21 research outputs found

    Lower bounds for integer programming problems

    Get PDF
    Solving real world problems with mixed integer programming (MIP) involves efforts in modeling and efficient algorithms. To solve a minimization MIP problem, a lower bound is needed in a branch-and-bound algorithm to evaluate the quality of a feasible solution and to improve the efficiency of the algorithm. This thesis develops a new MIP model and studies algorithms for obtaining lower bounds for MIP. The first part of the thesis is dedicated to a new production planning model with pricing decisions. To increase profit, a company can use pricing to influence its demand to increase revenue, decrease cost, or both. We present a model that uses pricing discounts to increase production and delivery flexibility, which helps to decrease costs. Although the revenue can be hurt by introducing pricing discounts, the total profit can be increased by properly choosing the discounts and production and delivery decisions. We further explore the idea with variations of the model and present the advantages of using flexibility to increase profit. The second part of the thesis focuses on solving integer programming(IP) problems by improving lower bounds. Specifically, we consider obtaining lower bounds for the multi- dimensional knapsack problem (MKP). Because MKP lacks special structures, it allows us to consider general methods for obtaining lower bounds for IP, which includes various relaxation algorithms. A problem relaxation is achieved by either enlarging the feasible region, or decreasing the value of the objective function on the feasible region. In addition, dual algorithms can also be used to obtain lower bounds, which work directly on solving the dual problems. We first present some characteristics of the value function of MKP and extend some properties from the knapsack problem to MKP. The properties of MKP allow some large scale problems to be reduced to smaller ones. In addition, the quality of corner relaxation bounds of MKP is considered. We explore conditions under which the corner relaxation is tight for MKP, such that relaxing some of the constraints does not affect the quality of the lower bounds. To evaluate the overall tightness of the corner relaxation, we also show the worst-case gap of the corner relaxation for MKP. To identify parameters that contribute the most to the hardness of MKP and further evaluate the quality of lower bounds obtained from various algorithms, we analyze the characteristics that impact the hardness of MKP with a series of computational tests and establish a testbed of instances for computational experiments in the thesis. Next, we examine the lower bounds obtained from various relaxation algorithms com- putationally. We study methods of choosing constraints for relaxations that produce high- quality lower bounds. We use information obtained from linear relaxations to choose con- straints to relax. However, for many hard instances, choosing the right constraints can be challenging, due to the inaccuracy of the LP information. We thus develop a dual heuristic algorithm that explores various constraints to be used in relaxations in the Branch-and- Bound algorithm. The algorithm uses lower bounds obtained from surrogate relaxations to improve the LP bounds, where the relaxed constraints may vary for different nodes. We also examine adaptively controlling the parameters of the algorithm to improve the performance. Finally, the thesis presents two problem-specific algorithms to obtain lower bounds for MKP: A subadditive lifting method is developed to construct subadditive dual solutions, which always provide valid lower bounds. In addition, since MKP can be reformulated as a shortest path problem, we present a shortest path algorithm that uses estimated distances by solving relaxations problems. The recursive structure of the graph is used to accelerate the algorithm. Computational results of the shortest path algorithm are given on the testbed instances.Ph.D

