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Abstract 
 

Recently, Andersen et al. [1], Borozan and Cornuéjols [6] and Cornuéjols and Margot [9] 
characterized extreme inequalities of a system of two rows with two free integer variables and 
nonnegative continuous variables. These inequalities are either split cuts or intersection cuts 
derived using maximal lattice-free convex sets. In order to use these inequalities to obtain cuts 
from two rows of a general simplex tableau, one approach is to extend the system to include all 
possible nonnegative integer variables (giving the two-row mixed integer infinite-group 
problem), and to develop lifting functions giving the coefficients of the integer variables in the 
corresponding inequalities. In this paper, we study the characteristics of these lifting functions. 

We begin by observing that functions giving valid coefficients for the nonnegative integer 
variables can be constructed by lifting a subset of the integer variables and then applying the 
fill-in procedure presented in Johnson [23]. We present conditions for these 'general fill-in 
functions" to be extreme for the two-row mixed integer infinite-group problem. We then show 
that there exists a unique 'trivial' lifting function that yields extreme inequalities when starting 
from a maximal lattice-free triangle with multiple integer points in the relative interior of one 
of its sides, or a maximal lattice-free triangle with integral vertices and one integer point in the 
relative interior of each side. In all other cases (maximal lattice-free triangle with one integer 
point in the relative interior of each side and non-integral vertices, and maximal lattice-free 
quadrilaterals), non-unique lifting functions may yield distinct extreme inequalities. For the 
case of a triangle with one integer point in the relative interior of each side and non-integral 
vertices, we present sufficient conditions to yield an extreme inequality for the two-row mixed 
integer infinite-group problem. 
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1 Introduction

The Gomory mixed integer cuts (GMIC) and valid inequalities based on single row mixed integer group
relaxations have been studied both theoretically and computationally, whereas valid inequalities from two and
multiple rows have so far almost exclusively been studied theoretically. Our goal is to present valid inequalities
generated from two-row mixed integer group problems that have the potential to be useful computationally.
They can be used directly to generate valid inequalities from any two rows of an optimal simplex tableau,
are strong in a well-defined sense and have similar properties to the most effective single-row inequality, the
GMIC.

Below we briefly discuss earlier work and the motivation for the approach that is taken in this paper.
The GMIC was proposed by Gomory [16], and has been shown to be one of the most effective cuts used
in general purpose mixed integer programming solvers, see Balas et al. [4] and Bixby and Rothberg [5].
Group cutting planes based on relaxations of a single row of a mixed integer program, of which GMIC is a
special case, were presented by Gomory [17], Gomory and Johnson [19, 20] in the 70’s, and more recently in
Gomory, Johnson, and Evans [22], Gomory and Johnson [21], Aráoz et al. [2], Miller, Li and Richard [26],
Richard, Li, and Miller [29] and Dash and Günlük [11]. This has led to computational work to test whether
the other inequalities based on single row group relaxation are effective computationally; see Cornúejols, Li
and Vandenbussche [8], Fischetti and Saturni [15] and Dash and Günlük [10]. In general the results have
been disappointing and the GMIC seems to be the most effective single row mixed integer group inequality.
One possible explanation for this is the fact that the GMIC has the strongest coefficients for the continuous
variables among all single row group inequalities.

In Johnson [23] multiple row group inequalities were studied and in Gomory and Johnson [21] the potential
advantages of valid inequalities based on multiple constraints were discussed. In particular, one weakness
of the single row inequalities is that the continuous variables are modeled by aggregating them into two
continuous variables, based on the signs of the coefficients. Group cuts based on multiple rows overcome
this limitation and can more accurately represent the structure of the columns corresponding to continuous
variables. Some extreme inequalities for two-row mixed integer group problems are presented in Dey and
Richard [13, 12].

A slightly different viewpoint has been taken recently by Andersen et al. [1], Borozan and Cornuéjols [6]
and Cornuéjols and Margot [9]. They have analyzed a system of two rows with two free integer variables and
nonnegative continuous variables. They show that extreme inequalities of the system

f +
∑

w∈Q2

wy(w) ∈ Z2, y(w) ≥ 0 ∀w ∈ Q2, y has finite support, f ∈ Q2 \ Z2 (1)

are either split cuts or intersection cuts (Balas [3]) that can be derived using maximal lattice-free convex sets.
Our approach builds on this work. Given that the GMIC is the most effective single row group inequality

and has the strongest coefficients on the continuous variables, we attempt to keep similar properties when
generating inequalities from two rows. Thus we view the construction of the GMIC in the following way:

1. Starting from a simplex tableau of a MIP, create a single-row mixed-integer group relaxation.

2. Fix the nonnegative integer variables of mixed-integer group relaxation to zero and generate an extreme
(facet-defining) inequality with respect to the continuous variables.

3. Lift the nonnegative integer variables into this cut to obtain an inequality that is extreme for the one-row
mixed integer infinite-group problem (see Nemhauser and Wolsey [27] for an overview on lifting).

We apply the same approach to the two row case. The recent results of Andersen et al. [1], Borozan and
Cornuéjols [6] and Cornuéjols and Margot [9] tells us how to approach step 2. Our contribution is to accomplish
the two-row counterpart of step 3, i.e., to lift integer variables into the extreme inequalities for (1) in order to
obtain new extreme inequalities for the two-row mixed integer infinite-group problem. The new inequalities
derived in this way may thus be considered as the two-row counterparts to the GMIC; they are both extreme
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inequalities for the mixed integer infinite-group problem and have the strongest possible coefficients for the
continuous variables. A related approach has been discussed by Gomory [18]. An extended abstract of some
of the results in this paper is presented in Dey and Wolsey [14].

The rest of the paper is organized as follows. In Section 2, we present some preliminaries about the mixed
integer infinite-group problem and the continuous infinite-group problem, and classify maximal lattice-free
convex sets in R2. In particular, we show that convex maximal lattice-free sets with non empty interiors in
R2 are splits, triangles with multiple integer points in the relative interior of one side, triangles with integral
vertices and a single integer point in the relative interior of each side, triangles with non-integral vertices
and a single integer point in the relative interior of each side, and quadrilaterals. In Section 3, we illustrate
the characterization and analysis of lifting functions for the case when the lattice-free convex set is the split
cylinder and derive the well known split cut. In Section 4, we show that when the inequality for (1) is
related to a maximal lattice-free triangle with either multiple integer points in the relative interior of one
side, or integral vertices and one integer point in the relative interior of each side, then there exists a unique
lifting function such that the resultant inequality is extreme for the two-row mixed-integer infinite-group
problem. In Section 5, we present a modified version of the fill-in procedure of Gomory and Johnson [19]
and Johnson [23], which is closely related to the lifting of integer variables in valid inequalities for the mixed
integer infinite-group problem. The tools developed here are a generalization of the tools used in the previous
sections and allow the analysis of the more complex cases. In Section 6, using these tools we show that when
we start with an inequality for (1) which is related to a maximal lattice-free triangle with one integer point
in the relative interior of each side and non-integral vertices or a maximal lattice-free quadrilateral, there
does not exist a unique lifting function. For the case of lattice-free triangles with one integer point in the
relative interior of each side and non-integral vertices, we present sufficient conditions for the lifting functions
to generate an extreme inequality for the two-row mixed-integer infinite-group problem. In Section 7, we
illustrate examples of these new inequalities. We conclude in Section 8.

2 Preliminaries

We begin this section with a concise description of the mixed integer infinite-group problem. Then we focus
on the continuous version of it. Finally we end this section with a classification of maximal lattice-free convex
sets in R2.

2.1 Mixed integer infinite-group problem

Observe that the integer variables in (1) have no sign restrictions. This corresponds to the so-called group
relaxation that was first defined and studied by Gomory [17], Gomory and Johnson [19, 20, 22, 21] and
Johnson [23]. We present notation and a brief overview of the mixed integer infinite-group problem and
establish its relationship to (1).

Let Im represent the infinite-group of real m-dimensional vectors where addition is taken modulo 1
componentwise, i.e., Im = {(u1, u2, ...um) | 0 ≤ ui < 1, i ∈ {0, 1, ...,m}}. Let Sm represent the set of real
m-dimensional vectors w = (w1, w2, ..., wm) that satisfy max1≤i≤m|wi| = 1. For an element u ∈ Rm, we use
the symbol P(u) to denote the element in Im whose ith entry is ui(mod 1). We use the symbol 0̄ to represent
the zero vector in Rm and Im and the symbol 1̄ to represent the vector (1, ..., 1). We use the symbols + and
− to represent addition and substraction in both Im and Rm.

The mixed integer infinite-group problem is defined next.

Definition 1 ( [20], [23]) Let U be a subgroup of Im and W be any subset of Sm. Then the mixed integer
infinite-group problem, denoted MI(U,W, r), is defined as the set of pairs of functions x : U → Z+ and
y : W → R+ that satisfy

1.
∑

u∈U ux(u) + P(
∑

w∈W wy(w)) = r, r ∈ Im,

2. x and y have finite supports. ¤
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The key observation connecting MI(I2, S2, r) to (1) is the following: If all the x(u)’s are fixed to zero
in MI(I2, S2, r), the problem would reduce to that presented in (1) (with columns suitably scaled) where
r = P(−f).1

Throughout this paper, we will use the symbol r to represent the right-hand-side of group problem and f
as the constant in (1), with r = P(−f).

Next we present the definition of valid inequalities for the infinite-group problem.

Definition 2 ( [20], [23]) A valid inequality for MI(U,W, r) is defined as a pair of functions, φ : U → R+

and µφ : W → R+, such that
∑

u∈U φ(u)x(u)+
∑

w∈W µφ(w)y(w) ≥ 1, ∀(x, y) ∈ MI(U,W, r), where φ(0̄) = 0.
¤

Since valid inequalities for the group problem are functions defined over Im and Sm, we will use the terms
valid inequality and valid function interchangeably.

See Gomory and Johnson [21] for a presentation of how these inequalities can be used to generate valid
cutting planes for two rows of a simplex tableau. Gomory and Johnson [20] and Johnson [23] present a
hierarchy of valid inequalities which include valid, subadditive, minimal and extreme inequalities. We present
next the concept of a minimal inequality, which is essentially an inequality that is not dominated by any
other inequality.

Definition 3 ( [20], [23]) A valid function (φ, π) is minimal for MI(U,W, r) if there do not exist valid
functions (φ∗, π∗) for MI(U,W, r) different from (φ, π) such that φ∗(u) ≤ φ(u) ∀u ∈ U and π∗(w) ≤ π(w)
∀w ∈ W . ¤

Next we define the notion of extreme inequalities.

Definition 4 ( [20], [23]) A valid function (φ, π) is extreme for MI(U,W, r) if there do not exist valid
functions (φ1, π1) and (φ2, π2) for MI(U,W, r) such that (φ1, π1) 6= (φ2, π2) and (φ, π) = 1

2 (φ1, π1)+ 1
2 (φ2, π2).

¤

Gomory and Johnson [19, 20] and Johnson [23] prove the following result.

Theorem 5 ( [20], [23]) If (φ, π) is extreme for MI(U,W, r), then it is minimal for MI(U,W, r). ¤

2.2 Two row continuous infinite-group problem

As discussed in the previous section, (1) is essentially equivalent to the continuous infinite-group problem2

MI(∅, S2, r). Our first objective is to obtain inequalities with the strongest possible coefficients for the
continuous problem. We lift in the integer variables to obtain extreme inequalities for MI(I2, S2, r).

For notational convenience, we assume that the columns of the continuous variables in the group problem
MI(I2, S2, r) are from R2 (i.e., not just the scaled vectors) and π, the valid function corresponding to
continuous variables, is defined over R2. (The relationship between the functions π : R2 → R+ and µφ :
S2 → R+ in Definition 2 is straightforward. In what follows, π will be positively homogenous, and we can
construct µφ in a well-defined fashion by restricting the domain of π to S2. Conversely, given µφ, π is the
gauge function which is the homogenous extension of µφ.)

We begin with the definition of a maximal lattice-free set, that is the key component in the description
of minimal inequalities for MI(∅, S2, r).

Definition 6 ( [25]) A set S is called a maximal lattice-free convex set in R2 if it is convex,

1Note here that columns corresponding to the continuous variables are assumed to be rational in (1). However, we will assume
that W = S2 which allows the use of results from Johnson [23]. This is a only a minor technical assumption as we will show
that results obtained using only rational columns for (1) apply to the case when columns are irrationals.

2Some authors have used the term continuous group problem to imply the infinite-group problem, as the underlying group is
a ‘continuous’ set. However, we use the term to imply the problem whose variables are all non-negative continuous (except for
the free integer variables of the group problem).
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1. interior(S) ∩ Z2 = ∅, and

2. There exists no convex set S′ satisfying (1), such that S ( S′. ¤

We state the following theorem, modified from Borozan and Cornuéjols [6]; see also Theorem 1 in Andersen
et al. [1].

Theorem 7 ( [6]) An inequality of the form
∑

w∈Q2 π̃(w)y(w) ≥ 1 is minimal for (1) if the closure of

P (π̃) = {w ∈ Q2|π̃(w − f) ≤ 1} (2)

in R2 is a maximal lattice-free convex set. Moreover, given a maximal lattice-free convex set P such that
f ∈ interior(P ), the function π̃ : Q2 → R+ defined as

π̃(w) =
{

0 if w ∈ recession cone of P
λ if f + w

λ ∈ Boundary(P ) (3)

is a minimal valid inequality for (1). ¤

It is possible to analyze the case when f ∈ Boundary(P (π)). However, in this paper we focus on the case
when f ∈ interior(P (π)).

It can be verified that if a function π̃ : Q2 → R+ corresponding to a maximal lattice-free set P is minimal
(extreme resp.) for (1) and f ∈ interior(P ), then π : R2 → R+ defined as

π(w) =
{

0 if w ∈ recession cone of P
λ if f + w

λ ∈ Boundary(P ) (4)

is minimal (extreme resp.) for MI(∅, S2, r). This is just a technical verification and we relegate the proof to
Appendix 1. (Note that since f is rational in (1), we assume that r (i.e., P(−f)) is rational in the rest of the
paper.)

For any minimal valid function π, we denote the corresponding lattice-free maximal set by P (π).
In order to build some intuition concerning the difference between extreme inequalities for the mixed

integer and the continuous group problems, we present an example from the one-row case. Figure 1 shows
two extreme inequalities for MI(I1, S1, 0.5). The pair of functions (φ1, π1), plotted in bold, was shown to be
extreme for MI(I1, S1, 0.5) in Gomory and Johnson [21]. The functions (φGMIC , πGMIC) plotted in dashed
lines is the GMIC which is also extreme from MI(I1, S1, 0.5). Therefore, from the perspective of the mixed
integer problem, both inequalities are strong. However, if we just compare the functions π1 and πGMIC , we
observe that πGMIC dominates π1. Therefore, while πGMIC is extreme for MI(∅, S1, 0.5), π1 is not even
minimal for MI(∅, S1, 0.5).

In this paper, we take functions π : R2 → R+ that are the two-row versions of the functions πGMIC (whose
characterization was partially given in Theorem 7) and determine functions φ : I2 → R+ such that (φ, π) is
extreme for MI(I2, S2, r).

2.3 Classification of maximal lattice-free sets in R2

Theorem 7 shows the relationship between minimal inequalities for MI(∅, S2, r) and maximal lattice-free sets.
In this section, we present a classification of maximal lattice-free convex sets in R2 that is suitable for the
study in this paper.

In the rest of the paper, we use the term ‘interior of a side’ to imply the relative interior of a line segment
in R2.

We begin with a result from Lovász [25].

Theorem 8 ( [25]) A maximal lattice-free convex set in the plane is one of the following:
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Figure 1: Extreme functions for MI(I1, S1, 0.5)

1. A line with irrational slope, i.e., a1x1 + a2x2 = b, where a1
a2

is irrational and b /∈ Za1 + Za2,

2. A split, i.e., the set {(x1, x2) ∈ R2 | b ≤ a1x1 +a2x2 ≤ b+1} where a1, a2, b ∈ Z and a1, a2 are coprime.

3. A triangle with at least one integer point in the interior of each of its edges.

4. A quadrilateral containing exactly four integer points with exactly one of them in the interior of each of
its edges.

Note that except for the first case, all the other sets have non-empty interiors. Here we focus our attention
on the last three classes of maximal lattice-free sets. We classify the maximal lattice-free triangles in R2 more
precisely in Proposition 13. The key result used in the proof of Proposition 13 is the following theorem from
Andersen et al. [1].

Theorem 9 ( [1]) Let Q ∈ R2 be a convex polygon with integer vertices that has no integer points in its
interior. Then

1. Q has at most four vertices.

2. If Q has four vertices, then at least two of it four facets are parallel.

3. If Q is not a triangle with integer points in the interior of all three facets, then there exists parallel lines
a1w1 + a2w2 = c and a1w1 + a2w2 = c + 1 such that Q ⊆ {b ≤ a1w1 + a2w2 ≤ b + 1}.

