
LOWER BOUNDS FOR INTEGER PROGRAMMING PROBLEMS

A Thesis
Presented to

The Academic Faculty

by

Yaxian Li

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Yaxian Li

LOWER BOUNDS FOR INTEGER PROGRAMMING PROBLEMS

Approved by:

George L. Nemhauser, Ozlem Ergun,
Committee Chair
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Ellis Johnson
School of Industrial and Systems
Engineering
Georgia Institute of Technology

George L. Nemhauser, Ozlem Ergun,
Advisor
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Maria-Florina Balcan
School of Computer Science
Georgia Institute of Technology

Martin Savelsbergh
School of Mathematical and Physical
Sciences
University of Newcastle

Date Approved: May 9th 2013

To my beloved grandfathers.

iii

ACKNOWLEDGEMENTS

I would like to give my deepest gratitude to my advisors, Prof. George L. Nemhauser

and Prof. Ozlem Ergun. This work could never be done without their generous support,

invaluable guidance, and greatest patience with me. I am honored to work with both of

them and have learned a great deal from them. I truly thank them for having belief in me

which made me have more faith in myself.

I would also like to thank Prof. Savelsbergh for his guidance in my early stage of research.

Working with him was truly an enjoyable and inspiring experience. It is an honor to have

Prof. Johnson on my committee, who has given me advice not limited to this thesis. I also

want to thank Prof. Balcan for her encouragement and for exposing me a new direction in

my research.

I want to thank my friends and colleagues at ISYE, Huizhu, Qie, Linkan, Pengyi, Luyi,

Kale, Feng, Juan Pablo, Fatma, who have made my days here happy and fulfilled.

I cannot think of finishing the work without the encouragement and support from my

parents. Their unconditional love has always been the biggest support for me. Finally,

my most sincere thanks go to my husband, Nan, who has always been there for me. His

encouragement, suggestions and love has made me who I am today, thank you.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

SUMMARY . xi

I INTRODUCTION . 1

II PRICING FOR PRODUCTION AND DELIVERY FLEXIBILITY . . 14

2.1 Introduction . 14

2.2 The uncapacitated lot-sizing problem with pricing for delivery flexibility . 16

2.2.1 Solving the problem for a given discount factor α 18

2.2.2 Analysis of the objective function 20

2.3 Solution approach . 22

2.4 A special case . 25

2.5 Generalizations . 30

2.5.1 Per-period discounts . 30

2.5.2 Early and late delivery . 34

2.5.3 An example . 35

2.6 A computational study . 37

2.6.1 Pricing for delivery flexibility . 38

2.6.2 Delivery flexibility . 40

2.6.3 A single discount vs. per-period discounts 42

III CORNER RELAXATION FOR MKP . 45

3.1 Introduction . 45

3.2 The periodic property and corner relaxation for KP 48

3.3 Periodic property and corner relaxation for 2-KP 52

3.3.1 Preliminaries . 53

3.3.2 The optimal basis {x1, s1} . 56

3.3.3 The optimal basis {x1, x2} . 60

v

3.4 The periodic property of the MKP . 64

IV MULTI-DIMENSIONAL KNAPSACK INSTANCES 66

4.1 Introduction . 66

4.2 Instance generation and computational experiments 68

V RELAXATION ALGORITHMS . 78

5.1 Introduction . 78

5.1.1 Choosing Active Constraints . 82

5.1.2 Comparing Lower Bounds of Relaxations 86

5.1.3 A Dual Heuristic Algorithm . 92

5.1.4 Modifying Parameters . 118

5.1.5 Conclusions and future research . 152

VI A SUBADDITIVE ALGORITHM AND SHORTEST PATH ALGORITHM
FOR MKP . 154

6.1 Introduction . 154

6.2 Subadditive Dual and Shortest Path Algorithms 158

6.2.1 The Subadditive Lifting Method . 158

6.2.2 A Subadditive Dual Algorithm . 159

6.2.3 A Shortest Path Algorithm . 167

6.3 Computational Results . 170

6.4 Conclusion . 173

VII CONCLUSIONS AND FUTURE RESEARCH 174

REFERENCES . 177

vi

LIST OF TABLES

1 Instances with n = 50,m = 100 . 70

2 Instances with n = 50,m = 500 . 71

3 Instances with n = 50,m = 1000 . 71

4 Instances with n = 100,m = 100 . 71

5 Instances with n = 100,m = 500 . 72

6 Instances with n = 100,m = 1000 . 72

7 Choosing active constraints: Lower bounds of 50 500 0 0.25 instances . . . 83

8 Choosing active constraints: Lower bounds of 50 500 500 1 instances 84

9 Choosing active constraints: Lower bounds of 100 500 0 0.25 instances . . . 84

10 Choosing active constraints: Lower bounds of 100 500 500 1 instances . . . 85

11 Lower bounds obtained from various relaxations: 50 500 0 0.25 instances . . 88

12 Lower bounds obtained from various relaxations: 50 500 500 1 instances . . 89

13 Upper bounds obtained from the lazy relaxations: 50 500 0 0.25 instances . 89

14 Upper bounds obtained from the lazy relaxations: 50 500 500 1 instances . 90

15 LB using Lazy Constraints: 50 1000 0 0.25 91

16 LB using Lazy Constraints: 50 5000 0 0.25 91

17 Lower Bounds of the Shortest path Algorithm: 50 500 171

18 Lower Bounds of the Shortest path Algorithm: 50 1000 172

vii

LIST OF FIGURES

1 Lot-sizing model . 2

2 Branch and bound algorithm . 4

3 Cutting plane algorithm . 5

4 Piecewise Quadratic Objective Function . 22

5 Recursive Partitioning . 25

6 Lower Bound for Relative Controllable Cost Decrease 26

7 Demand of Instance . 36

8 Example . 36

9 Relative cost decrease for varying holding cost 38

10 Relative cost decrease for varying delivery window ∆ 39

11 Delivery flexibility for varying holding cost 41

12 Delivery flexibility for varying delivery window size 41

13 Discount factors for varying holding cost . 43

14 Discount factors for varying delivery window size 43

15 Cones and basis . 57

16 Gomory – Conditions for Tight Corner Relaxation 60

17 Periodicity of f(y1, y2) . 63

18 Relative Gap at Node 10,000,000 . 74

19 Number of Nodes Processed at optimality 75

20 Lower bounds . 96

21 Lower bounds . 97

22 Lower bounds . 98

23 Lower bounds . 99

24 Lower bounds . 100

25 Relative gaps . 101

26 Relative gaps . 102

27 Relative gaps . 103

28 Relative gaps . 104

29 Relative gaps . 105

viii

30 # Remaining nodes in B&B tree compared with CPLEX 106

31 # Remaining nodes in B&B tree compared with CPLEX 107

32 # Remaining nodes in B&B tree compared with CPLEX 108

33 # Remaining nodes in B&B tree compared with CPLEX 109

34 # Remaining nodes in B&B tree compared with CPLEX 110

35 Average time spent on each node in seconds 112

36 Average time spent on each node in seconds 113

37 Average time spent on each node in seconds 114

38 Average time spent on each node in seconds 115

39 Average time spent on each node in seconds 116

40 Frequency of constraints in relaxations . 117

41 Lower bounds for modifying Slack . 120

42 Lower bounds for modifying Slack . 121

43 Lower bounds for modifying Slack . 122

44 Lower bounds for modifying Slack . 123

45 Lower bounds for modifying Slack . 124

46 Average time per node for modifying Slack 125

47 Average time per node for modifying Slack 126

48 Average time per node for modifying Slack 127

49 Average time per node for modifying Slack 128

50 Average time per node for modifying Slack 129

51 Lower bounds for modifying percentage of special nodes 131

52 Lower bounds for modifying percentage of special nodes 132

53 Lower bounds for modifying percentage of special nodes 133

54 Lower bounds for modifying percentage of special nodes 134

55 Lower bounds for modifying percentage of special nodes 135

56 Check Percent for modifying percentage of special nodes 136

57 Check Percent for modifying percentage of special nodes 137

58 Check Percent for modifying percentage of special nodes 138

59 Check Percent for modifying percentage of special nodes 139

60 Check Percent for modifying percentage of special nodes 140

ix

61 Lower bounds for modifying the relative gap ranges 142

62 Lower bounds for modifying the relative gap ranges 143

63 Lower bounds for modifying the relative gap ranges 144

64 Lower bounds for modifying the relative gap ranges 145

65 Lower bounds for modifying the relative gap ranges 146

66 Gap bounds for modifying the relative gap ranges 147

67 Gap bounds for modifying the relative gap ranges 148

68 Gap bounds for modifying the relative gap ranges 149

69 Gap bounds for modifying the relative gap ranges 150

70 Gap bounds for modifying the relative gap ranges 151

71 Shortest Path Problem for MKP . 156

72 Subadditive Algorithm: step 0-1 . 164

73 Subadditive Algorithm: step 2-3 . 165

74 Subadditive Algorithm: step 4 . 165

x

SUMMARY

Solving real world problems with mixed integer programming (MIP) involves efforts

in modeling and efficient algorithms. To solve a minimization MIP problem, a lower bound

is needed in a branch-and-bound algorithm to evaluate the quality of a feasible solution

and to improve the efficiency of the algorithm. This thesis develops a new MIP model and

studies algorithms for obtaining lower bounds for MIP.

The first part of the thesis is dedicated to a new production planning model with pricing

decisions. To increase profit, a company can use pricing to influence its demand to increase

revenue, decrease cost, or both. We present a model that uses pricing discounts to increase

production and delivery flexibility, which helps to decrease costs. Although the revenue

can be hurt by introducing pricing discounts, the total profit can be increased by properly

choosing the discounts and production and delivery decisions. We further explore the idea

with variations of the model and present the advantages of using flexibility to increase profit.

The second part of the thesis focuses on solving integer programming(IP) problems by

improving lower bounds. Specifically, we consider obtaining lower bounds for the multi-

dimensional knapsack problem (MKP). Because MKP lacks special structures, it allows

us to consider general methods for obtaining lower bounds for IP, which includes various

relaxation algorithms. A problem relaxation is achieved by either enlarging the feasible

region, or decreasing the value of the objective function on the feasible region. In addition,

dual algorithms can also be used to obtain lower bounds, which work directly on solving

the dual problems.

We first present some characteristics of the value function of MKP and extend some

properties from the knapsack problem to MKP. The properties of MKP allow some large

scale problems to be reduced to smaller ones. In addition, the quality of corner relaxation

bounds of MKP is considered. We explore conditions under which the corner relaxation is

tight for MKP, such that relaxing some of the constraints does not affect the quality of the

xi

lower bounds. To evaluate the overall tightness of the corner relaxation, we also show the

worst-case gap of the corner relaxation for MKP.

To identify parameters that contribute the most to the hardness of MKP and further

evaluate the quality of lower bounds obtained from various algorithms, we analyze the

characteristics that impact the hardness of MKP with a series of computational tests and

establish a testbed of instances for computational experiments in the thesis.

Next, we examine the lower bounds obtained from various relaxation algorithms com-

putationally. We study methods of choosing constraints for relaxations that produce high-

quality lower bounds. We use information obtained from linear relaxations to choose con-

straints to relax. However, for many hard instances, choosing the right constraints can be

challenging, due to the inaccuracy of the LP information. We thus develop a dual heuristic

algorithm that explores various constraints to be used in relaxations in the Branch-and-

Bound algorithm. The algorithm uses lower bounds obtained from surrogate relaxations to

improve the LP bounds, where the relaxed constraints may vary for different nodes. We also

examine adaptively controlling the parameters of the algorithm to improve the performance.

Finally, the thesis presents two problem-specific algorithms to obtain lower bounds for

MKP: A subadditive lifting method is developed to construct subadditive dual solutions,

which always provide valid lower bounds. In addition, since MKP can be reformulated as a

shortest path problem, we present a shortest path algorithm that uses estimated distances

by solving relaxations problems. The recursive structure of the graph is used to accelerate

the algorithm. Computational results of the shortest path algorithm are given on the testbed

instances.

xii

CHAPTER I

INTRODUCTION

The study of mixed integer programming (MIP) involves developing models to describe

economic and industrial problems and providing algorithms to solve them. Since the 1950s,

MIP has become an important modeling tool to solve real-life problems. At the same time,

extensive efforts, including developing many general-purpose strategies and problem-specific

algorithms, have been devoted to efficiently solving MIP problems. This thesis addresses

two topics in modeling and algorithm design by MIPs. We first develop a new variation of

the classical lot-sizing model, in which optimal decisions on production and delivery can be

made to maximize profit. We then investigate methods to solve MIP problems efficiently by

improving lower bounds. Specifically, we focus on solving the multi-dimensional knapsack

problems (MKP) with a large number of constraints, as they represent a class of hard MIP

problems and have important applications.

The first part of the thesis is dedicated to a new lot-sizing model with pricing decisions

and production and delivery flexibility. A lot-sizing model decides when and how much to

produce and deliver in order to satisfy a set of demands while achieving an optimal profit.

The classical uncapacitated single-item single-level lot-sizing model, introduced by Wagner

and Whitin [62], can be stated as:

max

n∑
i=1

(piDi − eizi − hisi − gixi)

s.t. x1 = s1 +D1

xi + si−1 = si +Di, i = 2, ..., n

xi ≤ Dinzi, i = 1, ..., n

sn = 0

x, s ∈ Rn+, z ∈ {0, 1}n.

For finite time periods {1, ..., n} with demand Di in each period, let xi, si and zi be decision

1

1 2 3 4 5 n

z1 = 1

D1

s1

z3 = 1

x1 = D1 + s1

D2 D3 D4 D5 DnDn−1

s3 s4
n-1

zn−1 = 1

x3 xn−1

Figure 1: Lot-sizing model

variables on production amount, inventory level, and whether or not production takes place

at time i respectively. With unit production price pi, fixed operation cost ei, unit inventory

holding cost hi and unit production cost gi for each period i, the objective is to maximize

the total profit while requiring the production to satisfy the flow conservation, see Figure

1.

Numerous variations of the classical lot-sizing model have been developed and widely

used to capture different production planning and supply chain problems. For a compre-

hensive study of these models, we refer to Pochet and Wolsey [56]. While the profit of a

company can be boosted by either increasing revenue or decreasing cost, previous literature

mainly focuses on adjusting prices to increase revenue. In contrast, we investigate adjust-

ing prices to reduce cost. Cost reduction can be realized by using production and delivery

flexibility in forms of production time windows as discussed in Dauzere-Peres et al. [15],

or demand time windows as in Lee et al. [48]. In particular, we present a new variation

of the uncapacitated lot-sizing model, and consider offering price discounts in return for

production and delivery flexibility. We show that even though the resulting optimization

problem has a nonlinear objective function, it can still be solved in polynomial time. As a

special case, we analyze the setting where there is a tradeoff between the decrease in pro-

duction and inventory costs and decrease in revenue due to the loss from price discounts.

In addition, we consider several generalizations of the proposed model to further extend the

practical use of production and delivery flexibility. Finally, we perform a computational

study to analyze the benefits of offering price discounts in return for production and de-

livery flexibility in various settings. The empirical results show that by properly choosing

2

the price discounts, cost can be significantly reduced and profit can be increased by using

production and delivery flexibility.

The second part of the thesis studies improving lower bounds to efficiently solve linear

MIP problems, which can be stated as:

zMIP = min cx+ dy

s.t. Ax+By ≥ b

x ∈ Zn+, y ∈ Rk+,

(1)

where x is an n−dimensional vector of integer decision variables and y is a k−dimensional

vector of continuous decision variables. A MIP instance is specified by data (c, d,A,B, b),

where c ∈ Rn, d ∈ Rk are the objective coefficients defined by vectors of real numbers,

A ∈ Rm×n and B ∈ Rm×k are constraint matrices, and b ∈ Rm is the right-hand side of the

constraints. Denote S to be the set of solutions to problem (1), which is called the feasible

region. A solution to (1) is called a feasible solution, and a feasible solution that minimizes

the objective function is called an optimal solution. If S = ∅, we call problem (1) infeasible,

otherwise it is feasible. A valid upper bound and lower bound for problem (1) are values

z̄ and z that z ≤ zMIP ≤ z̄. A relative gap is defined by |z̄ − z|/(|z̄| + ε), which is the

relative difference between upper and lower bounds and ε > 0 is a small real number. The

linear programming (LP) relaxation of problem (1) is obtained by relaxing the integrality

constraints on integer variables x.

MIP is NP-hard. General methods to solve a MIP problem include branch-and-bound

and cutting plane algorithms. Branch-and-bound, introduced by Land and Doig [47], is a

divide-and-conquer type algorithm, which builds a tree with each node corresponding to

a subregion of S. The goal is to divide the feasible region into smaller pieces that can

be relatively easy to solve. At each node of the tree, an LP relaxation is solved with

three possible outcomes: Either the node is pruned if the LP relaxation is infeasible or the

objective value is larger than the current upper bound, implying that no feasible or optimal

solution can be found in the region; or the node is “solved” if the LP relaxation has an

integral solution with a smaller objective value than the current upper bound, then the

upper bound can be decreased and an optimal solution in the region is found; or the LP

3

Root

1

2 3

4 5

UB = z̄

x1 ≤ bx∗1c x1 ≥ bx∗1c+ 1

x4 ≤ bx∗∗4 c x4 ≥ bx∗∗4 c+ 1

x∗

x∗∗

cx̂ > z̄

x̂

Figure 2: Branch and bound algorithm

relaxation has a fractional solution, which means that at least one of the integer variables

has a fractional value, thus two new nodes will be created by adding linear constraints.

The linear constraints can be bound constraints for an integer variable with fractional

value, and this is called branching on the variable, see Figure 2. When several variables

have fractional values, we use variable selection strategies to choose variables to branch on.

Complex variable selection rules include strong branching by Applegate, Bixby, Chvatal

and Cook [2] and Linderoth and Savelsbergh [49], and pseudo-cost branching by Benichou

et al. [7]. The strategies that determine the order of nodes to be processed are called node

selection strategies. These include best-bound first and depth first. An efficient branch-

and-bound algorithm requires effective strategies for variable and node selections. A survey

of different strategies for branch-and-bound algorithms is given in Lodi [51].

Based on a different approach, cutting plane algorithms iteratively add valid inequalities

and solve LP relaxations. An inequality fx+hy ≤ g is called a valid inequality for S if it is

satisfied by all feasible solutions. Suppose (x∗, y∗) is a fractional optimal solution to the LP

relaxation of (1), and fx+ hy ≤ g is a valid inequality. If fx∗ + hy∗ > g, we call the valid

inequality a cutting plane that separates (x∗, y∗) from S, see Figure 3. The essential idea

here is to add linear inequalities, which are cutting planes that are generated by solving

separation problems, to better approximate the convex hull of S. The performance of cutting

plane algorithms depends on the strength of the inequalities they add at each iteration, and

4

Figure 3: Cutting plane algorithm

there is a large literature on generating different types of cuts on general and specific MIP

problems. The best-known cuts include Chvatal-Gomory cuts [13], Gomory fractional cuts

[31], Gomory mixed integer cuts [30], disjunctive cuts by Balas [4], and lift-and-project cuts

by Balas, Ceria and Cornuéjols [5].

The combination of branch-and-bound and cutting plane algorithms leads to branch-

and-cut algorithms. In such algorithms, the tree structure from the branch-and-bound

algorithm is preserved. In particular, at some nodes, after the LP relaxation is solved,

cutting planes are generated and added to the problem. The LP relaxation problem is then

resolved. This procedure may be repeated until no additional cutting planes can be found.

By adding cutting planes, the LP relaxations are tightened, better lower bounds can be

obtained, and the number of nodes thus can be reduced by using the pruning mechanism.

Branch-and-cut algorithms now serve as the foundation of state-of-the-art MIP solvers, and

have the ability to solve a variety of difficult MIP problems efficiently. For more information

on this topic, see Nemhauser and Wolsey [54]. From now on, we restrict our discussion

within the framework of branch-and-cut algorithms.

A MIP problem is solved if there is solution for which the relative gap is zero. Therefore,

efficient strategies for obtaining high-quality upper and lower bounds are important in

improving the overall performance of the algorithms. In order to obtain a good upper

bound, many primal heuristics for obtaining “good” feasible solutions have been developed.

Some use neighborhood search, also referred to as local search, to iteratively improve the

current incumbent solution. Various neighborhood search techniques are discussed in Aarts

and Lenstra [1]. There are also heuristics using diving techniques, which involve iterative

5

rounding and variable fixing to construct feasible solutions from LP relaxation solutions.

Among the most successful primal heuristics for general MIP’s are the feasibility pump

developed by Fischetti, Glover and Lodi [18], local branching by Fischetti and Lodi [19],

and RINS by Dana, Rothberg and Pape [14]. These heuristics have proven to be very

effective and widely applied within state-of-the-art MIP solvers.

On the other hand, the only method that is used within MIP solvers to obtain lower

bounds is based on solving LP relaxations possibly tightened by the adding of cutting

planes. In general, lower bounds for MIP problems are obtained by duality or relaxations.

The advantage of using duality is that any feasible solution to a dual problem provides

a valid lower bound for zMIP , however, only an optimal solution to a relaxation problem

guarantees a valid lower bound.

A weak dual of problem (1) is an maximization problem defined as:

zD = max{zD(u) : u ∈ SD},

where zD(u) ≤ cx + dy, for all u ∈ SD and (x, y) ∈ S. By definition, zD is a lower bound

of zMIP . A strong dual of problem (1) is a weak dual with zD = zMIP if problem (1) is

feasible and zMIP is bounded. Therefore, tight lower bound can be obtained by solving

a strong dual problem. The most studied class of strong dual problems are subadditive

dual problems, which were introduced by Gomory [32] and further studied by Johnson [39].

Specifically, a function f(·) : C → R is subadditive if it satisfies

f(x+ y) ≤ f(x) + f(y), for x, y, x+ y ∈ C.

