2,039 research outputs found

    Image synthesis based on a model of human vision

    Get PDF
    Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision

    Use of Linear Perspective Scene Cues in a Simulated Height Regulation Task

    Get PDF
    As part of a long-term effort to quantify the effects of visual scene cuing and non-visual motion cuing in flight simulators, an experimental study of the pilot's use of linear perspective cues in a simulated height-regulation task was conducted. Six test subjects performed a fixed-base tracking task with a visual display consisting of a simulated horizon and a perspective view of a straight, infinitely-long roadway of constant width. Experimental parameters were (1) the central angle formed by the roadway perspective and (2) the display gain. The subject controlled only the pitch/height axis; airspeed, bank angle, and lateral track were fixed in the simulation. The average RMS height error score for the least effective display configuration was about 25% greater than the score for the most effective configuration. Overall, larger and more highly significant effects were observed for the pitch and control scores. Model analysis was performed with the optimal control pilot model to characterize the pilot's use of visual scene cues, with the goal of obtaining a consistent set of independent model parameters to account for display effects

    Contemplation of tone mapping operators in high dynamic range imaging

    Get PDF
    The technique of tone mapping has found widespread popularity in the modern era owing to its applications in the digital world. There are a considerable number of tone mapping techniques that have been developed so far. One method may be better than the other in some cases which is determined by the requirement of the user. In this paper, some of the techniques for tone mapping/tone reproduction of high dynamic range images have been contemplated. The classification of tone mapping operators has also been given. However, it has been found that these techniques lack in providing quality of service visualization of high dynamic range images. This paper has tried to highlight the drawbacks in the existing traditional methods so that the tone-mapped techniques can be enhanced

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Habituation to novel visual vestibular environments with special reference to space flight

    Get PDF
    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed

    Quantitative analysis of infrared contrast enhancement algorithms

    Get PDF
    This thesis examines a quantitative analysis of infrared contrast enhancement algorithms found in literature and developed by the author. Four algorithms were studied, three of which were found in literature and one developed by the author: tail-less plateau equalization (TPE), adaptive plateau equalization (APE), the method according to Aare Mallo (MEAM), and infrared multi-scale retinex (IMSR). Engineering code was developed for each algorithm. From this engineering code, a rate of growth analysis was conducted to determine each algorithm’s computational load. From the analysis, it was found that all algorithms with the exception of IMSR have a desirable linear nature. Once the rate of growth analysis was complete, sample infrared imagery was collected. Three scenes were collected for experimentation: a low-to-high thermal variation scene, a low-to-mid thermal variation scene, and a natural scene. After collecting sample imagery and processing it with the engineering code, a paired comparison psychophysical trial was executed using local firefighters, common users of the infrared imaging system. From this trial, two metrics were formed: an average rank and an interval scale. From analysis of both metrics plus an analysis of the rate of growth, MEAM was declared to be the best algorithm overall

    Assessing the perceived realism of agent crowd behaviour within virtual urban environments using psychophysics

    Get PDF
    Inhabited virtual environments feature in a growing number of graphical applications. Simulated crowds are employed for different purposes; ranging from evaluation of evacuation procedures to driving interactable elements in video games. For many applications, it is important that the displayed crowd behaviour is perceptually plausible to the intended viewers. Crowd behaviour is inherently in flux, often depending upon many different variables such as location, situation and crowd composition. Researchers have, for a long time, attempted to understand and reason about crowd behaviour, going back as far as famous psychologists such as Gustave Le Bon and Sigmund Freud who applied theories of mob psychology with varying results. Since then, various other methods have been tried, from articial intelligence to simple heuristics, for crowd simulation. Even though the research into methods for simulating crowds has a long history, evaluating such simulations has received less attention and, as this thesis will show, increased complexity and high-delity recreation of recorded behaviours does not guarantee improvement in the plausibility for a human observer. Actual crowd data is not always perceived more real than simulation, making it dicult to identify gold standards, or a ground truth. This thesis presents new work on the use of psychophysics for perceptual evaluation of crowd simulation in order to develop methods and metrics for tailoring crowd behaviour for target applications. Psychophysics itself is branch of psychology dedicated to studying the relationship between a given stimuli and how it is perceived. A three-stage methodology of analysis, synthesis and perception is employed in which crowd data is gathered from the analysis of real instances of crowd behaviour and then used to synthesise behavioural features for simulation before being perceptually evaluated using psychophysics. Perceptual thresholds are calculated based on the psychometric function and key congurations are identied that appear the most perceptually plausible to human viewers. The method is shown to be useful for the initial application and it is expected that it will be applicable to a wide range of simulation problems in which human perception and acceptance is the ultimate measure of success