We next present a lemma allowing us to put the maximal lattice-free convex set in ‘standard’ form.
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Lemma 10 (Standardization) Let P be a maximal lattice-free convex set (with non-empty interior) with
v an integer point in the interior of one of its sides. Then there exists a unimodular matrix M such that the
set {x ∈ R2 |x = M(u− v), u ∈ P} is a maximal lattice-free convex set with the points (0, 0), (1, 0), and (1, 1)
in the interior of its sides.

Proof. Since v is an integer point in the interior of one of the side of P , we have that P − {v} is a maximal
lattice-free convex set with 0̄ := (0, 0) in the interior of one of its sides. By Theorem 8, P is either a split or
a triangle or a quadrilateral. In each case it is possible to select two integer points s, t ∈ Z2 in the interior of
the sides of P such that s, t, v are affinely independent and the interior of the line segments [0̄, s−v], [0̄, t−v],
and [s− v, t− v] contain no integer points. Therefore, by part 3 of Theorem 9, we can assume without loss of

generality that s− v = (a1, a2) and t− v = (p, q) with a2p− a1q = 1. Setting M =
[ −q p

a2 −a1

]
completes

the proof. ¤
The next lemma analyzes the standard triangles with each side containing one integer point in its interior.

See Cornúejols and Margot [9] for an alternative proof.

Lemma 11 Let P be a maximal lattice-free triangle with the points (0, 0), (1, 0), and (0, 1) being the only
integer points lying in the interior of different sides. Let s1 be the side of P passing thorough (1, 0) and let
s2 be the side of P passing through the point (0, 1). Then one of the following holds:

1. s1 and s2 intersect at (1, 1). The vertices of P are (−1, 1), (1, 1), and (1,−1).

2. s1 and s2 intersect at a point outside the unit square. Let −m1, m2 and −m3 be the slopes of s1, s2

and s3 respectively. Either 1 < m1 < ∞, 0 < m2 < ∞ and 0 < m3 < 1 or −∞ < m1 < 0, −1 < m2 < 0
and 1 < m3 < ∞. All the vertices of P are non-integral.

Proof. Let s3 be the side that passes through the point (0, 0).

1. Consider the case in which s1 and s2 intersect at (1, 1). Therefore s1 is vertical and s2 has a slope of 0.
If the slope of s3 is lesser that −1, the point (1,−1) will belong to the interior of s1. If the slope of s3

is greater that −1, the point (−1, 1) will belong to the interior of s2. Therefore the slope of s3 is −1,
and the vertices of P are (−1, 1), (1, 1), and (1,−1).

2. We first prove that s1 and s2 do not intersect in S \ {(1, 1)} where S is the unit square. Assume by
contradiction that s1 and s2 intersect in S \ {(1, 1)}. Therefore the slope of s2 is less than (or equal
to) 0 and s1 is vertical or the slope of s1 is negative. Moreover if s1 is vertical, then the slope of s2 is
negative. Similarly if slope of s2 is 0, then s1 cannot be vertical. WLOG assume that s1 is not vertical
(the other case can be proven in the same way). Since P is lattice-free and contains only one integer
point in the interior of each of its sides, the slope of s3 is greater than −1 (Otherwise since the slope of
s1 is negative, the point (1,−1) will belong to P ). Thus the slope of s3 is less than −1. This however
implies that the point (−1, 1) belongs in the interior of P (if s2 has a negative slope) or in the interior
of s2 (if the slope of s2 is 0), a contradiction.

We next prove that the vertices of P are all non-integral. Since s1 and s2 intersect outside the unit
square, there are three possible cases:

(a) The slope of s1 is negative (and not vertical). The slope of s2 is positive.

(b) The slope of s1 is positive (and not vertical). The slope of s2 is negative.

(c) The slope of s1 is non-negative. The slope of s2 is non-negative: As s1 and s2 do not intersect at
(1, 1) in this case, this would imply that (1, 1) belongs to the interior of P or interior of either s1

or s2. This is a contradiction. Therefore this case is not possible.

We assume WLOG that the slope of s1 is negative (and not vertical) and the slope of s2 is positive.
(The other case can be proven in the same way).
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Vertex between s1 and s2: Note that s2 cannot be vertical, since, otherwise s2 and s3 would meet at
(0, 0), which would make (0, 0) a non interior point for s3. Since s2 has a positive slope and is not
vertical and s1 has a negative slope (and not vertical) they cannot meet at an integral vertex.

Vertex between s2 and s3: The slope of s3 cannot be zero, since otherwise s1 and s3 would intersect
at (1, 0), which would make (1, 0) a non interior point for s1. This implies that slope of s3 is negative.
Since s2 has a positive slope and s3 has a negative slope they cannot meet at an integral vertex.

Vertex between s3 and s1: The slope of s1 must be lesser than −1, since otherwise s1 and s2 would
intersect at (0, 1), which would make (0, 1) a non interior point for s2. If the slope of s3 is lesser than (or
equal) to −1, then (1,−1) will belong either to the interior of P or interior of s3 which is not possible.
Therefore, slope of s3 is greater than −1. Let m1 be the negative of the slope of s1 and m3 is the
negative of the slope of s3. Then m1 > 1 and 0 < m3 < 1 and the point of intersection of s1 and s3 is(

m1
m1−m3

, −m1m3
m1−m3

)
. Suppose

m1

m1 −m3
= k, (5)

where k ∈ Z. Then we have that −m1m3
m1−m3

= −m3k ∈ Z. This implies that

m3 =
p

k
, (6)

where p ∈ Z and 1 ≤ p ≤ k − 1 since 0 < m3 < 1. However, substituting this in (5), we obtain that
m1 = p

k−1 ≤ 1, a contradiction. ¤

If M is an unimodular matrix, a vector u ∈ Z2 iff Mu ∈ Z2. Using this property and Lemmas 10 and 11
we can verify the following proposition.

Proposition 12 Let P be a maximal lattice-free triangle with one integer point in the interior of each side.
Then either all the vertices of P are integral, or none of them are integral.

We conclude this section by consolidating all the results of this section.

Proposition 13 (Classification) Let P be a maximal lattice-free convex set with a non-empty interior in
R2. Then P is any one of the following:

1. The set {(x1, x2) ∈ R2 | b ≤ a1x1 + a2x2 ≤ b + 1} where a1, a2, b ∈ Z and a1, a2 are coprime.

2. A maximal lattice-free triangle in R2. In this case exactly one of the following is true:

(a) One side of P contains more than one integer point in its interior.

(b) All the vertices are integral and each side contains one integer point in its interior.

(c) The vertices are non-integral and each side contains one integer point in its interior.

3. A lattice-free quadrilateral and each of its sides contains exactly one integer point in its interior. ¤

3 The trivial fill-in function

We begin this section by introducing a candidate for the lifting function, that we call the trivial fill-in function.
It will be shown that this function is, in fact, the unique lifting function in many cases, i.e., the trivial fill-in
function defined over I2 together with the function π : R2 → R+ (obtained starting with a maximal lattice-free
set P (π) and applying (4)) leads to extreme inequalities for the mixed integer group problem. The objective
of this section is to present the method for proving that the resulting inequality is extreme and illustrating
this procedure on the split cut.

We begin with a lemma that motivates the definition of the trivial fill-in function.
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Lemma 14 Let π : R2 → R+ be a valid function for MI(∅, S2, r). Consider the function φ : I2 → R+

defined as φ(u) = π(û) where û ∈ R2 is any point such that P(û) = u. Then (φ, π) is a valid inequality for
MI(I2, S2, r).

Proof: Consider any (x̄, ȳ) ∈ MI(I2, S2, r), i.e.,
∑

u∈I2 ux̄(u) + P(
∑

w∈R2 wȳ(w)) = r. Now consider the
point ỹ defined as follows:

1. First set ỹ(w) = ȳ(w) ∀w ∈ R2.

2. For every u ∈ I2, such that x̄(u) > 0 (note there is a finite number of such u ∈ I2), update ỹ(w) :=
ỹ(w) + x̄(u), where w = û.

Observe that P(
∑

w∈R2 wỹ(w)) =
∑

u∈I2 ux̄(u) + P(
∑

w∈R2 wȳ(w)) = r. Moreover the support of ỹ is fi-
nite as the support of x̄ and ȳ were finite. Therefore, we have that ỹ ∈ MI(∅, S2, r). Also observe that∑

x̄(u)>0 φ(u)x̄(u)+
∑

ȳ(w)>0 π(w)ȳ(w) =
∑

w∈R2 π(w)ỹ(w). By validity of π for MI(∅, S2, r), we obtain that∑
w∈R2 π(w)ỹ(w) ≥ 1. Thus,

∑
x̄(u)>0 φ(u)x̄(u) +

∑
ȳ(w)>0 π(w)ȳ(w) ≥ 1. ¤

Therefore, we observe that if we set the value of φ(u) to be that of π(û) for any û such that P(û) = u,
then φ(u) is a valid coefficient for x(u). Since we want to obtain the best possible coefficient for the integer
variables, we choose û so as to obtain the smallest possible coefficient for φ(u).

Definition 15 (Trivial Fill-in Function) Let π be a valid inequality corresponding to the maximal lattice-
free convex set P (π). The trivial fill-in function, denoted φ0̄ : I2 → R+, is defined to be: φ0̄(u) =
inf{π(w) |P(w) = u,w ∈ R2}.

The reason for the notation and the nomenclature of the trivial fill-in function will become apparent when
a generalization of this function is analyzed in Section 5. We next present the procedure to prove that the
trivial fill-in function provides the strongest possible coefficient for integer variables in certain cases.

Theorem 5 shows that an extreme inequality for the two-row infinite-group problem must be minimal.
Therefore to prove that (φ0̄, π) is extreme for MI(I2, S2, r), we must first show that (φ0̄, π) is minimal for
MI(I2, S2, r). To do this we use the following characterization by Johnson [23].

Theorem 16 (Theorem 6.1, [23]) The pair of functions φ : I2 → R+ and π : W → R+ is a minimal valid
inequality for the convex hull of MI(I2, S2, r) if and only if

1. φ is subadditive, i.e., φ(u1) + φ(u2) ≥ φ(u1 + u2) ∀u1, u2 ∈ I2

2. φ(u) + φ(r − u) = φ(r) = 1 for all u ∈ I2,

3. π(w) = limh→0+
φ(P(hw))

h ∀w ∈ S2,

where r 6= 0̄. ¤

The next proposition allows us to simplify calculations by showing that it suffices to only deal with standard
maximal lattice-free convex sets as described in Lemma 10. Let P (π) be a maximal lattice-free convex set with
f ∈ interior(P (π)) and let M be a two-by-two unimodular matrix. Let PM (π) be the maximal lattice-free
set defined as PM (π) = {x |x = M(u − v), u ∈ P (π)} where v ∈ Z2. Let πM be the function corresponding
to the maximal lattice-free convex set PM (π) with M(f − v) ∈ PM (π). By definition, if πM (w) = λ, then
M(f − v) + w

λ ∈ BoundaryPM (π). Therefore, π(M−1w) = λ = πM (w) since f + M−1w
λ ∈ BoundaryP (π).

Let φ : I2 → R+ be a valid function corresponding to the integer coefficients in MI(I2, S2, r). Similar to the
construction of πM , define φM : I2 → R+ as φM (u) = φ(P(M−1u)).

Proposition 17 Let P (π) be a maximal lattice-free convex set with f ∈ interior(P (π)). Let M be a two-
by-two unimodular matrix. Let PM (π) be the maximal lattice-free set defined above. Define the functions
φM : I2 → R+ and πM : R2 → R+ as φM (u) = φ(P(M−1u)) and πM (w) = π(M−1w). Then (φ, π) is a
minimal (extreme resp.) inequality for MI(I2, S2, r) iff (φM , πM ) is a minimal (extreme rep.) inequality for
MI(I2, S2,P(Mr)).
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Proof: First note that since M−1 is also unimodular it is enough to verify that if (φ, π) is a minimal
(extreme resp.) inequality for MI(I2, S2, r), then (φM , πM ) is a minimal (extreme resp.) inequality for
MI(I2, S2,P(Mr)). We first verify that if (φ, π) is a minimal inequality for MI(I2, S2, r) then (φM , πM ) is
a minimal inequality for MI(I2, S2,P(Mr)). Using Theorem 16 we need to verify the following conditions:

1. φM is subadditive: φM (u) + φM (v) = φ(P(M−1u)) + φ(P(M−1v)) ≥ φ(P(M−1u) + P(M−1v)) =
φ(P(M−1(u + v))) = φM (u + v). The inequality follows from the subadditivity of φ, since (φ, π) is
minimal.

2. φM (u) + φM (P(Mr) − u) = 1: φM (u) + φM (P(Mr) − u) = φ(P(M−1u)) + φ(P(M−1(P(Mr) − u)))
= φ(P(M−1u)) + φ(r − P(M−1u)) = 1.

3. φM (P(Mr)) = 1: φM (P(Mr)) = φ(P(M−1P(Mr))) = φ(r) = 1. The last equality follows from the
minimality of (φ, π).

4. limh→0+
φM (P(wh))

h = πM (w): limh→0+
φM (P(wh))

h = limh→0+
φ(P(M−1P(wh)))

h = limh→0+
φ(P(M−1wh))

h =
π(M−1w) = πM (w). The next to last equality follows from the minimality of (φ, π).

Next assume by contradiction that (φ, π) is an extreme inequality for MI(I2, S2, r), but (φM , πM ) is not an ex-
treme inequality for MI(I2, S2,P(Mr)). Observe that if (φ, π) is an extreme inequality for MI(I2, S2, r), then
it must be minimal for MI(I2, S2, r). Therefore, (φM , πM ) is a minimal inequality for MI(I2, S2,P(Mr)). If
(φM , πM ) is not extreme, then (φM , πM ) = 1

2 (φ1, π1)+ 1
2 (φ2, π2) where (φ1, π1) 6= (φ2, π2) are two minimal in-

equalities for (φM , πM ). However, this implies that (φ, π) = 1
2 (φM−1

1 , πM−1

1 )+ 1
2 (φM−1

2 , πM−1

2 ), a contradiction
to the extremality of (φ, π). ¤

Proposition 17 and Lemma 10 show that it is enough to analyze ‘standard’ maximal lattice-free convex
sets that have the integer points (0, 0), (1, 0) and (0, 1) in the interior of the boundary of the set.

The next two propositions show that some of the conditions of Theorem 16 are always satisfied by φ0̄.

Proposition 18 φ0̄(u1) + φ0̄(u2) ≥ φ0̄(u1 + u2) ∀u1, u2 ∈ I2.

Proof: For any u1, u2 ∈ I2 and any ε > 0, by the definition of φ0̄ there exists ūi ∈ R2 such that φ0̄(ui) >
π(ūi) − ε

2 . Therefore, φ0̄(u1) + φ0̄(u2) > π(ū1) + π(ū2) − ε ≥ π(ū1 + ū2) − ε ≥ φ0̄(ū1 + ū2) − ε. Since ε can
be made as small as possible, this completes the proof. ¤

The next proposition shows that φ0̄(r) = 1.

Proposition 19 If there exists ỹ ∈ MI(∅, S2, r) such that
∑

π(w)ỹ(w) = 1, then φ0̄(r) = 1.

Proof:

1. φ0̄(r) ≥ 1: Assume by contradiction that φ0̄(r) < 1. Then there exists k1, k2 ∈ Z such that π(r1 +
k1, r2 + k1) = φ0̄(r) < 1. Let

ỹ(w) =
{

1 if w = (r1 + k1, r2 + k2)
0 otherwise. (7)

As ỹ is a valid solution to MI(∅, S2, r), and since we have
∑

π(w)y(w) ≥ 1 for all feasible y, this is a
contradiction.

2. φ0̄(r) ≤ 1: The set of solutions to MI(∅, S2, r) are of the form:

{y|
∑

wy(w) = (r1 + k1, r2 + k2)}, (8)

where k1, k2 ∈ Z. By assumption, there exists a solution ỹ such that
∑

π(w)ỹ(w) = 1 and
∑

wỹ(w) =
(r1 + k̃1, r2 + k̃2), where k̃1, k̃2 ∈ Z. Then, by subadditivity of π, we have 1 =

∑
π(w)ỹ(w) ≥

π(
∑

wỹ(w)) = π(r1 + k̃1, r2 + k̃2) ≥ φ0̄(r).
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¤
Since π will be always assumed to be extreme, we will assume that φ0̄(r) = 1.
Suppose now that we obtain a trivial fill-in function that can be verified to be minimal. Proposition 20

next shows that if we start from an extreme inequality π for MI(∅, S2, r) and if (φ, π) is the unique minimal
function for MI(I2, S2, r), then (φ, π) is extreme for MI(I2, S2, r). This result will allow us to verify that
the trivial-fill-in function is extreme in certain cases.

Proposition 20 Let π be an extreme inequality for MI(∅, S2, r). If φ : I2 → R+ is the unique function such
that (φ, π) is minimal for MI(I2, S2, r), then (φ, π) is extreme for MI(I2, S2, r).

