941 research outputs found

    Subjective quality assessment of longer duration video sequences delivered over HTTP adaptive streaming to tablet devices

    Get PDF
    HTTP adaptive streaming facilitates video streaming to mobile devices connected through heterogeneous networks without the need for a dedicated streaming infrastructure. By splitting different encoded versions of the same video into small segments, clients can continuously decide which segments to download based on available network resources and device characteristics. These encoded versions can, for example, differ in terms of bitrate and spatial or temporal resolution. However, as a result of dynamically selecting video segments, perceived video quality can fluctuate during playback which will impact end-users' quality of experience. Subjective studies have already been conducted to assess the influence of video delivery using HTTP Adaptive Streaming to mobile devices. Nevertheless, existing studies are limited to the evaluation of short video sequences in controlled environments. Research has already shown that video duration and assessment environment influence quality perception. Therefore, in this article, we go beyond the traditional ways for subjective quality evaluation by conducting novel experiments on tablet devices in more ecologically valid testing environments using longer duration video sequences. As such, we want to mimic realistic viewing behavior as much as possible. Our results show that both video content and the range of quality switches significantly influence end-users' rating behavior. In general, quality level switches are only perceived in high motion sequences or in case switching occurs between high and low quality video segments. Moreover, we also found that video stallings should be avoided during playback at all times

    On the impact of video stalling and video quality in the case of camera switching during adaptive streaming of sports content

    Get PDF
    The widespread usage of second screens, in combination with mobile video streaming technologies like HTTP Adaptive Streaming (HAS), enable new means for taking end-users' Quality of Experience (QoE) to the next level. For sports events, these technological evolutions can, for example, enhance the overall engagement of remote fans or give them more control over the content. In this paper, we consider the case of adaptively streaming multi-camera sports content to tablet devices, enabling the end-user to dynamically switch cameras. Our goal is to subjectively evaluate the trade-off between video stalling duration (as a result of requesting another camera feed) and initial video quality of the new feed. Our results show that short video stallings do not significantly influence overall quality ratings, that quality perception is highly influenced by the video quality at the moment of camera switching and that large quality fluctuations should be avoided

    Video streaming

    Get PDF
    B

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios

    Full text link
    [EN] The combination of broadcast and broadband (hybrid) technologies for delivering TV related media contents can bring fascinating opportunities. It is motivated by the large amount and diversity of media contents, together with the ubiquity and multiple connectivity capabilities of modern consumption devices. This paper presents an end-to-end platform for the preparation, delivery, and synchronized consumption of related hybrid (broadcast/broadband) media contents on a single device and/or on multiple close-by devices (i.e., a multi-device scenario). It is compatible with the latest version of the Hybrid Broadcast Broadband TV (HbbTV) standard (version 2.0.1). Additionally, it provides adaptive and efficient solutions for key issues not specified in that standard, but that are necessary to successfully deploy hybrid and multidevice media services. Moreover, apart from MPEG-DASH and HTML5, which are the broadband technologies adopted by HbbTV, the platform also provides support for using HTTP Live Streaming and Real-time Transport Protocol and its companion RTP Control Protocol broadband technologies. The presented platform can provide support for many hybrid media services. In this paper, in order to evaluate it, the use case of multi-device and multi-view TV service has been selected. The results of both objective and subjective assessments have been very satisfactory, in terms of performance (stability, smooth playout, delays, and sync accuracy), usability of the platform, usefulness of its functionalities, and the awaken interest in these kinds of platforms.This work was supported in part by the "Fondo Europeo de Desarrollo Regional" and in part by the Spanish Ministry of Economy and Competitiveness through R&D&I Support Program under Grant TEC2013-45492-R.Boronat, F.; Marfil-Reguero, D.; Montagud, M.; Pastor Castillo, FJ. (2017). HbbTV-compliant Platform for Hybrid Media Delivery and Synchronization on Single- and Multi-Device Scenarios. IEEE Transactions on Broadcasting. 1-26. https://doi.org/10.1109/TBC.2017.2781124S12

    Bitstream-based video quality modeling and analysis of HTTP-based adaptive streaming

