27 research outputs found

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Some NP-Hard Problems for the Simultaneous Coprimeness of Values of Linear Polynomials

    Get PDF
    The algorithmic-time complexity of some problems connected with linear polynomials and coprimeness relation on natural numbers is under consideration in the paper. We regard two easily stated problems. The first one is on the consistency in natural numbers from the interval of a linear coprimeness system. This problem is proved to be NP-complete. The second one is on the consistency in natural numbers of a linear coprimeness and discoprimeness system for polynomials with not greater than one non-zero coefficient. This problem is proved to be NP-hard. Then the complexity of some existential theories of natural numbers with coprimeness is considered. These theories are in some sense intermediate between the existential Presburger arithmetic and the existential Presburger arithmetic with divisibility. In a form of corollaries from the theorems of the second section we prove NP-hardness of the decision problem for the existential theories of natural numbers for coprimeness with addition and for coprimeness with successor function. In the conclusion section we give some remarks on the NP membership of the latter problem

    Integer Vector Addition Systems with States

    Full text link
    This paper studies reachability, coverability and inclusion problems for Integer Vector Addition Systems with States (ZVASS) and extensions and restrictions thereof. A ZVASS comprises a finite-state controller with a finite number of counters ranging over the integers. Although it is folklore that reachability in ZVASS is NP-complete, it turns out that despite their naturalness, from a complexity point of view this class has received little attention in the literature. We fill this gap by providing an in-depth analysis of the computational complexity of the aforementioned decision problems. Most interestingly, it turns out that while the addition of reset operations to ordinary VASS leads to undecidability and Ackermann-hardness of reachability and coverability, respectively, they can be added to ZVASS while retaining NP-completness of both coverability and reachability.Comment: 17 pages, 2 figure

    Tightening the Complexity of Equivalence Problems for Commutative Grammars

    Get PDF
    We show that the language equivalence problem for regular and context-free commutative grammars is coNEXP-complete. In addition, our lower bound immediately yields further coNEXP-completeness results for equivalence problems for communication-free Petri nets and reversal-bounded counter automata. Moreover, we improve both lower and upper bounds for language equivalence for exponent-sensitive commutative grammars.Comment: 21 page

    On the Complexity of Quantified Integer Programming

    Get PDF
    Quantified integer programming is the problem of deciding assertions of the form Q_k x_k ... forall x_2 exists x_1 : A * x >= c where vectors of variables x_k,..,x_1 form the vector x, all variables are interpreted over N (alternatively, over Z), and A and c are a matrix and vector over Z of appropriate sizes. We show in this paper that quantified integer programming with alternation depth k is complete for the kth level of the polynomial hierarchy

    Two-Way Parikh Automata

    Get PDF
    Parikh automata extend automata with counters whose values can only be tested at the end of the computation, with respect to membership into a semi-linear set. Parikh automata have found several applications, for instance in transducer theory, as they enjoy a decidable emptiness problem. In this paper, we study two-way Parikh automata. We show that emptiness becomes undecidable in the non-deterministic case. However, it is PSpace-C when the number of visits to any input position is bounded and the semi-linear set is given as an existential Presburger formula. We also give tight complexity bounds for the inclusion, equivalence and universality problems. Finally, we characterise precisely the complexity of those problems when the semi-linear constraint is given by an arbitrary Presburger formula

    Parikh One-Counter Automata

    Get PDF
    Counting abilities in finite automata are traditionally provided by two orthogonal extensions: adding a single counter that can be tested for zeroness at any point, or adding ?-valued counters that are tested for equality only at the end of runs. In this paper, finite automata extended with both types of counters are introduced. They are called Parikh One-Counter Automata (POCA): the "Parikh" part referring to the evaluation of counters at the end of runs, and the "One-Counter" part to the single counter that can be tested during runs. Their expressiveness, in the deterministic and nondeterministic variants, is investigated; it is shown in particular that there are deterministic POCA languages that cannot be expressed without nondeterminism in the original models. The natural decision problems are also studied; strikingly, most of them are no harder than in the original models. A parametric version of nonemptiness is also considered

    Biabduction (and related problems) in array separation logic

    Get PDF
    We investigate array separation logic (\mathsf {ASL}), a variant of symbolic-heap separation logic in which the data structures are either pointers or arrays, i.e., contiguous blocks of memory. This logic provides a language for compositional memory safety proofs of array programs. We focus on the biabduction problem for this logic, which has been established as the key to automatic specification inference at the industrial scale. We present an \mathsf {NP} decision procedure for biabduction in \mathsf {ASL}, and we also show that the problem of finding a consistent solution is \mathsf {NP}-hard. Along the way, we study satisfiability and entailment in \mathsf {ASL}, giving decision procedures and complexity bounds for both problems. We show satisfiability to be \mathsf {NP}-complete, and entailment to be decidable with high complexity. The surprising fact that biabduction is simpler than entailment is due to the fact that, as we show, the element of choice over biabduction solutions enables us to dramatically reduce the search space

    Biabduction (and related problems) in array separation logic

    Get PDF
    We investigate array separation logic (\mathsf {ASL}), a variant of symbolic-heap separation logic in which the data structures are either pointers or arrays, i.e., contiguous blocks of memory. This logic provides a language for compositional memory safety proofs of array programs. We focus on the biabduction problem for this logic, which has been established as the key to automatic specification inference at the industrial scale. We present an \mathsf {NP} decision procedure for biabduction in \mathsf {ASL}, and we also show that the problem of finding a consistent solution is \mathsf {NP}-hard. Along the way, we study satisfiability and entailment in \mathsf {ASL}, giving decision procedures and complexity bounds for both problems. We show satisfiability to be \mathsf {NP}-complete, and entailment to be decidable with high complexity. The surprising fact that biabduction is simpler than entailment is due to the fact that, as we show, the element of choice over biabduction solutions enables us to dramatically reduce the search space
    corecore