    Topics in Mixed Integer Nonlinear Optimization

    Get PDF
    Mixed integer nonlinear optimization has many applications ranging from machine learning to power systems. However, these problems are very challenging to solve to global optimality due to the inherent non-convexity. This typically leads the problem to be NP-hard. Moreover, in many applications, there are time and resource limitations for solving real-world problems, and the sheer size of real instances can make solving them challenging. In this thesis, we focus on important elements of nonconvex optimization - including mixed integer linear programming and nonlinear programming, where both theoretical analyses and computational experiments are presented. In the first chapter we look at Mixed Integer Quadratic Programming (MIQP), the problem of minimizing a convex quadratic function over mixed integer points in a rational polyhedron. We utilize the augmented Lagrangian dual (ALD), which augments the usual Lagrangian dual with a weighted nonlinear penalty on the dualized constraints. We first prove that ALD will reach a zero duality gap asymptotically as the weight on the penalty goes to infinity under some mild conditions on the penalty function. We next show that a finite penalty weight is enough for a zero gap when we use any norm as the penalty function. Finally, we prove a polynomial bound on the weight on the penalty term to obtain a zero gap. In the second chapter we apply the technique of lifting to bilinear programming, a special case of quadratic constrained quadratic programming. We first show that, for sets described by one bilinear constraint together with bounds, it is always possible to sequentially lift a seed inequality. To reduce computational burden, we develop a framework based on subadditive approximations of lifting functions that permits sequence-independent lifting of seed inequalities for separable bilinear sets. We then study a separable bilinear set where the coefficients form a minimal cover with respect to the right-hand-side. For this set, we introduce a bilinear cover inequality, which is second-order cone representable. We study the lifting function of the bilinear cover inequality and lift fixed variable pairs in closed-form, thus deriving a lifted bilinear cover inequality that is valid for general separable bilinear sets with box constraints. In the third chapter we continue our research around separable bilinear programming. We first prove that the semidefinite programming relaxation provides no benefit over the McCormick relaxation for separable bilinear optimization problems. We then design a simple randomized separation heuristic for lifted bilinear cover inequalities. In our computational experiments, we separate many rounds of these inequalities starting from the McCormick relaxation of bilinear instances where each constraint is a separable bilinear constraint set. Our main result is to demonstrate that there is a significant improvement in the performance of a state-of-the-art global solver in terms of the gap closed, when these inequalities are added at the root node compared to when these inequalities are not added. In the fourth chapter we look at Mixed Integer Linear Programming (MILP) that arises in operational applications. Many routinely-solved MILPs are extremely challenging not only from a worst-case complexity perspective, but also because of the necessity to obtain good solutions within limited time. An example is the Security-Constrained Unit Commitment (SCUC) problem, solved daily to clear the day-ahead electricity markets. We develop ML-based methods for improving branch-and-bound variable selection rules that exploit key features of such operational problems: similar decisions are generated within the same day and across different days, based on the same power network. Utilizing similarity between instances and within an instance, we build one separate ML model per variable or per group of similar variables for learning to predict the strong branching score. The approach is able to produce branch-and-bound trees which gap closed only slightly worse than that of trees obtained by strong branching, while it outperforms previous machine learning schemes.Ph.D

    Two row mixed integer cuts via lifting

    Get PDF
    Recently, Andersen et al. [1], Borozan and Cornuéjols [6] and Cornuéjols and Margot [9] characterized extreme inequalities of a system of two rows with two free integer variables and nonnegative continuous variables. These inequalities are either split cuts or intersection cuts derived using maximal lattice-free convex sets. In order to use these inequalities to obtain cuts from two rows of a general simplex tableau, one approach is to extend the system to include all possible nonnegative integer variables (giving the two-row mixed integer infinite-group problem), and to develop lifting functions giving the coefficients of the integer variables in the corresponding inequalities. In this paper, we study the characteristics of these lifting functions. We begin by observing that functions giving valid coefficients for the nonnegative integer variables can be constructed by lifting a subset of the integer variables and then applying the fill-in procedure presented in Johnson [23]. We present conditions for these 'general fill-in functions" to be extreme for the two-row mixed integer infinite-group problem. We then show that there exists a unique 'trivial' lifting function that yields extreme inequalities when starting from a maximal lattice-free triangle with multiple integer points in the relative interior of one of its sides, or a maximal lattice-free triangle with integral vertices and one integer point in the relative interior of each side. In all other cases (maximal lattice-free triangle with one integer point in the relative interior of each side and non-integral vertices, and maximal lattice-free quadrilaterals), non-unique lifting functions may yield distinct extreme inequalities. For the case of a triangle with one integer point in the relative interior of each side and non-integral vertices, we present sufficient conditions to yield an extreme inequality for the two-row mixed integer infinite-group problem.

