body factor,:1 • 



The ERN temperature is calculated by the thermal analyzer program as a 

steady-state node temperature based on a fourth-power, conductor-weighted 

average of the enclosure node temperatures using the secondary conductors. 

1-

[ 

N N 4 N N J4 
T = I: IS A.F. T. II: 6' A.F. 

ERN i=1 (;P.+l 1. 1.~ 1. i=l#P.+l 1.:L~ 
1. 1. 

(4) 

Using the relationships of Equatins (2) and (3), the approximate ith node 

temperature can be written from Equation (1) as a function of the ERN 

temperature. 

, 
T. . 1. 

N }t I: () A.F .• 
'-1 1. 1.J r 

(5) 
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C. APPLICATION OF THE ERN TECHNIQUE 

The significant radiation fraction defined by the relationship 

Pi I;N 
RFRAC = L (J"A.F' k LCf'A.F .. 

k=l L L j=l L LJ 

LS specified by the user. The number of primary conductors, P. is 
L' 

(6) 

determined by summing conductor values for a given node until the sum is 

greater than the fraction RFRAC of the sum of all conductors to the node. 

That is, 

(7) 

All primary and reverse direction conductors are flagged to be used intact. 

The secondary conductors for each node are summed to determine the conductor 

value for the node-to-ERN coupling. 

Since the error in the approximate temperature is a function of the 

enclosure temperature band, the ERN technique results can be improved if nodes 

that deviate significantly from the average temperature of the enclosure are 

not coupled to the ERN. These analyst-defined nodes are referred to as 

special nodes. 
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The percentage reduction in enclosure conductors and subsequent 

network error as a result of applying the ERN technique are controlled by the 

amllyst's selection of an RFRAC value consistent with the known accuracy of 

problem parameters (enclosure geometry, surface optical properties, etc). 

Experience has shown that the greatest percentage reduction in 

conductors results for enclosures with more than 75 nodes, significant 

shadowing and low-e~ittance surfaces. An RFRAC value of 0.7 has been found to 

result in a significant reduction in conductors with acceptable error for 

typical radiation enclosures. 

D. MESS TECHNIQUE 

The MESS technique provides the analyst with a means of dividing a 

radiation enclosure into an arbitrary number of subenclosures. 

MESS node pairs are defined by the analyst at the interface between 

subenclosures as two planar surfaces with the property of absorbing and 

emitting all energy incident upon them (black surfaces). Consider an N-node 

subenclosure, n, as shown in Figure F-l, 

to the MESS node pair of the nth and jth 

Temperatures in n are affected by TMESS 

where the subscripts rand r' refer 

subenclosures, respectively. 

, 
r' 

which represents the average 

thermal effect of the j subenclosure nodes on the nodes of n. The primary 

conductors of Equation (2) include conductors to MESS nodes. For a general 

subenclosure, n, with R interface MESS nodes, the primary radiation coupling 
n 

summation for node i is: 

R 

= 
n 4 2: ~ A.F. TMESS r=l 1. lor r' 
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p. 
1. 

+ L <f' A.F. 0 T04 
r=R +1 1. 1..JI. -'I. 

n 

(8) 



An energy balance on MESS node rl gives 

TMESS = 
rl 

+(J'A IF I r r r 

+tSA IF ,r)]Jz; 
r r 

4 T
MESS 

ml 

P I 
r 

+ L' <i' A I F I 'T 4 
k=R +1 r r k k 

j 

P I 
r 

+ L fSA IF, 
k=R +1 r r k 

j 

(9) 

F I represents the reflections between nand j due to nonblack subenclosure 
r r 

surfaces and is obtained from the radiation interchange matrix for each 

subenclosure. 
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HODULARIZED ENCLOSURE 
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Figure F-l MESS Technique One-Way Conductors 



The approximate temperature of the ith node is obtained from Equation 

(5), using Equation (8), as 

I 
T. 

1. 

P. 
1. 

+L: o-AF + 
~=R +1 i, i.l 

n 

4 TMESS r' 

Pi 4 

+'2: oA.F·oTn i =R +1 1. 1.;\ ~ 
n 

I<""A.F. 
v 1. lor 

'N ~ 

2: oA.F· h>} 
h=P +1 1. 1. 

i ' 

(10) 

The error in T. loS a complex function of the percentage of ERN 
1. 

s~condary conductors, temperature band of the subenclosure nodes, and the 

number os subenc10sures. In a variety of problems studied, the error has been 

found to be negligible. 

