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Abstract
Counting abilities in finite automata are traditionally provided by two orthogonal extensions: adding
a single counter that can be tested for zeroness at any point, or adding Z-valued counters that are
tested for equality only at the end of runs. In this paper, finite automata extended with both types
of counters are introduced. They are called Parikh One-Counter Automata (POCA): the “Parikh”
part referring to the evaluation of counters at the end of runs, and the “One-Counter” part to the
single counter that can be tested during runs.

Their expressiveness, in the deterministic and nondeterministic variants, is investigated; it is
shown in particular that there are deterministic POCA languages that cannot be expressed without
nondeterminism in the original models. The natural decision problems are also studied; strikingly,
most of them are no harder than in the original models. A parametric version of nonemptiness is
also considered.
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1 Introduction

Extensions of finite automata abound in the literature, with a traditional common goal:
To find computational models with good expressiveness for which relevant problems are
decidable. The impetus lies in formal verification: Can I express my process using that new
model, then formally check that it does not have “bad” behaviors? Typically, processes are
thus implemented with expressive models, while bad behaviors can be represented using a
regular language. To answer the verification question, the key computational problem is then
inclusion in a regular language (are all the executions of my process not bad?).

A common approach to extending finite automata is to equip them with counters or some
sort of counting abilities. The literature crystallizes around two main extensions:

Adding a single counter which can be tested for zeroness throughout the run. A typical
language that such an extension can recognize is L1 = {anbn | n ≥ 0}∗ (mind the star!).
Adding any constant number of counters, but they can only be tested for zeroness or
equality a bounded number of times (during the run or at the end only, these variants
being equivalent for nondeterministic machines). This includes reversal-bounded counter
machines [14, 6] and Parikh automata [16, 4, 5], which, incidentally, are equally expressive.
A typical language in these extensions is L2 = {anbncn | n ≥ 0}.
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30:2 Parikh One-Counter Automata

Unsurprisingly, L1 cannot be recognized using the second extension, while L2 cannot be
recognized with the first. A natural extension is, thus, to combine these two approaches
to counting into a single model, prompting the questions: 1. Is the expressiveness of the
combined model more interesting than just the union of the two original models; and 2. Are
the good decidability properties of the original models retained in the combined one?

Here, we report on this extension. The model, called Parikh One-Counter Automata
(POCA), consists in a finite automaton with one counter which can be tested for zeroness and
any number of Z-valued counters that are checked at the end of the run using a Presburger
formula (an arithmetic formula of first-order logic with addition).1 We contribute:

A (de)pumping lemma allowing for the study of the limits of the expressiveness of POCA.
Pumping in one-counter automata is fairly simple, as it follows standard arguments for
pushdown automata. In Parikh automata (i.e., POCA without the unbounded counter),
any cycle taken twice can be moved around without changing membership. However,
combining these two properties for POCA proves to be a great technical challenge.
A complete picture of the relationships between POCA, one-counter automata, and Parikh
automata, in their nondeterministic and deterministic variants. In addition to separation
of the classes of languages under consideration, we observe that some languages that are
only nondeterministic for both Parikh automata and one-counter automata turn out to be
deterministic for POCA. This is of special interest in the context of verification since many
problems are undecidable for nondeterministic machines but decidable for deterministic
ones. We also study how the base models of Parikh automata and one-counter automata
are “embedded” in POCA (Theorem 15, the statement of which should be clear at this
point of the Introduction).
A study of the decision problems for POCA and its deterministic variant. Strikingly,
emptiness and inclusion in a regular language are no more complex than with Parikh
automata: coNP-complete. We also study parametric POCA, in which parameters
x, y, . . . can be used in the counter updates (as +x, −y, for instance), and show that it is
undecidable whether, for all parameter values, the language of the POCA is nonempty.
We relate this problem to considerations on arithmetic theories since it is one of the main
motivations behind the study of parametric models [1].

∪ ∩ · h h−1 L ̸= ∅ L = Σ∗ L1 ⊆ L2 L1 = L2

DetPA Y Y Y N N Y NP-c coNP-c coNP-c coNP-c
DetOCA N N Y N N Y NL-c NL-c Undec NL-c

DetPOCA N N Y N N Y NP-c coNP-c Undec ?

PA Y Y N Y Y Y NP-c Undec Undec Undec
OCA Y N N Y Y Y NL-c Undec Undec Undec

POCA Y N N Y Y Y NP-c Undec Undec Undec

Thm. 18 Thm. 20

Thm. 19 Thm. 21 Cor. 22Thm. 23

Figure 1 Closure properties and complexity results. Results about Parikh automata (PA) and
one-counter automata (OCA) are from the literature [7, 16, 5, 17, 21, 2]. The left side of the table
lists closure properties; h and h−1 mean closure under morphisms and inverse morphisms.