    Get PDF
    Die Verbreitung erschwinglicher Videoaufnahmetechnologie und verbesserte Internetbandbreiten ermöglichen das Streaming von hochwertigen Videos (Auflösungen > 1080p, Bildwiederholraten ≄ 60fps) online. HTTP-basiertes adaptives Streaming ist die bevorzugte Methode zum Streamen von Videos, bei der Videoparameter an die verfĂŒgbare Bandbreite angepasst wird, was sich auf die VideoqualitĂ€t auswirkt. Adaptives Streaming reduziert Videowiedergabeunterbrechnungen aufgrund geringer Netzwerkbandbreite, wirken sich jedoch auf die wahrgenommene QualitĂ€t aus, weswegen eine systematische Bewertung dieser notwendig ist. Diese Bewertung erfolgt ĂŒblicherweise fĂŒr kurze Abschnitte von wenige Sekunden und wĂ€hrend einer Sitzung (bis zu mehreren Minuten). Diese Arbeit untersucht beide Aspekte mithilfe perzeptiver und instrumenteller Methoden. Die perzeptive Bewertung der kurzfristigen VideoqualitĂ€t umfasst eine Reihe von Labortests, die in frei verfĂŒgbaren DatensĂ€tzen publiziert wurden. Die QualitĂ€t von lĂ€ngeren Sitzungen wurde in Labortests mit menschlichen Betrachtern bewertet, die reale Betrachtungsszenarien simulieren. Die Methodik wurde zusĂ€tzlich außerhalb des Labors fĂŒr die Bewertung der kurzfristigen VideoqualitĂ€t und der GesamtqualitĂ€t untersucht, um alternative AnsĂ€tze fĂŒr die perzeptive QualitĂ€tsbewertung zu erforschen. Die instrumentelle QualitĂ€tsevaluierung wurde anhand von bitstrom- und hybriden pixelbasierten VideoqualitĂ€tsmodellen durchgefĂŒhrt, die im Zuge dieser Arbeit entwickelt wurden. Dazu wurde die Modellreihe AVQBits entwickelt, die auf den Labortestergebnissen basieren. Es wurden vier verschiedene Modellvarianten von AVQBits mit verschiedenen Inputinformationen erstellt: Mode 3, Mode 1, Mode 0 und Hybrid Mode 0. Die Modellvarianten wurden untersucht und schneiden besser oder gleichwertig zu anderen aktuellen Modellen ab. Diese Modelle wurden auch auf 360°- und Gaming-Videos, HFR-Inhalte und Bilder angewendet. DarĂŒber hinaus wird ein Langzeitintegrationsmodell (1 - 5 Minuten) auf der Grundlage des ITU-T-P.1203.3-Modells prĂ€sentiert, das die verschiedenen Varianten von AVQBits mit sekĂŒndigen QualitĂ€tswerten als VideoqualitĂ€tskomponente des vorgeschlagenen Langzeitintegrationsmodells verwendet. Alle AVQBits-Varianten, das Langzeitintegrationsmodul und die perzeptiven Testdaten wurden frei zugĂ€nglich gemacht, um weitere Forschung zu ermöglichen.The pervasion of affordable capture technology and increased internet bandwidth allows high-quality videos (resolutions > 1080p, framerates ≄ 60fps) to be streamed online. HTTP-based adaptive streaming is the preferred method for streaming videos, adjusting video quality based on available bandwidth. Although adaptive streaming reduces the occurrences of video playout being stopped (called “stalling”) due to narrow network bandwidth, the automatic adaptation has an impact on the quality perceived by the user, which results in the need to systematically assess the perceived quality. Such an evaluation is usually done on a short-term (few seconds) and overall session basis (up to several minutes). In this thesis, both these aspects are assessed using subjective and instrumental methods. The subjective assessment of short-term video quality consists of a series of lab-based video quality tests that have resulted in publicly available datasets. The overall integral quality was subjectively assessed in lab tests with human viewers mimicking a real-life viewing scenario. In addition to the lab tests, the out-of-the-lab test method was investigated for both short-term video quality and overall session quality assessment to explore the possibility of alternative approaches for subjective quality assessment. The instrumental method of quality evaluation was addressed in terms of bitstream- and hybrid pixel-based video quality models developed as part of this thesis. For this, a family of models, namely AVQBits has been conceived using the results of the lab tests as ground truth. Based on the available input information, four different instances of AVQBits, that is, a Mode 3, a Mode 1, a Mode 0, and a Hybrid Mode 0 model are presented. The model instances have been evaluated and they perform better or on par with other state-of-the-art models. These models have further been applied to 360° and gaming videos, HFR content, and images. Also, a long-term integration (1 - 5 mins) model based on the ITU-T P.1203.3 model is presented. In this work, the different instances of AVQBits with the per-1-sec scores output are employed as the video quality component of the proposed long-term integration model. All AVQBits variants as well as the long-term integration module and the subjective test data are made publicly available for further research