Proof: Assume by contradiction that (φ, π) is not extreme. Then there exists two valid functions (φ1, π1) and
(φ2, π2) such that (φ1, π1) 6= (φ2, π2) and (φ, π) = 1

2 (φ1, π1) + 1
2 (φ2, π2). It can be easily verified that (φi, πi)

must be minimal. (Otherwise, there exists (φ′, π′) < (φ1, π1) which is valid for MI(I2, S2, r). However, this
shows that there exists (φ′′, π′′) < (φ, π) which is valid; a contradiction to the minimality of (φ, π)).

Now note that π1 = π2 = π since π is an extreme inequality for MI(∅, S2, r). However since φ : I2 → R+

is the unique function such that (φ, π) is minimal, it implies that φ1 = φ2 = φ, which is the required
contradiction. ¤

Now we have all the tools to outline the steps used to prove that (φ0̄, π) is the unique extreme function
for MI(I2, S2, r).

1. Assume that the set P (π) is standard (i.e., assume that using Lemma 10 a suitable unimodular matrix
M and integer point v̄ is constructed so that PM (π) is standard, and it is enough to prove that (φM , πM )
is extreme by the result of Proposition 17).

2. Show that

(a) φ0̄(u) + φ0̄(r − u) = 1 ∀u ∈ I2. We will define a set D ⊂ R2 such that if û ∈ D, then φ0̄(P(û)) +
φ0̄(r − P(û)) = 1. Therefore proving φ0̄(u) + φ0̄(r − u) = 1 ∀u ∈ I2 will amount to proving that
P(D) = I2.

(b) π(w) = limh→0+
φ0̄(P(hw))

h ∀w ∈ S2.

These steps will ensure that (φ0̄, π) is minimal for MI(I2, S2, r).

3. Finally show that φ0̄ is the unique function such that (φ0̄, π) is minimal for MI(I2, S2, r). If π is extreme
for MI(∅, S2, r), this will imply that (φ0̄, π) is extreme for MI(∅, S2, r) by the result of Proposition 20.

We next illustrate these steps in the case of the split cuts.

Example 21 (Split Cut) Let the maximal lattice-free set P (π) be the split, i.e., the set {(x1, x2) ∈ R2 | b ≤
a1x1 + a2x2 ≤ b + 1} where a1, a2, b ∈ Z and a1, a2 are coprime. Then (φ0̄, π) is the unique extreme function
for MI(I2,W, r).

Proof: As a first step, it is enough to analyze a standard maximal lattice-free convex set with integer points
(0, 0), (1, 0) and (0, 1) in the interior of the boundary of the set. With out loss of generality we analyze the
set {(w1, w2) ∈ R2 | 0 ≤ w1 ≤ 1}. (The other splits which have the integer points (0, 0), (1, 0) and (0, 1) in
the interior of the boundary can be transformed to this set with the use of a suitable unimodular matrix).
Let f := (f1, f2) be in the interior of P (π), where r = P(−f).

Using P (π) and (4) we obtain that,

π(w1, w2) =
{ w1

1−f1
if w1 ≥ 0

−w1
f1

if w1 ≤ 0.
(9)

Next we find a set Dsplit ⊂ R2 such that for all û ∈ Dsplit, φ0̄(P(û)) + φ0̄(r − P(û)) = 1. Using π it can be
verified that Dsplit is the set {(w1, w2)|0 ≤ w2 ≤ 1,−f1 ≤ w1 ≤ 1− f1}. Now since P(Dsplit) = I2 we obtain

that φ0̄(u) + φ0̄(r − u) = 1 ∀u ∈ I2. It can be verified in this case that π(w) = limh→0+
φ0̄(P(hw))

h ∀w ∈ S2.

10



Finally, it remains to prove that (φ0̄, π) is the unique minimal function: We prove this by showing
that for any valid function (φ, π) of MI(I2, S2, r), φ(u) ≥ φ0̄(u) for all u ∈ I2. Consider the case when
u := (u1, u2) ∈ I2, and u1 ≤ r1. Then construct the point,

x̄(v) =
{

1 if v = u
0 otherwise ,

ȳ(w) =
{

1 if w = (1− f1 − u1,−u2 − f2)
0 otherwise .

It can be verified that (x̄, ȳ) ∈ MI(I2, S2, r). Since (φ, π) is a valid function, we obtain that
∑

v∈I2 φ(v)x̄(v̄)+∑
w∈R2 π(w)ȳ(w) ≥ 1 or φ(u) ≥ 1 − π(1 − f1 − u1,−u2 − f2) = u1

r1
= φ0̄(u). There is a similar proof for

the case u1 > r1. Thus, (φ0̄, π) is the unique minimal function. Finally, since π is extreme for MI(∅, S2, r)
(Cornuéjols and Margot [9]), we have by the use of Proposition 20 that (φ0̄, π) is extreme for MI(∅, S2, r).
¤

Since the ‘continuous part’ of the GMIC inequality is the only extreme inequality for MI(∅, S1, r), an
observation to be deduced from Example 21 is that for the one-row group problem, the trivial-fill-in function
is sufficient to obtain extreme inequality for MI(I1, S1, r). In the next section we show that this behavior is
observed for some cases in the two-row group problem as well.

4 Unique lifting functions

In the example in the previous section, it was shown that when P (π) is a split, the trivial fill-in function
along with π, i.e., (φ0̄, π) is extreme for MI(I2, S2, r). The key step in the proof was the determination of
the set D ⊂ R2 such that φ0̄(P(û)) + φ0̄(P(r − û)) = 1 where û ∈ D. In the next definition we present the
corresponding set D(π) ⊂ R2 for the case of bounded convex maximal lattice-free sets which have similar
properties to those of Dsplit.

Definition 22 Let P (π) be a lattice-free triangle or quadrilateral. Let d1 , d2, ..., dk with k ∈ {3, 4}, be
vectors such that di+f are the vertices of P (π). Let si be the line segment between vertices di+f and di+1+f
(where d4 := d1, d5 := d1 when P (π) is triangle, quadrilateral respectively). Let pi be the set of integer points
in the interior of si. Let the cone formed by the extreme rays di, di+1 be denoted by Ci. For an integer
point Xij ∈ pi, let δijdi + (1 − δij)di+1 + f = Xij where 0 < δij < 1. Define the sets Dij(π), D(π) ⊂ R2 as
Dij(π) = {ρdi + γdi+1|0 ≤ ρ ≤ δij , 0 ≤ γ ≤ 1− δij} and D(π) = ∪i,jDij(π). ¤

The next proposition establishes some of the crucial properties of D(π).

Proposition 23 Let P (π) be a bounded maximal lattice-free convex set. For any v ∈ D(π) the following are
true:

1. There exists a point (x̄, ȳ) ∈ MI(I2, S2, r) with x̄(P(v)) > 0 which satisfies the inequality (φ0̄, π) at
equality.

2. φ0̄(P(v)) = π(v).

3. φ0̄(P(v)) + φ0̄(P(r − v)) = 1.

4. If (φ̄, π) is any valid inequality for MI(I2, S2, r), then φ̄(P(v)) ≥ φ0̄(P(v)).

Proof.
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1. Since v ∈ Dij(π), let v = ρdi + γdi+1, ρ ≤ δij , γ ≤ 1 − δij . Consider the point v′ = (δij − ρ)di + (1 −
δij − γ)di+1. Since ρ ≤ δij , γ ≤ 1− δij , v′ ∈ Ci. Now consider the solution:

x̄(u) =
{

1 if u = P(v)
0 otherwise (10)

ȳ(w) =
{

1 if w = v′

0 otherwise (11)

Then,
∑

u∈I2

ux̄(u) +
∑

w∈R2

wȳ(w) + f = P(v) + v′ + f

≡ (v + v′ + f)(mod1̄)
= ρdi + γdi+1 + (δij − ρ)di

+(1− δij − γ)di+1 + f

= Xij ∈ Z2

Also
∑

u∈I2

φ0̄(u)x̄(u) +
∑

w∈R2

π(w)ȳ(w) ≤ π(v) + π(v′)

= (ρ + γ)
+(δij − ρ + 1− δij − γ)

= 1 (12)

Finally, (12) holds at equality because of the validity of (φ0̄, π) (from Lemma 14).

2. Follows from (12).

3. Consider the point v′ constructed in proof of part 1. Since P(v) + v′ + f ∈ Z, we have that P(v) ≡
(−f − v′)(mod1̄) or P(r − v) = P(v′) since r = P(−f). Now the result follows from (12).

4. Since (x̄, ȳ) ((10) and (11)) is a valid solution of MI(I2,W, r), we obtain that
∑

u∈I2 φ̄(u)x̄(u) +∑
w∈R2π(w)ȳ(w) ≥ 1 or φ̄(P(v)) ≥ 1− π(v′) = φ0̄(P(v)). ¤

Next we show that in the case when P (π) is a bounded maximal lattice-free convex set we can verify that

limh→0+
φ0̄(P(wh))

h = π(w) ∀ w ∈ R2.

Corollary 24 Let P (π) be a bounded maximal lattice-free convex set. Then limh→0+
φ0̄(P(wh))

h = π(w) ∀
w ∈ R2.

Proof: Let w ∈ R2 belong to the cone formed by di and di+1, i.e., w = αdi + βdi+1, where α ≥ 0,
and β ≥ 0. We know that ∃ δij such that 0 < δij < 1 and δijdi + (1 − δij)di+1 + f = Xij ∈ pi and
Dij(π) = {w ∈ Ci|w = ρdi + γdi+1, ρ ≤ δij , γ ≤ 1 − δij}. Therefore for sufficiently small positive h we
have that wh ∈ Dij(π) since hα ≤ δij and hβ ≤ 1 − δij . Therefore using Proposition 23, we obtain that

limh→0+
φ0̄(P(wh))

h = limh→0+
π(wh)

h = π(w). ¤
Thus when P (π) is a bounded maximal lattice-free convex set, a number of the steps required to prove

that (φ0̄, π) is an extreme function for MI(I2, S2, r) have been verified to be true. A key difference between
Dsplit and D(π) is that while P(Dsplit) = I2, there is no guarantee that P(D(π)) = I2. This difference leads
to a richer class of extreme inequalities as we shall see in later sections. We now consolidate the results of
Theorem 16, Propositions 18, 19, 23 and Corollary 24 in the following result.
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Theorem 25 If P (π) is a bounded maximal lattice-free convex set in R2 such that π is extreme for MI(∅, S2, r)
and I2 = P(D(π)), then (φ0̄, π) is an extreme function for MI(I2, S2, r). Moreover, there exists no function
φ : I2 → R+ such that φ 6= φ0̄ and (φ, π) is an extreme function for MI(I2, S2, r).

Proof: By Propositions 18, we obtain that φ0̄ is subadditive. By Proposition 19, we obtain that φ0̄(r) = 1.
If I2 = P(D(π)), then by Proposition 23, we obtain that φ0̄(u) + φ0̄(r − u) = 1 ∀u ∈ I2. By Corollary

24, limh→0+
φ0̄(P(wh))

h = π(w) ∀ w ∈ R2. Therefore, (φ0̄, π) is minimal for MI(I2, S2, r). Finally, by (4) of
Proposition 23 we obtain that for any valid inequality (φ, π) of MI(I2, S2, r), φ(u) ≥ φ0̄(u) ∀u ∈ P(D(π)) =
I2. Thus (φ0̄, π) is the unique minimal inequality for MI(I2, S2, r). Now since π is extreme for MI(∅, S2, r)
the result follows from Proposition 20. ¤

In the rest of the section, we verify that I2 = P(D(π)) for some classes of P (π) which proves that the
fill-in function is the unique lifting function generating extreme inequalities for the infinite-group problem.

4.1 P (π) is a triangle with multiple integer points in the interior of one side

In this section, we consider a set P (π) which is a triangle with multiple integer points in the interior of one
side. We begin with a variant of Lemma 10.

Proposition 26 Let P be a triangle with multiple integer points in the interior of one side. Then there exists
an unimodular matrix M such that the set {x ∈ R2 |x = M(u − v), u ∈ P} is a maximal lattice-free convex
set with the points (0, 0) and (1, 0) on one side and (0, 1) and (1, 1) in the interior of other two sides.

Proof: Let s, t ∈ Z2 be two adjacent points in the interior of one side of the triangle and let g, h ∈ Z2 be two
points in the interior of the other sides of the triangle. Again we have that the interior of the line segments
[s, t], [t, g], [g, h] and [h, s] are empty. Therefore invoking Theorem 9 and using a proof similar to that of
Lemma 10 we can obtain the required result. ¤

Notation: (Refer to Figure 2.) Any point w will be represented as w := (w1, w2). For example, a1 :=
(a1

1, a
1
2). We denote the length of a line segment pq by |pq|. Let P (π) be a maximal lattice-free triangle with

the points (0, 0) and (1, 0) being adjacent integer points in the interior of one side and (0, 1) and (1, 1) in the
interior of the other two sides. We use the following notation for points in this section:

1. The points a1, a2 and a3 represent the vertices of the lattice-free triangle P (π).

2. b1 := (1, 1) is the integer point in the interior of the side a1a2.

3. b2 := (0, 1) is the integer point in the interior of the side a2a3.

4. b3 := (0, 0) and b4 := (1, 0) are adjacent integer points in the interior of the side a3a1.

5. The union of quadrilaterals fc1b1e1, fc2b2e2, fc3b3e3, and fc4b4e4 represents a subset of the set D(π)+
{f}. (In particular, c1 lies on fa1, e1 lies on fa2 and f + (c1− f) + (e1− f) = b1. c2 lies on fa2, e2 lies
on fa3 and f + (c2 − f) + (e2 − f) = b2. c3 lies on fa3, e3 lies on fa1 and f + (c3 − f) + (e3 − f) = b3.
c4 lies on fa3, e4 lies on fa1 and f + (c4 − f) + (e4 − f) = b4).

6. Let g be the point where b3e3 and b4c4 intersect.

7. We will assume that f1 ≥ a2
1: therefore let i be the point of intersection between b2e2 extended and

b3e3, and let j be the point of intersection between b2e2 extended and a3a1.

Proposition 27 Let P (π) be a maximal lattice-free triangle with the points (0, 0) and (1, 0) on one side and
(0, 1) and (1, 1) in the interior of the other two sides. If we assume that f1 ≥ a2

1, then

1. e1 and c2 are the same point.
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Figure 2: A maximal lattice-free triangle with the points (0, 0) and (1, 0) on one side and (0, 1) and (1, 1) in
the interior of other two sides

2. Triangle b3gb4 is symmetric to triangle b2c2b1.

3. There exists a point h such that b1c1 extended to b1h intersects b4e4.

4. Triangle b1hb4 is symmetric to b2ib3.

Proof.

1. Since b2c2 is parallel to a3f and b1e1 is parallel to a1f , we have that |a2c2|
|a2f | = |a2b2|

|a2a3| and |a2e1|
|a2f | = |a2b1|

|a2a1| .

Now since a3a1 is parallel to b2b1 we obtain |a2b2|
|a2a3| = |a2b1|

|a2a1| which implies that |a2c2| = |a2e1|.

2. This follows from the fact that |b2b1| = |b3b4| and the angles gb3b4 and gb4b3 are equal to c2b2b1 and
c2b1b2 (since b3b4 is parallel to b2b1, b3e3 is parallel to b2c2 and b4c4 is parallel to b1c2).

3. Note that b2b3 is parallel to b1b4. Since b3 is in the interior of a3a1 we must have |a1b1|
|a1a2| > |a1b4|

|a1a3| . Since
|a1e4|
|a1f | = |a1b4|

|a1a3| and |a1b1|
|a1a2| = |a1c1|

|a1f | , we obtain that

|a1e4| < |a1c1|. (13)

Let q′ be the point of intersection of extension of b1c1 to a3a1. Therefore b1b2jq′ forms a parallelogram
and |jq′| = |b2b1| = |b3b4| = 1. Note now that j lies to the right of b3 and therefore

|a1q′| < |a1b4| (14)
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Using (13) and (14) we obtain the desired result.

4. We know that |b2b3| = |b1b4| = 1. Moreover, angles b3b2i and b2ib3 are equal to angles b4b1h and hb4b1

respectively, since b2b3 is parallel to b4b1, b2i is parallel to b1h, and b3i is parallel to b4h. ¤

Proposition 27 gives us all the tools that are needed to prove the following result.

Theorem 28 If P (π) is a maximal lattice-free triangle with multiple integer points in the interior of one
side, then (φ0̄, π) is an extreme inequality for MI(I2, S2, r). Moreover, there exists no function φ : I2 → R+

such that φ 6= φ0̄ and (φ, π) is an extreme function for MI(I2, S2, r).