1 We rely on a slightly different but equivalent definition, in which the Presburger formula actually
specifies a relation on the number of times each transition is taken in the run. This explains the use
of Rohit Parikh’s name: a run is accepting if its Parikh image is accepted by the Presburger formula.
Formal definitions appear in Section 2.
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DetOCA

OCA
DetPOCA

POCA

NL

DetPA

PA
Lab ∪ Lbc

L∗
ab ∪ L∗

bc

Σ∗Lab
LabcL∗

ab

LabcL∗
ab

L∗
abc

Figure 2 Separations among deterministic and nondeterministic variants of PA, OCA & POCA.
The arrows denote the strict subclass relation, e.g., DetPA ⊊ PA. All the classes not having a
sequence of arrows between them are incomparable. The language in between classes belongs to the
higher class but not to the lower.

Organization of the paper. We recall some classical notions and introduce our models
in Section 2 then present some examples of POCA in Section 3. In Section 4, we state
our (de)pumping lemma for POCA and rely on it to show that some languages are not
expressible. We study the relationships between our classes of languages in Section 5, the
closure properties of our models in Section 6, and the complexity of decision problems in
Section 7.

2 Preliminaries

We assume the reader to be familiar with elementary automata theory.

Sets. We write N = {0, 1, 2, . . .} and N>0 = {1, 2, . . .}. Let d ∈ N>0. A set E ⊆ Zd is
said to be linear if there exist vectors v0, v1, . . . , vk ∈ Zd such that E = {v0 +

∑k
i=1 xivi |

x1, . . . , xk ∈ N}. A set is semilinear if it is a finite union of linear sets. Equivalently, a set
E ⊆ Zd is semilinear if it can be represented as the set of vectors satisfying a Presburger
formula with d free variables, that is, a first-order formula over (N, +).

Words, languages. We usually use Σ for alphabets, write ε for the empty word, and let
Σε be Σ ∪ {ε}, with the understanding that ε /∈ Σ. Any alphabet in this paper is implicitly
totally ordered, so that we can speak of the i-th letter of the alphabet. This is only useful
in defining the Parikh image Φ(w) of a word w ∈ Σ∗: this is the vector in N|Σ| whose i-th
component is the number of times the i-th letter of Σ appears in w.

Given two alphabets Σ, Γ, any function Σ → Γ∗ can be uniquely extended to a function
h : Σ∗ → Γ∗, called a morphism, in such a way that h(ε) = ε and h(u · v) = h(u) · h(v). For
a language L ⊆ Σ∗, we write h(L) for {h(w) | w ∈ L}.

Given a language L ⊆ Σ∗, two words u, v ∈ Σ∗ are Myhill-Nerode equivalent if for any
w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L. This is an equivalence relation, and we write [u]L for the set
of words Myhill-Nerode equivalent to u. We will be mostly interested in [ε]L, the set of
words that can be erased from or inserted at the beginning of any word without changing its
membership to L.

Parikh one-counter automata. A Parikh One-Counter Automaton (POCA) A is a tuple
(Q, q0, Σ, ∆0, ∆+, F, φ) where:

Q is a finite set of states and q0 ∈ Q is the initial state,
Σ is an alphabet,

MFCS 2023



30:4 Parikh One-Counter Automata

∆0 ⊆ Q × Σε × {0, 1} × Q is a zero-value transition relation,
∆+ ⊆ Q × Σε × {−1, 0, 1} × Q is a positive transition relation,
F ⊆ Q is a set of final states, and
φ is an existential Presburger formula with (|∆0| + |∆+|) free variables.

A run in A is a sequence of transitions:

ρ = (q1, ℓ1, b1, q2)(q2, ℓ2, b2, q3) · · · (qn−1, ℓn−1, bn−1, qn) ∈ (∆0 ⊎ ∆+)∗.

We say that ρ starts in q1 and ends in qn. Its trace is the sequence of partial sums of the bi,
representing the current value of the counter:

trace(ρ) =
(∑

i<1
bi,

∑
i<2

bi, . . . ,
∑
i<n

bi

)
,

with the understanding that the first term of that sequence is zero. The i-th element of the
trace is simply written trace(ρ)i. The run ρ is:

counter-correct if for all i, trace(ρ)i = 0 → ρi ∈ ∆0 and trace(ρ)i ̸= 0 → ρi ∈ ∆+. In
other words, a transition from ∆0 is taken if the current value of the counter is 0 and one
from ∆+ if the counter is nonzero.
initial if it starts in q0, final if it ends in a state in F .
constraint-correct if Φ(ρ) satisfies φ.
accepting if it is initial, final, counter-correct, and constraint-correct.

The label of the run ρ is the concatenation of all the ℓi and a word w is accepted by A if
it is the label of an accepting run. Finally, the language recognized by the POCA A is the
set L(A) of words accepted by it.

A POCA A is said to be deterministic (DetPOCA) if for all states q and for both
∆ ∈ {∆0, ∆+}:

There are no two transitions in ∆ from q having the same label; and
If there is a transition in ∆ from q labeled ε, there is no other transition from q in ∆.