A subadditive dual problem of problem (1) is defined as

max F (b)

s.t. F (Aj) ≤ cj , j = 1, ..., n

F (Bi) ≤ di, i = 1, ..., k

F (0) = 0

F : Rm+ → R is nondecreasing and subadditive,

(2)

6

where Aj , j = 1, ..., n and Bi, i = 1, ..., k are columns of the constraint matrix. A func-

tion F : Rm+ → R that is feasible to problem (2) is called a subadditive dual function.

Constructing subadditive dual functions has received some attention, however, due to the

lack of framework for implementation, subadditive duality is not often used to obtain lower

bounds in practical computation. We refer to Guzelsoy [33] for a detailed review of topics

on MIP dual problems.

A problem relaxation is achieved by either enlarging the feasible region, or decreasing

the value of the objective function on the feasible region or both. The most well-studied and

widely-used relaxation is the LP relaxation, mostly because the formulation only involves

linear constraints, and can be solved efficiently. There are also many other ways to relax

the inequality and equality constraints in a MIP problem. Partition the index set of the

constraints in problem (1) into two sets S1 and S2. Suppose the constraints in S1 can

be easily handled, so they will remain in the relaxation problems, and are called active

constraints. The constraints in S2 are complicating constraints that will be relaxed, and

are called inactive constraints. Let ASi and BSi be the submatrices of constraint matrices

A and B, respectively, with rows in set Si; bSi be the subvector of b with components in set

Si, for i = 1, 2.

A simple constraint relaxation algorithm drops a set of constraints, and solves the fol-

lowing relaxation problem:

min cx+ dy

s.t. AS1x+BS1y ≥ bS1

x ∈ Zn+, y ∈ Rk+.

Lagrangian relaxation algorithms, introduced by Held and Karp [35, 36] and general-

ized by Shapiro [59], relaxes constraints by dualizing them. Lagrangian relaxation can be

formulated as:

zLD(λ) = min cx+ dy + λ(bS2 −AS2x−BS2y)

s.t. AS1x+BS1y ≥ bS1

x ∈ Zn+, y ∈ Rk+,

(3)

7

where λ ∈ R|S2|
+ are called lagrangian multipliers. Since any feasible solution for problem

(1) is also feasible for problem (3), and corresponds to a smaller objective value, zLD(λ) is

a valid lower bound of zMIP for any λ ∈ R|S2|
+ . Therefore, by taking the best such lower

bound over all λ ∈ R|S2|
+ , zLR = max

λ∈R|S2|
+

zLD(λ) is a valid lower bound of zMIP . The goal

of Lagrangian relaxation algorithms is to iteratively solve (3) and search for λ such that

zLR can be obtained. We refer to Fisher [20] for a detailed survey on Lagrangian relaxation

algorithms.

Surrogate relaxation algorithms, introduced by Glover [28], replaces a set of constraints

by an aggregated constraint. A generic formulation can be stated as

zSD(λ) = min cx+ dy

s.t. AS1x+BS1y ≥ bS1

λ(AS2x+BS2y) ≥ λbS2

x ∈ Zn+, y ∈ Rk+,

(4)

where λ ∈ R|S2|
+ are called surrogate multipliers. Again, since any feasible solution for

problem (1) is also feasible for problem (4), zSD(λ) is a valid lower bound of zMIP for any

λ ∈ R|S2|
+ . Therefore, surrogate relaxation algorithms iteratively solve (4) and search for

the λ ∈ R|S2|
+ that maximizes zSD(λ). We refer to Glover [28] for a study on surrogate

relaxation algorithms.

In addition to the general inequality and equality constraints, relaxations of non-negativity

constraints on integer variables can also be considered. Group relaxation, introduced by

Gomory [32], relaxes the non-negativity constraints on basic variables in the optimal LP

relaxation solution. For simplicity, we demonstrate the group relaxation on an integer

programming (IP) problem

min cx

s.t. Ax = b

x ∈ Zn+,

(5)

where decision variables are all integer. Given an optimal basis B for the LP relaxation of

problem (5), let N be the index set of nonbasic variables. The group relaxation is obtained

8

by relaxing the non-negativity constraints of all basic variables, which can be stated as

min cx

s.t. Ax = b

xN ≥ 0, x ∈ Zn.

Related to group relaxation, corner relaxation, sometimes referred to as strict group

relaxation, is obtained by relaxing the the non-negativity constraints on all variables that

have positive LP relaxation values. Let x∗ be the optimal LP relaxation solution, then the

corner relaxation can be stated as

min cx

s.t. Ax = b

xI ≥ 0, x ∈ Zn,

where I = {i : x∗i = 0}. Therefore, if x∗ is non-degenerate, corner relaxation is the

same as group relaxation. Group and corner relaxations can be used to generate cuts for

MIP problems. Richard and Dey [57] conducted a detailed survey on the group-theoretic

approach of MIP.

Although both adding cutting planes and developing relaxation algorithms have been

used to improve lower bounds computationally, the methods are based on different philoso-

phies. Adding cutting planes tightens the problem formulation, but in doing so increases the

size of the problem and can make the LP relaxations more difficult to solve. In contrast,

relaxation algorithms relax the complicating constraints with the goal of rapidly solving

one or a sequence of relaxed problems which are computationally easier to handle. For

example, Lagrangian relaxation algorithms have been proved to be very effective in obtain-

ing lower bounds for large network flow and assignment problems with side constraints,

since the combinatorial properties of the active constraints can be used to rapidly solve

the Lagriangian relaxations. However, for many problems that do not have nice constraint

structure, the study of relaxation algorithms is deficient with open questions and compu-

tational possibilities. Therefore, in this thesis, we investigate obtaining lower bounds by

9

using relaxation algorithms on MIPs with a large number of constraints. In particular, we

focus on multi-dimensional knapsack problems (MKP) with unbounded integer variables.

The classical packing problem is defined as

max

n∑
j=1

cjxj

s.t.

n∑
j=1

aijxj ≤ bi, i = 1, ...,m

x ∈ Zn+,

(6)

where cj ∈ Z+ is the value of item j, aij ∈ Z+ is the amount of ingredient i in item j, and

bi ∈ Z+ is the total amount of ingredient i available, i = 1, ...,m and j = 1, ..., n. The goal

of the packing problem is to maximize the total value of the items using the ingredients in

the pack.

On the other hand, the classical covering problem is defined as

min

n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≥ bi, i = 1, ...,m

x ∈ Zn+,

(7)

where cj ∈ Z+ is the unit cost of item j, aij ∈ Z+ is the amount of ingredient i in item

j, and bi ∈ Z+ is the minimum requirement on ingredient i in the pack, i = 1, ...,m and

j = 1, ..., n. The goal of the covering problem is to minimize the total cost of all items while

satisfying all requirements on the ingredients.

The packing problem with m = 1 is called the knapsack problem (KP), and the packing

problem is referred to as the multi-dimensional knapsack problem. Since any solution

satisfying
∑n

j=1 aijxj ≤ bi must also satisfy xj ≤ bi/aij if aij > 0, the constraints in the

packing problem imply an upper bound u for x. Thus replacing x with u − y converts

a packing problem to a covering problem, where y is an n−dimensional vector of integer

variables. Since the packing problem and the covering problem are similar in various ways,

and can be solved with similar approaches, for simplicity of notation and consistency of the

context, in this thesis, we only consider the multi-dimensional knapsack problem formulated

10

as:

F (b) = min
n∑
j=1

cjxj

s.t.

n∑
j=1

aijxj ≥ bi, i = 1, ...,m

x ∈ Zn+,

where F (b) is called a value function of the right-hand side b.

MKP generalizes the knapsack problem with multiple knapsack constraints. It often

arises in resource allocation, capital budgeting and cutting stock problems. It is NP-hard

and can be solved in pseudo-polynomial time with a dynamic programming algorithm for

a fixed number of constraints. Many studies have been devoted to improving the efficiency

of the dynamic programming algorithm for solving KP, including the influential work by

Gilmore and Gomory [27]. However, it is quite impractical to use the dynamic programming

algorithm to solve MKP with a large number of constraints and large right-hand side, as

the size of the state space increases exponentially with the number of constraints. For MKP

with binary variables, many general and special-purpose algorithms have been developed.

Fréville and Hanafi [21] surveyed theoretical and computational results concerning such

problems. However, very little attention has been given to solving MKP with unbounded

integer variables. We especially notice that for many MKP instances with a large number

of constraints, it remains difficult to close the relative gaps even with the state-of-the-art

MIP solvers. For a comprehensive discussion of topics related to the knapsack problem, see

Martello and Toth [52] and more recently Kellerer [42].

A main obstacle for efficiently solving MKP is the lack of special structure. From the

perspective of lower bounds, since the constraints are presented in a symmetric way, it

is difficult to determine effective relaxations in order to obtain good lower bounds. For

MKP with hundreds or thousands of constraints, adding many cutting planes may cause

computational difficulties with branch-and-cut algorithms. These characteristics of large

size MKP call for the development of general-purpose lower-bound-improving strategies,

which is the focus of the second part of this thesis. In particular, we extend the idea of

relaxing constraints in exchange for a much smaller problem size for obtaining lower bounds.

11

The remainder of the thesis is structured as follows:

In Chapter 3, we study characteristics of the value function of MKP, and extend some

properties that are established in Gilmore and Gomory [27] from KP to MKP. In addition,

for some special cases, we present conditions under which the corner relaxation is tight and

we provide worst-case analysis on the bounds of the corner relaxation for MKP.

In Chapter 4, in order to identify parameters that contribute the most to the hardness of

MKP, we conduct computational tests by varying parameters and analyzing characteristics

of the instances. In addition, we establish a testbed of instances that are used in the

subsequent computational experiments.

In Chapter 5, we study relaxation algorithms for MKP to obtain lower bounds. We first

study various relaxations for MKP by conducting a series of computational tests and analyz-

ing the results to answer the following questions: How should we choose active constraints

and solve the relaxations efficiently? Which relaxation algorithm gives the best lower bounds

for MKP? Furthermore, inspired by the success of many primal heuristics, we design a dual

heuristic algorithm which incorporates relaxation algorithms within the branch-and-bound

algorithm. The dual algorithm replaces LP relaxation bounds with surrogate relaxation

bounds to improve lower bounds. We also conduct experiments on adaptively controlling

the dual algorithm as many successful heuristics do.

In Chapter 6, we take an alternative approach to obtain lower bounds and study solving

the subadditive dual problem of MKP. Based on a subadditive lifting method developed by

Johnson [38] to solve KP, we present a new implementation of the method on MKP as an

exact algorithm that iteratively improves lower bounds. Because MKP can be reformulated

as a shortest path problem, we also present an efficient shortest path algorithm that uses

estimated distance labels and solves relaxations to determine node labels. We use the

characteristics of MKP to accelerate the algorithm. Finally, we conduct computational

tests to evaluate the lower bounds produced by the algorithm.

In summary, this thesis deals with two components of MIP: modeling and computational

improvement. Most importantly, the thesis provides an in-depth investigation in various

algorithmic ideas for improving lower bounds for MIP. By combining relaxation algorithms

12

with a branch-and-bound algorithm, we introduce local search into dual algorithms for

the first time. In particular, we hope our research demonstrates that there is still a great

potential in exploiting dual heuristic algorithms in solving MIP, and brings more attention

to this topic.

13

CHAPTER II

PRICING FOR PRODUCTION AND DELIVERY FLEXIBILITY

2.1 Introduction

A company can boost its profits by increasing its revenue, decreasing its cost, or both.

Adjusting prices to influence demand so as to increase revenue has become common practice

and a large body of literature exists on models and techniques to do so. Adjusting prices

to influence demand so as to decrease cost, however, appears to still be in its infancy.

This is the focus of our research. We investigate the value of adjusting prices to increase

delivery flexibility and thus to decrease cost. We do so in the context of a fundamental

production planning model, namely the single-item, single-level, uncapacitated lot-sizing

problem. Increasing profits by reducing costs can also be found, to some extent, in the

ideas of dynamic lead time quotation, which has received considerable attention in recent

years, see Celik and Maglaras [11], Ata and Olson [3], and Savasaneril et al.[58].

In the single-item, single-level, uncapacitated lot-sizing problem, we have a set of discrete

time periods and the goal is to plan the production, i.e., determine the lot size in each period,

in order to satisfy demand and minimize production and inventory holding costs. The

production cost of a lot consists of two components, a fixed setup cost that is independent of

the size of the lot and a marginal cost incurred for each unit produced in the lot. Inventory

holding costs are incurred for each unit that is held over from one period to the next.

Demand in a period can be satisfied by production or from inventory. The challenge is to

find a proper balance between setup costs and inventory holding costs. For an extensive and

comprehensive treatment of lot-sizing problems, and more generally production planning

problems, see Pochet and Wolsey [56].

To investigate the potential of using pricing to boost profits by reducing cost, we consider

a variant of the single-item, single-level, uncapacitated lot-sizing problem, in which the

producer offers a price discount in return for which the producer receives the flexibility to

14

satisfy demand in a later period. We assume that offering a price discount has no effect

on the total demand in a period, but that a fraction of the demand in the period can be

satisfied later, i.e., only a fraction of the customers placing an order in that period are

willing to allow delivery to take place later in return for a price discount. The goal is to

find a discount factor and production plan that maximizes profit by offsetting the loss in

revenue due to discounts with a (greater) reduction in production and inventory holding

costs.

Because we need to simultaneously decide on a discount factor and a production plan,

the resulting model has a quadratic objective function and binary variables. Neverthe-

less, we show that the problem can still be solved in polynomial time. Furthermore, our

computational study demonstrates that substantial profit increases can be obtained.

After Wagner and Whitin [62] introduced the uncapacitated lot-sizing problem, many

variants have been proposed and studied. We briefly mention the ones that are most

closely related to the variant that we study in this paper. Lot-sizing problems with demand

windows were introduced by Lee et al.[48]. A demand window defines a grace period during

which demand can be delivered or satisfied without penalty, i.e., no inventory holding or

backlogging cost will be charged during the grace period. Wolsey [64] developed an extended

formulation for this variant and presented an O(T 2) dynamic programming algorithm for

its solution. Demand windows introduce more flexibility for the producer and therefore

result in lower cost. Lot-sizing problems with production windows were introduced by

Dauzere-Peres et al.[15]. A production window defines a period during which demand must

be produced. Production windows take away flexibility from the producer and therefore

result in higher costs. Lot-sizing problems with production windows were further studied

by Brahimi[8, 9]. Lot-sizing problems with pricing decisions were first discussed in Thomas

[60], who considered a setting in which demand is a deterministic function of the price and

a different price can be set in each period. Thomas showed that that problem can still be

solved in polynomial time. Kunreuther and Schrage[46] considered the situation in which

a single price must be set for all periods and proposed a heuristic for solving the problem.

Van den Heuvel and Wagelmans[61] have shown that this variant too can be solved in

15

polynomial time.

The remainder of the paper is organized as follows. In Section 2, we formally introduce

the uncapacitated lot-sizing problem with pricing for production and delivery flexibility. In

Section 3, we present a solution approach. In Section 4, we give some quantitative results.

In Section 5, we discuss several natural extensions. In Section 6, we present the results of

a computational study.

2.2 The uncapacitated lot-sizing problem with pricing for delivery flex-
ibility

Let T = {1, 2, ..., n} be the set of time periods, Di the total demand in period i, ei the setup

cost in period i, gi the unit production cost in period i, hi the unit inventory holding cost

in period i, pi the unit price in period i, and Dst =
∑t

i=sDi the total demand in periods

s, s + 1, ..., t. Let xi be the amount produced in period i, si the inventory at the end of

period i, and zi a binary indicator of whether production takes place in period i or not.

The integer programming formulation for the uncapacitated lot-sizing problem (ULS) is:

max

n∑
i=1

(piDi − eizi − hisi − gixi)

subject to

x1 = s1 +D1

xi + si−1 = si +Di, i = 2, ..., n

xi ≤ Dinzi, i = 1, ..., n

sn = 0

x, s ≥ 0, z ∈ {0, 1}n.

Next, suppose that we offer a price discount α with 0 ≤ α ≤ 1 for the flexibility to deliver

a fraction of the demand Di either in period i itself or in any of the periods {i+1, ..., i+∆}

where ∆ ≥ 1. Specifically, we assume that by doing so a fraction α of demand Di becomes

flexible. Thus, the result of offering a discount α is a flexible demand dfi = αDi in period

i with associated price pfi = (1 − α)pi. Let di = Di − dfi denote the demand in period i

that has to be delivered in period i and for which the full price pi is collected. We will

16

sometimes refer to di as the inflexible demand and use dst =
∑t

i=s di to denote the total

inflexible demand in periods s, s+ 1, ..., t. The challenge is to determine the price discount

α that maximizes profit by properly trading off the reduction in production and holding

costs with the reduction in revenue due to discounts. Note that by allowing flexible demand

we are trading off reduced revenue against reduced cost, i.e. it may be better to collect less

revenue to have the opportunity to save setup and holding costs and thus increase profit.

Note too that the fraction of demand that becomes flexible has the same characteristics as

the demand in the ULS with demand time windows, as the demand can be satisfied in a

time window rather than a single period. However, in the setting we consider, a price has

to be paid for that flexibility, in the form of a discount, and only a fraction of the total

demand will have that flexibility.

Let ri denote the total accumulated flexible demand of periods {1, ..., i} that will be

satisfied in periods {i + 1, ..., i + ∆}. Thus, when ri > ri−1, then some of the flexible

demand of period i will be satisfied in a later period, and when ri < ri−1, then some of

the flexible demand from periods prior to period i will be delivered in period i. Note that

it is only advantageous to deliver flexible demand of period i in period k ∈ {i + 1, ..., i +

∆} if production takes place in period k. The integer programming formulation for the

uncapacitated lot-sizing problem with pricing for production and delivery flexibility (ULS-

PDF) is:

max
n∑
i=1

(pidi + pfi d
f
i − eizi − hisi − gixi)

17

subject to x1 = s1 − r1 +D1 (8)

xi + si−1 − ri−1 = si − ri +Di, i = 2, ..., n (9)

xi ≤ D1nzi, i = 1, ..., n (10)

ri ≤
i∑

j=max{1,i−∆+1}

dfj , i = 1, ..., n (11)

ri − ri−1 ≤ dfi , i = 2, ..., n (12)

α ≤ 1 (13)

x, s, r, α ≥ 0 (14)

sn = 0 (15)

rn = 0 (16)

z ∈ {0, 1}n. (17)

Observe that for each feasible setup plan z, the model is a network flow problem. Note

also that the variables ri are similar to backlogging variables in the ULS with backlogging.

However, they do not have any cost associated with them since they represent flexible

demand that is delivered in a later period and they are bounded from above. Equations

(8) and (9) represent flow conservation and inequality (10) forces a setup when production

takes place. Inequalities (11)-(12) ensure that any demand delivered late is flexible demand.

It is easy to see that there exists an optimal solution in which the flexible demand dfi of

period i is satisfied in a single period in which production takes place.

2.2.1 Solving the problem for a given discount factor α

For a given discount factor α, ULS-PDF can be solved in polynomial time by dynamic pro-

gramming. Before presenting the dynamic program, we summarize some relevant structural

properties of an optimal solution to ULS-PDF.

Theorem 1 There exists an optimal solution z to ULS-PDF with the following structure.

Let Iz = {i1, ..., ik} be the set of periods in which a setup takes place. For all periods

i ∈ [is, is+1 − 1] for any s ∈ {1, ..., k − 1}, the inflexible demand di is produced in period

is and delivered in period i and the flexible demand dfi is either produced in period is and

18

delivered in period i or produced in one of the periods in {i+ 1, ..., i+ ∆}∩ Iz and delivered

in that period depending on the production and holding costs. Furthermore, if dfi is delivered

in period t > i, then flexible demand dfi′ in period i < i′ ≤ t will be delivered either in period

t or in period t′ > i+ ∆. Finally, for all periods i ∈ {ik, ..., n}, the demand Di is produced

in period ik and delivered in period i.

Proof Consider an optimal solution z∗ to ULS-PDF. For any period i, the inflexible demand

di of period i will be produced in the latest period s ≤ i in which a setup occurs, because

otherwise either a solution with lower holding costs exists or the setup in period s was

unnecessary. The flexible demand dfi of period i on the other hand, may either be produced

in period s or in a period in {i+ 1,, i+ ∆}∩ Iz∗ . If dfi is produced no later than period i,

then it can be produced in the same period as di, because otherwise a solution with lower

holding costs can be obtained by changing the production period for either di or dfi . If dfi

is produced, and thus delivered, in a period in {i + 1, ..., i + ∆}, then the unit production

cost in that period will be the smallest among Iz
∗ ∩ {i+ 1, ..., i+ ∆}. Furthermore, if dfi is

produced in period t > i, then for any period i′ with i < i′ ≤ t, the flexible demand dfi′ will

be produced in period t or in a period in {i+ ∆ + 1, ..., i′ + ∆} ∩ Iz∗ , because producing in

any period in {i′, ..., i + ∆} other than period t will be more expensive that producing in

period t. 2

The structural properties of optimal solutions allow us to solve ULS-PDF for a given

discount factor α with the following forward dynamic programming algorithm. Since α is

fixed, the revenue is constant and the objective is to minimize total cost. Let H(t− i, t) for

t = 1, ..., n and i = 0, 1, ...,min(t,∆) be the minimum cost of delivering inflexible demand

of periods 1 to t and flexible demand of periods 1 to t − i with setups only occurring in

one or more of the periods in {1, ..., t}. Furthermore, let H+(t − i, t) be the minimum

cost of delivering inflexible demand of periods 1 to t and flexible demand of periods 1 to

t− i with one setup occurring in period t and possibly other setups occurring in periods in

{1, ..., t− 1}. For convenience, let c(k, j) = gk +
∑

k≤l≤j−1 hl for any k < j.