Proof. By Propositions 26 and 17 it is enough to prove this result for the maximal lattice-free triangle P (π)
with the points (0, 0) and (1, 0) on one side and (0, 1) and (1, 1) in the interior of other two sides. By Theorem
5.4 from Cornuéjols and Margot [9], we obtain that π is extreme for MI(∅, S2, r). Therefore, by Theorem 25
it is enough to show that P(D(π)) = I2. This is equivalent to showing that P(D(π) + {f}) = I2

Refer to Figure 2. We present the proof in the case when f1 ≥ a2
1. A similar proof can be presented for

the case when f1 ≤ a2
1. Note now that the union of the parallelograms fc1b1e1, fc2b2e2, fc3b3e3 and fc4b4e4

is a subset of D(π)+{f}. Now using Proposition 27, we obtain that triangles b3gb4 and b2c2b1 are symmetric.
Since, b1, b2, b3 and b4 are integer points, and b1b2 is parallel to b3b4 the fractional parts of points in the
triangles b3gb4 and b2c2b1 are exactly the same. Similarly, b1hb4 is symmetric to b2ib3 and a similar result
regarding fractional parts may be obtained. As the triangles b2c2b1 and b1hb4 belong to D(π) + {f}, all the
fractional parts within the quadrilateral b1b2b3b4 belong to D(π) + {f}, completing the proof. ¤

The class of inequalities presented in this section share two important properties with the GMIC: The
function π is extreme for MI(∅, S2, r) and the trivial fill-in function together with π produces extreme
inequalities for the two-row mixed integer infinite-group problem, i.e., (φ0̄, π) is extreme for MI(I2, S2, r).
Therefore, in this context, these new inequalities are the ‘closest’ two-row counter parts of the Gomory mixed
integer cut.

It is interesting to examine if any of the known classes of inequalities for two row relaxations of MIPs are
related to the lifted intersection cuts. In the next subsection, we show that a subclass of the sequential-merge
inequalities (Dey and Richard [12]) are related to maximal lattice-free triangles with multiple integer points
in the interior of one side. Thus Theorem 28 provides an alternative proof for the extremity of this subclass of
the sequential-merge inequalities. (Note that not all sequential-merge inequalities have minimal coefficients
for the continuous variables, and therefore not all sequential-merge inequalities are related to the inequalities
presented in this paper. Also it is easily verified that not all lifted inequalities starting from triangles with
multiple integer points in the interior of one side are sequential-merge inequalities.) The original derivation of
sequential-merge inequalities is very different from the lifting approach used in this paper. Therefore, while
on the one hand, the original derivation provides an algebraic framework for deriving these inequalities by
the application of a sequence of GMICs to two rows of a simplex tableau, on the other hand the relationship
of these inequalities to maximal lattice-free triangles shows that the coefficients for the continuous variables
cannot be improved.

4.1.1 Sequential-Merge inequalities

The following result is modified from Dey and Richard [12].

Theorem 29 ([12]) Let ξr(u) represent the coefficient of an integer variable in the Gomory mixed integer
cut, where u is the fractional part of the coefficient of the integer variable in the tableau row, and r is the
fractional part of the right-hand-side of the tableau row (the function plotted in dashed lines in Figure 1 is
ξ0.5), i.e.,

ξr(u) =
{

u
r if u ≤ r
1−u
1−r otherwise . (15)
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Figure 3: A subset of sequential-merge inequalities is a special case of a trivial fill-in function starting from
a lattice-free triangle with more than one integer point in the interior of one side.

For 0 < r1, r2 < 1, the function (φsm, πsm) is an extreme inequality for MI(I2, S2, (r1, r2)) where

φsm(x1, x2) =
r2ξr2(x2) + r1ξr1(P(x1 + x2 − r2ξr2(x2)))

r1 + r2
, (16)

and

πsm(w1, w2) =





w1+w2
r1+r2

if w1 ≥ 0, w2 ≥ 0
1

r1+r2
(w2 − r1w1

1−r1
) if w1 ≤ 0, w2 ≥ 0

w1+w2
r1+r2

if w2 ≤ 0, w1 + w2
1−r2

≥ 0
1

r1+r2
(−r2w2

1−r2
− r1

1−r1
(w1 + w2

1−r2
)) if w2 ≤ 0, w1 + w2

1−r2
≤ 0

¤

The intuitive explanation for (16) is to first generate a GMIC from the second row of the tableau, then add
this GMIC to the first row of the tableau and finally obtain a GMIC for this combined row. The important
observation is that there is an algorithmic relationship between this inequality and GMICs.

Now let f := (f1, f2) where f1 = 1− r1 and f2 = 1− r2. We can construct the set P (πsm), as P (πsm) =
{w ∈ R2 |πsm(w − f) ≤ 1}. We obtain the triangle with vertices:

1. v1 : (f1, 2− f1),

2. v2 : (−f1(1−f2)
1−f1

, f2),
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3. v3 : ( 1−f1
1−f2

+ 1 + f1,− f2(1−f1)
1−f2

).

First note that P (πsm) contains no integer point in the interior, since otherwise πsm will not be a valid
inequality. Now we can verify that the integer points in the interior of its sides are:

1. v1v2: (0, 1). ( 1−f2
2−f1−f2

v1 + 1−f1
2−f1−f2

v2 = (0, 1)).

2. v2v3: (1, 0). ( 1−f1
2−f1−f2

v2 + 1−f2
2−f1−f2

v3 = (1, 0)).

3. v1v3: There are k̄ points where k̄ =
⌊

2−f2−f1f2
1−f2

⌋
. It can be verified that k̄ ≥ 2. The integer points are of

the form (2−f1−f2)−(k−f1)(1−f2)
2−f1−f2

v1 + (k−f1)(1−f2)
2−f1−f2

v3 where 1 ≤ k ≤ k̄. The first two points corresponding
to k = 1 and k = 2 are:

• ( 1−f1f2
2−f1−f2

v1 + 1−f1−f2+f1f2
2−f1−f2

v3 = (1, 1)).

• ( f2−f1f2
2−f1−f2

v1 + (2−f2)(1−f2)
2−f1−f2

v3 = (2, 0)).

It can also be verified that the function φsm is the trivial fill-in function. Figure 3 shows a maximal lattice-free
triangle with 3 integer points in the interior of one of its side. This generates the sequential-merge cut with
r1 = 0.5 and r2 = 0.25.

4.2 P (π) is a triangle with a single integer point in the interior of each side and
integral vertices

In Lemma 11 it was shown that the standard triangle with only the points (0, 0), (1, 0), and (1, 1) in the
interior of its sides and integral vertices is the triangle whose vertices are (−1, 1), (1, 1), and (1,−1). We
verify that when starting with such a P (π) (or a set that is obtain by application of unimodular matrix to
this set), the inequality (φ0̄, π) is extreme for MI(I2, S2, r).

Notation: (Refer to Figure 4.) We use the following notation for points in this section:

1. a1 := (1,−1)

2. a2 := (1, 1)

3. a3 := (−1, 1). The points a1, a2 and a3 represent the vertices of the lattice-free triangle P (π).

4. b1 := (1, 0) is the integer point in the interior of the side a1a2.

5. b2 := (0, 1) is the integer point in the interior of the side a2a3.

6. b3 := (0, 0) is the integer point in the interior of the side a3a1.

7. The union of quadrilaterals fc1b1e1, fc2b2e2, and fc3b3e3 represents D(π) + {f}. (In particular, c1

lies on fa1, e1 lies on fa2 and f + (c1 − f) + (e1 − f) = b1. c2 lies on fa2, e2 lies on fa3 and
f + (c2 − f) + (e2 − f) = b2. c3 lies on fa3, e3 lies on fa1 and f + (c3 − f) + (e3 − f) = b3.)

Theorem 30 If P (π) is a maximal lattice-free triangle with integral vertices and one integer point in the
interior of each side, then (φ0̄, π) is extreme for MI(I2, S2, r). Moreover, there exists no function φ : I2 → R+

such that φ 6= φ0̄ and (φ, π) is an extreme function for MI(I2, S2, r).

Proof. By Propositions 26 and 17 it is enough to prove this result for the maximal lattice-free triangle
P (π) with the points (1, 0), (0, 1) and (0, 0) in the interior of sides. By Theorem 5.4 from Cornuéjols and
Margot [9], we obtain that π is extreme for MI(∅, S2, r). Therefore, by Theorem 25 it is enough to show that
P(D(π)) = I2. This is equivalent to showing that P(D(π) + {f}) = I2.
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Figure 4: The Triangle with integral vertices and the points (1, 0), (0, 1), (0, 0) in the interior of its sides.

Refer to Figure 4. We first claim that the point e1 and c2 are the same point. This is because |a2c2|
|a2f | =

|a2b2|
|a2a3| = |a2b1|

|a2a1| = |a2e1|
|a2f | . Similarly it can be verified that e2 and c3 are the same point and e3 and c1 are the

same point.
Now it can be verified that the triangle b3b1e3 is symmetric to triangle b2a2c2. This is because |b2a2| =

|b3b1| = 1 and angles b1b3e3 and b3b1e3 are equal to angles a2b2c2 and b2a2c2 respectively. Since b3, b1, a2

and b2 are integral and b3b1 is parallel to b2a2, the fractional part of points in triangle b3b1e3 is exactly the
same as those in triangle b2a2c2. Similarly, the fractional parts of the points in triangles b3c3b2 and b1e1a2

are exactly the same. Note that triangles b3b1e3 and b3c3b2 belong to D(π) + {f}. Since, the quadrilateral
b2b3b1c2 belongs to D(π) + {f}, we obtain that all the fractional parts in the unit square b2b3b1a2 belong to
D(π) + {f}. ¤

Figure 5 shows an example of a lattice-free triangle with one integer point in the interior of each side and
integral vertices. It also shows the corresponding trivial fill-in function which is extreme for MI(I2, S2, r).
This family of inequalities is related to an example first presented in Cook et al. [7] and generalized in Li and
Richard [24]. In particular, while an infinite number of GMICs are not enough to solve this example, one cut
from this family added to the problem furnishes the convex hull of integer feasible solutions.

5 Coefficients for integer variables in general: the fill-in procedure

In the previous section, it was shown that for some classes of lattice-free convex sets, the corresponding trivial
fill-in functions provide unique extreme inequalities for the two-row mixed integer infinite-group problem. The
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Figure 5: Lattice-free triangle with interval vertices and single integer point in the interior of each side

chief ingredient of the proof was to show that P(D(π)) = I2 and then to apply Theorem 25. The natural
question then is what happens in the other cases when P(D(π)) ( I2 (We will prove that P(D(π)) ( I2 for all
other cases of maximal lattice-free triangles and quadrilaterals). It will be shown in this section that in this
case (φ0̄, π) is not minimal for MI(I2, S2, r) (and therefore not extreme). To generate extreme inequalities
in this case, we will then present a generalization of a procedure developed by Gomory and Johnson [20] and
Johnson [23] called the fill-in procedure. We will end this section with an analysis of conditions under which
the fill-in procedure produces extreme inequalities.

5.1 Trivial fill-in function is not minimal if P(D(π)) ( I2

To analyze the strength of the trivial fill-in procedure in the case when P(D(π)) ( I2, we first present a
proposition characterizing the set R2 \D(π).

Proposition 31 If u ∈ Ci \ D(π), then there does not exist any v ∈ Ci, n ∈ Z+ such that n ≥ 1 and
nu + v + f ∈ pi.

Proof. Assume by contradiction that there exists a v ∈ Ci, n ∈ Z+ such that n ≥ 1 and nu + v + f ∈ pi.
Let δijdi + (1 − δij)dj + f = Xij . Since u ∈ Ci \ D(π), by the definition of D(π) u = αdi + βdi+1 where
either α > δij or β > (1 − δij). Now v = (δij − nα)di + (1 − δij − nβ)di+1 which implies that v /∈ Ci, a
contradiction. ¤

Next we present a property of the function π corresponding to a maximal lattice-free bounded set P (π)
that will be useful in proving that the function φ0̄ is not minimal when P(D(π)) ( I2.
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Proposition 32 Let P (π) be a bounded maximal lattice-free convex set in R2 (i.e., either a triangle or a
quadrilateral). Let w1, w2 ∈ R2. Suppose that for some i, w1 ∈ Ci, and either w2 /∈ Ci or w1 + w2 /∈ Ci,
then π(w1) + π(w2) > π(w1 + w2).

Proof: First note that it is enough to prove that if w2 /∈ Ci then π(w1) + π(w2) > π(w1 + w2). This is
because w1 ∈ Ci and w1 + w2 /∈ Ci imply that w2 /∈ Ci.

In the first step, we show that if w1 and w2 are in adjacent cones then π(w1) + π(w2) > π(w1 + w2).
WLOG assume that w1 ∈ C1 and w2 ∈ C2. Note that w1 and w2 do not belong to the edge C1 ∩ C2 since
then they would belong to the same cone. Assume by contradiction that π(w1)+π(w2) = π(w1 +w2). There
are two cases:

1. The angle spanned by the two cones is less than 180o (This case occurs only for quadrilaterals). Let
π(x) = αixi

1 + βixi
2 when (xi

1, x
i
2) ∈ Ci. Note that by construction of π, it can be verified that

(α1, β1) 6= (α2, β2). Let c := (c1, c2) be the direction of C1 ∩ C2. It can be verified that the unique
solution to the equation, (α1−α2)x + (β1− β2)y = 0 is x = c1 and y = c2. Since the angle spanned by
the two adjacent cones is less than 180os, w1 + w2 belongs to one of these two cones. WLOG assume
that w1 + w2 ∈ C2. Therefore, we have (α1w1

1 + β1w1
2) + (α2w2

1 + β2w2
2) = α2

1(w
1
1 + w2

1) + β2
1(w1

2 + w2
2),

or α1w1
1 + β1w1

2 = α2w1
1 + β2w1

2 which is a contradiction since w1 /∈ C1 ∩ C2.

2. The angle spanned by the two cones is greater than 180o (This case can occur both for triangles and
quadrilaterals). Note first that w1 and w2 do not belong to the edge C1 ∩ C2. Also if both w1 and
w2 belong to the other extreme rays of C1 and C2 respectively, then w1 and w2 either belong to the
same cone when P (π) is a triangle, or they belong to two adjacent cones which span an angle less
than 180o. Therefore, the result will follow using case 1 above. Hence, we assume WLOG that w1

belongs to the interior of C1. Then it can be verified that there exists a direction d such that d ∈ C1,
−d ∈ C2, w1 − εd ∈ C1, w2 + εd ∈ C2 where ε > 0. If w2 ∈ C2 ∩ C3, then let −d be the extreme
ray shared by C2 and C3. Since w1, εd, w1 − εd ∈ C1, we obtain that π(w1 − εd) + π(εd) = π(w1) or
π(w1 − εd) < π(w1). Similarly, π(w2 + εd) + π(−εd) = π(w2) and π(w2 + εd) < π(w2). Therefore, we
obtain that π(w1 − εd) + π(w2 + εd) < π(w1) + π(w2) = π(w1 + w2) a contradiction to subadditivity of
π.

The above (case 2) proves the result when P (π) is a triangle. When P (π) is a quadrilateral, we need
to verify that π(w1) + π(w2) > π(w1 + w2), when w1 ∈ C1 and w2 ∈ C3, i.e., when w1 and w2 belong to
non-adjacent cones. First note that if w1 and w2 belong to the boundary of C1 and C3, then either both of
them belong to the same cone or they belong to adjacent cones. Therefore, we may assume that w1 and w2

are in the interior of C1 and C3 respectively. Using this, it can again be verified that there exists a direction
d such that d ∈ C1, −d ∈ C3, w1 − εd ∈ C1, w2 + εd ∈ C2 where ε > 0. The rest of the proof is similar to
part (2) above. ¤

We finally present the proof of the fact that (φ0̄, π) is not minimal when P(D(π)) ( I2.

Proposition 33 Let P (π) be a lattice-free bounded convex set. Suppose u∗ /∈ D(π) and φ0̄(P(u∗)) = π(u∗).

1. Then the following system has no solution

x(P(u∗))P(u∗) +
∑

w∈R2

wy(w) + f ∈ Z2 (17)

φ0̄(P(u∗))x(P(u∗)) +
∑

w∈R2

π(w)y(w) = 1 (18)

x(P(u∗)) ∈ Z, x(P(u∗)) ≥ 1, y ≥ 0 (19)

2. φ0̄(P(u∗)) + φ0̄(P(r − u∗)) > 1.

Proof.
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1. If u∗ /∈ P (π) the result is obvious since φ0̄(P(u∗)) > 1. Consider the case when u∗ ∈ P (π) \ D(π).
WLOG assume that u∗ ∈ C1. Assume by contradiction that there exists (x̄, ȳ) that satisfies (17), (18),
and (19). Therefore,

x̄(P(u∗))P(u∗) +
∑

w∈R2

wȳ(w) + f = X ∈ Z2 (20)

Since X ∈ Z2 and P (π) is lattice-free, π(X − f) ≥ 1. Now

1 = φ0̄(P(u∗))x̄(P(u∗)) +
∑

w∈R2

π(w)ȳ(w)

= π(u∗)x̄(P(u∗)) +
∑

w∈R2

π(w)ȳ(w)

≥ π(u∗)x̄(P(u∗)) + π(
∑

w∈R2

wȳ(w))

≥ π(X − f) (21)

Therefore, (21) is satisfied at equality and π(X − f) = 1 or X ∈ P (π). Moreover by Proposition 32,
π(u)+π(v) = π(u+v) iff u, v, u+v ∈ Ci. Since u∗ ∈ C1, x̄(P(u∗)) ≥ 1, and (21) is satisfied at equality,
we obtain that X − f ∈ C1 or X − f ∈ p1 − f . We also obtain that

∑
w∈R2 wȳ(w) ∈ C1. However, as

u∗ ∈ C1 \ D(π) we obtain using Proposition 31 that there does not exists a vector v ∈ C1 such that
v + nu∗ ∈ p1 − f where n ∈ Z+ and n ≥ 1, which is the required contradiction to (20).