Parikh Automata & One-Counter Automata. These two models are restrictions of POCA:
A Parikh Automaton (PA) is a POCA in which ∆0 ⊆ Q × Σε × {0} × Q. In this case, ∆+
is not useful, so we simply omit it from the tuple representation and do not write the 0
update of ∆0. We use DetPA for the deterministic variant.
A One-Counter Automaton (OCA) is a POCA in which φ is a tautology; we then omit it
from the tuple representation. We use DetOCA for the deterministic variant.

3 Examples

We start with a few examples of POCA languages, which will help in clarifying the relationship
of POCA with PA and OCA.

▶ Example 1. Let T = {anbn | n > 0} and define:

L = {u1u2 · · · umcm | m > 0 ∧ u1, u2, . . . , um ∈ T}.

This language can be shown to be unrecognizable by PA or OCA. Intuitively, it is not a PA
language since it has unbounded sequences of words from T , each of which necessitating an
equality check, and it is not an OCA language since m and n, respectively the number of c
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and the number of a, b, require two separate counters. However, L is recognizable using a
POCA. Indeed, the counter can be used to check that each subword in a+b+ is in T and
the semilinear constraint can be used to check that the number of words ui is exactly the
number of c. In fact, this process is deterministic, hence L is a DetPOCA language.

▶ Example 2. Let again T = {anbn# | n > 0} and K = {anbncn# | n > 0} and define:

LT = {a, b, #}∗T{a, b, #}∗ and LK = {a, b, c, #}∗K{a, b, c, #}∗.

Using a single counter, LT can be deterministically recognized: every time we switch from b

to a, we can reset the counter in search for a subword in T . Thus LT is a DetOCA (hence
DetPOCA) language. However, it can be shown that LT is a PA language, but not a DetPA
language with tools from [4]. As for LK , since K cannot be recognized by an OCA, we need
to use the semilinear constraint to recognize it: a PA for LK would simply guess the position
of the word in K, read the next a+b+c+ using a separate part of the automaton, then check
that there were as many a, b, and c in this subword using the semilinear constraint. Thus
LK is a PA (hence POCA) language. We can show, however, that it is not a DetPOCA
language.

▶ Example 3. The previous example seems to indicate that a language that is expressible
with both PA and OCA can only be deterministic if it is expressible with a DetPA or DetOCA.
This is not the case. Take for instance B = {aibjcj | i ̸= j ∨ j ̸= k} and define:

L = {an#u1#u2# · · · #um | m > n > 0 ∧ u1, u2, . . . , um ∈ a∗b∗c∗ ∧ un ∈ B},

in words, the number of a at the beginning indicates where to find a block in B. This
language is in OCA and PA but in neither DetOCA nor DetPA. It is, however, in DetPOCA:
one would use the counter to find un (with n the number of a at the beginning), and check
that un ∈ B using the semilinear constraint.

4 Pumping lemmas: Statements and Applications

Although pumping lemmas abound for context-free languages, and thus for OCA, there
is no known technique in the PA world that takes any PA language L and a long enough
word in L, and creates a word of different length in L. As mentioned in the introduction,
the main expressiveness lemma for PA relies on the fact that any cycle taken twice can be
moved around without changing membership. Relying on this and by carefully analyzing
the behavior of the counter on long enough runs, we can show an expressiveness lemma
reminiscent of a pumping property:

▶ Lemma 4 (Depumping lemma). Let L ⊆ Σ∗ be a POCA (resp. DetPOCA) language.
For any infinite language K ⊆ [ε]L and N ∈ N, there are words u, (ui)i≤n, v, (vj)j≤m, with
m, n ≥ N , such that all of the following hold:
1. x = (u1u)(u2u) · · · (unu) · (v1v)(v2v) · · · (vm−1v)vm is in K,
2. uv ̸= ε,
3. There exist w1, w2 ∈ Σ∗ such that, letting x′ = u1 · · · unv1 · · · vm, it holds that w1x′w2 is

in L (resp. in [ε]L).

Proof sketch. Let A be a POCA recognizing L. Now, let {x1, x2, . . . } ⊆ [ε]L be an infinite
set of words such that length(xi+1) > length(xi) > i for all i ≥ 1. Since xi ∈ [ε]L, for all
i ≥ 1, we know that for any k, there is a run ρk of A on x1 · · · xk which can be extended to
an accepting run. Write ρk as π1 · · · πk with each πi being the subrun corresponding to the
subword xi. (Note that πi may be different for each value of k.)