19

For t = 1, ..., n and i = 0, 1, ...,min(t,∆):

H+(t− i, t) = et + gtdt + min
max(0,i−1)≤k≤∆

{gt
t−i∑

j=t−k
dfj +H(t− k − 1, t− 1)}, (18)

H(t− i, t) = min
1≤k≤t

{H+(min(t− i, k), k) +
t∑

j=k+1

c(k, j)dj +
t−i∑

j=k+1

c(k, j)dfj }. (19)

To see (18), observe that since a setup takes place in period t, the inflexible demand

of period t is produced and delivered in period t (Theorem1). Next, observe that flexible

demand in one or more of the periods t−∆, ..., t− i can be produced and delivered in period

t. However, if this happens, then it will happen for a set of consecutive periods t−k, ..., t− i

(i ≤ k ≤ ∆). Finally, observe that inflexible demand in periods before t is produced at or

before period t − 1. To see (19), we are enumerating over the time when the last setup at

or before period t can take place.

The dynamic program is initialized by setting H+(0, 0) = H(0, 0) = 0 and H(n, n) gives

the value of an optimal solution. The dynamic program yields an O(n3) algorithm for ULS-

PDF with a given discount factor α. For each t, it takes O(∆t) time to compute H+(t, t) and

O(∆t2) time to calculate H(t, t). Therefore, computing H(n, n) takes O(
n∑
t=1

t2) = O(n3).

2.2.2 Analysis of the objective function

Because we need to simultaneously decide on a discount factor and a production plan, the

resulting model has a nonlinear objective function. In this section, we analyze the structure

of the objective function. More specifically, we will analyze the profit functions P z(α),

the profit as a function of α for a given feasible setup plan z, and P (α) = maxz P
z(α),

the profit as a function of α. Note that for any feasible setup plan z, there always exists

a solution satisfying the structure property described in Theorem 1. Therefore we only

consider solutions with such structure property.

Theorem 2

1. For a given feasible setup plan z, the profit function P z(α) is a concave quadratic

function of α.

20

2. The profit function P (α) is a piecewise concave quadratic function.

Proof For a given feasible setup plan z and discount factor α, let Qzi (α) be the profit

associated with inflexible demand di. Since inflexible demand can only be produced at or

before its delivery, we have

Qzi (α) = (pi − czi)di = (pi − czi)(1− α)Di

where czi = git + hit + ...+ hi−1 gives the per unit cost of di, and it is the latest period with

a setup at or before period i, it+1 is the first period with a setup after period i.

Similarly, for a given feasible setup plan z and discount factor α, let Rzi (α) be the profit

associated with flexible demand dfi . Recall that flexible demand dfi can be satisfied either

in period i or in any of the periods {i+ 1, ..., i+ ∆}. Therefore

Rzi (α) = (pfi − C
z
i)dfi = Di(pi − piα− Czi)α

where Czi is the per unit cost of dfi , i.e.,

Czi =

{
czi if it ≤ i < it+1 −∆ for some it ∈ Iz

min{czi , gk : k ∈ Iz, i < k ≤ i+ ∆} otherwise,

Therefore, for a given feasible setup plan z and discount factor α the total profit P z(α)

is

P z(α) =
∑
i

(Rzi (α) +Qzi (α)− eizi)

= −(
∑
i

Dipi)α
2 +

∑
i

Di(c
z
i − Czi)α+

∑
i

[Di(pi − czi)− eizi], (20)

a quadratic function of α with a negative coefficient on the quadratic term, and thus concave.

This proves the first part of the proposition.

We can write P (α) as revenue(α) − cost(α), where revenue(α) =
∑

i(pidi + pfi d
f
i) =∑

i piDi −
∑

i piDiα
2 represents the revenue for a given discount factor α and cost(α)

represents the cost of an optimal production plan for a given discount factor α, i.e., the

optimal value of min
∑n

i=1(eizi + hisi + gixi) subject to constraints (8)-(17).

21

P (α)

α

P z1 P z4

Figure 4: Piecewise Quadratic Objective Function

Since revenue(α) is a concave quadratic function, to prove the second part of the propo-

sition it is sufficient to show that cost(α) is piecewise linear. This is the case, because

cost(α) = minz cost
z(α), where

costz(α) =
∑
i

(eizi + dic
z
i + dfi C

z
i) =

∑
i

(eizi +Dic
z
i)−

∑
i

Di(c
z
i − Czi)α.

Thus, P (α) is a piecewise concave quadratic function of α, with each piece corresponding

to a feasible setup plan z; see Figure 4. Note that cost(α) is also a concave function and

this property will be used in our polynomial time algorithm for problem ULS-PDF. 2

2.3 Solution approach

Van den Heuvel and Wagelmans [61] presented a polynomial-time algorithm for the variant

of ULS in which demand is a function of price and a price needs to be set for each period.

Their algorithm can be extended to the ULS-PDF showing that ULS-PDF too can be solved

in polynomial time.

A feasible setup plan z is said to be dominating if there exists some α in the feasible

region [0, 1], such that z is an optimal setup plan. The algorithm is based on enumerating

the dominating setup plans. Since for each feasible setup plan z, the profit P z = maxα P
z(α)

can be found in polynomial time, since P z(α) is a quadratic function of α (Section 2.2.2),

the algorithm is polynomial if the number of dominating feasible setup plans z is polynomial

and they can be generated in polynomial time.

Note that each dominating feasible setup plan z corresponds to one piece of the piecewise

22

quadratic function P (α), and thus also to one piece of the piecewise linear function cost(α)

(Section 2.2.2). Therefore, it suffices to show that cost(α) has a polynomial number of

breakpoints, as this implies that the linear pieces can be enumerated in polynomial time.

We show that there is a polynomial number of breakpoints with arguments similar to

those presented in Van den Heuvel and Wagelmans [61]. Since there are exponential number

of feasible setup plans, the number of breakpoints for cost(α) is in general exponential.

However, it can be reduced to a polynomial number using the following theorem.

Lemma 3 (Van den Heuvel and Wagelmans 2006) Given 2n (n ≥ 2) linear functions

li(α) = ai − biα with the property that a2k−1 − a2k = a and b2k−1 − b2k = b for k = 1, ..., n,

then the function l(α) = mini=1,...,2n li(α) has at most n breakpoints. (That is, at least n−1

of the possible 2n− 1 breakpoints of l(α) have been “lost”.)

Theorem 4 cost(α) has a polynomial number of breakpoints.

Proof Define lz(α) = costz(α) =
∑

i(eizi + Dic
z
i) −

∑
iDi(c

z
i − Czi)α = az − bzα so that

cost(α) = minz l
z(α). We will identify a sufficiently large number of pairs of linear functions

lz(α) with the desired properties that shows that the function cost(α) = minz l
z(α) has a

polynomial number of break points.

Consider pairs of feasible setup plans of the form

z 1 • · · · • 1 0 · · · 0

and

z′ 1 • · · · • 1 ◦ · · · ◦︸ ︷︷ ︸
m

where a 1 indicates a setup, a 0 indicates no setup, a • indicates that the “setup decision”

is the same in z and z′, and a sequence of ◦ indicates a set of periods in which exactly one

setup occurs. Let the number of periods in z′ with ◦ be m and let the one setup occur in

period k.

We can divide these pairs into two classes. For each class, it will be easy to see that the

linear functions lz(α) and lz′(α) satisfy the pair-properties described in Lemma 3.

23

Class 1: k ≥ n−m+ ∆ : Consider the pair

1
↓

2
↓ · · ·

n−m
↓ · · ·

n
↓

z 1 • · · · • 1 0 · · · 0 · · · 0

z′ 1 • · · · • 1 0 · · · 1︸ ︷︷ ︸
≥∆

· · · 0

︸ ︷︷ ︸
m

Note that there are 2n−m−2 such pairs. Since az − az′ and bz − bz′ only depend on

k and m which are fixed, the assumption of Lemma 3 is satisfied. The number of

breakpoints lost for each combination of k and m is 2n−m−2 − 1. Therefore the total

number of breakpoints lost is

n−3∑
m=∆

(m−∆ + 1)[2n−m−2 − 1] = 2n−∆ − P1(n),

where P1(n) = (n−∆)2+(n−∆)+2
2 is a polynomial function of n.

Class 2: k < n−m+ ∆ : Consider the pair

1
↓

2
↓ · · ·

i−j+2

↓ · · ·
i+1
↓ · · ·

n−m
↓ · · ·

n
↓

z 1 • · · · • 1 0 · · · 0 ∗ · · · ∗ 1 0 · · · 0 · · · 0

z′ 1 • · · · • 1 0 · · · 0︸ ︷︷ ︸
j

∗ · · · ∗ 1 0 · · ·︸ ︷︷ ︸
∆

1 · · · 0

︸ ︷︷ ︸
i

︸ ︷︷ ︸
m

where ∗ also indicates an identical setup decision in z and z′. Since az−az′ and bz−bz′

only depend on k, m, and j, the number of breakpoints lost is at least 2i−j − 1, where

i + 2 + ∆ = k. There are 2n−m−i−2 choices for ∗, therefore the total number of

breakpoints lost is at least

(
∆−1∑
m=1

n∑
k=n−m+1

+
n−3∑
m=∆

n−m+∆−1∑
k=n−m+1

)2n−m−i−2
i−1∑
j=1

(2i−j − 1) = 2n−1 − 2n−∆ − P2(n),

where P2(n) = 2∆−1[(n−∆)2 + (n−∆)−∆2 + 7∆− 12]− (n−∆)2 + (n−∆) + 8 is

a polynomial function of n.

Therefore cost(α) has at most 2n−1−(2n−∆−P1(n))−(2n−1−2n−∆−P2(n)) = P1(n)+P2(n)

breakpoints, the number is polynomial in n. 2

24

α
1

l(1)

l(0)

α′

P (α)

Figure 5: Recursive Partitioning

The procedure to enumerate dominating feasible setup plans z is as follows (see also

Kunreuther and Schrage[46]). For each α ∈ [0, 1], the corresponding optimal setup plan

z(α) can be found in polynomial time by solving problem ULS-PDF with fixed α (Section

2.2.1). Let l(α) denote the line
∑

i(eiz(α)i+Dic
z(α)
i)−

∑
iDi(c

z(α)
i −Cz(α)

i)α. Note that l(α)

coincides with cost(α) at α. Because cost(α) is concave, l(0) and l(1) intersect at a point

α′ ∈ [0, 1]; see Figure 2. We can easily find z(α′) and l(α′) (Section 2.2.2). By recursively

applying this procedure in the two new intervals [0, α′] and [α′, 1], we will enumerate all

dominating feasible setup plans.

2.4 A special case

In this section, we consider a special case in which all of the parameters are identical for

all periods in the planning horizon and we derive a lower bound on the relative decrease in

controllable cost with flexible demand. Let δrelc = cULS−cULS−PDF

cULS .

Theorem 5 For instances of ULS-PDF with Di = D, pi = p, hi = h, ei = e for i = 1, ..., n,

ε > 0 and n > 2dk̂e/ε

δrelc ≥
p

h

(min{ h4pf(bk̂c), 1})2

k̂
− ε,

where k̂ =
√

2e/Dh, f(k) = k − 1 if k ≤ ∆ and f(k) = 2∆− ∆(∆+1)
k if k > ∆.

To better appreciate and understand the lower bound, we examine the function g =

p
h(min{ h4pf(bk̂c), 1})2/k̂ where k̂ =

√
2e/Dh. Figure 6(a) shows g for an instance with

∆ = 8, e = 100, p = 30, and h varying from 1 to 8. The solid curve shows the function for

D = 2 and the dotted curve shows the function for D = 8. We see that the function values

25

(a) Varying h

(b) Varying D

Figure 6: Lower Bound for Relative Controllable Cost Decrease

increase in a jagged way with the holding costs h rather than monotonically. In Figure 6(b),

we vary demand D from 1 to 8 with the holding costs fixed at h = 4. Similarly, we see that

the function values decrease in a jagged way with D. The jumps down occur for values of

D where b
√

2e/Dhc decreases by 1, i.e., where the number of setups changes.

Proof First consider the controllable costs for ULS. Since all parameters are identical for

all periods, for each production interval of length k the controllable costs ak, i.e, the setup

and holding costs, are

ak = e+D(1 + 2 + ...+ (k − 1))h = e+Dhk(k − 1)/2. (21)

Let xk be the number of production intervals of length k in a feasible production plan,

26

which implies that
n∑
k=1

kxk = n. Finding an optimal production plan is equivalent to solving

the integer program

min
n∑
k=1

akxk

n∑
k=1

kxk ≥ n

xk ≥ 0, integer.

We first show that for any ε > 0, there exists a planning horizon n, such that there

exists a periodic production plan with cost that is within ε percent of the cost of an optimal

production plan. Let k∗ = argmink=1...n{ak/k}. We have that x = (0, ..., n/k∗, ..., 0) is the

optimal solution to the linear programming relaxation, and that x̄ = (0, ..., dn/k∗e, ...0) is

a feasible integer solution, representing a periodic production plan with periodicity k∗. Let

c and c̄ be the costs associated with x and x̄ respectively, and let cULS be the optimal cost.

We have c ≤ cULS ≤ c̄ and c̄−c = ak∗d nk∗ e−ak∗
n
k∗ ≤ ak∗ , which implies c ≤ cULS ≤ c+ak∗ .

Since c = ak∗n/k
∗, we have that for any ε > 0 and n > 2k∗/ε,

ak∗

c
≤ ε/2. (22)

Thus

c ≤ cULS ≤ c(1 + ε/2). (23)

Next, let c(k) = n(ek + Dh
2 (k− 1)). Since the function c(k) with k > 0 is unimodal with

minimum at k̂ =
√

2e/Dh where e/k̂ = Dhk̂/2, it follows that the optimal periodicity k∗

can only be bk̂c or dk̂e. (This shows that, as expected, large setup costs lead to fewer setups

and large demand and holding costs lead to more setups.) Then by (21) and c = ak∗n/k
∗,

c− c(k̂) ≤ c(dk̂e)− c(k̂) ≤ nDh

2
(dk̂e − k̂) ≤ nDh/2.

Therefore, since c(k̂) = nDh(k̂ − 1/2), we have

c ≤ c(k̂) + nDh/2 = nDhk̂. (24)

27

Next, we consider the controllable costs in the presence of flexible demand, i.e., cULS−PDF ,

comprised of discount costs, setup costs and holding costs. For a given discount factor α,

the inflexible demand d is (1−α)D and the flexible demand df is αD. An upper bound on

cULS−PDF is obtained by considering a periodic production plan with periodicity k∗.

• If k∗ ≤ ∆, we do not incur holding costs for flexible demand because all flexible

demand can be satisfied in the next setup period. The controllable cost is at most

min
α
{nDpα2 + d n

k∗
e(e+ dh

k∗(k∗ − 1)

2
)}

≤ min
α
{nDpα2 + (

n

k∗
+ 1)(e+ dh

k∗(k∗ − 1)

2
)},

where Dpα2 represents the loss in revenue due to discounts.

By (21) we have ak∗ ≥ e+ dhk
∗(k∗−1)

2 and therefore, using d = (1− α)D, the control-

lable costs are bounded by

min
α
{nDpα2 +

n

k∗
(e+ dh

k∗(k∗ − 1)

2
) + ak∗}

= nmin
α
{Dpα2 − Dh

2
(k∗ − 1)α+

e

k∗
+
Dh

2
(k∗ − 1)}+ ak∗ .

• For k∗ > ∆, we incur holding costs for some of the flexible demand. The controllable

costs are at most

min
α
{nDpα2 + d n

k∗
e(e+ dh

k∗(k∗ − 1)

2
+ dfh

(k∗ −∆)(k∗ −∆− 1)

2
)}

≤ min
α
{nDpα2 + (

n

k∗
+ 1)(e+ dh

k∗(k∗ − 1)

2
+ dfh

(k∗ −∆)(k∗ −∆− 1)

2
)}.

Since d+df = D and by (21) ak∗ ≥ e+dhk
∗(k∗−1)

2 +dfh (k∗−∆)(k∗−∆−1)
2 , we have that

the controllable costs are at most

min
α
{nDpα2 +

n

k∗
(e+ dh

k∗(k∗ − 1)

2
+ dfh

(k∗ −∆)(k∗ −∆− 1)

2
) + ak∗}

= min
α
{nDpα2 +

n

k∗
(e+Dh

k∗(k∗ − 1)

2
−Dhα∆(k∗ −∆ + k∗ − 1)

2
)}+ ak∗

= nmin
α
{Dpα2 −Dh∆(2k∗ −∆− 1)

2k∗
α+

e

k∗
+
Dh

2
(k∗ − 1)}+ ak∗ .

28

Combining the two cases, we obtain

cULS−PDF ≤ nmin
α
{Dpα2 − Dh

2
f(k∗)α+

e

k∗
+
Dh

2
(k∗ − 1)}+ ak∗

= nmin
α
{Dpα2 − Dh

2
f(k∗)α}+ c+ ak∗ , (25)

where f(·) is nondecreasing and defined by

f(k) =

 k − 1, if k ≤ ∆

2∆− ∆(∆+1)
k , if k > ∆.

By (23), the relative decrease in controllable costs satisfies

cULS − cULS−PDF

cULS
≥ c− cULS−PDF

c(1 + ε/2)

=
(1 + ε/2)(c− cULS−PDF)− ε/2(c− cULS−PDF)

c(1 + ε/2)

≥ c− cULS−PDF

c
− ε

2

c− cULS−PDF

c

≥ c− cULS−PDF

c
− ε

2
. (26)

By (24) and (25), we get

c− cULS−PDF

c
≥
−nminα{Dpα2 − Dh

2 f(k∗)α} − ak∗
c

≥
−nminα{Dpα2 − Dh

2 f(k∗)α}
nDhk̂

− ak∗

c

=
−minα{pα2 − h

2f(k∗)α}
hk̂

− ak∗

c
. (27)

From (22), we obtain

c− cULS−PDF

c
>
−minα{pα2 − h

2f(k∗)α}
hk̂

− ε/2. (28)

29

Using properties of quadratic functions and the fact that f(·) is nondecreasing, we find

−minα{pα2 − h
2f(k∗)α}

hk̂
=

h

16p ·
f(k∗)2

k̂
, if h

4pf(k∗) ≤ 1(α∗ = h
4pf(k∗))

f(k∗)/2−p/h
k̂

, if h
4pf(k∗) > 1(α∗ = 1)

= p
h · (

h
4pf(k∗))2/k̂, if h

4pf(k∗) ≤ 1(α∗ = h
4pf(k∗))

> p
h · (1/k̂), if h

4pf(k∗) > 1(α∗ = 1)

≥ p

h
(min{ h

4p
f(k∗), 1})2/k̂

≥ p

h
(min{ h

4p
f(bk̂c), 1})2/k̂. (29)

Therefore by (26), (27), (28) and (29), the relative decrease in controllable costs satisfies

cULS − cULS−PDF

cULS
≥ p

h
(min{ h

4p
f(bk̂c), 1})2/k̂ − ε.

2

2.5 Generalizations

We present two generalizations of ULS-PDF. The first allows the discount factor to be

different in each period and the second allows flexible demand to be delivered early as well

as late.

2.5.1 Per-period discounts

The flexibility to offer per-period discounts can yield larger profits and therefore is of practi-

cal relevance. However, it also has some interesting algorithmic implications. In fact, as we

will demonstrate soon, a relatively straightforward dynamic program can be developed to

solve ULS-PDF with per-period discounts. The dynamic program is based on the following

proposition which observes that for a given set up plan it is easy to compute the optimal

per-period discounts. We continue to use the structural properties described in Theorem1

for fixed α because the theorem does not require α to be the same in each period. For any

fixed values of αi, the model remains the same.

Proposition 6 For an optimal setup plan z to an an instance of ULS-PDF with per-

period discounts, the optimal discount α∗i for period i is min{1, c
z
i−Cz

i
2pi
}, where czi (Czi) is

30

the unit production and holding cost for di (dfi) with respect to the optimal setup plan z.

Furthermore, when pi = p for i = 1, ..., n, then the optimal discounts for periods within a

production interval are nondecreasing. Moreover, when gi = g and hi = h for all i = 1, ..., n

as well, then the optimal discount for period i is

α∗i =

{
0 if it ≤ i < it+1 −∆ for some it ∈ Iz

min{1, kh/2p} otherwise,

where it is the latest period with a setup at or before period i and it+1 is the first period with

a setup after period i and k = i− it .

Proof Let z be an optimal setup plan. Then by replacing the single discount α with a

per-period discounts αi in Theorem 2, we have that

P z(α) =
∑
i

(Rzi (αi) +Qzi (αi)− eizi)

=
∑
i

[−(Dipi)α
2
i +Di(c

z
i − Czi)αi +Di(pi − czi)− eizi].

To maximize P z(α) with 0 ≤ αi ≤ 1 for i = 1, ..., n, the optimal discount in period i is

α∗i = min{1, Di(c
z
i − Czi)

2(Dipi)
} = min{1, c

z
i − Czi

2pi
}.

To see that within a production interval czi−Czi is nondecreasing, note that czi+1 = czi +hi

and Czi+1 ≤ Czi + hi, therefore czi −Czi ≤ czi+1−Czi+1. Thus, when pi = p for i = 1, ..., n, we

have α∗i ≤ α∗i+1.

When gi = g and hi = h for i = 1, ..., n, as well, then, with k = i−it, we have czi = g+kh

and

Czi =

{
g + kh if it ≤ i < it+1 −∆ for some it ∈ Iz

g otherwise,

Thus we have that

czi − Czi =

{
0 if it ≤ i < it+1 −∆ for some it ∈ Iz

kh otherwise.

Therefore

α∗i =

{
0 if it ≤ i < it+1 −∆ for some it ∈ Iz

min{1, kh/2p} otherwise.

2

31

Using Theorem 1 and 2 and Proposition 6, we can define a dynamic program that solves

ULS-PDF with per-period discounts in polynomial time. This algorithm takes advantage of

the fact that we can find the optimal discount factor αi once we know the unit production

cost of di and dfi , i.e., the production periods of di and dfi .