2. This follows from the proof of part (1) since

φ0̄(P(r − u∗)) = min{
∑

w∈R2

π(w)y(w) |P(u∗) +
∑

w∈R2

wy(w) + f ∈ Z2}.

¤

If there exists a point u ∈ I2 such that u /∈ P(D(π)) then φ0̄(u) + φ0̄(r− u) > 1 implying that the function is
not minimal by the use of Theorem 16. Therefore there must exist some other valid function (φ, π) such that
φ(u) = φ0̄(u) ∀u ∈ P(D(π)) and either φ(u) < φ0̄(u) or φ(r − u) < φ0̄(r − u) (or both) ∀u ∈ I2 \ P(D(π)).

5.2 General fill-in function: definition and validity

In this section we present a general version of the fill-in procedure developed by Gomory and Johnson [20]
and Johnson [23] that will be used to generate valid inequalities for MI(I2, S2, r) starting from inequalities
of MI(∅, S2, r). It will follow from the definition of these functions that all extreme inequalities must be
general fill-in functions.

Definition 34 (Fill-in Function) Let π : R2 → R+ be a valid and minimal function corresponding to a
bounded maximal lattice-free set P (π). Let G be any subgroup of I2. Let (V, π) be a valid subadditive function
for MI(G,S2, r). The function φG,V : I2 → R+ is defined as follows:

φG,V (u) = infv∈G,w∈R2 {V (v) + π(w) | P(w) = u− v} . (22)

The fill-in procedure may be interpreted as a two-step lifting scheme. In the first step we obtain the inequality
(V, π) by lifting integer variables corresponding to columns in the set G. The function V may depend on
the order of lifting of these variables, i.e., for a given subgroup G there may exist two different functions V1

and V2 such that both functions eventually yield strong cutting planes for MI(I2, S2, r). Once the integer
variables corresponding to columns in the set G are lifted, the lifting in the second step (of the rest of the
integer variables) is completely defined by the choice of G and V .
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It can be verified that the construction of φG,V is equivalent to the original fill-in procedure of Johnson [23]
when we start with a subgroup G of finite order. The advantage of allowing general subgroups G in the fill-in
procedure is twofold. First given π, since G is allowed to be any subgroup of I2, trivially, every extreme
inequality (φ, π) for the MI(I2, S2, r) is a fill-in function (by selecting G to be I2). Second, this definition
allows for construction of fill-in functions starting from infinite subgroups G of I2; such as {(x, x)|x ∈ I1}.
However, when using the fill-in procedure, we mainly consider subgroups G that are finite.

When G is the trivial subgroup, i.e., G = {0̄} and V (0̄) = 0, we obtain the trivial fill-in function: φ0̄,V (0̄)=0

which we have represented for simplicity as φ0̄. It follows from Johnson [23] that when G is finite, (φG,V , π)
is a valid inequality for MI(I2, S2, r). We next verify that this more general version of the fill-in procedure
also generates valid functions for MI(I2, S2, r).

We use a result from Johnson [23] (Lemmas 4.4, 4.5 and Corollary 5.4) that gives the following sufficient
conditions for valid subadditive functions for MI(I2,W, r).

Proposition 35 ( [23]) For a pair of functions (φ, π) to be valid and subadditive for MI(I2, S2, r), the
following conditions are sufficient:

1. φ is subadditive, i.e., φ(u) + φ(v) ≥ φ(u + v) ∀u, v ∈ I2,

2. π is convex,

3. π(w) ≥ limh→0+
φ(P(hw))

h ∀w ∈ S2,

4. φ(r) ≥ 1.

We next show that φG,V is a valid function for MI(I2, S2, r). Before we proceed, we make an observation
used in the proof of the next proposition. Let G1 be a subgroup of G2 and let V2 : G2 → R+. If V1 : G1 → R2

is defined as V1(u) = V2(u), then φG1,V1(v) ≥ φG2,V2(v) ∀v ∈ I2. Therefore, φG,V (v) ≤ φ0̄(v) ∀v ∈ I2 for any
subgroup G of I2.

Proposition 36 Let P (π) be a maximal lattice-free convex set. Then

1. φG,V is subadditive.

2. π(w) = limh→0+
φG,V (P(hw))

h ∀w ∈ S2

3. φG,V (r) = 1.

Proof. By the use of Proposition 35, we verify the following conditions

1. φG,V is subadditive: We want to show that for any u1, u2 ∈ I2, φG,V (u1) + φG,V (u2) ≥ φG,V (u1 + u2).
By definition of φG,V , for any εi > 0, ∃ vi ∈ G,wi ∈ R2 such that φG,V (u1) ≥ V (v1) + π(w1)− ε1 and
φG,V (u2) ≥ V (v2) + π(w2)− ε2, with ui = P(vi + wi) for i = 1, 2. Then

φG,V (u1) + φG,V (u2) ≥ V (v1) + π(w1) + V (v2) + π(w2)− ε1 − ε2

≥ V (v1 + v2) + π(w1 + w2)− ε1 − ε2

≥ φG,V (u1 + u2)− (ε1 + ε2) (23)

Since ε1 + ε2 can be made arbitrarily small (by suitably selecting vi, wi), it follows that φG,V (u1) +
φG,V (u2) ≥ φG,V (u1 + u2).

2. π(w) ≥ limh→0+
φG,V (P(hw))

h ∀w ∈ S2: Observe that π(w) = limh→0+
φ0̄(P(hw))

h ≥ limh→0+
φG,V (P(hw))

h
∀w ∈ S2, where the first equality follows from Corollary 24. Note also that for any w ∈ R2, for
sufficiently small h > 0, hw ∈ D(π) (see proof of Corollary 24). Therefore, by part 4 of Proposition 23

we obtain that the last inequality in an equality, i.e., π(w) = limh→0+
φ0̄(P(hw))

h = limh→0+
φG,V (P(hw))

h
∀w ∈ S2.
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3. φG,V (r) = 1: From Proposition 19, we obtain that φG,V (r) ≤ φ0̄(r) = 1. We next show that φG,V (r) ≥
1. By definition of φG,V , for any ε > 0, ∃ v̄ ∈ G, w̄ ∈ R2 with v̄ + P(w̄) = r such that φG,V (r) ≥
V (v̄) + π(w̄) − ε. Since (V, π) is a valid function for MI(G,S2, r), we have that V (v̄) + π(w̄) ≥ 1.
Therefore, for any ε > 0, φG,V (r) ≥ 1− ε. ¤

Since π is convex (Borozan and Cornuéjols [6]), we obtain by the use of Proposition 35 that (φG,V , π) is
a valid function for MI(I2, S2, r).

Before we present more results analyzing the strength of the fill-in function, we show that the function
φG,V can be evaluated in finite time for each u ∈ I2, when G is a finite group. This follows from the next
proposition.

Proposition 37 Let P (π) be a maximal lattice-free bounded convex set. If G is a finite subgroup of I2, then
there exist nonnegative integers N1 and N2 such that

φG,V (u) = φ(v) + π(w1 + k1, w2 + k2) (24)

for some v ∈ G, (w1, w2) ∈ [0, 1)× [0, 1), and integers k1 and k2 with |k1| ≤ N1, |k2| ≤ N2 ∀u ∈ I2.

Proof. By the definition of the fill-in function, φG,V (u) = infv∈G,w∈R2{φ(v)+π(w) |P(w) = u−v}. Since G is
finite, we may write φG,V (u) = minv∈G(φ(v) + infw∈R2{π(w) |P(w) = u− v}). Therefore to prove this result,
it is sufficient to show that there exist nonnegative integers N1 and N2 such that ∀(w1, w2) ∈ [0, 1)× [0, 1),

infn1,n2∈Z{π(w1 + n1, w2 + n2)} = π(w1 + k1, w2 + k2) (25)

where k1 and k2 are integers satisfying |k1| ≤ N1, |k2| ≤ N2 .
Since P (π) is bounded, π(w1, w2) > 0 ∀(w1, w2) ∈ R2 \ {0̄}. Let d := (d1, d2) be the unit vector in the

direction of minimum slope. By assumption this minimum slope is positive. Since the value of π is bounded
over the set [0, 1) × [0, 1), let k = sup{π(w1, w2) | (w1, w2) ∈ [0, 1) × [0, 1)}. Let l be the real such that
π(ld) = k. Set N1 = N2 = dle. Now for any (w1, w2) and n1, n2 ∈ Z such that either |n1| > N1 or |n2| > N2

(or both), we have π(w1 + n1, w2 + n2) ≥ π(||(w1 + n1, w2 + n2)||d) ≥ π(ld) = k ≥ π(w1, w2). ¤

5.3 Strength of fill-in functions

We next study conditions under which (φG,V , π) is a minimal function for MI(I2, S2, r). Notice that Propo-
sition 36 establishes all but one of the conditions needed to prove that (φG,V , π) is a minimal function for
MI(I2, S2, r). We record this result next.

Corollary 38 Let P (π) be a maximal lattice-free bounded convex set. Then the valid function (φG,V , π) is
minimal for MI(I2, S2, r) iff φG,V (u) + φG,V (r − u) = 1 ∀u ∈ I2.

We next present conditions for the function (φG,V , π) to be an extreme function for MI(I2, S2, r). For the
case of the trivial fill-in function, we showed in Proposition 20 that if φ0̄ is the unique function such that (φ0̄, π)
is minimal for MI(I2, S2, r), and π is extreme for MI(∅, S2, r), then (φ0̄, π) is extreme for MI(I2, S2, r). We
now develop similar conditions for the function (φG,V , π) to be an extreme function for MI(I2, S2, r).

If the function (φG,V , π) is minimal, then we next show that it must be the unique minimal function under
certain conditions. This result is a consequence of the following result from Johnson [23] that states that
minimal inequalities must be subadditive.

Theorem 39 ( [23]) If (φ, π) is a minimal inequality for MI(U,W, r) for some subgroup U of I2, then

1. φ(u) + φ(v) ≥ φ(u + v) ∀u, v ∈ U .

2. φ(u) +
∑

w∈W π(w)y(w) ≥ φ(v) whenever u + P(
∑

w∈W wy(w)) = v.

3.
∑

w∈W π(w)y(w) ≥ π(w′) whenever
∑

w∈W wy(w) = w′. ¤
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The next result is a modified version of the uniqueness result for the case of a general fill-in function.

Lemma 40 Let (φG,V , π) be minimal for MI(I2, S2, r). If (φ′, π) is a valid minimal function for MI(I2, S2, r)
such that φ′(u) = V (u) ∀u ∈ G, then φ′(v) = φG,V (v) ∀v ∈ I2.

Proof. Assume by contradiction that there exists a valid minimal function (φ′, π) with φ′ 6= φG,V and
φ′(u) = V (u) ∀u ∈ G. Since (φG,V , π) is minimal, there exists a point u∗ ∈ I2 such that φ′(u∗) > φG,V (u∗).
Let φ′(u∗) − φG,V (u∗) = ε. Now by definition of φG,V , ∃ u ∈ G and w ∈ R2 such that φG,V (u∗) ≥
V (u) + π(w)− ε

2 where u∗ − u = P(w). Therefore we obtain that φ′(u∗) = φG,V (u∗) + ε ≥ V (u) + π(w) + ε
2

or φ′(u∗) > V (u) + π(w) = φ′(u) + π(w). Since φ′ is minimal, this contradicts Theorem 39. Therefore,
φ′(u) = φG,V (u) ∀u ∈ I2. ¤

Now we have all the tools to derive the main result of this section.

Theorem 41 Let (V, π) be minimal for MI(G,S2, r). (φG,V , π) is an extreme valid inequality for MI(I2, S2, r)
iff (V, π) is extreme for MI(G,S2, r) and (φG,V , π) is minimal for MI(I2, S2, r).

Proof: ⇐ Assume first that (V, π) is extreme for MI(G,S2, r) and (φG,V , π) is minimal for MI(I2, S2, r).
Suppose that (φG,V , π) is not extreme. So there exist valid functions (φ1, π1) and (φ2, π2) for MI(I2, S2, r)
such that φG,V = 1

2φ1 + 1
2φ2, π = 1

2π1 + 1
2π2 and (φ1, π1) 6= (φ2, π2). Since (φG,V , π) is minimal, it can be

shown that (φ1, π1) and (φ2, π2) are also minimal (See proof of Theorem 3.4 in Johnson [23]). Moreover, since
(V, π) is extreme, φ1(u) = φ2(u) = V (u) ∀u ∈ G and π1(w) = π2(w) ∀w ∈ S2. However by Lemma 40, this
implies that φ1(u) = φ2(u) = φG,V (u) ∀u ∈ I2 as φG,V is the unique minimal function, which is the required
contradiction.

⇒ If (φG,V , π) is not minimal for MI(I2, S2, r), then clearly (φG,V , π) is not extreme for MI(I2, S2, r).
Finally assume that (V, π) is not extreme for MI(G, S2, r), i.e., V = 1

2V1 + 1
2V2 and π = 1

2π1 + 1
2π2

where (Vi, πi) is valid minimal inequality for MI(G,S2, r) for i = 1, 2 and (V1, π1) 6= (V2, π2). (Since (V, π)
is minimal, (Vi, πi) must be minimal). We have to show that (φG,V , π) is not an extreme valid inequality for
MI(I2, S2, r).

We first show that φG,V ≥ 1
2φG,V1 + 1

2φG,V2 . For any u ∈ I2 and any ε > 0, by definition of φG,V

∃ ū ∈ G, w̄ ∈ R2 such that φG,V (u) ≥ V (ū) + π(w̄) − ε. Therefore, φG,V (u) ≥ V (ū) + π(w̄) − ε =
1
2V1(ū)+ 1

2V2(ū)+ 1
2π1(w̄)+ 1

2π2(w̄)−ε ≥ 1
2φG,V1(u)+ 1

2φG,V2(u)−ε. Since ε can be made as small as possible,
we obtain that φG,V ≥ 1

2φG,V1 + 1
2φG,V2 . Therefore, we have that (φG,V , π) ≥ 1

2 (φG,V1 , π1) + 1
2 (φG,V2 , π2).

Clearly if π1 6= π2, we have that (φG,V , π) is not extreme since (φG,V , π) ≥ 1
2 (φG,V1 , π1) + 1

2 (φG,V2 , π2).
If π = π1 = π2, and V1 6= V2, we need to show that φG,V1 6= φG,V2 to complete the proof. Assume by
contradiction that φG,V1 = φG,V2 . By definition, φG,V1(u) ≤ V1(u) and φG,V1(u) = φG,V2(u) ≤ V2(u) ∀u ∈ G.
Since V1 6= V2, (φG,V1 , π) strictly dominates (V1, π1) or (V2, π2) for MI(G,S2, r). This contradicts the
minimality of (Vi, πi). ¤

Theorem 41 shows that if (V, π) is extreme and (φG,V , π) is minimal, then (φG,V , π) is extreme for
MI(I2, S2, r). This statement may be interpreted as infinite dimensional version of results for lifting in finite
dimensions, i.e., we are performing strong lifting on a facet-defining inequality for a low dimensional polytope
to form a facet-defining inequality of a higher dimensional polytope. On the other hand, in Proposition 46 in
the next section, we present a result that does not assume that (V, π) is extreme. The next section illustrates
some examples with distinct functions φ1 and φ2 forming extreme inequalities with the same function π. The
key idea in constructing such functions is to start from different subgroups G and corresponding functions
V . In this way it will be possible to construct different functions φG,V such that the different functions are
extreme for the two-row mixed integer infinite-group problem.

6 Non-Unique lifting functions

In this section, we analyze the inequalities obtained by starting from the other two classes of maximal lattice-
free convex sets, namely triangles with one integer point in the interior of each side with non-integral vertices
and quadrilaterals. For each set we use the results of Section 5.1 to prove that the trivial fill-in function is not
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minimal. In the case of triangles with one integer point in the interior of each side and non-integral vertices
we also present some sufficient conditions for the general fill-in function to be extreme.

We begin this section with a tool for the analysis of the area of D(π). This result will be used to show
that P(D(π)) ( I2.

Proposition 42 Let P (π) be a maximal lattice-free bounded convex set. For any f := (f1, f2) ∈ P (π) let
A(f) = Area(D(π)). If there exists only one integer point in the interior of each side of P (π), then A is an
affine function of f , i.e., A(f) = α0 + α1f1 + α2f2 for some α0, α1, α2.