    Contrast sensitivity in images of natural scenes

    Get PDF
    The contrast sensitivity function (CSF) characterizes spatial detection in the human visual system and is typically measured from simple, synthetic stimuli. We used spatial frequency decomposition, RMS contrast modulation, a yes/no paradigm and an adaptive staircase to measure isolated and contextual CSFs (iCSFs and cCSFs) from natural images. We employed Barten’s mechanistic model and adapted it for contextual modeling purposes by postulating that, signal detection in a given frequency band, when presented amongst other broadband signals, can be modeled as if amongst noise. We found that the iCSF varies with pictorial content, but that the standard CSF model and the image’s contrast spectrums are sufficient to predict with relative success the cCSF for any given image. We finally discuss the suitability of cCSF models in image quality modeling

    Multidimensional Scaling of Schematically Represented Faces Based on Dissimilarity Estimates and Evoked Potentials of Differences Amplitudes

    Get PDF
    Este estudio investiga la entrada del córtex cerebral occipital y temporal en el análisis de la confirguración facial y de las características expresivas. El análisis se basa en la construcción de un modelo esférico de diferenciación de caras presentadas esquemáticamente cuando la curvatura de boca y cejas varía quantitativamente. El modelo se ha diseñado empleando el método de escalonamiento multidimensional de los juicios de disimilitud entre los estímulos (caras) y la amplitud de los potenciales evocados de las diferencias (PED) entre los cambios abruptos de los estímulos registrados desde el córtex occipital y temporal posterior. Dependiendo del lugar de inserción del electrodo y la latencia del componente PED, el análisis de la estructura del modelo esférico de diferenciación facial en de la duración de 120-240 ms ha demostrado que la actividad del córtex occipital y temporal posterior del hemisferio derecho se asocia con las características emocionales de la cara presentada, y que la confguración facial se refleja en la activación de los córtex temporal posterior y occipital del hemisferio izquierdo. En todos los lugares de inserción de los electrodos, la máxima información de la expresión y configuración emocional se representa en una amplitud inter-pico de P120-N180. Al incrementar la latencia, aumenta la distorsión de la esturtura de las diferencias en el modelo esférico de caras presentadas esquemáticamente, lo cual se interpreta como la atenuación de la actividad eléctrica asociada al análisis de la expresión emocional, el cual ocurre más rápidamente que el análisis configuracional.This study researches the input of the cerebral occipital and temporal cortex in the analysis of facial configuration and expressive characteristics. Analysis is based on the construction of a spherical model for the differentiation of schematically presented faces with quantitatively altering curvature of the mouth and brows. The model is designed using the method of multidimensional scaling of the dissimilarity judgments between stimuli (faces) and the amplitude of evoked potentials of differences (EPD) between abrupt stimulus changes recorded from the occipital and posterior temporal cortex. Analysis of the structure of the spherical model of facial differentiation depending on the electrode site and the latency of the EPD component within the duration of 120-240 ms has demonstrated that the activity of the occipital and posterior temporal cortex of the right hemisphere is associated with the emotional characteristics of the presented face, whereas facial configuration is reflected in the activation of both posterior temporal cortex and the occipital cortex of the left hemisphere. At all electrode sites maximum information of the emotional expression and configuration is represented in inter-peak amplitude P120-N180. With increasing latency there is increased distortion of the structure of differences in the spherical model of schematically presented faces, which is interpreted as an attenuation of electrical activity associated with the analysis of the emotional expression, which occurs more rapidly than configuration analysi

    Radioptimization - Goal based rendering

    Get PDF
    Journal ArticleThis paper presents a method for designing the illumination in an environment using optimization techniques applied to a radiosity based image synthesis system. An optimization of lighting parameters is performed based on user specified constraints and objectives for the illumination of t h e environment. The system solves for t h e "best" possible settings for: light source emissivities, element reflectivities, and spot light directionality parameters so that the design goals, such as to minimize energy or to give the the room an impression of privacy, are met. The system absorbs much of the burden for searching the design space allowing the user to focus on the goals of the illumination design rather than the intricate details of a complete lighting specification. A software implementation is described and some results of using the system are reported. The system employs an object space perceptual model based on work by Tumblin and Rushmeier to account for psychophysical effects such as subjective brightness and the visual adaptation level of a viewer. This provides a higher fidelity when comparing the illumination in a computer simulated environment against what would be viewed in the "real" world. Optimization criteria are based on subjective impressions of illumination with qualities such as "pleasantness", and "privateness". The qualities were selected based on Flynn's work in illuminating engineering. These criteria were applied to the radiosity context through an experiment conducted with subjects viewing rendered images, and the respondents evaluated with a Multi-Dimensional Scaling analysis
    corecore