LetH(t, t1, t2) be the optimal profit associated with satisfying demand of periods {1, ..., t},

when dt is produced in period t1 and dft is satisfied in period t2. By Proposition 6, the op-

timal discount α∗t = min{1, ct−Ct
2pt
}, where ct = gt1 + ht1 + ... + ht−1 and Ct = gt2 if t2 > t

and Ct = gt2 +ht1 + ...+ht−1 if t2 ≤ t. (By Theorem 1, if t2 ≤ t, then t2 = t1 in an optimal

solution.) As before, let c(k, j) = gk +
∑

k≤l<j hl for any k < j. The dynamic programming

recursion is given by:

Case 1 t1 < t < t2, where gt2 < c(t1, t) and t2 ≤ t+ ∆:

Note that in an optimal solution, dft is produced in t2 ∈ {t+ 1, ..., t+ ∆} only if the

profit is higher than in t1. A necessary condition for that to be the case is that the

unit cost for producing dft in t2, i.e., gt2 is lower than for producing dft in t1, i.e.,

c(t1, t).

• If t2 < t+ ∆,

H(t, t1, t2) = max{H(t−1, t1, t1), H(t−1, t1, t2)}+(pt−ct)dt+(pft −Ct)d
f
t . (30)

• If t2 = t+ ∆,

H(t, t1, t2) = max

max

t<t′<t2:gt′>gt2
H(t− 1, t1, t

′)

H(t− 1, t1, t1)

+ (pt − ct)dt + (pft − Ct)d
f
t .

(31)

For both cases, αt = min{1, (ct − Ct)/2pt}, where ct = c(t1, t) and Ct = gt2 .

To see (30) and (31), observe that since dt is produced in t1 < t, there is no setup

at period t. Therefore periods t− 1 and t are in the same production interval. From

Theorem 1, it follows that dt−1 is produced in t1. If t2 < t + ∆, then dft−1 can be

32

produced either in t1 or t2. When t2 = t+∆ > t−1+∆, then dft−1 cannot be satisfied

in t2, but has to be produced in t1 or satisfied in some period t′ ∈ {t+1, ..., t+∆−1}.

Note that if such t′ satisfies gt′ < gt2 , then dft would have been satisfied in t′ too.

Therefore, only t′ with t < t′ < t2 and gt′ > gt2 are considered.

Case 2 t1 = t < t2, where gt2 < gt1 and t2 ≤ t+ ∆:

Note that in an optimal solution, if dt is satisfied in t, then dft is not satisfied in t only

if gt2 < gt.

• If t2 < t+ ∆,

H(t, t1, t2) = max

max

t′≤t−1:c(t′,t−1)>gt2

H(t− 1, t′, t2)

max
t′≤t−1

H(t− 1, t′, t′)

−et+(pt−ct)dt+(pft−Ct)d
f
t .

(32)

• If t2 = t+ ∆,

H(t, t1, t2) = max

max

t′≤t−1,t≤t′′<t2:gt2<gt′′<c(t
′,t−1)

H(t− 1, t′, t′′)

max
t′≤t−1

H(t− 1, t′, t′)

−et+(pt−ct)dt+(pft−Ct)d
f
t .

(33)

For both cases, αt = min{1, (ct − Ct)/2pt}, where ct = gt1 and Ct = gt2 .

To see (32), observe that dt−1 has to be produced in some period t′ ∈ {1, ..., t − 1},

and that dft−1 is produced in t′ or satisfied in t2. If dft−1 is satisfied in t2, it must be

the case that gt2 < c(t′, t−1), otherwise profit can be increased by producing in t′. To

see (33), observe that since dft−1 cannot be satisfied in t2 = t + ∆, similar reasoning

as for (31) and (32) can be used.

Case 3 t1 = t = t2:

H(t, t, t) = max

max

t′≤t−1:c(t′,t−1)≤gt
H(t− 1, t′, t′)

max
t′≤t−1:c(t′,t−1)>gt

H(t− 1, t′, t)

− et + (pt − gt)Dt. (34)

33

In this case, αt = 0.

To see (34), observe that dt−1 has to be produced in some period t′ ∈ {1, ..., t − 1}

and dft−1 is produced in t′ or satisfied in t. If dft−1 is satisfied in some period t′ > t,

then gt′ < gt, and dft should have been satisfied in t′ as well.

Case 4 t1 = t2 < t:

H(t, t1, t2) = H(t− 1, t1, t2) + (pt − c(t1, t))Dt. (35)

In this case, αt = 0.

To see (35), observe that t− 1 and t are in the same production interval and Dt−1 is

produced in period t1. If dft−1 is satisfied in some period t′ > t, then gt′ < c(t1, t−1) ≤

c(t1, t), and dft should have been satisfied in t′ as well.

The dynamic program is initialized by setting H(0, t1, t2) = 0 for 1 ≤ t1, t2 ≤ n, setting

H(1, 1, t2) = −e1 + (p1 − g1)d1 + (pf1 − gt2)df1 for 1 < t2 ≤ 1 + ∆ with gt2 < g1, in which

case α1 = min{1, (g1 − gt2)/2p1}, and setting H(1, 1, 1) = −e1 + (p1 − g1)D1. Finally,

maxt≤n{H(n, t, t)} gives the value of the optimal solution.

To compute the optimal value, it takes O(∆2n2) time to evaluate Case 1 and Case 2 and

O(n2) time to evaluate Case 3 and Case 4, therefore the dynamic program takes O(∆2n2)

time.

2.5.2 Early and late delivery

When the flexible demand of period i is allowed to be delivered either early or late, the

delivery periods are {i − ∆
2 , ..., i, ..., i + ∆

2 } for ∆ ∈ {2, 4, 6, ...}. Let ui be the total accu-

mulated flexible demand that is satisfied early in period i, i.e., flexible demand of periods

{i+ 1, ..., i+ ∆/2} that is delivered in period i. This variant can be formulated as

max
n∑
i=1

(pidi + pfi d
f
i − eizi − hisi − gixi)

34

subject to

x1 = s1 + u1 − r1 +D1

xi + si−1 + ui−1 − ri−1 = si + ui − ri +Di, i = 2, ..., n

xi ≤ D1nzi, i = 1, ..., n

ui−1 − ui + ri − ri−1 ≤ dfi , i = 2, ..., n (36)

ri ≤
i∑

j=max{1,i−∆/2+1}

dfj , i = 1, ..., n (37)

ui ≤
min{i+∆/2,n}∑

j=i+1

dfj , i = 1, ..., n (38)

sn, un, rn = 0

α ≤ 1

x, s, u, r, α ≥ 0

z ∈ {0, 1}n.

Inequalities (36)-(38) ensure that any demand that is delivered early or late is flexible

demand. For each feasible setup plan, the model is a network flow problem. It is easy to

show that this generalization shares the properties of the simpler model given by (8)-(17).

2.5.3 An example

We illustrate the impact of these generalizations by means of an example. Let the demands

be as shown in Figure 7 and the parameters be ei = 50, pi = 20, gi = 10, and hi = 4 for

all i and ∆ = 4. Figure 8 shows three optimal production plans. The first for the setting

in which there is no flexible demand, the second for the setting in which there is flexible

demand, but with a single discount factor and late deliveries only, and the third setting in

which there is flexible demand with per-period discounts and both early and late deliveries.

In the production plans for the first and second setting, production takes place in the

same four periods. However, in the second setting, a 7.8% discount is offered (in every

period) in order to have the flexibility to deliver a fraction of the demand of a period in a

later period. The dashed arcs show how that flexibility is exploited; the tail of a dashed arc

indicates the period in which delivery takes place for flexible demand of the period at the

35

Figure 7: Demand of Instance

0.1 0.2 0.1 0.2 0.3 0.4 0.1 0.2 0.2

1

4

10

1 9

α = 0

αi 6= 0

4 8

4 8 10

α = 0.078

1

Figure 8: Example

head of the arc. In the third and most flexible setting, the additional flexibility is exploited

to reduce the number of periods in which production takes place from four to three and to

offer larger discounts (up to 40%) in periods where it is most advantageous to be able to

deliver early or late. We see that except for a setup in the first period, the setups occur in

periods with the highest demands and that in each production interval the discount factors

monotonically increase. The reason for the latter is that within a production interval the

per-unit holding cost increases for periods that are further away from the period in which

production takes place and it thus becomes more and more advantageous to convert demand

into flexible demand so as to reduce inventory holding costs.

36

2.6 A computational study

In Section 2.3, we have shown that ULS-PDF can be solved in polynomial time. However, we

found that state-of-the-art quadratic integer programming solvers are able to solve medium-

size instances in a reasonable amount of time. Therefore, we have used the quadratic integer

programming solver of CPLEX 12.2 for all our computational experiments.

The main purpose of our computational study is to analyze the benefits of providing

price discounts in return for delivery flexibility. Furthermore, we want to understand the

difference between being able to deliver only in later periods or being able to deliver in

both earlier and later periods, the impact of the size of the delivery window on instances

with various periodicity, and the benefit of per-period price discounts versus a single price

discount for all periods.

We use eight instances with constant demand over 36 time periods for our computational

experiments. Four of the instances have demand Di = 2, 4, 6, 8 for i = 1, ..., n and four of

the instances have the time between consecutive setups TBS = 2, 4, 6, 9 in their optimal

solution of the ULS model. The base parameter settings for all instances are: ∆ = 8 and

pi = 30, ei = 100, gi = 10, and hi = 4 for all periods i. The first set of instances allows

us to examine the benefits of providing price discounts in return for delivery flexibility as a

function of demand, and the second set of instances allows us to study the effect of the size

of the delivery window, which intuitively is related to the time between consecutive setups.

Since we are interested in understanding the benefits of providing price discounts in

return for delivery flexibility, we compare characteristics of optimal production plans of the

variants of ULS introduced in this paper with the characteristics of an optimal production

plan of the classical ULS. We are primarily interested in the profit associated with an

optimal production plan, and because the profits associated with feasible production plans

for a particular instance vary because of differences in setup costs, inventory holding costs,

and discount costs, we provide the percentage decrease in the total of these controllable

costs, i.e., δrelc = cULS−cULS−PDF

cULS , when we compare optimal production plans for different

variants of ULS.

We have conducted a number of computational experiments with other demand profiles,

37

for example with a bi-modal demand profile, representing seasonal demand increases and

peaks, but since the results were not that different from the constant demand case, we only

present results for the constant demand case.

2.6.1 Pricing for delivery flexibility

In our first computational experiment, we study whether providing a discount in return for

the option to deliver late is beneficial (a common discount factor in every period). A key

characteristic of lot-sizing instances is the ratio of the per unit inventory holding cost and

the setup cost since the primary challenge is to find the proper balance between setup costs

and inventory holding costs. This ratio is reflected in an optimal production plan through

the time between setups. The larger ratio of the per unit inventory holding cost and the

setup cost, the smaller TBS in an optimal solution is to save on holding costs.

We first consider instances with varying ratios by keeping the setup cost fixed and

varying the inventory holding cost. The results are shown in Figure 9.

Figure 9: Relative cost decrease for varying holding cost

We see that the relative cost decreases reflect the jagged pattern observed in the lower

bound derived in Section 2.4. As with the lower bound, the drops in the jagged pattern are

the result of increases in the number of setups. The size of a drop (or the “jaggedness”) is

related to the number of additional setups. When the number of setups increases gradually,

the value of δrelc trends upward as expected.

Furthermore, we notice that for low demand levels, i.e., D = 2 and D = 4, the relative

38

cost decrease trends upward when holding costs increase, but that for high demand levels,

i.e. D = 6 and D = 8, the relative cost decrease appears to be stable when holding costs

increase. The reason that delivery flexibility looses some of its value for high demand levels

is that there will be a relatively large number of setups and in each of the periods in which

a setup occurs we “give away” revenue since we collect a discounted price for the flexible

demand.

The above observation suggests that the size of an effective delivery window depends

on the time between consecutive setups. Theorem 5 provides insight into this relationship.

Theorem 5 shows that the benefits of offering a price discount in return for delivery flexibility

depend on the optimal periodicity k̂ =
√

2e/Dh and the relation between k̂ and ∆, the

delivery flexibility. Furthermore, it is established that the time between consecutive setups

in an optimal solution is either dk̂e or bk̂c. Next, we study this relationship empirically by

varying the size of delivery window for instances with different times between consecutive

setups. The results are shown in Figure 10.

Figure 10: Relative cost decrease for varying delivery window ∆

As expected, the relative cost decrease initially improves when the size of the delivery

window increases. However, increasing the size of the delivery window beyond the time

between consecutive setups does not produce additional benefits for instances with TBS =

2, 4, 6. Note that as long as ∆ < TBS increasing ∆ increases the savings on holding cost

while not affecting other costs or revenues, and therefore it always beneficial to use a larger

39

delivery window. When ∆ ≥ TBS and the setups in optimal solutions to ULS and ULS-

PDF occur in the same periods, then none of the flexible demand will incur holding costs

and thus increasing the delivery window has no effect. On the other hand, if the setups in

optimal solutions to ULS and ULS-PDF do not occur in the same periods, increasing the

size of the delivery window may create additional benefits, which depend on the setup cost,

the unit holding cost and the price discount.

In line with our first experiment, we see that the largest benefits occur for instances with

a large time between consecutive setups, which happens for small demands. Instances with

a large time between consecutive setups have more periods that can benefit from delivery

flexibility, and thus more holding costs can be saved.

2.6.2 Delivery flexibility

Next, we study the value of being able to deliver in earlier and later periods as opposed to

being able to deliver only in later periods. More specifically, we conduct experiments on the

same instances with flexible demand dfi able to be delivered during periods {i−∆/2, ..., i+

∆/2}, i.e. the lengths of the two delivery windows are the same.

In Figure 11 and Figure 12, we compare the results of delivering late with the results of

delivering early and late for all eight instances.

The results show a clear benefit for being able to deliver early as well as late. The reason

for this stems from the difference in benefits derived from delivering early and delivering

late. Being able to deliver late only leads to a benefit if delivery takes place in a later

period in which production occurs; in which case, we avoid inventory holding costs. If no

such period exists, i.e., there is no period in the delivery window in which production occurs

then there are no benefits. On the other hand, when we are able to deliver early, we can

always reduce our inventory holding costs. If delivery takes place in an earlier period in

which production occurs, we avoid inventory holding costs, but even if there is no period in

the delivery window in which production occurs, we will still reduce our inventory holding

costs by having delivery take place as early as possible.

In Figure 12, we see that for instances with TBS = 4, 6, 9, increasing the size of the

40

(a) Demand = 2 (b) Demand = 4

(c) Demand = 6 (d) Demand = 8

Figure 11: Delivery flexibility for varying holding cost

(a) TBS = 2 (b) TBS = 4

(c) TBS = 6 (d) TBS = 9

Figure 12: Delivery flexibility for varying delivery window size

41

delivery window continuous to be beneficial longer when delivery can take place early and

late compared to when delivery can only take place late. When early and late deliveries are

possible holding costs can be reduced in periods before and after a setup, thus whenever ∆
2

is less than the time between consecutive setups.

When we take a closer look at the optimal discount factors, we see that when deliveries

can take place early and late, the price discount offered is always larger than the price

discount offered when deliveries can only take place late. This is intuitive because there

is always a benefit when being able to delivery early, but can also be seen as follows. For

a fixed setup plan z, the profit function P z(α) for early and late delivery is a quadratic

function of α and has the same form as the profit function for late delivery only, i.e., as

(20). In fact, the coefficients in the quadratic term and the constant term are exactly the

same. The only difference is the coefficient in the linear term, i.e., the costs that are saved

by exploiting delivery flexibility. Since in the last production interval there are no periods

that can benefit from late delivery, the costs are smaller in the case with early and late

deliveries. As a consequence, for each fixed z, the optimal price discount α is larger with

early and late delivery. Since for all instances and for all delivery flexibilities, the optimal

setup plans are the same, it follows that a larger discount is used when early and late

deliveries can be made.

2.6.3 A single discount vs. per-period discounts

Finally, we study the value of offering per-period discounts as opposed to a single discount

for all periods. We assume that the flexible demand of period i can be delivered during

periods {i−∆/2, ..., i+ ∆/2}.

We compare the results of offering per-period discounts with the results of offering a

single, common discount for all periods for all eight instances. The results are presented in

Figure 13 and Figure 14.

The benefits of offering per-period discounts are substantial. The decrease in costs are

significantly larger with per-period discounts. In all instances, using a per-period discount

results in a relative cost decrease of at least 40% more than using a single discount factor.

42

(a) Demand = 2 (b) Demand = 4

(c) Demand = 6 (d) Demand = 8

Figure 13: Discount factors for varying holding cost

(a) TBS = 2 (b) TBS = 4

(c) TBS = 6 (d) TBS = 9

Figure 14: Discount factors for varying delivery window size

43

A closer examination reveals that, as expected, both the periods in which discounts are

offered and the size of the discounts are chosen so as to make most effective use of periods

in which production takes place. In all instances, the discount values monotonically increase

within the production intervals so as to reduce inventory holding costs. By offering a larger

discount, a larger portion of the demand becomes flexible and inventory holding costs are

reduced. Also, even though the average of the per-period discounts is only slightly higher

than the single discount, it leads to significantly larger relative controllable cost decreases.

By choosing the discounts carefully, we no longer give away revenue unnecessarily and

reduce holding costs when it is most advantageous.

44

CHAPTER III

CORNER RELAXATION FOR MKP

3.1 Introduction

Consider the multi-dimensional knapsack problem (MKP), which can be stated as:

f(b) = min
n∑
j=1

cjxj

s.t.

n∑
j=1

aijxj ≥ bi, i = 1, ...,m

x ∈ Zn+,

(39)

where aij ∈ Z+, b = {b1, ..., bm}T ∈ Zm+ , c = {c1, ..., cn} ∈ Rn+, and f(b) is the value function

of MKP.

When m = 1, MKP is called the knapsack problem (KP). Let aj ∈ Z+ be the weight

of item j, cj ∈ R+ be the cost of item j, for j = 1, ..., n, and b ∈ Z+ be the minimum

requirement on the total weight. The objective is to minimize the total cost of items,

such that the overall weight is at least b. As a special case of MKP, the problem can be

formulated as:

F (b) = min
n∑
j=1

cjxj

s.t.
n∑
j=1

ajxj ≥ b

x ∈ Zn+,

(40)

where c1/a1 ≤ c2/a2 ≤ ... ≤ cn/an.

Methods for rapidly solving KP have been studied extensively, see Martello and Toth

[52]. In particular, dynamic programming algorithms are often used to solve KP. Let fk(b)

be the optimal objective value using only the first k items. Then an optimal solution to

fk(b) either only uses the first k − 1 items, which yields fk(b) = fk−1(b), or uses item k at

least once, which gives fk(b) = fk(b− ak) + ck. Thus the value of fk(b) can be obtained by

45

solving fi(t), for i ≤ k and t ≤ b, where the recursive equation is given by:

fk(y) = min{fk−1(y), fk(y − ak) + ck}, and f0(x) = 0 for x ≤ 0,

for k = 1, ..., n and y = 0, ..., b. Since F (b) = fn(b), the time complexity of the dynamic

programming algorithm is O(nb).

Assume that c1/a1 < minj=2,...,n{cj/aj} and b > 0. Thus an optimal linear relaxation

solution of KP is x∗ with x∗1 = b/a1 > 0 and x∗i = 0 for i = 2, ..., n. The corner relaxation

relaxes non-binding constraints at x∗, thus relaxing non-negativity constraint x1 ≥ 0 gives

the corner relaxation of KP (CR-KP), which can be stated as

CR-KP (b) = min

n∑
j=1

cjxj

s.t.
n∑
j=1

ajxj ≥ b

xj ≥ 0, j = 2, ..., n

x integer,

where CR-KP (b) is called the corner relaxation bound with right-hand side b of the con-

straint. Since the corner relaxation bound is a function of b, the largest relative difference

between CR-KP (b) and F (b) for all b ≥ 0, which is defined as

max
b≥0:F (b) 6=0

{|F (b)− CR-KP (b)|/F (b)},

is called the worst-case corner relaxation gap. The smaller the worst-case gap, the tighter

the corner relaxation.

The computational complexity of F (b) can be reduced using two nice properties of KP:

• Gilmore and Gomory [27] described a periodic property of the value function F (b),

which can be stated as:

there exists a b∗ > 0, such that when b ≥ b∗, F (b) = c1 + F (b− a1).

Thus, there is always an optimal solution with x1 ≥ 1 when b is large enough. There-

fore, the computation of F (b) can be reduced to F (b′), for some b′ < b∗, by reducing

multiple times of a1 from b.

46

The periodic property of F (b) implies that when b is large enough, x1 ≥ 1 is always

satisfied by an optimal solution. Thus, the constraint x1 ≥ 0 is redundant for the

optimal solution. However, the periodic property does not guarantee that constraint

x1 ≥ 0 is redundant without showing that there is no better solution with x1 < 0.

• Zhu [65] gave an asymptotic property of the knapsack problem, which can be stated

as:

there exists a b̄, such that when b ≥ b̄, CR-KP (b) = F (b).

The asymptotic property implies that to solve the knapsack problem for large values

of b, it is sufficient to solve its corner relaxation. That is, even when constraint x1 ≥ 0

is relaxed, there exists an optimal solution with x1 ≥ 0.

Since using the periodic property helps to reduce computational complexity for KP

with large right-hand side, it is natural to ask if the periodic property can be extended to

MKP? For MKP with a large number of constraints, the non-binding knapsack constraints

at the optimal LP relaxation solution are relaxed by the corner relaxation. Thus when

the asymptotic property holds, to solve MKP is equivalent to solving the corner relaxation

with a smaller number of constraints. Therefore, it is meaningful to extend the asymptotic

property to MKP.