MFCS 2023



30:6 Parikh One-Counter Automata

For a word w, we say a (sub)run of A on w that starts and ends in the same state is
a w-cycle. Since the xi are increasing in length, so are the πi. If we take a large enough
k ∈ N, the pigeonhole principle will ensure the existence of a nonempty word u and an index
i ∈ N such that u-cycles appear more than N times in πi. Note that it would suffice to
argue that we can shift these u-cycles to the other subruns πj with j ̸= i while preserving
the validity of the run. (The reason we want to shift cycles rather than just remove them is
because we want to preserve the Parikh image.) In this case, w1 and w2 would be the words
labelling the runs π′

1 · · · π′
i−1 and π′

i+1 · · · π′
pσ where: p is the maximal index j such that we

shift some u-cycle to πj , π′
j is the run we get from πj after shifting the u-cycles, and σ is

any run such that π1π2 · · · πpσ is accepting. The only obstruction in doing this is that, while
shifting the u-cycles, we might invalidate the run by making the counter value nonzero at a
zero-value transition. This is why we have to take a (possibly) larger k ∈ N so that, again
by the pigeonhole principle, we are ensured of the existence of another word v such that
v-cycles can be shifted along with u-cycles to guarantee that the above does not happen.
The technical aspect of the proof lies in formalising this idea. ◀

▶ Remark 5. Lemma 4 is a depumping lemma: it removes portions of the word x that appear
often. We forego the statement for the pumping lemma as we will not need it, but the same
proof shows that we can swap the roles of x and x′ in the lemma, thus creating a longer
word.
▶ Remark 6. The proof allows for some slightly stronger variations of this statement. For
instance, we can assume that K∗ is a set of prefixes of words in L instead of assuming
that K ⊆ [ε]L. In this case, the conclusion in the POCA case would not change and, for
DetPOCA, the third conclusion would state that w1x′w2 is Myhill-Nerode equivalent to
some word in K.

We now turn to examples of languages that we will show to be outside of DetPOCA
and POCA. For the rest of this section, let Σ = {a, b, c, #}. Our examples will rely on the
following languages:

Lab = {#an#bn#cm# | n, m ∈ N},
Lbc = {#an#bm#cm# | n, m ∈ N},
Labc = {#an#bn#cn# | n ∈ N} = Lab ∩ Lbc.

▶ Proposition 7. L∗
ab ∪ L∗

bc is not recognizable by a DetPOCA.

Proof. We rely on Lemma 4. Assume that it is recognizable by a DetPOCA, pick Labc as
the language K in Lemma 4, and set N = 4. Note that we have indeed that any word of
Labc is Myhill-Nerode equivalent to ε in L∗

ab ∪ L∗
bc. Using the notations of the lemma, we see

that neither u nor v can contain #, since they are both repeated at least 4 times in x. Thus,
removing the repetitions of u and v from x, we obtain that x′ is of the shape #ai#bj#ck#
but outside of Labc; note that x′ has at least one letter from {a, b, c}. Assume that i ̸= j

(the case j ̸= k is similar), and let z = #a#b#cc#, a word in L. For any words w1, w2, the
word w1x′w2z cannot be in L, since x /∈ Lab and z /∈ Lbc. This shows that w1x′w2 is not
Myhill-Nerode equivalent to ε, a contradiction. ◀

▶ Proposition 8. Let B = {#ai#bj#ck# | i ̸= j ∨ j ̸= k} and C = (#a∗#b∗#c∗#)∗. The
language C · B · C is not expressible with a DetPOCA.

Proof. Note that Labc ⊆ [ε]CBC : indeed, a word in Labc is in C \ B. We can thus follow the
proof of Proposition 7 and stop at the point where x′ is seen to be of the shape #ai#bj#ck#
but not in Labc. In fact, x′ ∈ B. The conclusion of the pumping lemma now tells us that
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there are words w1, w2 such that w1x′w2 ∈ [ε]CBC . Since ε · x′ ∈ CBC, we have that
w1x′w2x′ ∈ CBC, so certainly w1x′w2 ∈ C (recall that B ⊆ C). But since x′ ∈ B, we have
that w1x′w2 ∈ CBC too, and thus that ε ∈ CBC, a contradiction. ◀

▶ Remark 9. The two previous languages happen to be expressible with POCA; let us
investigate where the proof of inexpressibility breaks down when we rely on the conclusion
in the POCA case of Lemma 4. In Proposition 7, we have the luxury of picking a z: this is
not allowed in the POCA case, which simply guarantees that there are words w1, w2 such
that w1x′w2 ∈ L. And indeed, we only know that x′ has an unbalanced number of a, b, c,

leaving the possibility, that x′ ∈ Lab ∪ Lbc, so w1 = w2 = ε would satisfy the conclusion of
the Lemma. Similarly, in Lemma 4, there is no contradiction to be gained from x′ ∈ B on
its own, which is the case when w1 = w2 = ε in the Lemma.

▶ Proposition 10. L∗
abc = L∗

ab ∩ L∗
bc is not recognizable by a POCA.

Proof. This follows the same process as the proof of Proposition 7, up to the point where x′

is seen to be of the shape #ai#bj#ck# but not in Labc. Certainly, then, whichever words
were to be put at the beginning and end of this word, we cannot reach a word in L. ◀

5 Expressiveness

5.1 Normal forms and inclusion in logarithmic space
We first note that cycles of ε-transitions, in which a POCA would guess a large number, are
not needed. Additionally, we can complete the underlying automaton of a POCA so that:

▶ Theorem 11. For any (Det)POCA language L, there is a (Det)POCA A with language
L and a constant c ∈ N such that any word w ∈ L is accepted by A with a run of length at
most c|w| that reads the whole input. In particular, all cycles of ε-transitions in A decrease
the counter.