E. APPLICATION OF THE MESS TECHNIQUE 

Generation of MESS one-way conductors from the subenclosure radiant 

interchange matrix requires that the analyst specify the interface MESS node 
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pairs. As node conductors are generated, MESS nodes are flagged and 

appropriate one-way conductors are generated for use in the thermal analyzer 

program. 

The location of MESS Node pairs in an enclosure is influenced by: 

a. the number of subenclosure surfaces; 

b. geometric considerations; 

c. expected thermal gradients; 

d. the number of analysts available to work on the enclosure. 

Optimum reduction in form factors and conductors occurs in large enclosures 

divided such that the subenclosures contain approximately equal numbers of 

nodes. For enclosures divided into two approximately equal subenclosures, up 

to 50% reduction in the number of form factors and conductors can be expected. 

F. ERN/MESS APPLICATION 

The ERN and MESS techniques can be applied separately or 

simultaneously as the particular problem dictates. Whey they are applied 

simultaneously, an ERN is defined for each subenclosure and the MESS nodes are 

considered to be special nodes; that is, MESS nodes are not coupled to the ERN. 

G. SUMMARY 

The ERN/MESS technique reduces the number of form factors and 

radiation conductors necessary for enclosure radiation analysis and extends 

the analysis to include enclosures of arbitrary complexity. The use of the 

ERN/MESS technique can result in significant savings in time, both for the 

analyst and the computer. 



APPENDIX G - TAPE NAME DESIGNATIONS AND SUMMARY INFORMATION 

I. TAPE/FILE INFORMATION 

II. SUMMARY - USER TAPE/FILE INFORMATION 
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TAPE NAME AVAILABILITY** DESCRIPTION 

NOUT pp/p Print Output File 

DI PP Preprocessor Data Input File 

'RIO pp/p Random Access Data File 

CMERG PP CMERGE Tape 

EMERG PP EMERGE Tape 

RSI pp/p Permanent Restart Input Tape 

RSO pp/p Permanent Restart Output Tape ,~, 

PNCH PP Punch Output File 

SCI PP Scratch File 

SC2 PP Scratch File 

SC3 PP Scratch File 

I CMPL PP Logic Preprocessor Output File 

SQNTL PP/P Sequential Data File 

I DIR pp/p Flux Data Block File 

FFR pp/p Form Factor Data Block File 

'1 
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GBIRR 

PLSR 

RTI 

RTO 

BCDOU 

FILMPL 

TRAJ 

USERl 

USER2 

TQR 

FF 

GBIR 

GBSO 

PLS 

TQ 

SCRl 

pp/p 

pp/p 

P 

P 

P 

P 

pp/p 

P 

P 

P 

pp/p 

P 

P 

P 

P 

P 
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Correspondence Data Input File 

Shadow Factor Data File 

Temporary Restart Input Tape 

Temporary Restart Output Tape 

BCD Data Output Tape 

Plot Output File 

Trajectory Tape 

User File 

User File 

Equivalent form factor infor

mation file. 

Form Factor Data Storage File 

Infrared Grey-Body Storage File 

Solar Grey-Body Storage File 

Planetary Form Factor Save File 

Total Heat Rates Storage 

Scratch File 

I 

I 



--.. ~ , 

SCR2 P Scratch File 

SCR3 P Scratch File 

I 
SCRR P Random Scratch File 

RARR P Random I/O Data File 

PUN P Punch Output File 

DI P Direct Irradiation Data Storage 

File 

··r 
~ **PP: Preprocessor 
~: ... 

P: Processor 
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II. SUMMARY USER TAPE/FILE INFORMATION 

A. Input Tapes/Files 

1) RSI - Typical data stored are: model, FAs, GBs, RBs, SFs, DIs, and 

DRs. Source would be TRASYS II RSO tape. 

2) RTI - Temporary storage of FA, GB, RB, DI, DR interim calculations. 

Source would be a TRASYS II RTO tape. 

3) CMERG - Any BCD data source could be TRASYS I RTO or TRASYS II USERl 

tape. 

4) EMERG - Could consist of segment(s) of TRASYS input model. Source 

would be TRASYS II RSI/RSO tape. 