Proof: Since there exists only one integer point in the interior of each side of P (π), we obtain that
Area(D(π)) =

∑
ij Area(Dij(π)). Therefore, to prove the result it is sufficient to show that Area(Dij) is

an affine function with respect to the position of f . For simplicity denote the points f + di, f + di+1,
f + δijdi, f + (1− δij)di+1 and Xj by a, b, c, d and e respectively. Hence the quadrilateral fced represents
Dij .

Therefore Area(fced) = Area(abf)−Area(aec)−Area(ebd). Since ec is parallel to bf and ed is parallel to
af , we have that Area(aec) = λ2Area(bfa) and Area(ebd) = (1−λ)2Area(bfa) where λ = |ae|

|ab| is independent
of f . We now obtain that Area(fced) = Area(abf) − Area(aec) − Area(ebd) = µArea(abf), where µ =
2(λ− λ2) is independent of the position of f . Thus Area(Dij(π)) = µArea(abf). Now since f always lies on
one side of the line segment ab, the area of the triangle abf varies affinely with the position of f . Therefore,
we obtain the required result. ¤

6.1 P (π) is a triangle with a single integer point in the interior of each side and
non-integral vertices

In this section, we first show that unlike the previous cases, if P (π) is a triangle with single integer point
in the interior of each side and non-integral vertices, then (φ0̄, π) is not minimal. We then present some
sufficient conditions for the generation of an extreme inequality using the fill-in procedure.

To prove that (φ0̄, π) is not minimal, we show that P(D(π)) is a proper subset of I2. This is achieved by
verifying that the area of D(π) is less than 1 in this case.

Notation: (Refer to Figure 6.) Let P (π) be a maximal lattice-free triangle with the points (1, 0), (0, 1) and
(0, 0) in the interior of its sides. We use the following notation for points in this section:

1. The points a1, a2 and a3 represent the vertices of the lattice-free triangle P (π).

2. b1 := (1, 0) is the integer point in the interior of the side a1a2.

3. b2 := (0, 1) is the integer point in the interior of the side a2a3.

4. b3 := (0, 0) is the integer point in the interior of the side a3a1.

5. The union of quadrilaterals fc1b1e1, fc2b2e2, fc3b3e3, and fc4b4e4 represents D(π)+{f}. (In particular,
c1 lies on fa1, e1 lies on fa2 and f + (c1 − f) + (e1 − f) = b1. c2 lies on fa2, e2 lies on fa3 and
f + (c2 − f) + (e2 − f) = b2. c3 lies on fa3, e3 lies on fa1 and f + (c3 − f) + (e3 − f) = b3).

Proposition 43 If P (π) is a lattice-free triangle with a single integer point in the interior of each side and
non-integral vertices, then (φ0̄, π) is not minimal for MI(I2, S2, r). ¤

Proof. Note first that translation and a linear transformation by a unimodular matrix do not change the
area of a set. Therefore, it is enough to analyze the standard triangles, i.e., we analyze triangles with (0, 0),
(1, 0), and (0, 1) in the interior of its sides are. Let s1, s2 and s3 be the sides of P (π) passing through (1, 0),
(0, 1), and (0, 0) respectively. Henceforth we assume WLOG that slope of s1 is negative and the slope of s2

is positive (and s1 is not vertical). (See part 2 of Lemma 11).

25



−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a3

a2

a1

b1

b2

b3

f

c1

e1

c2

e2

c3

e3

Figure 6: An example of triangle with one integer point in the interior of each side

Let m1 be the negative of the slope of s1, m2 be the slope of s2 and m3 be the negative of the slope of s3.
We may assume WLOG that the slope of s1 is negative and the slope of s2 is positive (and s1 is not vertical).

We know that f is in the strict interior of the triangle a1a2a3. As shown by Proposition 42, the area is
an affine function of the position of f . Therefore the area of D(π) is maximized when f is the same point as
either a1, a2 or a3. We consider each of these cases next. The three cases are shown in Figure 7.

1. f is same as a1. The area of D(π) is the area of the parallelogram a1e2b2c2. The equation of the line
passing through c2a1 is m1x + y = m1. The coordinates of c2 are

(
m1−1

m1−m3
, m1(1−m3)

m1−m3

)
. Using this

information, we can compute the area of a1e2b2c2 to be m1−1
m1−m3

. As m1 > 1 and 0 < m3 < 1, we obtain
that Area(a1e2b2c2) < 1.

2. f is same as a2. The area of D(π) is the area of the parallelogram a2e3b3c3. The equation of the
line passing through a2c3 is −m2x + y = 1. The coordinates of e3 are

(
m1

m1+m2
, m1m2

m1+m2

)
. Using this

information, we can compute the area of a2e3b3c3 to be m1
m1+m2

. As m1 > 0 and m2 > 0, we obtain
that Area(a2e3b3c3) < 1.

3. f is same as a3. The area of D(π) is the area of the parallelogram a3e1b1c1. The equation of the
line passing through a3c1 is m3x + y = 0. The coordinates of e1 are

(
m3−1

m2+m3
, m3(m2+1)

m2+m3

)
. Using this

information, we can compute the area of a3e1b1c1 to be (1+m2)m3
m2+m3

. As m2 > 0 and m3 < 1, we obtain
that Area(a3e1b1c1) < 1.
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Figure 7: f is the same as vertex of the triangle P (π)

Thus Area(D(π)) < 1. This implies that P(D(π)) is a proper subset of I2. Therefore, we obtain using
Proposition 33 that (φ0̄, π) is not minimal. ¤

The next example shows that not only is the function (φ0̄, π) not minimal, but one may have φ0̄(u) > 1
for some values of u.

Example 44 Let P (π) be the triangle with vertices (0.25, 1.25), (−0.75, 0.25), and (1.25,−5/12) and let
f = (0.5, 0.5). Then it can be verified that P (π) is a lattice-free triangle with only one integer point in the
interior of each of its sides and non-integral vertices. φ0̄(0.1, 0.2) = 1.1 and φ0̄ is not minimal. There are
two distinct functions φ1 and φ2 such that both (φ1, π) and (φ2, π) are extreme. (The proof of the extremality
of these functions is similar to the proof of Theorem 7.1 in Dey and Richard [13]). See Figure 8. ¤

We showed in Section 4.1.1 that some subfamilies of the sequential-merge inequalities were lifted extreme
inequalities for the two-row mixed integer infinite-group problem when starting with maximal lattice-free
triangles with multiple integer point in the interior of one side. In the next example we show that the family
of mixed MIR inequalities of Günlük and Pochet [28] can be derived from triangles with one integer point in
the interior of each side and non-integral vertices.

Example 45 (Mixing) The mixing set with two rows is defined as follows:
(

1
1

)
s1 +

( −1
0

)
s2 +

(
0
−1

)
s3 =

(
x1

x2

)
+

(
r1

r2

)
s1, s2, s3 ≥ 0, x1, x2 ∈ Z, (26)
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Figure 8: There exist distinct functions φ1 and φ2 such that (φ1, π) and (φ2, π) are extreme.

where 1 > r2 ≥ r1 ≥ 0. It has been shown that the mixing inequality, s1 ≥ r1(1 + x1) + (r2 − r1)(1 + x2) is
facet-defining for (26). If we substitute for x1 and x2, we obtain the inequality:

f2

−f2
1 − f2

2 + f1f2 + f1
s1 +

−f1 + 1
−f2

1 − f2
2 + f1f2 + f1

s2 +
f1 − f2

−f2
1 − f2

2 + f1f2 + f1
s3 ≥ 1 (27)

where f1 = 1 − r1 and f2 = 1 − r2. It can be verified that this inequality can be derived using (4) from the
lattice-free triangle whose vertices are

1. v1 := (c, f2 − f1 + c).

2. v2 := ( cf2−f1
c+f2−f1−1 , f2).

3. v3 := (f1,
(c+f2−f1)(f1−1)

(c−1) ).

where c = f1−f2
1 +2f1f2−f2

2
f2

. The point (f1, f2) belongs to the interior of this triangle. It is also verifiable that
the only integer points within each edge of the triangle are: (0, 0), (1, 0) and (1, 1).

In [28], the mixing inequalities were used for generating cutting planes for general simplex tableau by using
a procedure equivalent to the trivial fill-in procedure. Proposition 43 indicates that the trivial fill-in procedure
does not generate the best possible coefficients for all non-basic integer variables, and that these coefficients
can be improved by use of a general fill-in procedure. ¤

In the next section we will present some conditions for generating extreme inequalities for MI(I2, S2, r).
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6.1.1 Some conditions for extremality of φG,V

In Section 5, we presented the fill-in procedure for generating a valid function for MI(I2, S2, r) starting from
a valid function (V, π) for MI(G,S2, r). We begin this section by presenting a specific method of selecting G
and V . This method is based on first lifting one integer variable corresponding to an element in G, and then
obtaining the other coefficients by sequence-independent lifting.

For some u ∈ I2, let

V (u) = maxn∈Z,n≥1

{
1− π(w)

n
|P(w) = r − nu

}
. (28)

Then V (u) is the smallest value such that for all x(u) ≥ 1 and integer, and y : R2 → R satisfying (ux(u) +∑
w∈R2 wy(y))(mod1̄) ≡ r, we have that V (u)x(u) +

∑
w∈R2 π(w)y(w) ≥ 1. V (u) is therefore the exact lifting

coefficient for the integer variable x(u) and we call this step, “lifting the point u”. Let G be the subgroup of
I2 generated by u. Once we obtain the lifting coefficient for x(u), we propose to obtain V (v), the coefficients
for other x(v)s, where v ∈ G, v 6= u in the following fashion,

V (v) = minn∈Z+{nV (u) + π(w) |P(w) = v − nu}. (29)

It is easily verified that V is subadditive. The validity of this function (similar to the fill-in function)
follows thus: Let (x, y) ∈ MI(G,S2, r), then

∑
v∈G V (v)x(v) +

∑
w∈R2 π(w)y(w) ≥ V (

∑
v∈G vx(v)) +

π(
∑

w∈R2 wy(w)) ≥ n̄V (u) + π(r − n̄u) ≥ 1. (The next to last inequality follows from the definition of
V (v), v 6= u and the last inequality follows from the definition of V (u)).

The exact lifting followed by the sequence-independent lifting described above does not guarantee an
inequality (V, π) that is minimal for MI(G, I2, r). We next develop a slight variant of Theorem 41 for the
case when G and V are chosen based on (28) and (29). The result of Proposition 46 does not assume that
(V, π) is minimal for MI(G, S2, r).

Proposition 46 Let u be the generator of the cyclic subgroup G. Define V : G → R+ by first lifting u and
then sequence-independent lifting the elements G \ {u}, as in (28) and (29). If π is extreme for MI(∅, S2, r)
and (φG,V , π) is minimal, then (φG,V , π) is extreme for MI(I2, S2, r).

Proof: Assume by contradiction that (φG,V , π) is not extreme for MI(I2, S2, r). Then (φG,V , π) = 1
2 (φ1, π1)+

1
2 (φ2, π2) where (φi, πi) are valid minimal functions and (φ1, π1) 6= (φ2, π2). (Note that since (φG,V , π) is
minimal, (φi, πi) must be minimal).

First observe that π1 = π2 since π is extreme for MI(∅, S2, r).
Next we claim that φ1(u) = φ2(u) = V (u). Assume by contradiction that φ1(u) 6= φ2(u). WLOG let

φ1(u) < V (u). By definition of V (u), there exists n̄ ∈ Z+, w̄ ∈ R2 such that n̄V (u)+π(w̄) = 1 and w̄+n̄u ≡ r.
This implies that ∃(x̄, ȳ) ∈ MI(I2, S2, r) where x̄(u) = n̄, x̄(v) = 0 ∀v ∈ I2, v 6= u and y(w̄) = 1. Therefore,
we obtain that φ1(u)n̄ + π(w̄) < 1, giving us the required contradiction.

Finally, we claim that φ1 = φ2 = φG,V . Note first that combining the definition of fill-in function with (29),
we obtain that φG,V (v) = infn∈Z+{nV (u)+π(w) |nu+P(w) = v} ∀v ∈ I2. Suppose that φ1(v) = φG,V (v)+δ,
where δ > 0 (Since φG,V is minimal and φ1 6= φG,V , we must obtain this condition for some v ∈ I2 and some
δ > 0). By definition of φG,V , there exists nv, wv such that φG,V (v) ≥ nvV (u) + π(wv) − δ

2 . Since φ1(u) =
V (u), we obtain that φ1(v) ≥ δ + nvφ1(u) + π(wv)− δ

2 . Therefore, we obtain that φ1(v) > nvφ1(u) + π(wv).
This contradicts Theorem 39 as φ1 is minimal. ¤

When G is a cyclic subgroup generated by u and V is defined as in (28) and (29), we denote φG,V by φu.
(Note this nomenclature is consistent with the notation for the trivial fill-in function). As noted in the proof
of Proposition 46,

φu(v) = infn∈Z+{nV (u) + π(w) |P(w) = v − nu} ∀v ∈ I2 \ {u} (30)

The main result of this section is Theorem 52 in which we present sufficient condition for (φv̄0 , π) to be
extreme for MI(I2, S2, r) for a specific point v̄0 ∈ I2. We begin with some definitions.
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Definition 47 (Refer to Figure 9.) Let P (π) be a maximal lattice-free triangle with (0, 0), (1, 0), and (0, 1)
in the interior of its sides. We use the following notation for the rest of this section:

1. The points a1, a2 and a3 represent the vertices of the lattice-free triangle P (π).

2. b1 := (1, 0) is the integer point in the interior of the side a1a2.

3. b2 := (0, 1) is the integer point in the interior of the side a2a3.

4. b3 := (0, 0) is the integer point in the interior of the side a3a1.

Let

D12(π) = {ηd1 + γd2 | 0 ≤ η ≤ δ12, 0 ≤ γ ≤ (1− δ12)} (Quadrilateral fc1b1e1 − {f})
D23(π) = {ηd2 + γd3 | 0 ≤ η ≤ δ23, 0 ≤ γ ≤ (1− δ23)} (Quadrilateral fc2b2e2 − {f})
D31(π) = {ηd3 + γd1 | 0 ≤ η ≤ δ31, 0 ≤ γ ≤ (1− δ31)} (Quadrilateral fc3b3e3 − {f})

To describe D(π) + {f}, we need the following points,

1. c1: f + δ12d1.

2. e1: f + (1− δ12)d2.

3. c2: f + δ23d2.

4. e2: f + (1− δ23)d3.

5. c3: f + δ31d3.

6. e3: f + (1− δ31)d1.

The set D(π) + {f} is represented by the quadrilaterals: fc1b1e1, fc2b2e2, and fc3b3e3. We use some other
points in R2 which are described next:

1. g: f + (1− δ12)d2 + (δ12 − 1 + δ31)d1. (Note: g = b1 − e3 + f .)

2. i: f + (1− δ12)d2 + (δ12 − 1 + δ31)d1 − (δ31 − 1 + δ23)d3. (Note: i = g − c3 + e2.)

3. j: f + δ23d2 + (δ12 − 1 + δ31)d1 − (δ31 − 1 + δ23)d3. (Note: j = i− e1 + c2.)

4. m: Mid point of i and j.

5. k: f + δ23d2 − (δ31 − 1 + δ23)d3. (Note: k = j − g + e1.)

6. l: midpoint of e1 and c2.

7. u0: f +
(

1−δ12+δ23

2

)
d2 + (δ12 + δ31 − 1)d1. (Note: u0 = g − i + m.)

8. v0: f +
(

1−δ12+δ23

2

)
d2 + (1− δ31 − δ23)d3. (Note: v0 = k −m + i.)

It can be verified that (u0 − f) + (v0 − f) + f = (1, 1).

Proposition 48 Let δ23, δ31, and δ12 be as defined above. Then 1−δ23 < δ31, 1−δ31 < δ12, and 1−δ12 < δ23.

Proof. Refer to Figure 9. To prove this claim we need to show |fc3| > |fe2|, |fc1| > |fe3|, and |fc2| > |fe1|.

1. |fc3| > |fe2|: Since c3b3 is parallel to fa1, we obtain that |a3c3|
|a3f | = |a3b3|

|a3a1| . Similarly, |a3e2|
|a3f | = |a3b2|

|a3a2| .

Now observe that |a3b2|
|a3a2| > |a3b3|

|a3a1| since b2b3 is vertical while a2a1 has a slope less that 0 (Proposition
11). Therefore, |a3e2| > |a3c3|.
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2. |fc1| > |fe3|: Proof similar to previous case.

3. |fc2| > |fe1|: We have that |a2b2|
|a2a3| = |a2c2|

|a2f | and |a2b1|
|a2a1| = |a2e1|

|a2f | . Now since slope of a3a1 is strictly less

than −1 (Lemma 11) and the slope of b2b1 is −1, therefore |a2b1|
|a2a1| > |a2b2|

|a2a3| which proves the result. ¤
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Definition 49 Let T (π) ⊂ R2 be the set (D(π) + {f}) ∪ the hexagon c2e1gijk.