We will assume henceforth that all of our POCA are of the above type. From this, and
noting that the Parikh constraint of a POCA can be made quantifier-free by adding “equality
modulo m” predicates, we immediately get:

▶ Corollary 12. Any DetPOCA language is in the class L. Any POCA language is in the
class NL.

5.2 Separations
We compare the expressiveness of POCA with PA and OCA, in both their deterministic and
nondeterministic variants; we obtain the following separations:

▶ Theorem 13. DetPA and DetOCA are strictly less expressive than DetPOCA;
PA and OCA are strictly less expressive than POCA;
The expressive power of DetPOCA is incomparable with that of PA and OCA.

Proof. The inclusions in the first two statements are immediate and strictness was mentioned
in Example 1. This example also shows that DetPOCA is not included in either PA or OCA.

What is left to show is that there are PA and OCA languages that are not in DetPOCA.
The language CBC of Proposition 8 is such a language: it is not in DetPOCA, but it can be
expressed with both a PA and an OCA (one simply guesses when the B word occurs and,
within this word, guesses and checks which of the options i ̸= j or j ̸= k holds). ◀

MFCS 2023



30:8 Parikh One-Counter Automata

In addition, we have exhibited (Propositions 7 and 8) languages expressible with POCA
but not DetPOCA. Hence:

▶ Theorem 14. DetPOCA are strictly less expressive than POCA.

5.3 Rendering the OCA or Parikh part useless in a POCA
The wide disparity of expressive power between POCA and its base models OCA and Parikh
automata stands in sharp contrast with the intuition that the two counting features of POCA
are orthogonal. In this section, we explore how we can essentially “saturate” the abilities of
one of the base models, in such a way that it cannot contribute meaningfully to recognizing
a language. This is reminiscent of the work of [18], in which it is shown that if the shuffle of
a nonregular context-free language and another language T is still context-free, then T has
to be regular. In other words, the nonregular context-free language “saturates” the stack.
See also [15] for a related notion of simplest nonregular context-free language.

Recall that the shuffle of two words u v is the set {u1v1 · · · ukvk | ui, vi ∈ Σ∗ ∧ u =
u1 · · · uk ∧ v = v1 · · · vk}. The shuffle of two languages is the set of shuffles of words from
each language.

▶ Theorem 15 (One-counter-stripping). Let L′ ⊆ Σ∗ and a, b /∈ Σ. If L′ {anbn | n ≥ 0}∗ is
a (Det)POCA language, then L′ is a (Det)PA language. The converse holds.

Proof sketch. Let the POCA accepting L be A. To prove the theorem above, we give a
procedure of producing the intended Parikh automaton A′ accepting L′, using A as a black
box. The main idea is that A′ simulates A, but along the accepting runs in A′, the counter
is only used in a bounded way that can be encoded in the state space; hence we can get rid
of the counter while accepting L′. We formalize this idea as follows:

Let C, Cε be the number of simple cycles with nonempty underlying word, and simple ε-
cycles in A. Let C ′ = C +Cε +1. Define a function pad : Σ∗ → (Σ⊎{a, b})∗ such that for any
word w = c1 · · · cn ∈ Σ∗, pad(w) is of the form pad(w) = c1 ·

(
a|Q|b|Q|)C′

· · · cn ·
(
a|Q|b|Q|)C′

.
Note that, if w ∈ L′, then pad(w) ∈ L. We extend the function on the language L′ naturally:
pad(L) = {pad(x) | x ∈ L} ⊂ L′. The following lemma then holds.

▶ Lemma 16. Let Reach = {n | ∃(x · y) ∈ pad(L′), and qf ∈ F, (q0, 0) x−→ (q, n) y−→ qf } be
the set of all counter values appearing in any accepting run in A on reading a word from
pad(L′). The set Reach is bounded, i.e., there exists a bound B ∈ N such that, for every
n ∈ Reach, n ≤ B.

Using the above lemma, we can already outline the procedure to construct the desired
PA A′ such that L(A′) = L′. Let the POCA A be of the form (Q, q0, Σ ⊎ {a, b}, ∆, F, φ).
Then the PA A′ is of the form (Q′, q′

0, Σ, ∆′, F ′, φ′) such that,
Q′ = Q × {0, 1, . . . , B}) ⊎ {r},
q′

0 = (q0, 0) and F ′ = F × {0, 1, . . . , B},

for every run of the form (q, i)
l·(a|Q|b|Q|)C′

−−−−−−−−−→ (q′, j) ∈ ∆∗, where l ∈ Σ, q, q′ ∈ Q, and
i ≤ B

(i). if j ≤ B, then
(

(q, i) l−→ (q′, j)
)

∈ ∆′

(ii). otherwise
(

(q, i) l−→ r
)

∈ ∆′ .
Note that, for every configuration (q, i) in A and l ∈ Σ, the number of runs on the word
l ·
(
a|Q|b|Q|)C′

is finite as A does not contain any nonnegative ε-cycle.
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The construction of ∆′ from ∆ imposes a linear function f : Z∆′ → Z∆. Let the Parikh
constraint for A be φ with |∆| free variables. Then we define φ′ with |∆′| free variables
such that, a vector v ∈ Z∆′ |= φ′ if and only if f(v) |= φ.