In this chapter, we investigate conditions under which the periodic and asymptotic

properties hold for MKP. For MKP with large right-hand side b = (b1, ..., bm)T satisfying

certain conditions, we show that the value function f(b) has a periodic property which is

extended from KP, and can be calculated by solving MKP with a smaller right-hand side of

the constraints. In addition, we define an asymptotic condition under which solving MKP

is equivalent to solving its corner relaxation. Since the corner relaxation may contain a

smaller number of constraints than the original problem, the computational complexity for

solving MKP can be reduced. To understand the overall strength of the corner relaxation of

MKP, we provide the worst-case corner relaxation gap when the asymptotic property does

not hold.

47

Although the periodic and asymptotic properties have been partially explored by previ-

ous work including Gomory [32] and Zhu [65], our results provide alternative conditions that

are specific for MKP. For example, Zhu [65] discussed conditions under which the corner

relaxation for KP is tight by solving a sequence of IP problems. In our study, however, we

provide an analytical condition that only depends on the constraint coefficients. Gomory

[32] considered the asymptotic property in the context of general MIPs, which can also be

applied to MKP. Here we take a different approach by considering the asymptotic property

of MKP for some special cases, and provide alternative conditions under which the corner

relaxation is tight. In addition, when the corner relaxation of MKP is not tight, we study

the worst-case corner relaxation bounds, and give examples to demonstrate that the bounds

we developed can be tight. Furthermore, we extend the periodic property from KP to MKP.

The remainder of the chapter is structured as follows: In Section 3.2, we present the

periodic and asymptotic properties for the knapsack problem and conduct a worst-case

analysis on the corner relaxation gap. In Section 3.3, we extend the periodic property to

MKP with two constraints, which we call 2-KP, and provide a worst-case corner relaxation

gap under certain conditions. Finally, in Section 3.4, we extend the periodic property to

the general MKP.

3.2 The periodic property and corner relaxation for KP

We first make some clarifications on coefficients of the objective function and the constraints.

Let F (y) = min{
∑n

j=1 cjxj :
∑n

j=1 ajxj ≥ y, x ∈ Zn+} be the value function of KP with

right-hand side y. If cj ≤ 0 and aj > 0, we can make xj arbitrarily large, therefore, assume

that cj > 0 for all j. If aj = 0, there is no sense in using item j, thus assume aj > 0 for

all j. Denote the cost-to-weight ratio of item j by ρj =
cj
aj

for j = 1, ..., n, and assume that

ρ1 ≤ ρ2 ≤ ... ≤ ρn. Obviously, F (y) = 0 when y ≤ 0, since x = 0 is a feasible solution.

Therefore, we are only interested in F (y) with y > 0. We now formally state and prove the

main result on the periodic property of F (y) showed by Gilmore and Gomory [27].

Theorem 7 (Gilmore and Gomory [27]) If ρ1 < ρ2, then for y ≥ y∗ = c1/(ρ2 − ρ1),

F (y) = F (y− a1) + c1. That is, F (y) is periodic with periodicity of a1 and increment of c1.

48

Proof For x1 ≥ 1, x̄1 = dy/a1e, x̄j = 0 for j = 2, ..., n is obviously a feasible solution to

KP. Thus cx̄ = c1dy/a1e ≤ c1(y/a1 + 1) = ρ1y + c1 is a valid upper bound for F (y) when

x1 ≥ 1.

If we force x1 = 0, ρ2y is a valid lower bound of F (y), since x∗2 = y/a2, x
∗
j = 0 for

j = 3, ..., n is an optimal LP solution.

Therefore, there exists an optimal solution with x1 ≥ 1 if the upper bound of F (y) when

x1 ≥ 1 is less than or equal to the lower bound of F (y) when x1 = 0, that is, ρ1y+c1 ≤ ρ2y.

This yields y ≥ c1/(ρ2 − ρ1). 2

Note that the value of y∗ is determined by the first two items through the difference

between ρ2 and ρ1. Thus, y∗ is small when ρ1 � ρ2, which means that the first item should

be used more often in an optimal solution in such a case.

In addition, Theorem 7 implies that when y ≥ y∗, there exists an optimal solution

with x1 ≥ 1, thus x1 ≥ 0 is redundant for the optimal solution. We next show that when

constraint x1 ≥ 0 is relaxed, which leads to the corner relaxation CR-KP (y), CR-KP (y)

is bounded for all y ≥ 0.

Proposition 8 CR-KP (y) is bounded for all y ≥ 0.

Proof CR-KP (y) is bounded if its linear relaxation LCR(y) is bounded. LCR(y) is un-

bounded if and only if there is an unbounded direction in the feasible region, that is, there

exists x with xj ≥ 0 for j = 2, ..., n, such that

n∑
j=1

ajxj ≥ 0 and

n∑
j=1

cjxj < 0.

This is equivalent to
n∑
j=2

ajxj ≥ −x1a1 and
n∑
j=2

cjxj < −x1c1. (41)

Note that ρ1 ≤ ρ2 ≤ ... ≤ ρn, thus cj ≥ ajρ1 for all j = 2, ..., n. Therefore, for all x

satisfying xj ≥ 0 for j = 2, ..., n,

n∑
j=2

cjxj ≥ ρ1

n∑
j=2

ajxj ≥ −ρ1x1a1 = −x1c1,

49

which contradicts (41). Therefore, LCR(y) is always bounded, thus CR-KP (y) is also

bounded. 2

Although this result excludes the possibility of incurring an unbounded corner relaxation

of KP, it does not tell us much about the strength of the corner relaxation bound. We now

consider the conditions under which the corner relaxation bound is tight.

Proposition 9 If ρ1 < ρ2, then for y ≥ ȳ = a1(2ρ1 − ρ2)/(ρ2 − ρ1), CR-KP (y) = F (y),

that is, the constraint x1 ≥ 0 is redundant.

Proof For x1 ≥ 0, x̄1 = dy/a1e, x̄j = 0 for j = 2, ..., n is obviously a feasible solution to the

corner relaxation. Thus, cx̄ = c1dy/a1e ≤ c1(y/a1 + 1) = ρ1y + c1 is a valid upper bound

on CR-KP (y) when x1 ≥ 0.

For x1 < 0, let x̄ be an optimal solution to the corner relaxation with x1 < 0. Then a

lower bound of CR-KP (y) with x1 < 0 can be obtained by solving the following problem:

c1x̄1 + min
n∑
j=2

cjxj

s.t.
n∑
j=2

ajxj ≥ y − a1x̄1

xj ≥ 0, j = 2, ..., n.

(42)

An optimal solution to problem (42) is x̂ with x̂2 = (y − a1x̄1)/a2, x̂j = 0 for j = 3, ..., n.

Thus a lower bound of CR-KP (y) is c1x̄1 + c2(y − a1x̄1)/a2 = c1x̄1 + ρ2(y − a1x̄1) =

a1(ρ1 − ρ2)x̄1 + ρ2y ≥ ρ2y + a1(ρ2 − ρ1), since ρ1 − ρ2 ≤ 0 and x̄1 ≤ −1.

Therefore, if ρ2y + a1(ρ2 − ρ1) ≥ ρ1y + c1, any optimal solution must satisfy x1 ≥ 0,

thus relaxing x1 ≥ 0 does not affect the value of F (y), and the corner relaxation is tight.

This yields y ≥ c1/(ρ2 − ρ1)− a1 = a1(2ρ1 − ρ2)/(ρ2 − ρ1) when ρ2 > ρ1. 2

This result implies that for sufficiently large y, solving the corner relaxation is sufficient

for solving the original KP. We next show that for smaller y, when the corner relaxation is

not tight, the relative gap of the corner relaxation, which is defined by F (y)−CR-KP (y)
F (y) , is

also bounded.

50

Proposition 10 If ρ1 < ρ2, then for y satisfying 0 ≤ y ≤ ȳ = a1(2ρ1 − ρ2)/(ρ2 − ρ1), the

relative gap of the corner relaxation satisfies

F (y)− CR-KP (y)

F (y)
≤ a1

y + a1
− ρ2 − ρ1

ρ1
. (43)

Proof Note that when 0 ≤ y ≤ a1(2ρ1 − ρ2)/(ρ2 − ρ1), the right-hand side of inequality

(43) is non-negative. If there exists an optimal solution to the corner relaxation satisfying

x1 ≥ 0, then it is also an optimal solution to KP, thus F (y)−CR-KP (y) = 0. Otherwise, as

shown in the proof of Proposition 9, CR-KP (y) ≥ ρ2y+a1(ρ2−ρ1). Since F (y) ≤ ρ1y+ c1

by rounding up the optimal linear relaxation solution, the corner relaxation gap satisfies

F (y)− CR-KP (y)

F (y)
= 1− CR-KP (y)

F (y)
≤ 1− ρ2y + a1(ρ2 − ρ1)

ρ1y + c1
=

a1

y + a1
− ρ2 − ρ1

ρ1
.

2

Proposition 9 and 10 provide a worst-case analysis on the quality of corner relaxation

bound for all y. As y increases, the worst-case bound decreases, and when y is sufficiently

large, the corner relaxation becomes tight. Both the value of ȳ and the worst-case gap when

y ≤ ȳ are determined by the first two items only.

It is meaningful to compare the corner relaxation bound with the linear relaxation bound

of KP, since the linear bound is the most often used lower bound. We do so by comparing

the worst-case gap of the corner relaxation presented in (43) with the worst-case gap of the

linear relaxation. Note that the linear relaxation has value function LP (y) = ρ1y, thus the

linear relaxation gap satisfies

F (y)− LP (y)

F (y)
≤ (ρ1y + c1)− ρ1y

ρ1y + c1
=

a1

y + a1
. (44)

Since the linear relaxation of CR-KP and the linear relaxation of KP have the same optimal

solution, we must have F (y)−CR-KP (y)
F (y)−LP (y) ≤ 1. The following example shows that the worst-

case gaps of (43) and (44) can be tight, and the corner relaxation bound can be as weak as

the linear relaxation bound.

51

Example Consider the problem

F (y) = min (n− 1)x1 + nx2

s.t. nx1 + (n+ 1)x2 ≥ y

x1, x2 ≥ 0, integer,

with y = 1 and n > 1. Obviously, y = 1 < a1(2ρ1 − ρ2)/(ρ2 − ρ1), where ρ1 = (n− 1)/n <

ρ2 = n/(n + 1) for all n > 1. An optimal solution to the problem is x1 = 1 and x2 = 0,

therefore F (1) = n − 1. The optimal linear solution is x∗1 = 1/n, x∗2 = 0, thus LP (1) =

(n − 1)/n. Therefore, the linear relaxation gap satisfies F (1)−LP (1)
F (1) = n−1−(n−1)/n

n−1 → 1 as

n → +∞. Since a1/(y + a1) = n/(n + 1) → 1, this indicates that the worst-case linear

relaxation gap in (44) is tight.

On the other hand, the optimal solution to the corner relaxation, which allows x1 to

be negative, is x̄1 = −1, x̄2 = 1, thus CR-KP (1) = 1. We have the corner relaxation gap

F (1)−CR-KP (1)
F (1) = (n−2)/(n−1)→ 1 as n→ +∞. Since a1

y+a1
− ρ2−ρ1

ρ1
= n/(n+1)−1/(n2−

1)→ 1 as n→ +∞, the worst-case corner relaxation gap in (43) is also tight.

In addition, LP (1) = (n − 1)/n → 1 = CR-KP (1), which shows that the corner

relaxation bound is not stronger than the linear relaxation bound as n→ +∞.

3.3 Periodic property and corner relaxation for 2-KP

Next, we extend results of the value function and corner relaxation to MKP with two

constraints, which we call 2-KP. The formulation of 2-KP can be stated as:

f(y1, y2) = min

n∑
j=1

cjxj

s.t.
n∑
j=1

a1
jxj ≥ y1

n∑
j=1

a2
jxj ≥ y2

x ∈ Zn+.

(45)

If cj = 0 and a1
j > 0, the first constraint can be eliminated by using the first item as much

as possible, thus the problem can be reduced to KP. Therefore, assume that cj > 0 for all

52

j. Let ρ1
j = cj/a

1
j and ρ2

j = cj/a
2
j for all j = 1, ..., n be the cost-to-weight ratios on the two

constraints respectively. To simplify, assume that all constraint coefficients are positive so

that ρ1
j and ρ2

j for j = 1, ..., n are well defined, and we only consider the problem for y1 > 0

and y2 > 0.

For KP, the periodicity of the value function equals a1, where ρ1 = minj{ρj}, and the

items with smaller cost-to-weight ratios are more likely to appear in an optimal solution. For

2-KP, we need to consider the impact of items on both constraints to evaluate the importance

of items. A way to start is to study the solution of the linear relaxation under different

optimal linear programming (LP) bases. An optimal LP basis is composed of two basic

variables, including possibly one of the slack variables s1 or s2, where
∑n

j=1 a
1
jxj − s1 = y1,∑n

j=1 a
2
jxj − s2 = y2, s1, s2 ∈ Z+. The variables not in the basis are non-basic variables.

Denote the 2 by 2 matrix (Ai, Aj) by Bij , where Ai is the ith column of the constraint

matrix. Let Biy = (Ai, y) and Byi = (y,Ai), where y is the right-hand-side vector of the

constraints. We use B to indicate both the determinant of a matrix and the matrix itself

interchangeably for simplicity. Assume that the optimal linear solution of 2-KP is non-

degenerate, since when the linear solution is degenerate, it is much more complicated to

analyze the conditions for a basis to be optimal.

3.3.1 Preliminaries

To prepare for the following analysis, in this section, we present the conditions for an LP

basis to be feasible and optimal. Given any non-degenerate LP basis of the linear relaxation

of 2-KP, there is a unique solution corresponding to the basis. The conditions that the

objective coefficients and constraint coefficients must satisfy for the solution to be feasible

and optimal are called feasibility and optimality conditions for the basis, respectively.

The feasibility and optimality conditions for a basis can be distinguished by the number

of slack variables in the basis. We use basis {x1, s1} to indicate that exactly one of the

slack variables is in the basis, and use basis {x1, x2} to indicate that no slack variables are

in the basis. We next give the feasibility and optimality conditions for basis {x1, s1} and

basis {x1, x2}.

53

Proposition 11 • {x1, s1} is a non-degenerate optimal basis if the following conditions

are satisfied:

– Feasibility condition, which can be stated as:

y1/y2 ≤ a1
1/a

2
1. (46)

That is, (y1, y2) must be in the cone spanned by A1 and the y2-axis.

– Optimality condition, which can be stated as:

ρ2
1 = min

k=1,...,n
ρ2
k. (47)

That is, the column A1 must have the smallest cost-to-weight ratio in the second

constraint.

• {x1, x2} is a non-degenerate optimal basis if the following conditions are satisfied:

– Feasibility condition, which can be stated as:

a1
2/a

2
2 ≤ y1/y2 ≤ a1

1/a
2
1. (48)

That is, (y1, y2) must be in the cone spanned by A1 and A2.

– Optimality condition, which can be stated as:

ρ1
1 ≤ ρ1

2 , ρ2
2 ≤ ρ2

1,

and ck ≥ A2
12a

1
k +A1

12a
2
k for k = 1, ..., n,

(49)

where

A1
12 =

c2a
1
1 − c1a

1
2

B12
=

1/ρ1
1 − 1/ρ1

2

B12/c1c2
≥ 0 and

A2
12 =

c1a
2
2 − c2a

2
1

B12
=

1/ρ2
2 − 1/ρ2

1

B12/c1c2
≥ 0.

(50)

Thus, in the first constraint, column A1 has a smaller cost-to-weight ratio and

in the second constraint, column A2 has a smaller cost-to-weight ratio.

Proof Given a non-degenerate basis B, the corresponding LP solution can be stated as

xB = B−1y and xi = 0 for i /∈ B. The solution is a feasible solution if xB ≥ 0. The solution

is optimal if the reduced costs of all variables are no less than 0, that is, the objective value

increases when a non-basic variable enters the basis.

54

• For basis {x1, s1}, the corresponding solution is feasible if

B−1y =

 0 1/a2
1

−1 a1
1/a

2
1

 y1

y2

 =

 y2/a
2
1

−y1 + a1
1 · y2/a

2
1

 ≥ 0,

that is, y1/y2 ≤ a1
1/a

2
1.

The solution corresponding to basis {x1, s1} is optimal if

c̄k = ck − cBB−1Ak = ck −
[
c1 0

] a2
k/a

2
1

−a1
k + a1

1 · a2
k/a

2
1

 = ck − a2
kρ

2
1 ≥ 0,

where c̄k is the reduced cost of variable xk and si, for k = 1, ..., n and i = 1, 2. That

is, ρ2
1 = mink=1,...,n ρ

2
k.

Therefore {x1, s1} is a non-degenerate optimal basis if and only if

y1/y2 ≤ a1
1/a

2
1 and ρ2

1 = min
k=1,...,n

ρ2
k.

• For basis {x1, x2}, the corresponding solution is feasible if

B−1y =
1

B12

 a2
2 −a1

2

−a2
1 a1

1

 y1

y2

 =
1

B12

 y1a
2
2 − y2a

1
2

y2a
1
1 − y1a

2
1

 =
1

B12

 By2

B1y

 ≥ 0,

which is equivalent to

a1
2/a

2
2 ≤ y1/y2 ≤ a1

1/a
2
1.

The solution corresponding to basis {x1, x2} is optimal if

c̄k = ck − cBB−1Ak ≥ 0

⇔ ck −
[
c1 c2

]
× 1

B

 a2
2 −a1

2

−a2
1 a1

1

 a1

k

a2
k

 ≥ 0

⇔ ck −
Bk2

B
c1 −

B1k

B
c2 ≥ 0,

(51)

where c̄k is the reduced cost of variable xk and si, for k = 1, ..., n and i = 1, 2.

For a slack variable, (51) is equivalent to

c̄s1 = 0− 1

B
(−c1a

2
2 + c2a

2
1) ≥ 0 and c̄s2 = 0− 1

B
(c1a

1
2 − c2a

1
1) ≥ 0,

55

which can be rewritten as

ρ1
1 ≤ ρ1

2 and ρ2
2 ≤ ρ2

1. (52)

For an integer variable xk, (51) can be rewritten as

c̄k = ck −A2
12a

1
k −A1

12a
2
k ≥ 0, (53)

where

A1
12 =

c2a
1
1 − c1a12
B12

=
1/ρ11 − 1/ρ12
B12/c1c2

≥ 0 and A2
12 =

c1a
2
2 − c2a21
B12

=
1/ρ22 − 1/ρ21
B12/c1c2

≥ 0. (54)

Therefore {x1, x2} is a non-degenerate optimal basis if and only if

a1
2/a

2
2 ≤ y1/y2 ≤ a1

1/a
2
1,

and ρ1
1 ≤ ρ1

2 , ρ2
2 ≤ ρ2

1, ck ≥ A2
12a

1
k +A1

12a
2
k for k = 1, ..., n.

2

Since the feasibility and optimality conditions only depend on the objective and con-

straint matrices, they can be used to divide the space (y1, y2) ∈ R2
+ into non-overlapping

cones. In addition, each cone corresponds to a unique basis and is spanned by the corre-

sponding column vectors of the constraints as shown in Figure 15. In Figure 15, for (y1, y2)

in the cone spanned by A3 and y2−axis, the problem has an optimal basis {x3, s1}; for

(y1, y2) in the cone spanned by A3 and A2, the problem has an optimal basis {x3, x2}; for

(y1, y2) in the cone spanned by A2 and y1−axis, the problem has an optimal basis {x2, s2}.

We next discuss the periodic property and corner relaxation for 2-KP under the two

cases, where one or none of the slack variables is in the basis using the corresponding

feasibility and optimality conditions.

3.3.2 The optimal basis {x1, s1}

We first analyze the case where the optimal basis includes a slack variable. WLOG, assume

that y1/y2 ≤ a1
1/a

2
1 and ρ2

1 < ρ2
2 ≤ ... ≤ ρ2

n, then by Proposition 11, {x1, s1} is the optimal

basis.

56

y1

y2

A1

A2

A3

A4

B = {x3, s1}

B = {x2, x3}

B = {s2, x3}

Figure 15: Cones and basis

Given a m by m matrix B, let KB by a cone in Rm, which is spanned by the column

vectors of B. The periodic property of the value function f(y1, y2) can be derived by

similar techniques used in section 3.2. Thus, when the right-hand side of the constraints

are sufficiently large, the value function is periodic with periodicity defined by a column

with small cost-to-weigh ratio on one constraint.

Proposition 12 For y2 ≥ y∗ = c1/(ρ
2
2 − ρ2

1) and (y1, y2) ∈ KB1, where B1 is the optimal

LP basis when x1 is fixed to zero, f(y1, y2) is periodic with periodicity of A1 and increment

of c1, that is, f(y1, y2) = c1 + f(y1 − a1
1, y2 − a2

1) = c1 + f(y − A1). Thus f(y1, y2) can be

calculated by recursively reducing A1 from y = (y1, y2).

Proof For x1 ≥ 1, x̄1 = dy2/a
2
1e, x̄i = 0, i = 2, ..., n is a feasible solution to 2-KP. Therefore,

a valid upper bound on f(y1, y2) is c1dy2/a
2
1e ≤ c1(y2/a

2
1 + 1) = ρ2

1y2 + c1.

If we force x1 = 0, consider the linear relaxation of problem (45) with x1 fixed at 0.

Suppose an optimal linear relaxation solution is x∗i = Byj/Bij , x
∗
j = Biy/Bij and x∗k = 0,

for k 6= i, j, where Bij > 0 is the optimal LP basis. Thus by Proposition 11, we must have

y ∈ KBij = KB1 , which is a cone spanned by Ai and Aj . Then a lower bound for f(y1, y2)

when x1 = 0 is ciByj/Bij + cjBiy/Bij .