For any point p ∈ R2, we denote the point p− f as p̄. The next lemma records a crucial result for the proof
of Theorem 52. The proof is given in Appendix 2.

Lemma 50 P(T (π)) = I2. ¤

We use a variant of a theorem from Gomory and Johnson in proving the next result.

Theorem 51 ( [19]) If φ : I2 → R+ is a valid function for MI(I2, ∅, r) and if φ(u) + φ(r− u) ≤ 1 ∀u ∈ I2,
then φ is subadditive.

Throughout the proof of the following theorem, we use the fact that (1, 0) = f + δ12d1 + (1 − δ12)d2,
(0, 1) = f + δ23d2 + (1− δ23)d3, and (0, 0) = f + δ31d3 + (1− δ31)d1.

Theorem 52 If V (P(v̄0)) = 1− π(ū0), then (φP(v̄0), π) is extreme for MI(I2, S2, r).
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Proof. Since π is extreme for MI(∅, S2, r), using Proposition 46, we need to show that (φP(v̄0), π) is minimal
for MI(I2, S2, r) to prove this result.

Using (30) we know that

φP(v̄0)(u) = infn{nV (P(v̄0)) + π(w) |u = P(v̄0 + w)} ∀u ∈ I2. (31)

To prove that φP(v̄0) is minimal, we need to verify the conditions of Theorem 16. However, using directly
the definition of (φP(v̄0), π) is not convenient; as for any u ∈ I2, we cannot be sure of the value of n̄ ∈ Z+,
w̄ ∈ R2, such that n̄P(v̄0) + P(w̄) = u and φP(v̄0)(u) = n̄V (P(v̄0)) + π(w̄).

Therefore, instead of working with φP(v̄0), we prove this result by creating an upper bound φ̃ on φP(v̄0).
We then show that φ̃ satisfies the symmetry conditions, i.e., φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ I2. Since φP(v̄0) is
a valid function by Proposition 36 and φ̃ is an upper bound, φ̃ is a valid function. Now using Theorem 51
we will obtain that φ̃ must be subadditive. It will also be verified that φ̃ satisfies limh→0+

φ̃(P(wh))
h = π(w)

∀w ∈ S2 and φ̃(r) = 1. This will show that (φ̃, π) is minimal for MI(I2, S2, r). This will imply that φ̃ is the
same function as φP(v̄0), thus completing the proof.

The proof has two main steps. Step one involves creating the function φ̃ : I2 → R+ and showing that
this function is an upper bound on the function φP(v̄0). Step two involves proving that φ̃(u) + φ̃(r − u) ≤ 1
∀u ∈ I2, limh→0+

φ̃(P(wh))
h = π(w) ∀w ∈ S2, and φ̃(r) = 1.

Step 1: To define the function φ̃, we first define a function φ1 : T (π) → R+. By Lemma 50, we know
that P(T (π)) = I2. This allows us to define φ̃ : I2 → R+ as:

φ̃(u) = min{φ1(w)|P(w̄) = u}. (32)

We next present the function φ1. Refer to figure 9. We use the symbols Q11, and Q21 to represent the
quadrilaterals e1gu0l and gimu0 respectively.

φ1(u) =





π(u− f) if u ∈ (D(π) + {f}) ∪Q11

π(u− (1, 0)− f) if u ∈ Q21

V (P(v̄0)) + π(u− v0) otherwise.
(33)

Claim: φ1 is well-defined, i.e., we check if φ1(u) has the same value if u belongs to different categories
in (33). Since by assumption V (P(v̄0)) = 1 − π(ū0) and π(ū0) = π

((
1−δ12+δ23

2

)
d2 + (δ12 + δ31 − 1)d1

)
=

δ12+δ23−1
2 + δ31, we obtain V (P(v̄0)) = 3

2 − δ12

2 − δ23

2 − δ31.

1. u belongs to the line segment c2l: It is easily verified that the function is linear (both the first and third
case) over this interval. Therefore it is enough to check the value of the function φ1 at u = c2 and u = l.

• u = c2: From the first case in (33), φ1(c2) = π(c̄2) = π(δ23d2) = δ23. From the third case in (33),
φ1(c2) = V (P(v̄0)) + π(c2 − v0), or

φ1(c2) =
3
2
− δ12

2
− δ23

2
− δ31 + π((

−1 + δ12 + δ23

2
)d2 + (δ31 + δ23 − 1)d3)

= δ23.

• u = l: From the first case in (33), φ1(l) = π(l̄) = π( (δ23−δ12+1)
2 d2) = δ23−δ12+1

2 . From the third
case in (33), φ1(l) = V (P(v̄0)) + π(l − v0), or

φ1(l) =
3
2
− δ12

2
− δ23

2
− δ31 + π((δ31 + δ23 − 1)d3)

=
δ23 − δ12 + 1

2
.
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2. u belongs to the line segment lu0: It is easily verified that the function is linear (both the first and
third case) over this interval. Therefore it is enough to check the value of the function φ1 at u = l and
u = u0.

• u = l: Verified.

• u = u0: From the first case in (33), φ1(u0) = π(ū0) = δ12+δ23−1
2 + δ31. From the third case in (33),

φ1(u0) = V (P(v̄0)) + π(u0 − v0).

φ1(u0) =
3
2
− δ12

2
− δ23

2
− δ31 + π((δ12 + δ31 − 1)d1 + (δ23 + δ31 − 1)d3)

=
δ12 + δ23 − 1

2
+ δ31.

3. u belongs to the line segment u0g: It is easily verified that the function is linear (both the first and
second case) over this interval.

• u = u0: From the first case in (33), φ1(u0) = π(ū0) = δ12+δ23−1
2 +δ31. From the second case in (33),

φ1(u0) = π(u0− (1, 0)−f). It is easily verified that (1, 0) = (1, 0)− (0, 0) = (δ12 +δ31−1)d1 +(1−
δ12)d2−δ31d3. Therefore, φ1(u0) = π(u0−(1, 0)−f) = π(( δ12+δ23−1

2 )d2+δ31d3) = δ12+δ23−1
2 +δ31.

• u = g: From the first case in (33), φ1(g) = π(ḡ) = (δ31 + δ12 − 1)d1 + (1− δ12)d2 = δ31. From the
second case in (33), φ1(g) = π(g − (1, 0)− f) = π(δ31d3) = δ31.

4. u belongs to the line segment u0m: It is easily verified that the function is linear (both the second and
third case) over this interval. Therefore, it is enough to check the value of the function φ1 at u = u0

and u = m.

• u = u0: Verified.

• u = m: From the second case in (33), we obtain that φ1(m) = π(m − f − (1, 0)). Therefore
φ1(m) = π(

(
1−δ12+δ23

2

)
d2 + (δ12 + δ31 − 1)d1 + (1 − δ31 − δ23)d3) − (δ12 + δ31 − 1)d1 − (1 −

δ12)d2 + δ31d3 = π(−1+δ12+δ23

2 d2 + (1− δ23)d3) = 1+δ12−δ23

2 . From the third case in (33), φ1(m) =
V (P(v̄0)) + π(m− v0),

φ1(m) =
3
2
− δ12

2
− δ23

2
− δ31 + π((δ12 + δ31 − 1)d1)

=
1 + δ12 − δ23

2
.

Finally, we verify that φ̃ is an upper bound on φv0 : This follows from the definition of φP(v̄0)(u) =
infn∈Z+{nV (P(v̄0)) + π(w) |P(w) + nP(v̄0) = u}. Now this claim easily follows from (33) and (32).

Step 2:

• limh→0+
φ̃(P(wh))

h = π(w) ∀w ∈ S2: This follows from the fact that φ̃(u) = φ0̄(u) ∀u ∈ D(π) and Corol-
lary 24.

• φ̃(r) = 1: We know that φ̃ is an upper bound to φP(v̄0). Therefore, φ̃(r) ≥ 1. Moreover we have that
φ̃(r) ≤ φ1(b̄1) = 1.

• Finally we show that φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ I2: For u ∈ I2, we call r − u ∈ I2 the complementary
point. By the definition of φ1 and φ̃, it is easily verified that φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ D(π). We now
present some key complementary points:
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1. Complement of P(ē1) is P(j̄): ē1 + j̄ + f = e1 + j − f = e1 + (i − e1 + c2) − f = i + c2 − f =
(g− c3 + e2) + c2− f = b1− e3 + f − c3 + e2 + c2− f = b1 + (−e3− c3− f) + (e2 + c2 + f) = (1, 1).
Therefore, P(ē1) + P(j̄) = −f = r.

2. Complement of P(ḡ) is P(k̄): ḡ + k̄ + f = ē1 + j̄ + f = (1, 1).
3. Complement of P(ū0) is P(v̄0): ū0 + v̄0 + f = ḡ + k̄ + f = (1, 1).
4. Complement of P(l̄) is P(m̄): l̄ + m̄ + f = ē1 + j̄ + f = (1, 1).
5. Complement of P(̄i) is P(c̄2): ī + c̄2 + f = l̄ + m̄ + f = (1, 1).

Note that the function φ1 is linear in each of the following quadrilaterals: kv0mj, kv0lc
2, lv0mu0,

le1gu0, and u0gim. Therefore to prove that φ̃(u) + φ̃(r − u) ≤ 1 ∀u ∈ I2 \ P(D(π)), it is enough to
check the following five cases:

1. φ̃(P(ē1)) + φ̃(P(j̄)) ≤ 1: φ̃(P(ē1)) ≤ φ1(e1) = 1 − δ12. φ̃(P(j̄)) ≤ φ1(j) = V (P(v̄0)) + π(j − v0) =
3
2 − δ12

2 − δ23

2 − δ31 +π((δ12 + δ31−1)d1 +( δ23+δ12−1
2 )d2) = δ12. Therefore, φ̃(P(ē1))+ φ̃(P(j̄)) ≤ 1.

2. φ̃(P(ḡ)) + φ̃(P(k̄)) ≤ 1: φ̃(P(ḡ)) ≤ φ1(g) = π(ḡ) = δ31. φ̃(P(k̄)) ≤ φ1(k) = V (P(v̄0)) +
π( δ23+δ12−1

2 d2) = 1− δ31.

3. φ̃(P(ū0)) + φ̃(P(v̄0)) ≤ 1: φ̃(P(ū0)) + φ̃(P(v̄0)) ≤ φ̃(P(v̄0)) + φ1(u0) ≤ 1.

4. φ̃(P(l̄)) + φ̃(P(m̄)) ≤ 1: φ̃(P(l̄)) ≤ φ1(l) = δ23+1−δ12

2 . φ̃(P(m̄)) ≤ φ1(m) = 1+δ12−δ23

2 .

5. φ̃(P(̄i)) + φ̃(P(c̄2)) ≤ 1: φ̃(P(c̄2)) ≤ φ1(c2) = δ23. φ̃(P(̄i)) ≤ φ1(i) = π(i − (1, 0) − f) = π((1 −
δ23)d3) = 1− δ23. ¤

As an example, note that the function φ1 illustrated in Figure 8 is the function φP(v̄0).

6.2 P (π) is a quadrilateral

In this section, we consider a set P (π) which is a quadrilateral. We will prove that the trivial fill-in procedure
does not generate extreme inequalities for MI(I2, S2, r) in this case. We begin with a variant of Lemma 10.

Proposition 53 Let P (π) be a maximal lattice-free quadrilateral. Then there exists a unimodular matrix M
and v ∈ Z2 such that the set {x ∈ R2 |x = M(u − v), u ∈ P} is a maximal lattice-free quadrilateral with the
points (0, 0), (1, 0), (0, 1), and (1, 1) in the interior of its four sides.

Proof: Same as Proof of Proposition 26. ¤
Notation: (Refer to Figure 10.) Let P (π) be a maximal lattice-free quadrilateral with the points (1, 0),

(1, 1), (0, 1), and (0, 0) in the interior of its sides. We use the following notation for points in this section:

1. The points a1, a2, a3, and a4 represent the vertices of the lattice-free quadrilateral P (π).

2. b1 := (1, 1) is the integer point in the interior of the side a1a2.

3. b2 := (0, 1) is the integer point in the interior of the side a2a3.

4. b3 := (0, 0) is the integer point in the interior of the side a3a4.

5. b4 := (1, 0) is the integer point in the interior of the side a4a1.

The following result is from Cornuéjols and Margot [9].

Theorem 54 ( [9]) π is extreme for MI(∅, S2, r) iff there does not exist an h ∈ R+ such that

|bi − ai|
|bi − ai+1| =

{
h if i = 1, 3
1
h if i = 2, 4.

(34)

¤
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Figure 10: The maximum area of D(π) when P (π) is a maximal lattice-free quadrilateral

Therefore the interesting case for analysis is the case when there exists no such h.

Proposition 55 Let P (π) be maximal lattice-free quadrilateral. If there exists no h ∈ R+ satisfying (34),
then Area(D(π)) < 1.

Proof. Using Propositions 53 and 17 it is enough to analyze the case when P (π) is a quadrilateral with the
points (1, 0), (1, 1), (0, 1), (0, 0) in the interior of its sides. Let s1, s2, s3, s4 be the sides of the quadrilateral
which the points (1, 1), (0, 1), (0, 0), and (1, 0) respectively. Let −m1, m2, −m3, and m4 be the slopes of the
sides s1, s2, s3, s4 respectively. Let a1, a2, a3, and a4 be the vertex between s4 and s1, s1 and s2, s2 and s3,
and s3 and s4 respectively.

First note that it can be verified that 0 < m1,m2,m3,m4 < ∞. (If m1 = 0, then b2 becomes a vertex of
P (π), a contradiction. The other conditions can be proven similarly).

(Refer to Figure 10). Note that a1
2 = a3

2 and a2
1 = a4

1 iff m1m3 = m2m4 since the vertices of P (π) are
a1 :=

(
m4+1+m1

m4+m1
, m4

m4+m1

)
, a2 :=

(
m1

m2+m1
, m1

m2+m1

)
, a3 :=

(
−1

m2+m3
, m3

m2+m3

)
, and a4 :=

(
m4

m4+m3
, −m4m3

m4+m3

)
.

It can also be verified that the condition m1m3 = m2m4 holds iff there exists h ∈ R+ satisfying (34).
Therefore, we have that a1

2 6= a3
2 and a2

1 6= a4
1.

Note that since there is a unique integer point in the interior of each side, using Proposition 42, we know
that D(π) has a maximum area when f is one of the vertices of P (π). We show next that if f is the same as
a4 then Area(D(π)) < 1. The case when f is the same as a1, a2 or a3 can be proven similarly.

When f is the same as the point a4, D(π) + {f} is represented by the two parallelograms e2b2c2a4 and
e1b1c1a4. (Here we have assumed that the slope of a2a4 is positive. If the slope of a2a4 is negative a similar
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proof can be given. Note that a2a4 is vertical iff m1m3 = m2m4). Let pb4 be parallel to e2b3. Therefore
p2 > 0 as the slope of s3 is negative. Let b3b4 intersect a2a4 at g and b1c1 at q. q1 < 1 since a2a4 has a
positive slope.

Let s = q + (0, 1), z = a4 + (0, 1), and t = c1 + (0, 1).
Since the slope of a2a4 is positive, z lies to the left of the line a2a4. Moreover since b2b3 is parallel and

equal in length to za4, we have that b2b3a4z is a parallelogram. Therefore z lies in the interior of the line
segment b2c2. Similarly, e1 and t lie in the interior of the line segment b1z. Also it can be proven that c2 lies
in the interior of a4e1. Therefore, Area(ze1c2) > 0.

Next observe that Area(b2stz) = Area(b3qc1a4) since b2stz = b3qc1a4 + (0, 1).
The line segment b2e2 is parallel to b1p, as both are parallel to a2a4. Also pb4 is parallel to e2b3 by

construction. Moreover, |b2b3| = |b1b4| = 1. Therefore, the triangle b2e2b3 is symmetric to b1b4p implying
that Area(e2b2b3) = Area(pb1b4).

Finally observe that Area(D(π)) = Area(e2b2c2a4) + Area(e1b1c1a4) = Area(b2b3gc2) + Area(b3ga4) +
Area(b2b3e2) + Area(b1qge1) + Area(qc1a4g) = Area(b2b3gc2) + Area(b2b3e2) + Area(b1qge1) + Area(b3qc1a4)
= Area(b2b3gc2) + Area(b1b4p) + Area(b1qge1) + Area(b2stz) = Area(b1b2b3b4)−Area(stb1)−Area(ze1c2)−
Area(pqb4). Since Area(stb1) > 0, Area(ze1c2) > 0, and Area(pqb4) > 0, it follows that Area(D(π)) < 1. ¤

The following corollary is easily verified.