It is easy to check that A′ accept w if and only if A accepts pad(w). This implies A′

recognises L′. The above procedure also preserves determinacy, i.e., if A is deterministic,
then A′ is also deterministic. ◀

Similarly, we expect that some operation would render the Parikh constraint useless.
Specifically, assume that for some language L, the language (L#)∗ is recognized by a POCA
A. Consider a long word w in L#; in the accepting run for it, we could move (pairs of)
cycles after the # symbol. Repeating this, we obtain a subword of w of constant length,
appearing before #, which must also be in L. Hence to recognize L, one only needs to
simulate A for a counter-correct run and find the subword of constant length to check for
constraint-correctness. The Parikh constraint can thus be hardcoded, and we thus conjecture:

▶ Conjecture 17. Let L ⊆ Σ∗ be a language and # /∈ L. If (L#)∗ is a POCA (resp.
DetPOCA) language, then L is an OCA (resp. DetOCA) language.

6 Closure Properties

We study in this section the closure properties of the POCA classes. We start with positive
closure properties and then move to nonclosure claims. The results of this section are
summarized in Figure 1, in the Introduction.

6.1 Positive closure properties
▶ Theorem 18. The class of languages recognized by DetPOCA is closed under complement,
inverse morphisms, and intersection/union with regular languages.

Proof.

Complement. When there is no counter, i.e., in the DetPA case, this is fairly straightforward:
the complement of a DetPA is the union of
1. the complement of the language of the underlying automaton; and
2. the language of the DetPA with the semilinear constraint negated.
For DetPOCA, this approach has multiple caveats: as we will see, DetPOCA is not closed
under union, moreover, we need to take the complement of the underlying DetOCA which
is slightly more technical. Let us sketch how to overcome these limitations. Consider a
DetPOCA A. We follow the standard first steps for complementing deterministic pushdown
automata (e.g., [13, Chapter 10.2]):
1. Ensure that the automaton reads the input word in its entirety;
2. Mark as final any state that can reach a final state following only ε-transitions (possibly

zeroing the counter along the way).
The language of A is unchanged and a word is rejected iff after reading it, we reach a nonfinal
state. Call F the set of final states at this point. Next, note that given the Parikh image of
a run starting in the initial state, one can find, in first-order logic, which state is the last
one in the run (this is the one state that has more incoming transitions taken than outgoing
ones). Let us define a DetPOCA B as A, but with all states final. In addition, the constraint
formula of B accepts if either the last state of the run is not in F or if it is and the constraint
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formula of A rejected the Parikh image. A word is accepted by B if either the underlying
DetOCA of A rejected it or if it did accept it but the constraint set of A was rejecting it.
This is precisely the complement of L(A), concluding this proof.

Intersection/union with regular languages, inverse morphism. These are standard. ◀

▶ Theorem 19. The class of languages recognized by POCA is closed under union, concate-
nation, morphisms, inverse morphisms, and intersection with regular languages.

Proof.

Concatenation. This follows the classical construction for regular languages. The only
complication is that the counter has to be reset after the jump (and the Parikh constraint
has to undergo variable renaming as they speak about disjoint sets of variables arising from
the original automata). This can be achieved using ε-transitions with decrements on the
counter.

Other closures. These follow standard arguments. ◀

6.2 Nonclosure properties
▶ Theorem 20. The class of languages recognized by DetPOCA is not closed under union,
intersection, concatenation with regular languages, and morphisms.

Proof.

Union, intersection, concatenation with regular languages. This is covered by Proposi-
tions 7, 8, and 10, respectively, noting that L∗

ab, L∗
bc, B, and C (using the notation therein)

are all expressible using DetPOCA.

Morphisms. This is immediate from nonclosure under union. Indeed, take any two Det-
POCA languages L1, L2 over the same alphabet Σ and let Γ be a disjoint alphabet of the
same size as Σ. Let h : Γ∗ → Σ∗ be any bijective morphism. Certainly, T = L1 ∪ h−1(L2)
is recognizable with a DetPOCA, since one can decide which language to test for by read-
ing the first letter. Extending h so that it is the identity over Σ, we have, however, that
h(T ) = L1 ∪ L2. Thus if DetPOCA were closed under morphism, it would be closed under
union, a contradiction. ◀

▶ Theorem 21. The class of languages recognized by POCA is not closed under intersection
and complement.