Thus, to have an optimal solution with x1 ≥ 1, a sufficient condition is

ρ2
1y2 + c1 ≤ ciByj/Bij + cjBiy/Bij ,

57

which is equivalent to

(ρ2
1y2 + c1)(a1

i a
2
j − a1

ja
2
i) ≤ ci(a2

jy1 − a1
jy2) + cj(a

1
i y2 − a2

i y1)

⇔ cicj(ρ
2
1y2 + c1)(1/ρ1

i ρ
2
j − 1/ρ1

jρ
2
i) ≤ cicj [(1/ρ2

j − 1/ρ2
i)y1 + (1/ρ1

i − 1/ρ1
j)y2]

⇔ c1(1/ρ1
i ρ

2
j − 1/ρ1

jρ
2
i) ≤ (1/ρ2

j − 1/ρ2
i)y1 + [(ρ2

j − ρ2
1)/ρ1

i ρ
2
j − (ρ2

i − ρ2
1)/ρ1

jρ
2
i)]y2.

Since by Propsition 11, y1 ≥ y2a
1
j/a

2
j = y2ρ

2
j/ρ

1
j and 1/ρ2

j − 1/ρ2
i > 0, it is sufficient to have

c1(1/ρ1
i ρ

2
j − 1/ρ1

jρ
2
i) ≤ (1/ρ2

j − 1/ρ2
i)y2ρ

2
j/ρ

1
j + [(ρ2

j − ρ2
1)/ρ1

i ρ
2
j − (ρ2

i − ρ2
1)/ρ1

jρ
2
i)]y2

= (ρ2
j − ρ2

1)(1/ρ1
i ρ

2
j − 1/ρ1

jρ
2
i)y2.

Note that 1/ρ1
i ρ

2
j−1/ρ1

jρ
2
i = Bij/cicj > 0, therefore it is equivalent to have y2 ≥ c1/(ρ

2
j−ρ2

1)

if ρ2
j > ρ2

1. Also by Proposition 11, we have ρ2
2 = mink≥2{ρ2

k}, thus it is sufficient to have

y2 ≥ c1/(ρ
2
2 − ρ2

1) if ρ2
2 > ρ2

1. 2

This result shows that when only one constraint (the second constraint in this case) is

binding at the linear relaxation solution, the periodicity of the value function is determined

by the column with the smallest cost-to-weight ratio in this constraint. In addition, the

value of y∗ is also determined by the binding constraint.

Next, we study the tightness of the corner relaxation for 2-KP when {x1, s1} is the

optimal basis, which can be formulated as

CR(y1, y2) = min
n∑
j=1

cjxj

s.t.

n∑
j=1

a2
jxj ≥ y2

xj ≥ 0, j = 2, ..., n

x integer.

Since the first constraint is relaxed, it is not surprising that the worst-case corner relaxation

gap is also determined by the second constraint. As before, we first show the conditions

under which the corner relaxation is tight.

Proposition 13 When y2 ≥ ȳ =
a21(2ρ21−ρ22)

ρ22−ρ21
, the corner relaxation is tight, that is CR(y1, y2) =

f(y1, y2).

58

Proof For x1 ≥ 0, a feasible solution to the corner relaxation is x̄1 = dy2/a
2
1e, x̄j = 0 for

j = 2, ..., n. Thus, an upper bound on CR(y1, y2) is cx̄ = c1dy2/a
2
1e ≤ ρ2

1y2 + c1.

For x1 ≤ −1, let x̄ be an optimal solution to the corner relaxation with x1 ≤ −1. Then

a lower bound of CR(y1, y2) with x1 ≤ −1 can be obtained by solving

c1x̄1 + min
n∑
j=2

cjxj

s.t.
n∑
j=2

a2
jxj ≥ y2 − a2

1x̄1

xj ≥ 0 j = 2, ..., n.

Since ρ2
2 ≤ ... ≤ ρ2

n, an optimal solution to the problem is x̄2 = (y2 − a2
1x̄1)/a2

2, x̄j = 0 for

j = 3, ..., n. Thus, the lower bound can be written as LB(x̄1) = c1x̄1 + c2(y2 − a2
1x̄1)/a2

2 =

ρ2
2y2 + a2

1(ρ2
1 − ρ2

2)x̄1. Since ρ2
1 < ρ2

2 and x̄1 ≤ −1, a valid lower bound of CR(y1, y2) with

x1 ≤ −1 can be written as:

LB = min
x̄1≤−1,integer

{LB(x̄1)} = ρ2
2y2 + a2

1(ρ2
2 − ρ2

1). (55)

Thus, a sufficient condition for an optimal solution to the corner relaxation satisfying x1 ≥ 0

is

ρ2
1y2 + c1 ≤ ρ2

2y2 + a2
1(ρ2

2 − ρ2
1),

which yields y2 ≥ a2
1(2ρ2

1 − ρ2
2)/(ρ2

2 − ρ2
1) if ρ2

2 > ρ2
1. 2

Comparing this condition with the more general result in Gomory [32] as shown in

Figure 16, where the corner relaxation is tight over a cone that is strictly inside the area

{(y1, y2) : y1/y2 ≤ a1
1/a

2
1, y1 ≥ 0, y2 ≥ 0}, our result defines a different area for the corner

relaxation to be tight, which include all (y1, y2) ∈ {y1/y2 ≤ a1
1/a

2
1, y1 ≥ 0, y2 ≥ ȳ}. The

worst-case analysis of the corner relaxation gap follows naturally.

Proposition 14 When y2 ≤ ȳ = a2
1(2ρ2

1 − ρ2
2)/(ρ2

2 − ρ2
1), the relative gap of the corner

relaxation for 2-KP satisfies

f(y1, y2)− CR(y1, y2)

f(y1, y2)
≤ a2

1

y2 + a2
1

− ρ2
2 − ρ2

1

ρ2
1

.

59

A1

A2

KB

y1

y2

Figure 16: Gomory – Conditions for Tight Corner Relaxation

Proof If there exists an optimal solution to CR(y1, y2) satisfying x1 ≥ 0, then f(y1, y2)−

CR(y1, y2) = 0. Otherwise, using (55) we have CR(y1, y2) ≥ ρ2
2y2 + a2

1(ρ2
2 − ρ2

1), and

F (y) ≤ ρ2
1y2 + c1 by rounding up the optimal LP solution. Therefore, the relative gap

satisfies

f(y1, y2)− CR(y1, y2)

f(y1, y2)
= 1− CR(y1, y2)

f(y2, y2)
≤ 1− ρ22y2 + a21(ρ22 − ρ21)

ρ21y2 + c1
=

a21
y2 + a21

− ρ22 − ρ21
ρ21

.

2

The results show that when only one knapsack constraint is binding at the linear relaxation

solution, the periodic property and the worst-case corner relaxation gap generally depend on

this constraint alone. Thus the cost-to-weight ratio of the columns in the binding constraint

can be used to determine the periodicity of the value function. Therefore, under this

condition, the problem is simplified.

3.3.3 The optimal basis {x1, x2}

We now consider the general case, where both of the basic variables are non-slack variables.

Assume B12 > 0 and the constraint coefficients satisfy

ρ1
1 ≤ ρ1

2 , ρ2
2 ≤ ρ2

1 , and ck ≥ A2
12a

1
k +A1

12a
2
k for k = 1, ..., n, (56)

where

A1
12 =

c2a
1
1 − c1a

1
2

B12
=

1/ρ1
1 − 1/ρ1

2

B12/c1c2
≥ 0 and A2

12 =
c1a

2
2 − c2a

2
1

B12
=

1/ρ2
2 − 1/ρ2

1

B12/c1c2
≥ 0. (57)

60

Consider (y1, y2) ∈ {(y1, y2) : a1
2/a

2
2 ≤ y1/y2 ≤ a1

1/a
2
1, (y1, y2) ∈ R2

+}, then by proposition

(11), {x1, x2} is the optimal LP basis of 2-KP.

We first derive a sufficient condition under which a periodicity of the value function

exists, and show that such condition can be seen as a natural extension of KP.

Proposition 15 If (y1, y2) satisfies (A2
12 − A2

ij)y1 + (A1
12 − A1

ij)y2 + (c1 + c2) ≤ 0, where

{xi, xj} is an optimal basis when x1 is fixed to zero, and (y1, y2) ∈ KBij , the value function

has periodicity of A1, that is f(y1, y2) = c1 + f(y1 − a1
1, y2 − a2

1) = c1 + f(y −A1).

Proof For x1 = 0, suppose an optimal linear relaxation solution is x̄i = Byj/Bij , x̄j =

Biy/Bij , and x̄k = 0 for k 6= i, j, where Bij > 0. Thus we must have y ∈ KBij . Then a

lower bound for f(y1, y2) when x1 = 0 is ciByj/Bij + cjBiy/Bij .

For x1 ≥ 1, define x̄ by x̄i = dx∗i e when x∗i is fractional, and x̄i = x∗i + 1 when

x∗i is integer, for i = 1, ..., n, where x∗ is the optimal linear relaxation solution of KP.

Then x̄ is a feasible integer solution. Thus, an upper bound for f(y1, y2) when x1 ≥ 1 is

c1(By2/B12 + 1) + c2(B1y/B12 + 1). Therefore, a sufficient condition for an optimal solution

of the 2-KP to satisfy x1 ≥ 1 is

c1(By2/B12 + 1) + c2(B1y/B12 + 1) ≤ ciByj/Bij + cjBiy/Bij . (58)

Since multiple bases are concerned, we denote c̄k(ij) to be the reduced cost of variable

xk with respect to basis xi, xj , for all k, i, j = 1, ..., n.

By replacing Byj , Biy with

Byj =
B1jBy2 +B2jB1y

B12
and Biy =

Bi1By2 +Bi2B1y

B12
,

we find (58) equivalent to

c̄1(ij)By2 + c̄2(ij)B1y +B12(c1 + c2) ≤ 0, (59)

where c̄1(ij) = c1 − ciB1j/Bij − cjBi1/Bij and c̄2(ij) = c2 − ciB2j/Bij − cjBi2/Bij are the

reduced costs of x1 and x2 with respect to the basis {xi, xj}, respectively. Since the reduced

costs can be formulated as

c̄1(ij) = c1 −A2
ija

1
1 −A1

ija
2
1 and c̄2(ij) = c2 −A2

ija
1
2 −A1

ija
2
2,

61

where

A1
ij =

cja
1
i − cia1

j

Bij
=

1/ρ1
i − 1/ρ1

j

Bij/cicj
≥ 0 and A2

ij =
cia

2
j − cja2

i

Bij
=

1/ρ2
j − 1/ρ2

i

Bij/cicj
≥ 0, (60)

(59) is equivalent to

(a2
2c̄1(ij)− a2

1c̄2(ij))y1 + (a1
1c̄2(ij)− a1

2c̄1(ij))y2 +B12(c1 + c2) ≤ 0. (61)

Because

a2
2c̄1(ij)− a2

1c̄2(ij) =a2
2(c1 −A2

ija
1
1 −A1

ija
2
1)− a2

1(c2 −A2
ija

1
2 −A1

ija
2
2)

=a2
2c1 − a2

1c2 −A2
ijB12 = (A2

12 −A2
ij)B12

and

a1
1c̄2(ij)− a1

2c̄1(ij) =a1
1(c2 −A2

ija
1
2 −A1

ija
2
2)− a1

2(c1 −A2
ija

1
1 −A1

ija
2
1)

=a1
1c2 − a1

2c1 −A1
ijB12 = (A1

12 −A1
ij)B12,

(61) can be rewritten as

(A2
12 −A2

ij)y1 + (A1
12 −A1

ij)y2 + (c1 + c2) ≤ 0. (62)

Although the periodicity of the value function exists on the half-plane defined by (62), we

need to show that there exists (y1, y2) ∈ {(y1, y2) ∈ R2
+ : a1

2/a
2
2 ≤ y1/y2 ≤ a1

1/a
2
1} such that

the intersection of (62) and {(y1, y2) ∈ R2
+ : a1

2/a
2
2 ≤ y1/y2 ≤ a1

1/a
2
1} is non-empty.

First, we have the reduced costs

c̄1(12) = c1 −A2
12a

1
1 −A1

12a
2
1 = 0 and c̄2(12) = c2 −A2

12a
1
2 −A1

12a
2
2 = 0. (63)

Since {xi, xj} is not optimal when x1 is not fixed to 0, the reduced costs satisfy

c̄1(ij) = c1 −A2
ija

1
1 −A1

ija
2
1 < 0 and c̄2(ij) = c2 −A2

ija
1
2 −A1

ija
2
2 ≥ 0. (64)

Therefore, by combining (63) and (64), we have

c1 = A2
12a

1
1 +A1

12a
2
1 < A2

ija
1
1 +A1

ija
2
1 and c2 = A2

12a
1
2 +A1

12a
2
2 ≥ A2

ija
1
2 +A1

ija
2
2,

62

y1

y2

A1

A2

(A2
12 −A2

ij)y1 + (A1
12 −A1

ij)y2 + (c1 + c2) ≤ 0

periodicity A1

Figure 17: Periodicity of f(y1, y2)

which are equivalent to

(A2
12 −A2

ij)a
1
1 + (A1

12 −A1
ij)a

2
1 < 0 =⇒ (A2

12 −A2
ij)a

1
1/a

2
1 + (A1

12 −A1
ij) < 0

and

(A2
12 −A2

ij)a
1
2 + (A1

12 −A1
ij)a

2
2 ≥ 0 =⇒ (A2

12 −A2
ij)a

1
2/a

2
2 + (A1

12 −A1
ij) ≥ 0.

Since a1
2/a

2
2 ≤ y1/y2 ≤ a1

1/a
2
1, we know that the set {(y1, y2) ∈ R2

+ : (A2
12 − A2

ij)y1 +

(A1
12 −A1

ij)y2 + (c1 + c2) ≤ 0 and a1
2/a

2
2 ≤ y1/y2 ≤ a1

1/a
2
1} is non-empty. 2

Comparing (62) with the periodicity condition for KP, we find that (A1
ij , A

2
ij) defined in

(60) for {xi, xj} plays a similar role as ρi for xi in KP. However, the intuitive interpretation

for (A1
ij , A

2
ij) is not as straightforward as ρi. We illustrate the conditions where the value

function has periodicity A1 by the shaded area in Figure 17, which is a cone in the cone

spanned by the basis matrix. Similar conditions can be derived for the value function with

periodicity of A2.

Next, we consider the corner relaxation for 2-KP when {x1, x2} is the optimal basis,

which relaxes the constraints x1 ≥ 0 and x2 ≥ 0. Although we do not specify the con-

ditions under which the corner relaxation is tight since the conditions are more complex,

the following example shows that the corner relaxation bound can be as weak as the linear

relaxation bound.

63

Example Consider the problem

f(y1, y2) = min x1 + (1 + 1
n+1)x2

s.t. (n+ 1)x1 + nx2 ≥ y2

nx1 + (n+ 1)x2 ≥ y2

x1, x2 ≥ 0, integer,

with y1 = y2 = n + 1. An optimal integer solution to the problem is x1 = 2, x2 = 0,

with f(n + 1, n + 1) = 2. The linear relaxation has an optimal linear solution x∗1 = x∗2 =

(n+1)/(2n+1) with objective value LP (n+1, n+1) = 1+2/(2n+1)→ 1 as n→ +∞. Corner

relaxation relaxes constraints x1 ≥ 0 and x2 ≥ 0, and an optimal solution to the corner

relaxation is x1 = n+1, x2 = 1−n, with objective value CR(n+1, n+1) = 1+2/(n+1)→ 1

as n → +∞. Therefore, the corner relaxation is no tighter than the linear relaxation as n

becomes large.

3.4 The periodic property of the MKP

Finally, we extend the periodic property of the value function to MKP, which can be stated

as:

f(y) = min

n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≥ yi, i = 1...m

x ∈ Zn+.

(65)

Assume that cj > 0, aij ≥ 0 for all i, j. If B is an optimal basis of the linear relaxation of

MKP, then y = (y1, ..., ym) must be in KB, which is the cone spanned by columns in B. For

a basic variable xi, we show that f(y) has a periodicity of Ai when y is in a cone intersecting

a half-plane, which generalizes the results on the periodic property that we developed for

2-KP.

Claim 16 Let B be a unique non-degenrate optimal basis for MKP with right-hand-side

vector y∗ of the constraints, and Bi be a non-degenerate optimal basis when a basic variable

64

xi is fixed to zero. Then for any y ∈ KB ∩KBi ∩ {s : (cBB
−1 − cBiB

−1
i)T s+ |cB| ≤ 0}, the

value function f(y) has periodicity Ai, that is f(y) = f(y −Ai) + ci.

Proof Let x∗ be the optimal LP solution with respect to the basis B, and we must have

y∗ ∈ KB. To satisfy xi ≥ 1, define x̄ by x̄i = dx∗i e when x∗ is fractional and x̄ = x∗i +1 when

x∗i is integral for i ∈ B, and x̄i = 0 for i /∈ B, then x̄ is a feasible integral solution to MKP

with xi ≥ 1. Thus an upper bound of f(y∗) with xi ≥ 1 is UB ≤ cB(x∗B+1) = cBB
−1y+|cB|,

where |cB| =
∑

i∈B ci.

If we force xi = 0, a lower bound of f(y∗) when xi fixed to zero is LB = cBiB
−1
i y. In

such case, y∗ must also be in the cone generated by columns in Bi, that is, y∗ ∈ KBi .

Therefore, for an optimal solution of the MKP to have xi ≥ 1, a sufficient condition is

that cBB
−1y∗ + |cB| ≤ cBiB

−1
i y∗, which is equivalent to

(cBB
−1 − cBiB

−1
i)y∗ + |cB| ≤ 0. (66)

Since the above statements hold for any y ∈ KB ∩KBi , let d = cBB
−1 − cBiB

−1
i , then for

any y satisfying

y ∈ KB ∩KBi ∩ {s : dT s+ |cB| ≤ 0}, (67)

the value function f(y) has periodicity Ai.

Now we show that the set (67) is non-empty. By definition of B and Bi, we have

y∗ ∈ KB ∩KBi 6= ∅. Since B is the unique optimal basis, the corresponding objective value

must be smaller than the objective value corresponding to basis Bi, that is cBB
−1y∗ <

cBiB
−1
i y∗, thus dT y∗ < 0. Therefore, there exists λ > 0 such that λdT y∗ + |cB| ≤ 0, and

λy∗ ∈ KB ∩KBi ∩ {s : dT s+ |cB| ≤ 0} 6= ∅. 2

This result can be seen as a generalization of the conditions for the periodic property

to hold in 2-KP when {x1, x2} is the optimal basis. However, the area of (y1, y2) where the

periodic property holds is no longer guaranteed to be a cone.

65

CHAPTER IV

MULTI-DIMENSIONAL KNAPSACK INSTANCES

The purpose of this chapter is twofold. In Section 4.1, we review previous techniques on in-

stance generation for several variations of the multi-dimensional knapsack problem (MKP).

In Section 4.2, we generate a large number of MKP instances based on two parameters,

which indicate the tightness of constraints and the correlation between the objective and

constraint coefficients respectively, examine the impact of the parameters on problem hard-

ness, and establish a testbed of instances for computational experiments in the remainder

of this thesis.

4.1 Introduction

Consider the multi-dimensional knapsack problem (MKP):

max
m∑
i=1

n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≤ bi, i = 1, ...,m

x ∈ Zn+.

(68)

Variations of MKP are distinguished by number of constraints, type of variables (un-

bounded, bounded integers or binary variables), and the form of objective and constraint

coefficients. For m = 1, the problem can be reformulated as max{
∑n

j=1 cjxj :
∑n

j=1 ajxj ≤

b, x ∈ Zn+}, and is called the knapsack problem (KP); when all variables are binary, the

problem is called the 0-1 multi-dimensional knapsack problem (0-1 MKP); when m = 1

and all variables are binary, the problem is called the 0-1 knapsack problem (0-1 KP). For

other variations of MKP with special restrictions on constraint and objective coefficients,

see Martello and Toth [52].

As computational improvement has been achieved on solving variations of MKP, a bet-

ter understanding of the factors that impact the hardness of these problems is obtained.

66

Martello and Toth [52] generated 0-1 KP instances based on the correlation between objec-

tive and constraint coefficients. The objective–constraint correlation of column j is indicated

by the ratio cj/aj . An instance with a strong objective–constraint correlation means a small

difference between maxj=1,...,n cj/aj and minj=1,...,n cj/aj . Martello and Toth [52] showed

computationally that strongly correlated instances are always the hardest to solve. In terms

of the tightness of the constraint, they found that generating b with α
∑n

j=1 aj , where α < 1,

creates harder instances than generating b randomly.

The techniques used to generate 0-1 KP instances are also extended to higher dimen-

sional knapsack problems. In particular, the OR-Library founded by Beasley [6] lists a

number of 0-1 MKP benchmark instances, which are generated based on methods proposed

by Fréville and Plateau [22], Chu and Beasley [12], and Osorio et al. [55]. As suggested

by these studies, the two factors that influence the hardness of 0-1 MKP the most are the

correlation between objective and constraint coefficients, and the tightness of constraints.

The tightness of constraints is measured similarly as for the 0-1 KP by a real number α,

where bi = α
∑n

j=1 aij for all i = 1, ...,m. Since all variables are binary, instances with

α ≥ 1 have an optimal solution xj = 1 for j = 1, ..., n, thus only α < 1 is considered. The

objective-constraint correlation, however, is more complicated to define, since the constraint

coefficients of each variable are a vector. A common way to capture the correlation is to

control the objective coefficients by cj =
∑m

i=1 aij/m+K ∗ u, where u is a random number

between zero and one and K is fixed. For small K, the objective and constraint coefficients

are strongly correlated, and when K increases, the correlation becomes weaker.

Since the 0-1 MKP and MKP share similar constraint structures and are only different

in types of variables, the factors impacting the hardness of 0-1 MKP have a similar impact

on MKP, and the strategies used to generate 0-1 MKP instances can also be generalized

to create MKP instances. We use two parameters to control the constraint tightness and

67

objective-constraint correlation respectively, and study their impact on MKP. For consis-

tency, we use the minimization formulation for MKP, which can be stated as:

min
n∑
j=1

cjxj

s.t.
n∑
j=1

aijxj ≥ bi, i = 1, ...,m

x ∈ Zn+,

(69)

and create a testbed composed of instances with different levels of constraint tightness and

objective-constraint correlation. All tests in this chapter are done with CPLEX 12.2 with

default setting on Linux machines with a 2.27GHz processor and 6 GB of memory.