5) TRAJ - Trajectory tape. Also used .for FA and GB data. Source would 

be TRASYS I USERl tape or MPAD trajectory tape. 

B. Output Tapes/Files 

1) RSO - Typical data stored are model, FAs, GBs, RBs, SFs, DIs, and 

DRs. Used as a TRASYS II RSI input tape. 

2) RTO - Used for temporary storage of FA, GB, RB, DI, and DR interim 

calculations. Used as a TRASYS II RTI input tape. 

3) USERl - Typical BCD data stored are: FFs and DIs. Can be used as 

TRASYS II CMERG input tape. See Section II-c, Appendix G. 

4) BCDOU - BCD data stored for thermal analyzer (SINDA) interface 

includes RADKs, cyclic and averaged heating rates. 
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C. Preprocessor Tapes/Files Processor Tapes/Files 

RSI 

RSO RSO 

RTO 

BCDOU 

USERl 

TRAJ 

lFreed internally within TRASYS runstream at end of preprocessor 
execution. 

2Freed internally within TRASYS runstream when an end of file or parity 
error is encountered •• 
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APPENDIX I 

DEVELOPMENT OF EQUATIONS 

FOR 

DIFFUSE PLUS SPECULAR RADIATION ANALYSIS 
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I. ANALYTICAL DEVELOPMENT 

The assumptions and groundrules and the development of the. mathematical 

equations for diffuse-plus-specular radiation analysis are presented in this 

section. 

I.Assumptions and Groundrules 

The following assumptions and groundrules were used in the analytical 

development present herein for diffuse-plus-specular radiation analysis 

techniques. 

a. All surfaces are considered to be semi-gray (accounts for 

absorptions and reflection, but no emission in the ultra-violet 

portion of the spectrum; accounts for absorption and reflection as 

well as emission in the infrared portion of the spectrum). 

b. Equations are developed for use in analyzing radiation enclosures 

consisting of diffuse, specular, and/or diffuse-pIus-specular 

surfaces using an imaging technique. 

c. All surfaces are considered to emit diffusely and to reflect with 

diffuse and specular components such that the relationship 

€. + p' d + p,s + T. = 1. 
111 1 

is satisfied. 

d. All surfar.es with specular components of reflectance are 

restricted to planar surfaces to simplify imaging. 

e. Only first-order images are considered (that is, no images of 

images or images in images are generated). 
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2. Development of Equations 

The development of equations for radiation interchange factors follows 

the same procedure for both the infrared and ultra-violet portions of the 

spectrum with the only differences being in notation. Therefore, only those 

equations applicable to the infrared portion of the spectrum are developed 

here. 

Consider a radiation enclosure consisting of N surfaces. The net heat 

flux from anyone of these surfaces can be represented by 

9i,net = 
N 

a-E 
j=l 

4 4 
j .. (T

i 
- T. ) 

~J J 
(1) 

where ~ .. is the radiation interchange factor that couples surface i to sur
~J 

face j. 

The method of approach that is applied here in the development of 

radiation interchange factor (~ .. ) equations is an extension of the method 1J . 

set forth by Gebhart for purely diffuse enclosures (references 1, 2, and 3. 

The special utility in this formulation is that it yields coefficients which 

represent the fraction of energy emitted by a surface that is absorbed by 

another surface after reaching the absorbing surface by all possible paths. 

Considering first-order images only, the general equation for the 

Gebhart-type absorption factors for a diffuse-pIus-specular enclosure can be 

written 

,8ij 
N s 

=€.Fi ·+€· I:l'k Fij(k)+ 
J J J k=l 

N N d s • 

+ L: l: I'm /'k F im(k) 'mj' 
k=l m=1 
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By means of a term by term examination, equation (2) can be interpreted as 

follows: 

The fraction of the energy leaving surface i that is finally absorbed by 

surface j equals the sum of 

a. the energy that goes directly from surface i to surface j and is 

absorbed, 

b. the energy that goes from surface i to surface j by all possible 

first-order specular reflections and is absorbed, 

c. that fraction of the energy that goes directly from surface i to 

each of the surfaces in the enclosure, finally arrives at surface 

j by all possible paths due to diffuse reflections, and is 

absorbed. 