Proof. For intersection, this is the contents of Proposition 10. Nonclosure under complement
is immediate from closure under union but not under intersection. ◀

7 Decision Problems

7.1 Classical decision problems
In this section, we study the computational complexity of some classical decision problems
for automata: given one or two automata A and B, nonemptiness asks whether L(A) ̸= ∅,
universality whether L(A) = Σ∗, inclusion whether L(A) ⊆ L(B), and equivalence whether
L(A) = L(B). From the known results listed in Figure 1, we immediately get:

▶ Corollary 22. Universality, inclusion, and equivalence are undecidable for POCA. Inclusion
is undecidable for DetPOCA.
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▶ Theorem 23. Nonemptiness is NP-complete for DetPOCA and POCA. Universality is
coNP-complete for DetPOCA.

Proof. For nonemptiness, hardness comes from the same property for DetPA and PA. In [7,
Proposition III.2], this is shown by encoding instances of the SubsetSum problem into
an instance of the nonemptiness problem for DetPA. NP-membership for nonemptiness for
POCA can be shown in a way similar to [7, Proposition III.2]: we can construct an existential
Presburger formula φρ whose models form the set of Parikh images of accepting runs of the
underlying OCA of a given POCA. The formula φρ can be obtained in polynomial time using
a construction from [22, Theorem 4].2 We can then check whether φ ∧ φρ is satisfiable, which
is the case if and only if the language of the given POCA is nonempty. Since satisfiability of
existential Presburger formulas is in NP (see, e.g., [10] and references therein), this concludes
the proof.

For universality of DetPOCA, this is a direct consequence of the (effective!) closure of
DetPOCA under complement (Theorem 18) and the previous discussion. ◀

▶ Remark 24. NP-hardness of nonemptiness has only little to do with the hardness of solving
the constraint formula itself or from encoding numbers in that formula in binary. Indeed, the
constraint formula obtained in the reduction from SubsetSum can be made quantifier-free
and without constants besides 1, in which case checking that a tuple satisfies the formula is
easy (in L). Let us make this reduction more explicit to see this. We build a partial PA (the
counter is not needed) that either “takes” a number from the instance set or does not, in the
sense that for each number n in the set, there will be a transition t that is either taken n

times or 0 times. We present the construction through an example: The following partial PA
will select whether n = 13 gets into the candidate subset:

t1 t2 t3 t4

t×

The constraint formula would assert (writing ti for the number of times ti is taken):

t× = 1 ∨ ((t1 = 1) ∧ (t2 = t1 + t1 + 1) ∧ (t3 = t2 + t2) ∧ (t4 = t3 + t3 + 1)) ,

corresponding to the binary encoding of 13, that is, 1101. Transition t4 is thus taken exactly
13 times or not at all, and the reduction is concluded by summing these selection transitions
and checking if they are unequal to the target value.

▶ Corollary 25. It is coNP-complete to decide, given a POCA A and a regular language R

as an NFA, whether L(A) ⊆ R.

▶ Open Question 26. Is equivalence decidable for DetPOCA? We conjecture that it is.

7.2 Parametric decision problems
In the field of formal verification, computational models represent so-called reactive systems
that communicate with and evolve based on their surrounding environment. To formalize
the varying conditions provided by the environment, the models receive parameters, usually

2 See [12] for a construction that fixes a small mistake in the proof of that theorem.
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integer valued variables [1]. In [3], it is shown that reachability in parametric timed automata
with two clocks correspond to parametric emptiness problem for certain classes of one-counter
machines. In [8] and [19], the authors showed that parametric emptiness for OCA (“for any
parameter value, the OCA is nonempty”) is decidable, where the parameters may appear on
the updates of the counter. We study that problem for POCA; there are two natural places
where parameters could appear: the counter updates and within the constraint formula.

▶ Definition 27. A parametric POCA is a tuple A = (Q, q0, Σ, X, ∆0, ∆+, F, φ) where:
Q, q0, Σ, and F are as in POCA,
X = {x1, . . . , xn} is a finite set of parameters that will take integer values,
∆0 and ∆+ are as in POCA but can also include tuples of the form (p, a, +x, q) and
(p, a, −x, q) with a ∈ Σε and x ∈ X,
φ has d + n free variables, where d = |∆0| + |∆+|, corresponding to the Parikh image of
the run and the valuation of the parameters in X.

Given a valuation µ : X → N, A induces a POCA Aµ with well-defined runs, language, etc. A
POCA with parametric updates is a parametric POCA in which φ does not have occurrence
of the parameters and a POCA with parametric constraint is a parametric POCA in which
∆0 and ∆+ only have nonparametric transitions.

Given a parametric POCA A with parameter set X, the parametric universal nonemptiness
problem, Pune for short, asks whether it holds that, for all µ : X → N, we have L(Aµ) ̸= ∅.

▶ Theorem 28. The Pune problem for POCA with parametric updates is undecidable. It is
decidable and complete for coNEXPEXP for POCA with parametric constraint.