4.2 Instance generation and computational experiments

Let us denote the number of unbounded integer variables by n, and the number of constraints

by m. Since for the remainder of the thesis, our goal is to solve hard MIP problems by

improving lower bounds with relaxation algorithms, we focus on instances with large sizes,

especially those with a large number of constraints. Therefore, we choose n ∈ {50, 100}

and m ∈ {100, 500, 1000}. The constraint coefficients aij are randomly generated from the

uniform distribution U(0, 1000), for i = 1, ...,m and j = 1, ..., n.

Let K ≥ 0 be the parameter that controls the correlation between objective coefficients

and constraint coefficients. The objective coefficients are generated by cj =
∑m

i=1 aij/m +

K ∗ u, where u is a random number between zero and one. When K = 0, cj is only a

function of the constraint coefficients in column j, for all j. Thus the objective function

and the constraints are strongly correlated. As K increases, the correlation deteriorates.

Let α ≥ 0 be the tightness parameter controlling the tightness of all constraints. The

right-hand side of the constraints are generated by bi = α
∑n

j=1 aij for i = 1, ...,m. A

large α indicates that the constraints are tight, while a small α means the constraints

are loose. Note that we use the same tightness parameter on all constraints. The main

reason is that when the constraints have different levels of tightness, tight constraints are

needed to define the convex hull of the feasible region and loose constraints are likely

to be “redundant”, that is, a feasible solution satisfying the tight constraints is likely to

68

satisfy the loose constraints. In such case, the difficulty of solving the instances may be

reduced. Therefore, we use a single tightness parameter to enforce a similar tightness on

all constraints, thus no constraints are considered “redundant” in the problem generally.

Since the variables are unbounded, α can be arbitrarily large, but we find that instances

with α > 1 are often easy to solve and not of computational interest. Therefore, we choose

values for K ∈ {0, 100, 500, 1000} and α ∈ {0.25, 0.5, 0.75, 1}, which are sufficiently wide

ranges for our computational experiments.

For each combination of n,m,α, and K, we generate a group of 10 instances. To test

the impact of α on problem hardness, for a fixed combination of n,m, and K, we use the

same constraint matrices and objective functions, and only vary α to change the right-hand

sides of the constraints. Similarly, to test the impact of K, for a fixed combination of n,m,

and α, we use the same constraints and only modify the objective functions by varying

K. Thus, for each combination of n and m, there are 10 randomly generated constraint

matrices in total. Therefore, our initial test set is composed of 2 ∗ 3 ∗ 4 ∗ 4 ∗ 10 = 960 total

instances in 96 groups, where n ∈ {50, 100},m ∈ {100, 500, 1000},K ∈ {0, 100, 500, 1000}

and α ∈ {0.25, 0.5, 0.75, 1}.

The level of difficulty for solving the instances can be characterized using relative gaps,

CPU processing time, and number of nodes that have been processed in the branch-and-

cut algorithm. The relative gap is defined by |UB − LB|/(LB + e−6), where UB is an

upper bound of the optimal objective value obtained by using the best feasible solution

found, and LB is the best lower bound of the objective value we have obtained. We use

two stopping criteria for the branch-and-cut algorithm. The algorithm is terminated either

when the relative gap is less than 0.1%, in which case we denote the instance as solved to

“optimality”, or when the algorithm has processed 10,000,000 nodes, which implies that

the instance is very hard to solve. We present for each group the average relative gap (A.

Gap) and range of gaps (GR) at the root node. The average is taken over the 10 instances

in the group, and the range gives the difference between the maximum and minimum of

the relative gaps. We show the number of instances that are solved to optimality (#). In

addition, for instances that are solved to optimality, we show the average number of nodes

69

Table 1: Instances with n = 50,m = 100

Instance Root Node Optimality Node 10,000,000
α K A.Gap GR # Node(k) A. Time A. Gap GR A. Time TR NN(k)

0.25 0 16.74% 14%-19% 0 - - 2.67% 1.9%-3.8% 3008 2.8-3.3 9960
100 13.84% 12%-17% 2 5534 1351 1.44% 0.6%-2.3% 2607 2.4-3.0 9949
500 9.12% 7%-11% 10 99 18 - - - - -
1000 7.85% 5%-10% 10 22 4 - - - - -

0.5 0 9.58% 7%-13% 0 - - 2.35% 1.9%-2.6% 3708 3.5-4.0 9826
100 7.70% 6%-9% 0 - - 1.49% 1.0%-1.9% 3461 3.2-3.7 9841
500 4.41% 2%-6% 10 649 110 - - - - -
1000 3.72% 3%-5% 10 95 14 - - - - -

0.75 0 6.68% 5%-8% 0 - - 1.95% 1.4%-2.2% 3774 3.6-4.0 9768
100 5.93% 4%-8% 0 - - 1.59% 1.4%-1.8% 3609 3.4-3.9 9827
500 3.21% 2%-4% 10 1763 299 - - - - -
1000 2.54% 1%-4% 10 154 25 - - - - -

1 0 0% 0% 10 0 0 - - - - -
100 0% 0% 10 0 0 - - - - -
500 2.19% 1%-3% 10 3509 592 - - - - -
1000 1.84% 1%-3% 10 312 43 - - - - -

(in thousands) that are processed in the branch-and-cut tree (Nodes), and the average CPU

time (in seconds) that are used by CPLEX to solve the instances (Time). For instances

that are not solved to optimality, we present the results at node 10,000,000. Specifically, we

show the average relative gap (A. Gap), the range of relative gaps at the node (GR), the

average CPU time for processing 10,000,000 nodes (A. Time), and the range of CPU time

(in thousand seconds) for CPLEX to terminate (TR). To see the progress of the branch-and-

cut algorithm over time, we also give the average number of nodes (in thousands) processed

when the relative gap at node 10,000,000 is first achieved (NN). We mark a group with ∗

if it contains instances not solved due to the memory limit. Tables 1 through 6 present the

results for groups of instances with different sizes.

The results show that as the number of variables increases, the relative gaps at the

root node and node 10,000,000 increase. Generally, the number of nodes that are used to

first achieve the relative gaps at node 10,000,000 are smaller for n = 100 than n = 50,

which implies that the instances with more variables are harder to solve. As the number

of constraints increases, although the root node gap decreases, the relative gaps at node

10,000,000 increase and the time used for processing 10,000,000 nodes also increases, which

indicate that the instances with more constraints are harder to solve. The time used by the

branch-and-bound algorithm is consistent for instances within one group, and increasing

problem sizes obviously increases the average solving time. In addition, as α increases,

70

Table 2: Instances with n = 50,m = 500

Instance Root Node Optimality Node 10,000,000
α K A.Gap GR # Node(k) A. Time A. Gap GR A. Time TR NN(k)

0.25 0 24.69% 24%-26% 0 - - 5.88% 5.5%-6.1% 15447 14-17 9940
100 22.30% 19%-26% 0 - - 3.55% 2.7%-4.1% 15242 14-17 9947
500 11.34% 9%-14% 10 406 356 - - - - -
1000 8.49% 6%-12% 10 30 22 - - - - -

0.5 0 14.12% 12%-16% 0 - - 4.86% 4.6%-5.0% 16224 15-18 9895
100 12.89% 11%-15% 0 - - 3.32% 2.8%-3.7% 15425 14-16 9864
500 5.98% 4%-8% 10 2731 2420 - - - - -
1000 4.93% 3%-6% 10 262 166 - - - - -

0.75 0 9.59% 8%-11% 0 - - 2.42% 2.3%-2.6% 16484 16-17 9853
100 8.66% 7%-10% 0 - - 1.73% 1.5%-2.0% 16024 14-17 9811
500 4.08% 3%-6% 3 3599 3289 0.33% 0.1%-0.7% 8907 8-11 9867
1000 3.15% 2%-5% 10 638 395 - - - - -

1 0 0% 0% 10 0 0 - - - - -
100 0% 0% 10 0 0 - - - - -
500 2.93% 2%-4% 1 2766 1865 0.42% 0.3%-0.7% 9400 8-11 9708
1000 2.23% 1%-3% 9 527 309 0.24% 0.24% 6214 6.2 9768

Table 3: Instances with n = 50,m = 1000

Instance Root Node Optimality Node 10,000,000
α K A.Gap GR # Node(k) A. Time A. Gap GR A. Time TR NN(k)

0.25 0 27.37% 25%-30% 0 - - 9.33% 8.9%-9.6% 33239 28-45 9936
100 25.53% 23%-28% 0 - - 6.37% 5.8%-6.9% 37471 31-58 9953
500 14.28% 12%-17% 10 388 942 - - - - -
1000 9.86% 8%-12% 10 33 53 - - - - -

0.5 0 15.91% 15%-17% 0 - - 5.08% 4.3%-7.0% 33914 31-37 9915
100 14.46% 13%-16% 0 - - 3.88% 3.4%-4.8% 31415 30-34 9915
500 6.98% 6%-9% 6 2525 5475 0.70% 0.1%-1.4% 25009 20-30 5475
1000 4.80% 2%-7% 10 313 407 - - - - -

0.75 0 10.21% 9%-11% 0 - - 1.80% 1.7%-1.9% 40850 33-52 9811
100 9.28% 8%-10% 0 - - 1.06% 0.6%-1.2% 35711 31-48 9854
500 4.73% 3%-7% 1 6677 13341 0.53% 0.1%-1.5% 25029 19-30 9862
1000 3.15% 2%-4% 10 1103 1829 - - - - -

1 0 0% - 10 0 0 - - - - -
100 0% - 10 0 0 - - - - -
500 3.18% 0%-5% 5 1698 4235 0.40% 0.3%-0.5% 27564 22-31 9724
1000 2.23% 1%-3% 10 1257 2080 - - - - -

Table 4: Instances with n = 100,m = 100

Instance Root Node Optimality Node 10,000,000
α K A.Gap GR # Node(k) A. Time A. Gap GR A. Time TR NN(k)

0.25 0 9.72% 9%-11% 0 - - 4.79% 4.4%-5.0% 10308 9-11 9830
100 8.08% 7%-10% 0 - - 3.56% 3.1%-4.0% 8785 8-10 9783
500 4.96% 4%-6% 5 3303 877 0.49% 0.1%-0.8% 2805 2-4 9878
1000 3.90% 2%-6% 10 539 137 - - - - -

0.5 0 5.67% 4%-8% 0 - - 3.08% 2.8%-3.3% 9723 9-10 9633
100 4.77% 4%-6% 0 - - 2.30% 2.0%-2.7% 8734 8-10 9486
500 2.77% 1%-4% 1 9752 2021 0.59% 0.4%-0.8% 2999 2-4 9560
1000 1.96% 1%-3% 10 2734 639 - - - - -

0.75 0 3.90% 3%-5% 0 - - 2.23% 2.1%-2.4% 9681 9-10 8771
100 3.11% 2%-5% 0 - - 1.62% 1.4%-1.9% 8639 8-10 8919
500 1.71% 1%-3% 0 - - 0.41% 0.1%-0.5% 2879 2-4 9389
1000 1.41% 0.8%-3% 9 2272 544 0.22% - 2841 - 9193

1 0 0% 0% 10 0 0 - - - - -
100 2.15% 1%-3% 0 - - 1.28% 1.1%-1.4% 8343 7-9 8429
500 1.41% 1%-2% 0 - - 0.32% 0.1%-0.5% 2791 2-4 9231
1000 1.05% 0.6%-2% 6 3975 849 0.16% 0.1%-0.3% 2777 2-3 9115

71

Table 5: Instances with n = 100,m = 500

Instance Root Node Optimality Node 10,000,000
α K A.Gap GR # Node(k) A. Time A. Gap GR A. Time TR NN(k)

0.25 0 15.92% 15%-17% 0 - - 7.76% 7.5%-8.1% 62679 59-68 9840
100 12.49% 11%-15% 0 - - 6.05% 5.4%-6.9% 60580 56-65 9836
500 6.61% 5%-9% 0 - - 1.21% 0.5%-2.0% 18100 12-24 9859
1000 5.29% 4%-7% 10 3160 2996 - - - - -

0.5 0 10.36% 9%-13% 0 - - 5.15% 4.6%-5.4% 58729 54-62 9800
100 7.60% 6%-10% 0 - - 3.51% 3.1%-4.1% 57085 54-64 9485
500 3.61% 2%-5% 0 - - 0.98% 0.5%-1.7% 18766 14-24 9646
1000 2.59% 1%-4% 3 6634 6102 0.3% 0.1%-0.4% 11529 9-16 9770

0.75 0 6.68% 5%-8% 0 - - 2.86% 2.8%-2.9% 60883 58-63 9646
100 5.42% 4%-7% 0 - - 2.47% 2.2%-2.7% 57207 52-61 9401
500 2.39% 1%-4% 0 - - 0.79% 0.6%-1.2% 19171 15-27 9252
1000 1.79% 1%-3% 0 - - 0.31% 0.1%-0.5% 11242 7-16 9021

1 0 0% - 10 0 0 - - - - -
100 0% - 10 0 0 - - - - -
500 1.72% 1%-3% 0 - - 0.62% 0.3%-0.8% 18249 15-23 8842
1000 1.51% 1%-2% 0 - - 0.28% 0.1%-0.4% 13598 8-17 8509

Table 6: Instances with n = 100,m = 1000

Instance Root Node Optimality Node 10,000,000
α K A.Gap GR # Node(k) A. Time A. Gap GR A. Time TR NN(k)

0.25 0 18.82% 18%-21% 0 - - 9.45% 9.1%-9.7% 129921 123-133 9834
100 16.10% 14%-18% 0 - - 7.20% 6.5%-7.8% 139650 131-148 9851
500 7.36% 5%-9% 0 - - 1.63% 1.2%-2.2% 56052 50-68 9856
1000 6.08% 5%-7% 10 5105 12309 - - - - -

0.5 0* 11.63% 10%-14% 0 - - 6.25% 5.4%-6.5% 118615 110-128 9777
100* 9.13% 8%-11% 0 - - 4.52% 4.1%-5.0% 120386 115-127 9720
500 3.89% 3%-6% 0 - - 1.21% 0.8%-1.7% 53714 45-64 9586
1000 2.95% 1%-5% 2 4263 8936 0.63% 0.3%-0.8% 27510 21-31 9637

0.75 0 7.28% 6%-9% 0 - - 3.47% 3.3%-3.6% 130580 116-139 9589
100 6.42% 5%-7% 0 - - 2.65% 2.4%-2.8% 123733 121-128 9556
500 2.52% 1%-4% 0 - - 0.94% 0.7%-1.1% 55417 42-68 9418
1000 1.96% 1%-3% 1 6546 18049 0.47% 0.2%-0.7% 29522 21-52 9510

1 0 0% - 10 0 0 - - - - -
100 0% - 10 0 0 - - - - -
500 1.97% 1%-3% 0 - - 0.76% 0.6%-1.0% 50745 45-58 9200
1000 1.56% 1%-2% 0 - - 0.35% 0.1%-0.5% 33428 21-51 9334

72

generally, the gaps at the root node and node 10,000,000 show a decreasing trend. When

K increases, many instances show a trend of decreasing difficulty to solve; but for a small

number of instances, increasing K may also increase the difficulty to solve. Next, we analyze

the impact of varying α and K on the instance hardness in detail.

When K increases, since the second term in cj =
∑m

i=1 aij/m+K∗u weighs more for all j

(we use the same u when varyingK), the relative difference between the objective coefficients

of all columns becomes smaller, which means that the contributions to the objective value

of the columns are similar. Therefore, columns with larger constraint coefficients should

be used more often in a good feasible solution, and thus are more “important”. On the

other hand, for any feasible solution that uses the “important” columns, the constraints

with small coefficients for these “important” columns become tight, thus more important

in defining the lower bounds. Therefore, for larger K, it is easier to identify “important”

columns and constraints to obtain good upper bounds and lower bounds, and the instances

generally become easier to solve. One exception is when α = 1, where instances with small

K are often solved to optimality instantly. This is because for small K, most columns have

similar importance, thus xj = 1 for all j can be a good feasible solution.

To see the impact of the tightness ratio α, we use two types of measurements for the

hardness of instances. For K = 0 and 100, most of the instances are not solved to optimality

after processing 10,000,000 nodes, thus we use the average relative gaps at node 10,000,000

to indicate the hardness of instances as shown in Figure 18. For a small number of instances

that are solved to optimality, we use 0.1% to be the gap at node 10,000,000. For K = 500

and 1000, most of the instances are solved to optimality. Therefore, the average number of

nodes that are processed in the branch-and-bound tree to reach optimality can be used to

measure the problem hardness as shown in Figure 19. For instances that are not solved to

optimality, we use 10,000,000 to be the number of nodes used.

The impact of α is obviously opposite for small and large K. For instances with K = 0

and 100, increasing α leads to easier instances. But for K = 500 and 1000, increasing α

yields more difficulty in solving the instances. In addition, for K = 0 and 100, the instances

with more constraints generally have larger relative gaps at node 10,000,000, which shows

73

(a) K=0

(b) K=100

Figure 18: Relative Gap at Node 10,000,000

74

(a) K=500

(b) K=1000

Figure 19: Number of Nodes Processed at optimality

75

that the number of constraints has a greater impact on the problem hardness than the

number of variables. But for K = 500 and 1000, it requests a larger number of nodes to

solve the instances with more variables to optimality, thus the number of variables has a

greater impact than the number of constraints.

After examining the best feasible solutions found, we give the following explanation.

Note that for instances with K = 0 and 100, most of the variables have value zero or one in

the solution, which means there are no columns that are much more important than other

columns. Therefore, when the right-hand side increases, we have more options in choosing

columns to use in the solution, which makes the instances easier to solve. However, for

K = 500 and 1000, the solutions have a much smaller number of positive components,

which correspond to the “important” columns. As α increases, the scales of the “important”

components in a good solution increases, thus the problem is harder to solve.

We point out that the impact of α and K on the hardness of the instances depend on the

size of the instances. For example, when K = 500, 86 out of 120 instances with n = 50 are

solved to optimality, but only 6 out of 120 instances with n = 100 are solved to optimality.

When α = 1, 105 out of 120 instances with n = 50 are solved to optimality, but only 56 out

of the 120 instances with n = 100 are solved to optimality. Therefore, the impact of α and

K should be considered as relative to the chosen sizes of the instances.

At last, we select a testbed of instances that will be used for the computational experi-

ments in the remainder of the thesis from the 960 instances. Since varying K and α gives

similar trends in results for instances with the chosen sizes, we choose those with a fixed size

of n = 50 and m = 500. Furthermore, since for small K, smaller α leads to harder instances

and for large K, larger α yields to harder problems, we select two sets of instances, which

feature different characteristics in constraint tightness and objective-constraint correlation.

• Set I : The set has 10 instances with n = 50, m = 500, K = 0, and α = 0.25. This

set represents the instances with loose constraints, and the objective and constraint

coefficients are strongly correlated.

• Set II : The set has 10 instances with n = 50, m = 500, K = 500, and α = 1. This

76

set represents the instances with tight constraints, and the objective and constraint

coefficients are less correlated.

Set I contains instances where the “importance” of all columns is similar, and thus the

problem hardness is caused by choosing the right columns to use in the solution. Set II

contains instances where some columns are more important than others, thus the problem

hardness is caused by the large right-hand side of the constraints. Therefore, the two sets

of instances characterize different causes of hardness for MKP, and we use both sets for the

computational experiments in the remainder of the thesis.

77

CHAPTER V

RELAXATION ALGORITHMS

5.1 Introduction

In this chapter, we study using relaxation algorithms to obtain lower bounds for the multi-

dimensional knapsack problem (MKP), which can be stated as:

z(b) = min cx

s.t. A1x ≥ b1

A2x ≥ b2

x ≥ 0, integer,

(70)

with A1 ∈ Z+
m1×n, A2 ∈ Z+

m2×n, m1 +m2 = m, b ∈ Z+
m and c ∈ R+

n .

We consider relaxing constraints A2x ≥ b2. We call the relaxed constraints inactive and

the remaining constraints active.

Generally, more active constraints lead to better lower bounds obtained from a relax-

ation. However, since the convex hull of the feasible solutions to problem (70) is unknown,

the number of active constraints that are needed to obtain good lower bounds is also un-

known. In addition, there is a tradeoff between the number of active constraints and the

ease in solving the relaxation, as a large number of active constraints may lead to relaxations

that are harder to solve, while a small number may give poor lower bounds. Therefore, our

first goal is to understand the impact of the number of active constraints on lower bounds

obtained from relaxations.

At the same time, the lower bounds from relaxations with different active constraints

may vary drastically for a fixed m1. Some relaxation algorithms rely on choosing active

constraints that lead to easy to solve relaxations. Alternatively, active constraints can be

chosen to better approximate the convex hull of the feasible region to obtain good lower

bounds. For MKP, since all the constraints are knapsack constraints, it is generally hard to

choose active constraints that lead to fast solutions, we use linear relaxation information to

78

select active constraints. This study helps us to understand the benefit of using relaxations

to obtain lower bounds when a large number of constraints exist.

Given the set of active constraints, problem relaxation can be achieved by simply drop-

ping, dualizing, or aggregating inactive constraints, which are called constraint, lagrangian

and surrogate relaxations, respectively. Constraint relaxation can be stated as:

zCR = min cx

s.t. A1x ≥ b1

x ∈ Z+
n .

(71)

Thus, the constraint relaxation (71) is also an MKP with m1 constraints.