d. that fraction of the energy that goes from surface i to each of 

the surfaces in the enclosure by all possible first-order specular 

reflections, thence to surface j by all possible paths due to 

diffuse reflections, and is absorbed. 
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Real'ranging the terms in equation (2) yields 

i = 1,2, ••• , N j ":: 1,2, ••• ,N (3) 

Equation (3) can be further simplified by defining an "image factor" 
(0

ij
) ao that fraction of the energy that leaves surface i and arrives at 

surface j both directly and by all possible first-order specular reflections, 
such that 

s 
1\ 

i. = 1,Z, ••• ,N j = 1,Z, ••• ,N 

Substitution of equation (4) into equation (3) yields 

N d 

]1 ~m 0im ~mj 

Rearrangement of the terms in equation (5) yields 

Equation (6) can be represented in matrix form as 

where D is an N X N coefficient 
d 

jJ j0ij 

matrix with general element 

The systems of equations represented by (7) can be solved by matrix 
inversion to obtain the absorption factors (j3 ij) 

N 

j3 ij = 
L -1 

m=l Dim € j0mj 
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The radiation interchange factors (~ .. ) are related to the absorption factors 
1J 

reference 1) by the expression 

(10) 

and, using the usual arguments for the conservation of energy, the reciprocity 

relation for the N2 values of~. is 
1J 

(11) 

The foregoing equations apply to radiation enclosures consisting of any 

combination of diffuse and specular surfaces ranging from totally diffuse to 

totally specular enclosures. 

When the problem consists of an "incomplete" enclosure and a space node 

is present, the radiant interchange factor to space is computed from: 

(12) 

for an N-node incomplete enclosure. 
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A thermal analyst is sometimes confronted with the requirement to 

determine temperatures and heat flows in an enclosure that would require a 

great number of nodes to furnish adequate simulation, but also shows a great 

deal of symmetry and duplication of geometry. 

An example of such an enclosure is shown below. 

Subenc10sures A, Band C each contain an identical heat source/sink 

node (X), and each subenc10sure can "see" into the adjacent subenc10sure with 

a significant view. If the thermal boundary conditions for each of the 

subenc10sures are approximately the same, a condition of thermal radiation 

symmetry exists, that is, energy leaving B across plane abc is equivalent to 

the energy entering B across plane abc. The same can be said about the 

situation at plane def. Thus, planes abc and def are adiabatic surfaces in 

the sense that the net heat flow across them is zero. It is, therefore, 

correct thermal simulation to create a TRASYS model of subenc10sure B with 

adiabatic "mirrors" at planes abc and def to simulate the presence of 

subenc10sures A and C. Notice that this takes into account only the effects 

of subenc10sures A and C. If a longer string of identical subenc10sures exist 

and it is desired to account for them, two or more enclosures can be 

constructed and closed with adiabatic mirrors. A two enclosure model would 

thus account for the thermal affects of two enclosures on each end, a three 

enclosure model would account for three on each end, and so on. 
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Implementation of this procedure is quite simple us~ng subroutine 

ADSURF. There is no need to define the shape or location of the two 

reflecting planes, although the true enclosure area of the reflecting planes 

is a required input. When the user needs one or more adiabatic reflector 

planes, he merely adds an extra BCS to his surface data and defines within it 

a single rudimentary surface with very high reflectivity. This surface 

definition might be as follows: 

CCI 

BCS 

S 

CC7 

ADSURI 

SURFN = 10000, TYPE = RECT, PROP = .0001, .0001, ACTIVE = TOP 

PI = 1.0, 1.0, 0.0 

NOTE: BCS ADSURI can contain one and only one surface. 

With the adiabatic surface defined thus, the area must be determined 

outside TRASYS and entered as an argument to subroutine ADSURF. If desired 

the adiabatic surface may be defined in the usual manner and its area will be 

determined by the program. A zero would then be used as the area argument in 

ADSURF. 

With this surface in the surface data block, the user may apply the 

adiabatic "mirror" technique to an enclosure by a call to subroutine AD SURF 

subsequent to his form factor execution. If desired, the effect of the 

adiabatic surface can be determined in a single run by executing FFCAL or 

NFFCAL, GBCAL and RKCAL in the usual manner, followed by a call to ADSURF, 

followed by GBCAL and RKCAL execution to produce another set of radiation 

conductors, this time with the "mirrors" in place. 
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