    Estimation of the QoE for video streaming services based on facial expressions and gaze direction

    Get PDF
    As the multimedia technologies evolve, the need to control their quality becomes even more important making the Quality of Experience (QoE) measurements a key priority. Machine Learning (ML) can support this task providing models to analyse the information extracted by the multimedia. It is possible to divide the ML models applications in the following categories: 1) QoE modelling: ML is used to define QoE models which provide an output (e.g., perceived QoE score) for any given input (e.g., QoE influence factor). 2) QoE monitoring in case of encrypted traffic: ML is used to analyze passive traffic monitored data to obtain insight into degradations perceived by end-users. 3) Big data analytics: ML is used for the extraction of meaningful and useful information from the collected data, which can further be converted to actionable knowledge and utilized in managing QoE. The QoE estimation quality task can be carried out by using two approaches: the objective approach and subjective one. As the two names highlight, they are referred to the pieces of information that the model analyses. The objective approach analyses the objective features extracted by the network connection and by the used media. As objective parameters, the state-of-the-art shows different approaches that use also the features extracted by human behaviour. The subjective approach instead, comes as a result of the rating approach, where the participants were asked to rate the perceived quality using different scales. This approach had the problem of being a time-consuming approach and for this reason not all the users agree to compile the questionnaire. Thus the direct evolution of this approach is the ML model adoption. A model can substitute the questionnaire and evaluate the QoE, depending on the data that analyses. By modelling the human response to the perceived quality on multimedia, QoE researchers found that the parameters extracted from the users could be different, like Electroencephalogram (EEG), Electrocardiogram (ECG), waves of the brain. The main problem with these techniques is the hardware. In fact, the user must wear electrodes in case of ECG and EEG, and also if the obtained results from these methods are relevant, their usage in a real context could be not feasible. For this reason, my studies have been focused on the developing of a Machine Learning framework completely unobtrusively based on the Facial reactions

    QoE modeling for HTTP adaptive video streaming : a survey and open challenges

    Get PDF

    Multilayer perceptron neural network-based QoS-aware, content-aware and device-aware QoE prediction model : a proposed prediction model for medical ultrasound streaming over small cell networks

    Get PDF
    This paper presents a QoS-aware, content-aware and device-aware non-intrusive medical QoE (m-QoE) prediction model over small cell networks. The proposed prediction model utilises a Multilayer Perceptron (MLP) neural network to predict m-QoE. It also acts as a platform to maintain and optimise the acceptable diagnostic quality through a device-aware adaptive video streaming mechanism. The proposed model is trained for an unseen dataset of input variables such as QoS, content features, and display device characteristics, to produce an output value in the form of m-QoE (i.e. MOS). The efficiency of the proposed model is validated through subjective tests carried by medical experts. The prediction accuracy obtained via the correlation coefficient and Root Mean-Square-Error (RMSE) indicates that the proposed model succeeds in measuring m-QoE closer to the visual perception of the medical experts. Furthermore, we have addressed the following two main research questions: (1) How significant is ultrasound video content type in determining m-QoE? and (2) How much of a role does the screen size and device resolution play in medical experts’ diagnostic experience? The former is answered through the content classification of ultrasound video sequences based on their spatio-temporal features, by including these features in the proposed prediction model, and validating their significance through medical experts’ subjective ratings. The latter is answered by conducting a novel subjective experiment of the ultrasound video sequences across multiple devices
    • 

    corecore