Proof.
Parametric updates. We present a reduction from Hilbert’s tenth Problem to the Pune
problem. Recall that Hilbert’s Tenth Problem asks, given a polynomial with integer coeffi-
cients, if it has a positive integer solution.

Let P (x1, . . . , xn) be such a polynomial and write P = c1M1 + · · · + ckMk with each ci

in Z and each Mi a monomial with coefficient 1 (e.g., x1x2
2). We construct a POCA A with

parametric updates over the parameter set {x1, . . . , xn} that evaluates P . This is in the
following sense: there are transitions t1, . . . , tk of A such that for any valuation µ of the
parameters, there is a unique accepting run ρ in Aµ, and, writing |ρ|ti

for the number of
times ti occurs in ρ:

c1|ρ|t1 + · · · + ck|ρ|tk
= P (µ(x1), . . . , µ(xn)) .

We start with the simplest case: P = xi. Consider the following OCA (the labels are not
important, so we assume that each transition has a unique label and do not write it):

+xi

−1

= 0

Here, our transition t that evaluates to P (µ(xi)) is simply the self-loop: if the run is counter-
correct, this loop must have been taken µ(xi) times. Note that accepting runs end with a
counter value of zero and that this POCA has a single final state – these are properties we
will keep throughout this construction.

Next, assume P = Mxi with M a monomial with coefficient 1. We assume that we have
built a POCA AM with a transition tM that is taken M(x1, . . . , xn) times on accepting runs.
We then build the following POCA for P :
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AM

tM

+xi −1

= 0

As constraint, we combine the Parikh constraint of AM with the statement that the +xi

loop should be taken the same number of times as tM ; consequently, for any accepting
run ρ of this POCA with valuation µ, the −1 loop is taken |ρ|tM

µ(xi) times, which is
M(µ(x1), . . . , µ(xn))µ(xi) by hypothesis. This −1 loop is thus the transition that evaluates
to P (µ(x1), . . . , µ(xn)).

For the general case, we can chain together our POCA for each monomial one after the
other, and obtain our claimed POCA for any polynomial. The constraint formula can then
compute the exact value of P (µ(x1), . . . , µ(xn)) and accept if it is nonzero. Thus, there is no
positive integer solution to P iff for any valuation µ, Aµ has a nonempty language.
Parametric constraint. This follows the same proof as decidability in the nonparametric
case, but results in a formula of Presburger arithmetic with one alternation starting with ∀.
Validity of such sentences is complete for the class mentioned in the statement of the
theorem [9]. ◀

8 Conclusion

In the long tradition of combining computational means to obtain expressive models (e.g., [20]),
we have equipped one-counter automata with a mechanism to count events globally. This
mechanism, namely constraining the Parikh image of runs to fall within a semilinear set, always
enables recognizing non-context-free languages (e.g., {anbncn | n > 0}) while still preserving
the decidability of emptiness for models with effective semilinear Parikh images. However,
studying the expressiveness of the combined model is surprisingly difficult: techniques that
apply to the original model usually do not preserve satisfaction of the semilinear constraint.

Here, we have obtained expressiveness lemmas that allowed us to study the closure
properties and the class relationships of the models at play. In particular, we have shown that
there are languages expressible with a combination of deterministic one-counter automata
and semilinear constraint that cannot be obtained by any of the underlying mechanisms: the
whole is greater than the sum of its parts.

We underline research directions stemming from this work:
We left open two main questions: 1. Is equivalence decidable for DetPOCA? We conjecture
that a refinement of the algorithms for DetOCA ([21, 2]) will lead to a positive answer.
2. Is it true that if L′ = (L#)∗ is a POCA language, then L′ doesn’t use the semilinear
constraint in any meaningful way, so that L is an OCA language?
The undecidability of the parametric universality nonemptiness problem (Theorem 28)
is rather unfortunate. Indeed, we had originally expected that this problem would be a
natural automata counterpart of the validity of sentences in a fragment of Presburger
arithmetic with divisibility called BIL (see [19, Conclusion]). Such sentences are naturally
translated to POCA with parametric updates in such a way that validity corresponds
to parametric nonemptiness, but alas, validity of the BIL fragment is decidable while
the Pune problem for POCA with parametric updates is not. For context, an elegant
connection between another fragment of Presburger arithmetic with divisibility and
OCA with parametric updates was established in [11]: the validity problem of the
former is interreducible with the nonemptiness problem of the latter via nondeterministic
polynomial-time reductions. This leaves open the problem of finding such a correspondence
for BIL.
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A reviewer asked the following relevant question: Can a POCA for an OCA language be
more succinct than the equivalent OCA (and similarly for a POCA for a PA language)?
Some examples come to mind: {w ∈ {a, b}∗ | |w|a = 18|w|b} requires an OCA with at
least 18 states, but can be done with a PA with one state. A more interesting class of
languages to study this trade-off is that of languages expressible with an OCA but not
by a PA, or conversely.
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