Corollary 56 Let π be an extreme inequality corresponding to a maximal lattice-free quadrilateral P (π).
Then (φ0̄, π) is not extreme for MI(I2, S2, r). ¤

7 Example of cutting planes from two-row of a simplex tableau

The main aim of this paper has been to study the characteristics of lifting functions for integer variables
derived from two rows of a general simplex tableau. Here we sketch a procedure to generate cutting planes
for two rows of a simplex tableau using the results presented earlier.

Assume that we have two rows of a simplex tableau with n1 nonbasic integer variables, n2 nonbasic
continuous variables and xB1 , xB2 are basic variables that are required to be integer.

xB1 +
n1∑

i=1

ai
1xi +

n2∑

j=1

bj
1yj = r1

xB2 +
n1∑

i=1

ai
2xi +

n2∑

j=1

bj
2yj = r2

xB ∈ Z2, x ∈ Zn1
+ , y ∈ Rn2

+ (35)

Apply the following steps:

1. Fix the non-basic integer variables to zero.

2. Select three (four for a quadrilateral inequality) continuous variables yj1 , yj2 , and yj3 such that the
positive combination of bj1 , bj1 , and bj3 spans R2.

3. Find a maximal lattice-free triangle P (π) such that the inequality π is extreme for the problem,

xB + bj1yj1 + bj2yj2 + bj3yj3 = r, xB ∈ Z2, yj1 , yj2 , yj3 ≥ 0.

4. Lift the other continuous variables, i.e., use the function π to generate the coefficients for the other
continuous variables.

5. Lift the non-basic integer variables into this cut.
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• If P (π) is a triangle with multiple integer points in the interior of one side or a triangle with integral
vertices and one integer point in the interior of each side, then use the trivial fill-in function to lift
all the integer variables.

• If P (π) is a triangle with a single integer point in the interior of each side and non-integral vertices
(or a quadrilateral), then do the following: Select an integer variable xi corresponding to column
ai where ui = P(ai). Find the value of the term φ0̄(ui) + φ0̄(r − ui). If φ0̄(ui) + φ0̄(r − ui) = 1,
then ui ∈ P(D(π)). (This can be verified based on Propositions 23 and 33). φ0̄(ui) is the best
possible coefficient. Denote the set of variables such that φ0̄(ui) + φ0̄(r − ui) = 1 by NT . For the
other variables with φ0̄(ui) + φ0̄(r − ui) > 1, try to improve upon the coefficient obtained using
the trivial fill-in function. Let NL be the list of such variables. Lift a subset NI of these variables
using traditional lifting giving an inequality of the form

∑

i∈NT

φ0̄(ui)xi +
∑

i∈NI

Vixi +
n2∑

j=1

π(bj)yj ≥ 1. (36)

(Vis are the coefficients obtained using lifting.) Finally, apply either the general fill-in function (by
computing a valid function V : G → R+, with G the subgroup generated by the elements in NI),
or a function similar to (29) to obtain the coefficients for the integer variables in the set NL \NI ,
giving the inequality

∑

i∈NT

φ0̄(ui)xi +
∑

i∈NI

Vixi +
∑

i∈NL\NI

φ(ui)xi +
n2∑

j=1

π(bj)yj ≥ 1, (37)

where φ is computed as

φ(v) = minni∈Z+{
∑

i∈NI

niVi + π(w) |P(w) = v −
∑

i∈I

niu
i}. (38)

It is easily verified that this function is valid. However, this function may not be minimal in all
cases.

As shown in Proposition 37, the value of the trivial fill-in function can be found by evaluating the
value of the function π at a finite number of points; this number is bounded by the square of the
inverse of the smallest gradient of π (or equivalently the length of the longest extreme ray of P (π) i.e.,
max{|aif | | ai is a vertex of P (π)}) times sup{π(w) |w ∈ [0, 1) × [1, 0)}. On the other hand, since the
fill-in function is calculated via a minimization problem and the cut obtained has the ≥ symbol, it is not
necessary to solve the fill-in process to optimality to obtain a valid cutting plane (unlike the traditional
lifting process).

We next present an example illustrating some of the steps outlined above.

Example 57 Consider the following instance:
(

1
0

)
y1 +

(
0
1

)
y2 +

( −1
−2

)
y3 +

( −3
−7

)
y4 +

( −4/5
6/5

)
x1

+
(

19/10
23/10

)
x2 +

(
3/10
−7/5

)
x3 +

( −2/3
11/6

)
x4 +

(
0.5
0.5

)
=

(
1
0

)
xB1 +

(
0
1

)
xB2

xB ∈ Z2, x ∈ Z4
+, y ∈ R4

+ (39)

• Choose three continuous variables: y1, y2, y3. A maximal lattice-free triangle generating a facet for
(

1
0

)
y1 +

(
0
1

)
y2 +

( −1
−2

)
y3 +

(
0.5
0.5

)
=

(
1
0

)
xB1 +

(
0
1

)
xB2

xB ∈ Z2, y1, y2, y3 ∈ R+, (40)
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is given by the vertices: (1.5, 0.5), (0.5, 1.5), and (−0.5,−1.5). This triangle P (π) is illustrated in Figure
11. Given P (π), calculate π(−3,−7) = 4. Note now that P (π) has multiple integer points in the interior
of one side. Therefore, it is enough to use the trivial fill-in procedure to lift the integer variables. We now
illustrate the computation of φ0̄(P(−4/5, 6/5)). Since, in the case of this P (π), there exists, w ∈ D(π)
such that P(w) = P(−4/5, 6/5), and D(π) ⊂ P (π) ⊂ {(w1, w2) | − 0.5 ≤ w1 ≤ 1.5,−1.5 ≤ w2 ≤ 1.5} we
do the following:

φ0̄(0.2, 0.2) = min





π(0.2,−0.8) = 1
π(0.2, 0.2) = 0.4
π(0.2, 1.2) = 1.4
π(1.2,−0.8) = 2
π(1.2, 0.2) = 1.4
π(1.2, 1.2) = 2.4

(41)

By computing the trivial fill-in function for the other integer variables, we obtain the inequality y1 +
y2 + y3 + 4y4 + 0.4x1 + 0.6x2 + 0.7x3 + 0.5x4 ≥ 1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 11: P (π) to generate facet for (40)

• Now choose the following three continuous variables: y1, y2, y4. A maximal lattice-free triangle generat-
ing a facet for

(
1
0

)
y1 +

(
0
1

)
y2 +

( −3
−7

)
y4 +

(
0.5
0.5

)
=

(
1
0

)
xB1 +

(
0
1

)
xB2

xB ∈ Z2, y1, y2, y4 ∈ R+, (42)
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is given by the vertices: (7/10)∗(1, 0)+(0.5, 0.5), (7/4)∗(0, 1)+(0.5, 0.5), and (7/26)∗(−3,−7)+(0.5, 0.5).
This triangle is illustrated in Figure 12.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

1.5

2

Figure 12: P (π) to generate facet for (42)

Given P (π), one can check that π(−1,−2) = 7/15. Note now that as P (π) has one integer point in
the interior of each side and the vertices of P (π) are non-integral, we need to check whether the trivial
fill-in function is sufficient to obtain strong coefficients. To compute the trivial-fill-in function in this
case note that l =

√
(32 + 72).max{π(w) |w ∈ [0, 1] × [0, 1]} ≈ 13.9. (Notation of Proposition 37).

Therefore, φ0̄(u1, u2) = Min0≤|n1|,|n2|≤14π(u1 + n1, u2 + n2).

1. x1: u1 = P((−4/5, 6/5)) = (0.2, 0.2). Now φ0̄(0.2, 0.2)+φ0̄(0.3, 0.3) = 1 implying that φ0̄(0.2, 0.2) =
2/5 is the cut coefficient.

2. x2: u2 = P(19/10, 23/10) = (0.9, 0.3). Now φ0̄(0.9, 0.3)+φ0̄(0.6, 0.2) = 1 implying that φ0̄(0.9, 0.3) =
3/7 is the cut coefficient.

3. x3: u3 = P((3/10,−7/5)) = (0.3, 0.6). Now φ0̄(0.3, 0.6) + φ0̄(0.2, 0.9) > 1. Therefore the value of
coefficient φ0̄(0.3, 0.6) = 27/35 can be possibly improved.

4. x4: u4 = P((−2/3, 11/6)) = (1/3, 5/6). Now φ0̄(1/3, 5/6) + φ0̄(1/6, 2/3) > 1. Therefore the value
of coefficient φ0̄(1/3, 5/6) = 2/3 can be possibly improved.

Select x4 for exact lifting. Solve the problem: maxn∈Z,n≥1

{
1−π(w)

n |w ≡ (0.5, 0.5)− n(1/3, 5/6)
}

=

8/21 < 2/3 = φ0̄(1/3, 1/6). Now the generalized fill-in function coefficient for u3 is given by φu4
(u3) =
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infn∈Z+
{8/21n+π(w) |P(w) = u2−nu4} = 0.6 < φ0̄(0.3, 0.6). Thus, the coefficients for both x3 and x4

have been decreased and the resulting inequality is: 10/7y1 +4/7y2 +7/15y3 +26/7y4 +0.4x1 +3/7x2 +
0.6x3 + 8/21x4 ≥ 1. ¤

8 Conclusion

In this paper, we have presented new cutting planes that can be generated from two rows of a simplex
tableau. The approach used to derive these inequalities was to lift nonnegative integer variables into extreme
inequalities for a system of two rows with two free integer variables and nonnegative continuous variables.

We have presented general conditions for fill-in functions to be extreme for the two-row mixed integer
infinite-group problem and have proved that a unique lifting function exists in the case when the original
inequality for the continuous variables corresponds to either a maximal lattice-free triangle with multiple
integer points in the interior of one of its sides or a maximal lattice-free triangle with integral vertices and
one integer point in the interior of each side. The resulting lifted inequality is extreme for MI(I2, S2, r). This
class of inequalities may be considered as the closest two-row counter parts of the Gomory mixed integer cut
as the function π is extreme for MI(∅, S2, r) and the trivial fill-in function is extreme for MI(I2, S2, r).

In all other cases the lifting functions may not be unique. In Theorem 52, we showed that under suitable
conditions, starting with a specific cyclic subgroup of I2 and using the fill-in procedure leads to extreme
inequalities for MI(I2, S2, r) when the inequality π corresponds to a lattice-free triangle with non-integral
vertices and one integer point in the interior of each side.

There is the possibility that these new extreme inequalities for MI(I2, S2, r) may be useful computation-
ally, since the coefficients for the continuous variables in these inequalities are not dominated by those of any
other inequality for the two-row infinite-group problem and some of these inequalities cannot be obtained
finitely using only inequalities generated from a single row.

Future research directions include analysis of maximal lattice-free convex sets in higher dimensions, ob-
taining closed-form expressions for the trivial fill-in functions (we showed that some subclasses of the trivial
fill-in functions are sequential-merge inequalities or mixing inequalities for which closed form expressions are
known) and extensive computational experiments.
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Appendix 1
In this section we show that if a function π̃ : Q2 → R+ as defined in (3) is minimal (extreme resp.) for

(1) and f ∈ interior(P (π)), then π as defined in (4) is minimal (extreme resp.) for MI(∅, S2, r).
The proof of the following proposition is exactly the same as the proof of Theorem 7 from Borozan and

Cornuéjols [6] and related to the proof of Theorem 39 from Johnson [23].

Proposition 58 If π : R2 → R+ is minimal inequality for MI(∅, S2, r) then

1. π is positively homogenous.

2. π is subadditive.

Since the function π : R2 → R+ is positively homogenous and subadditive, it is convex, see Rockafeller [30].
Moreover, if π(w) is finite for every w ∈ R2, then it is continuous.

Proposition 59 ( [30]) If π : R2 → R+ is a finite, subadditive, and positively homogenous function, then π
is a continuous function.

Proposition 60 If P (π) is a maximal lattice-free set with f ∈ interior(P (π)) and π : R2 → R+ is defined as
(4), then π is minimal.

Proof: Note that π is a continuous function by construction. Assume by contradiction that π is not minimal.
Therefore, there exists a valid minimal function π′ : R2 → R+ such that π > π′. Since π is a finite function,
this implies that π′ is finite. Using Proposition 58, π′ is positively homogenous and subadditive. Thus using
Proposition 59, π′ is continuous. However, by Theorem 7, π(u) = π′(u) ∀u ∈ Q2. Since Q2 is dense in R2,
continuity of π and π′ implies that π = π′. ¤

Proposition 61 Let π̃ : Q2 → R+ be an inequality for (1) corresponding to maximal lattice-free convex set
P (π) with f ∈ interior(P (π)). Let π : R2 → R+ be as defined in (4). If π̃ is extreme for (1), then π is
extreme for MI(∅, S2, r).

Proof: Observe that π(u) = π̃(u) ∀u ∈ Q2. Assume by contradiction that there exist two valid functions
π1, π2 : R2 → R+ such that π = 1

2π1 + 1
2π2 and π1 6= π2. By Proposition 60, π is a minimal inequality. This

implies that π1 and π2 are minimal. Thus, using Proposition 58, π1 and π2 are positively homogenous and
subadditive. Moreover, since π is finite by construction, π1 and π2 and finite. Thus, using Proposition 59, π1

and π2 are continuous.
Since π̃ is extreme, we have π̃(u) = πi(u) ∀u ∈ Q2. Since f ∈ interior(P (π)), π is a continuous function.

However, since Q2 is dense in R2, this implies that π1 = π2, a contradiction. ¤

Appendix 2
To prove that P(T (π)) = I2, we first present a preliminary result that identifies relations between some

points on the boundary of T (π).

Proposition 62 For T (π) (see Definition 49),

1. c3 = g − (1, 0).

2. e2 = i− (1, 0).

3. e3 = k − (0, 1).

4. c1 = j − (0, 1).

Proof.
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1. g−c3 = f +(1−δ12)d2 +(δ12−1+δ31)d1−f−δ31d3 = f +(1−δ12)d2 +(δ12−1+δ31)d1 +(1−δ31)d1 =
f + (1− δ12)d2 + δ12d1 = (1, 0).

2. i− e2 = f + (1− δ12)d2 + (δ12 − 1 + δ31)d1 − (δ31 − 1 + δ23)d3 − f − (1− δ23)d3 = (1− δ12)d2 + (δ12 −
1 + δ31)d1− δ31d3 = (1− δ12)d2 + (δ12− 1 + δ31)d1 + f + (1− δ31)d1 = f + (1− δ12)d2 + δ12d1 = (1, 0).

3. k − e3 = f + δ23d2 − (δ31 − 1 + δ23)d3 − f − (1 − δ31)d1 = δ23d2 − (δ31 − 1 + δ23)d3 − (1 − δ31)d1

= δ23d2 − (δ31 − 1− δ23)d3 + f + δ31d3 = f + δ23d2 + (1− δ23)d3 = (0, 1).

4. j−c1 = f +δ23d2+(δ12−1+δ31)d1−(δ31−1+δ23)d3−f−δ12d1 = δ23d2+(−1+δ31)d1−(δ31−1−δ23)d3

= δ23d2 + (−1 + δ31)d1 + (1− δ23)d3 + f + (1− δ31)d1 = (0, 1). ¤
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Figure 13: Some lattice-preserving operations

Proposition 63 P(T (π)) = I2.

Proof. Refer to Figure 13. Let b4 be the point (1, 1). We perform the following operations on T (π):

1. Let ∆1 be the triangle b1c1e3. Construct T1 = (T (π)\∆1)∪ (∆1 +{(0, 1)}). (It can be verified that this
operation is general and can always be applied. We obtain the set illustrated in the second frame in
Figure 13 since kj = e3c1 + {(0, 1)}. Note that since the operation creating T1 involves relative motion
of a subset of T (π) by integral amount, P(T (π)) = P(T1).

2. Let ∆2 be the triangle gib4. Construct T2 = (T1 \∆2)∪ (∆2−{(1, 0)}). We obtain the set illustrated in
the third frame in Figure 13 since gi = c3e2 + {(1, 0)} and ib4 = e2b2 + {(1, 0)}. Again P(T2) = P(T1).
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3. If k2 ≤ 1, then let ∆3 be the triangle b3e3b1 and construct T3 = (T2 \∆3) ∪ (∆3 + {(0, 1)}). If k2 ≥ 1,
then let ∆3 be the triangle b2kb4 and construct T3 = (T2 \ ∆3) ∪ (∆3 − {(0, 1)}). We obtain the set
illustrated in the fourth frame in Figure 13 since b2k = b3e3 + {(0, 1)} and kb4 = e3b1 + {(0, 1)}. Again
P(T3) = P(T2).

4. If c3
1 ≤ 0, then let ∆4 be the triangle b3c3b2. Construct T4 = (T3 \∆4)∪ (∆4 + {(1, 0)}). If c3

1 ≥ 0, then
let ∆4 be the triangle b1gb4. Construct T4 = (T3 \ ∆4) ∪ (∆4 − {(1, 0)}). Since b3c3 = b1g − {(1, 0)}
and c3b2 = gb4 − {(1, 0)} we obtain that I2 = T4. Therefore, I2 = P(T4) = P(T3) = P(T (π)). ¤
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