    Subject index volumes 1–92

    Get PDF

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Large-scale optimization under uncertainty: applications to logistics and healthcare

    Get PDF
    Many decision making problems in real life are affected by uncertainty. The area of optimization under uncertainty has been studied widely and deeply for over sixty years, and it continues to be an active area of research. The overall aim of this thesis is to contribute to the literature by developing (i) theoretical models that reflect problem settings closer to real life than previously considered in literature, as well as (ii) solution techniques that are scalable. The thesis focuses on two particular applications to this end, the vehicle routing problem and the problem of patient scheduling in a healthcare system. The first part of this thesis studies the vehicle routing problem, which asks for a cost-optimal delivery of goods to geographically dispersed customers. The probability distribution governing the customer demands is assumed to be unknown throughout this study. This assumption positions the study into the domain of distributionally robust optimization that has a well developed literature, but had so far not been extensively studied in the context of the capacitated vehicle routing problem. The study develops theoretical frameworks that allow for a tractable solution of such problems in the context of rise-averse optimization. The overall aim is to create a model that can be used by practitioners to solve problems specific to their requirements with minimal adaptations. The second part of this thesis focuses on the problem of scheduling elective patients within the available resources of a healthcare system so as to minimize overall years of lives lost. This problem has been well studied for a long time. The large scale of a healthcare system coupled with the inherent uncertainty affecting the evolution of a patient make this a particularly difficult problem. The aim of this study is to develop a scalable optimization model that allows for an efficient solution while at the same time enabling a flexible modelling of each patient in the system. This is achieved through a fluid approximation of the weakly-coupled counting dynamic program that arises out of modeling each patient in the healthcare system as a dynamic program with states, actions, transition probabilities and rewards reflecting the condition, treatment options and evolution of a given patient. A case-study for the National Health Service in England highlights the usefulness of the prioritization scheme obtained as a result of applying the methodology developed in this study.Open Acces

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Mixed n-Step MIR Inequalities, n-Step Conic MIR Inequalities and a Polyhedral Study of Single Row Facility Layout Problem

    Get PDF
    In this dissertation, we introduce new families of valid inequalities for general linear mixed integer programs (MIPs) and second-order conic MIPs (SOCMIPs) and establish several theoretical properties and computational effectiveness of these inequalities. First we introduce the mixed n-step mixed integer rounding (MIR) inequalities for a generalization of the mixing set which we refer to as the n-mixing set. The n-mixing set is a multi-constraint mixed integer set in which each constraint has n integer variables and a single continuous variable. We then show that mixed n-step MIR can generate multi-row valid inequalities for general MIPs and special structure MIPs, namely, multi- module capacitated lot-sizing and facility location problems. We also present the results of our computational experiments with the mixed n-step MIR inequalities on small MIPLIB instances and randomly generated multi-module lot-sizing instances which show that these inequalities are quite effective. Next, we introduce the n-step conic MIR inequalities for the so-called polyhedral second-order conic (PSOC) mixed integer sets. PSOC sets arise in the polyhedral reformulation of SOCMIPs. We first introduce the n-step conic MIR inequality for a PSOC set with n integer variables and prove that all the 1-step to n-step conic MIR inequalities are facet-defining for the convex hull of this set. We also provide necessary and sufficient conditions for the PSOC form of this inequality to be valid. Then, we use the aforementioned n-step conic MIR facet to derive the n-step conic MIR inequality for a general PSOC set and provide conditions for it to be facet-defining. We further show that the n-step conic MIR inequality for a general PSOC set strictly dominates the n-step MIR inequalities written for the two linear constraints that define the PSOC set. We also prove that the n-step MIR inequality for a linear mixed integer constraint is a special case of the n-step conic MIR inequality. Finally, we conduct a polyhedral study of the triplet formulation for the single row facility layout problem (SRFLP). For any number of departments n, we prove that the dimension of the triplet polytope (convex hull of solutions to the triplet formulation) is n(n - 1)(n - 2)/3. We then prove that several valid inequalities presented in Amaral (2009) for this polytope are facet-defining. These results provide theoretical support for the fact that the linear program solved over these valid inequalities gives the optimal solution for all instances studied by Amaral (2009)

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF
    corecore