The lagrangian relaxation problem can be formulated as:

zLD(λ) = min cx+ λT (b2 −A2x)

s.t. A1x ≥ b1

x ∈ Z+
n ,

(72)

where λ ∈ R+
m2

are lagrangian multipliers. Since zLD(λ) is a valid lower bound of z(b) for

all λ ∈ R+
m2

, lagrangian relaxation algorithms iteratively solve problem (72) and search for

a λ ∈ R+
m2

that maximizes zLD(λ). Let {xk} be the set of solutions satisfying {x ∈ Z+
n :

A1x ≥ b1}, then the lagrangian relaxation bound can be stated as

zLD(λ) = min
k
cxk + λT (b2 −A2x

k). (73)

Therefore, zLD(λ) is a piecewise linear concave function of λ. To determine the optimal λ∗,

a subgradient method which rapidly converges to λ∗ can be used. Given λ ∈ R+
m2

and an

optimal solution x∗ to (72), a subgradient method iteratively replaces λ with λ+t(b2−A2x
∗),

where t ∈ R+ is a positive step size usually defined as

t =
α(UB − LB)

||A2x− b2||

with ||s|| = (
∑

i s
2
i)

1/2 being the norm of vector s. The scalar α is initialized by 2 and

halved when the lower bounds are not improved in a number of consecutive iterations. UB

is an upper bound on z(b) which can be obtained with a primal heuristic algorithm, and

79

LB is the lower bound obtained in the last iteration. We refer to Fisher (2004) [20] for an

in-depth discussion of the lagrangian relaxation method.

Surrogate relaxation of (70) can be formulated as

zSD(λ) = min cx

s.t. A1x ≥ b1

λTA2x ≥ λT b2

x ∈ Z+
n ,

(74)

where λ ∈ R+
m2

are surrogate multipliers, and λTA2x ≥ λT b2 is the surrogate constraint.

Since any feasible solution to (70) is also feasible to (74), zSD(λ) is a valid lower bound of

z(b) for all λ ∈ R+
m2

. Surrogate relaxation algorithms search for λ ∈ R+
m2

that maximize

zSD(λ) and iteratively solve (74). Subgradient methods can also be used to search for

good surrogate multipliers. In this thesis, we use a subgradient algorithm that is suggested

in Galvao et al. [26]. The surrogate multipliers are initialized with the normalized dual

solution π/||π||, where π is the optimal LP dual solution to (70), and updated by

λj = max{0, λj − tsj}, (75)

where sj is initialized by 0 and updated by sj = lj + 0.5sj , and lj is the slack of constraint

j for the best feasible solution obtained in the last iteration. The step size t is determined

by t = α(UB − LB)/||s||, where LB is the lower bound obtained in the last iteration and

UB is the best upper bound obtained so far. α is initialized with 2, and if the lower bounds

obtained in the relaxation problems are not improved in a number of consecutive iterations,

α is halved. For more discussion of surrogate relaxation algorithms, see Karwan and Rardin

[41], and Freville and Plateau [23].

The lower bounds obtained with different relaxation algorithms may vary, depending

on the structure of the problem. In this chapter, we compare the lower bounds obtained

from constraint, lagrangian and surrogate relaxations of MKP. In addition, we consider the

lazy relaxation, which is used mainly computationally with a Branch and Bound (B&B)

algorithm. The set of active constraints in a lazy relaxation may be extended during B&B,

80

while the inactive constraints are treated as lazy constraints. A lazy constraint is relaxed

(as in constraint relaxation) until found violated by a solution to the relaxation, it is then

added back to the relaxation problem as a cutting plane in B&B. Because adding lazy

constraints back to the problem can be computationally expensive, the lazy constraints

are usually chosen because they are the ones less likely to be violated, thus they can be

applied lazily—that is, only when needed. When using CPLEX 12.2 as the IP solver, the

lazy constraints are checked each time an integer solution is found. Therefore, distinct from

other relaxations, the feasible solutions to a lazy relaxation are also feasible to the original

problem. In addition, since lazy constraints may be added back to the problem as cutting

planes, the lazy relaxation may eventually be as tight as the original problem.

Note that the constraint, lagrangian and surrogate relaxations relax a fixed set of con-

straints, which can be a barrier for obtaining good lower bounds if the active constraints

are not chosen properly. On the other hand, the lazy relaxation provides the flexibility of

modifying active constraints during the algorithm. However, since the lazy relaxation algo-

rithm monotonically increases the number of active constraints, the size of the relaxation

problem may increase significantly. Therefore, we consider a new heuristic algorithm that

solves relaxation problems with various active constraints to obtain lower bounds.

This idea is analogous to the neighborhood search based heuristic algorithms, where

neighborhoods of feasible solutions are explored by fixing some variables to obtain better

solutions, while our algorithm relaxes a number of constraints and solves relaxations to

obtain lower bounds. Since fixing variables in a primal problem corresponds to relaxing

constraints in its dual problem, we call the algorithm of heuristically relaxing constraints

a dual heuristic algorithm. The dual heuristic algorithm chooses active constraints using

information obtained from linear relaxations of the B&B nodes, thus relaxations with dif-

ferent sets of active constraints can be explored. As far as we know, this is the first heuristic

algorithm that uses a neighborhood search idea in the dual space. In addition, we study

adjusting parameters to control the implementation of the dual heuristic algorithms to

improve lower bounds.

For computational experiments, four sets of instances generated in Chapter 4 are used,

81

with each set indicated by n m K α, where n is the number of variables, m is the number

of constraints, α indicates the tightness of constraints, and K represents the correlation

between the objective function and the constraint matrix. Specifically, we use 10 instances

in each set of 50 500 0 0.25, 50 500 500 0, 100 500 0 0.25, and 100 500 500 0. All tests

are computed with CPLEX 12.2 on Linux machines with 2.27GHz processor and 6 GB of

memory.

The rest of the chapter is organized as follows. In section 5.1.1, we study strategies for

selecting active constraints using constraint relaxation. In section 5.1.2, we compare lower

bounds obtained from various relaxation algorithms on MKP. In section 5.1.3, we develop a

dual heuristic algorithm that solves relaxations in B&B to obtain lower bounds. In section

5.1.4, we study strategies that dynamically control the dual heuristic algorithm to achieve

better performance.

5.1.1 Choosing Active Constraints

We first study methods to choose active constraints to produce good lower bounds for MKP

using constraint relaxation.

Information from linear relaxation can be used to choose active constraints. Since an op-

timal linear dual solution can be interpreted as the marginal price of constraints, constraints

with larger dual values are more important for solving the LP. In addition, constraints with

small positive slack values are tight constraints at an optimal linear solution, thus are also

important for solving the LP. Due to weak duality, the dual values of constraints with posi-

tive slack values are zero. Therefore, we can choose active constraints first in non-increasing

order of the dual values that are nonzero, and then in non-decreasing order of the slack val-

ues when the dual solutions are zero. The lower bounds obtained from relaxations with

active constraints that are chosen by this order are indicated by “LO” through Tables 7 to

10. In each table, we report the results for 10 instances in column 1 to 10 and the average

of results in column “Ave”. For comparison, we obtain lower bounds from ten different

relaxations using randomly chosen active constraints of the same size, and report the min-

imum, maximum, and average of the lower bounds obtained, indicated by “min”, “max”,

82

Table 7: Choosing active constraints: Lower bounds of 50 500 0 0.25 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
LP 6246 6211 6223 6219 6212 6195 6260 6286 6231 6255 6234

UB 7931 7879 7912 7894 7861 7878 7943 7972 7900 7933 7910
40 min 6390 6341 6357 6399 6335 6331 6439 6379 6384 6395 6375

max 6497 6435 6530 6470 6487 6458 6562 6526 6493 6497 6496
ave 6436 6394 6413 6433 6393 6400 6488 6461 6437 6459 6432
LO 6697 6661 6679 6672 6658 6650 6682 6773 6694 6705 6687

80 min 6824 6852 6867 6832 6824 6813 6876 6923 6878 6899 6859
max 6942 6919 6937 6904 6938 6937 6974 6990 6931 6961 6943
ave 6911 6882 6903 6880 6885 6858 6928 6966 6904 6935 6906
LO 6954 6910 6909 6914 6892 6857 6939 6977 6926 6931 6921

100 min 6923 6914 6924 6898 6906 6893 6959 6978 6874 6957 6923
max 7025 6988 7001 7035 7004 6961 7041 7053 7024 7045 7018
ave 6963 6959 6955 6957 6954 6932 6995 7020 6979 7002 6972
LO 7061 6905 6910 6892 6940 6933 7027 7030 6938 7006 6964

200 min 7154 7107 7124 7117 7109 7095 7166 7180 7121 7167 7134
max 7182 7132 7160 7146 7149 7120 7192 7210 7153 7196 7164
ave 7172 7123 7141 7135 7130 7106 7177 7199 7142 7176 7151
LO 7165 7125 7151 7130 7130 7089 7194 7203 7147 7191 7153

300 min 7227 7188 7195 7194 7186 7176 7233 7264 7203 7239 7211
max 7246 7206 7230 7212 7212 7195 7256 7288 7225 7268 7234
ave 7238 7199 7211 7205 7198 7184 7244 7278 7216 7250 7223
LO 7227 7193 7215 7204 7202 7171 7251 7288 7206 7239 7220

400 min 7304 7259 7276 7258 7254 7241 7303 7335 7279 7308 7282
max 7322 7275 7291 7282 7274 7257 7316 7349 7291 7326 7298
ave 7311 7268 7283 7273 7264 7249 7311 7345 7287 7316 7291
LO 7305 7268 7277 7276 7267 7243 7319 7349 7275 7316 7290

All 7353 7318 7332 7321 7309 7294 7355 7386 7323 7357 7335

and “ave”.

In order to understand the impact of the number of active constraints, we report the

lower bounds obtained within 1 hour and vary the number of active constraints (#) from 40

to 400. In addition, we present the lower bounds obtained by solving the original problems

in row ”All”, that is, all constraints are active. Furthermore, we report the linear relaxation

bounds indicated by “LP” and the best known upper bounds UB of z(b) obtained within

10 hours using CPLEX to solve the original instances.

The results show that with only 40 active constraints, the lower bounds obtained from

relaxations using “LO” order are usually better than the LP bounds. For instances with

low correlation between the objective function and constraints, that is, K = 500, the lower

bounds with “LO” order are always significantly better than the random bounds. For

K = 0, the lower bounds with “LO” order are often better than or close to the maximum

of lower bounds for the random case, which implies that the constraints chosen by “LO”

order are relative more important constraints.

For all instances, the differences between the maximum and minimum lower bounds

83

Table 8: Choosing active constraints: Lower bounds of 50 500 500 1 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
LP 36,412 35,786 34,635 36,588 35,620 34,812 36,072 36,453 37,824 35,577 35,978

UB 37,085 36,575 35,416 37,407 36,336 35,579 36,840 37,213 38,572 36,168 36,719
40 min 29,799 30,459 28,682 30,698 28,731 29,614 30,049 30,500 32,127 30,123 30,079

max 33,145 32,373 30,838 32,906 31,877 31,774 32,737 32,716 33,966 31,299 32,363
ave 31,302 31,219 30,052 32,028 30,908 30,508 31,529 31,864 32,699 30,853 31,297
LO 36,817 36,151 34,944 36,866 35,935 35,045 36,453 36,963 38,137 36,052 36,336

80 min 32,180 32,683 31,152 33,177 32,258 31,164 32,763 33,246 33,133 31,722 32,348
max 34,049 33,818 33,180 34,646 34,067 33,064 33,959 34,846 35,494 33,535 34,066
ave 33,333 33,322 32,254 34,143 32,999 32,434 33,494 33,867 34,855 32,633 33,334
LO 36,927 36,361 35,253 37,128 36,117 35,268 36,672 37,079 38,362 36,165 36,533

100 min 32,838 33,210 31,917 33,678 32,236 31,858 32,828 33,200 35,066 32,123 32,896
max 35,117 34,992 33,300 35,499 34,214 33,257 34,712 34,726 36,151 33,884 34,585
ave 34,103 33,914 32,520 34,477 33,372 32,661 33,846 34,022 35,690 33,130 33,774
LO 36,962 36,411 35,292 37,159 36,171 35,318 36,705 37,110 38,438 36,165 36,573

200 min 34,947 34,968 33,681 34,982 33,928 33,514 35,099 34,715 36,202 33,245 34,529
max 35,921 35,404 34,527 36,324 35,156 34,650 35,549 36,134 37,236 35,269 35,617
ave 35,406 35,175 33,980 35,790 34,671 34,221 35,322 35,649 36,676 34,477 35,137
LO 37,017 36,451 35,276 37,174 36,182 35,340 36,707 37,075 38,424 36,165 36,581

300 min 36,023 35,648 34,333 36,207 35,142 34,431 35,531 35,842 37,254 34,739 35,516
max 36,481 36,071 34,735 36,843 35,811 34,888 36,234 36,635 37,963 35,792 36,145
ave 36,311 35,872 34,611 36,437 35,530 34,675 35,869 36,417 37,620 35,332 35,868
LO 36,897 36,422 35,242 37,157 36,150 35,329 36,665 37,042 38,399 36,165 36,547

400 min 36,495 35,968 34,804 36,590 35,566 34,774 36,296 36,571 37,861 35,524 36,045
max 36,742 36,321 35,094 37,055 35,950 35,210 36,538 36,941 38,293 36,129 36,427
ave 36,612 36,170 34,923 36,815 35,844 35,078 36,400 36,748 38,093 35,899 36,259
LO 36,877 36,403 35,217 37,142 36,143 35,310 36,660 37,029 38,392 36,165 36,534

All 36,882 36,388 35,207 37,130 36,120 35,293 36,650 37,013 38,365 36,132 36,518

Table 9: Choosing active constraints: Lower bounds of 100 500 0 0.25 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
LP 12,445 12,476 12,448 12,466 12,475 12,495 12,480 12,485 12,481 12,463 12,472

UB 14,413 14,497 14,397 14,401 14,465 14,460 14,416 14,438 14,466 14,440 14,439
40 min 11,708 11,664 11,526 11,652 11,716 11,727 11,630 11,755 11,687 11,690 11,676

max 11,871 11,914 11,886 11,913 11,888 11,981 11,890 11,922 11,932 11,899 11,910
ave 11,799 11,809 11,730 11,751 11,810 11,829 11,766 11,824 11,823 11,813 11,796
LO 12,256 12,276 12,270 12,241 12,230 12,287 12,191 12,286 12,258 12,281 12,258

80 min 12,273 12,337 12,192 12,338 12,308 12,385 12,245 12,311 12,324 12,354 12,307
max 12,412 12,462 12,466 12,427 12,449 12,461 12,467 12,437 12,463 12,440 12,448
ave 12,350 12,389 12,326 12,374 12,381 12,417 12,359 12,392 12,390 12,398 12,378
LO 12,596 12,626 12,601 12,626 12,628 12,656 12,646 12,642 12,645 12,626 12,629

100 min 12,454 12,428 12,483 12,484 12,475 12,501 12,529 12,504 12,502 12,434 12,480
max 12,538 12,560 12,538 12,561 12,565 12,609 12,601 12,578 12,575 12,583 12,571
ave 12,497 12,510 12,509 12,528 12,535 12,556 12,554 12,545 12,540 12,507 12,529
LO 12,659 12,701 12,660 12,686 12,704 12,722 12,720 12,710 12,709 12,690 12,696

200 min 12,851 12,862 12,853 12,862 12,875 12,896 12,886 12,878 12,886 12,869 12,872
max 12,881 12,932 12,890 12,906 12,903 12,930 12,922 12,923 12,913 12,903 12,910
ave 12,869 12,897 12,869 12,885 12,891 12,918 12,900 12,906 12,901 12,888 12,893
LO 12,897 12,901 12,882 12,895 12,902 12,923 12,926 12,910 12,900 12,889 12,903

300 min 13,000 13,030 13,011 13,018 13,032 13,056 13,036 13,044 13,030 13,023 13,028
max 13,022 13,047 13,019 13,039 13,048 13,071 13,054 13,059 13,052 13,045 13,046
ave 13,013 13,039 13,015 13,032 13,040 13,062 13,044 13,050 13,041 13,035 13,038
LO 13,009 13,035 13,010 13,028 13,027 13,059 13,048 13,057 13,034 13,019 13,033

400 min 13,091 13,124 13,100 13,111 13,117 13,140 13,127 13,135 13,123 13,114 13,119
max 13,101 13,133 13,109 13,120 13,128 13,150 13,136 13,149 13,132 13,127 13,129
ave 13,095 13,126 13,103 13,116 13,124 13,146 13,132 13,139 13,126 13,120 13,123
LO 13,095 13,118 13,100 13,120 13,104 13,138 13,135 13,135 13,124 13,106 13,118

All 13,149 13,183 13,146 13,166 13,182 13,199 13,186 13,192 13,179 13,171 13,175

84

Table 10: Choosing active constraints: Lower bounds of 100 500 500 1 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
LP 67,239 67,178 69,164 66,777 68,340 71,377 66,713 67,885 65,541 65,278 67,549

UB 67,981 67,925 69,866 67,427 69,031 72,217 67,294 68,576 66,189 65,980 68,249
40 min 56,905 55,583 56,241 56,670 55,576 59,877 55,146 56,392 55,710 52,855 56,096

max 59,463 59,822 60,881 60,320 62,219 61,872 59,847 61,596 59,365 57,499 60,288
ave 57,876 57,556 58,430 58,233 58,357 60,939 57,588 58,816 57,223 55,742 58,076
LO 67,318 67,163 69,255 66,920 68,511 71,245 66,925 68,033 65,640 65,450 67,646

80 min 59,687 60,119 60,356 58,963 60,896 63,349 59,074 60,663 59,040 58,706 60,086
max 63,256 61,675 64,312 62,926 63,876 65,922 62,242 62,880 60,960 60,830 62,888
ave 61,097 61,126 62,241 61,067 62,322 64,536 61,368 61,925 60,093 59,767 61,555
LO 67,499 67,380 69,378 67,010 68,664 71,611 67,036 68,152 65,730 65,559 67,802

100 min 60,407 61,227 61,054 60,481 61,801 64,689 60,937 61,137 59,616 59,499 61,085
max 62,396 63,219 65,075 62,687 64,510 67,173 63,217 64,414 61,967 62,344 63,700
ave 61,414 62,138 62,998 61,946 63,229 65,824 61,973 63,056 60,999 60,595 62,418
LO 67,503 67,406 69,377 67,032 68,672 71,629 67,030 68,154 65,736 65,570 67,811

200 min 63,628 64,269 63,980 63,886 64,606 68,420 64,352 64,362 62,513 62,141 64,216
max 65,357 66,105 67,234 65,728 66,493 69,868 65,373 66,431 64,398 63,418 66,041
ave 64,389 64,929 65,623 64,561 65,598 69,108 64,797 65,179 63,477 62,869 65,053
LO 67,494 67,391 69,368 67,014 68,663 71,623 67,016 68,150 65,729 65,556 67,800

300 min 65,138 65,418 66,917 65,084 66,360 68,892 65,240 66,303 63,832 63,817 65,701
max 66,286 66,528 67,860 66,554 67,940 70,735 66,203 67,178 64,876 64,660 66,882
ave 65,846 65,979 67,379 65,689 67,129 69,965 65,883 66,793 64,311 64,392 66,337
LO 67,483 67,389 69,355 67,001 68,641 71,616 67,005 68,135 65,720 65,544 67,789

400 min 66,536 66,519 67,941 65,883 67,415 70,409 65,961 67,310 64,809 64,774 66,756
max 67,272 67,055 68,940 66,872 68,473 71,279 66,778 67,948 65,543 65,351 67,551
ave 66,956 66,819 68,571 66,560 68,046 70,804 66,335 67,593 65,136 65,034 67,186
LO 67,476 67,377 69,351 66,993 68,630 71,604 66,999 68,127 65,715 65,534 67,781

All 67,470 67,375 69,343 66,988 68,627 71,600 66,988 68,121 65,711 65,531 67,776

obtained with randomly chosen active constraints decrease when the number of active con-

straints increases, indicating that the choice of active constraints becomes less important

as the number of active constraints increases. At the same time, for K = 0, the minimum

lower bounds obtained with a larger number of active constraints are often greater than

the maximum lower bounds obtained with fewer active constraints, which shows that the

impact of the number of active constraints is stronger than the choice of active constraints.

In addition, for instances with K = 0, note that the lower bounds generally increase

when the number of active constraints increases. While for instances with K = 500, the

lower bounds first increase then decrease as the number of active constraints increases, which

indicates that further extending the set of active constraints does not help to improve the

lower bounds. This, of course, is a consequence of the time limit.

Furthermore, when K = 0, the solutions of the relaxation problems are always infeasible

for the original problems. On the other hand, for K = 500, the solutions to the relaxation

problems are often feasible for the original problem. This is because for instances with

85

K = 0, the LP solutions are highly degenerate, thus ordering constraints according to

slack values may not be an accurate indication of importance. However, for instances with

K = 500, the optimal LP solutions usually have a small number of positive components,

and the slack values vary drastically for constraints, thus the LP information is an accurate

indication of importance.

5.1.2 Comparing Lower Bounds of Relaxations

Next, we further examine the lower bounds obtained from constraint relaxation, surrogate

relaxation, lagrangian relaxation and lazy relaxation. As suggested in section 5.1.1, we

choose active constraints using “LO” order for all relaxations. We compare the lower bounds

obtained from various relaxations with the number of active constraints varying from 20

to 400. Since the results for instances with 50 variables and 100 variables are similar, we

use instances with 50 variables. Table 11 and 12 display the lower bounds computed in one

hour (we observe that the results are similar over a five-hour computational time).

Row “All” shows the lower bounds obtained from solving the original problems, that is,

all 500 constraints are active. We display the difference between the lower bounds obtained

from solving the relaxations and the bounds in row “All”. Therefore, a positive number

indicates that the lower bound is improved by using the relaxation. Row “NI” presents

the results from constraint relaxation. Furthermore, we consider three types of surrogate

relaxations. Row “AI” displays the lower bounds obtained from surrogate relaxation, where

all surrogate multipliers are fixed to 1, thus the surrogate constraint is formulated as:∑
j

m1+m2∑
i=m1+1

aijxj ≥
m1+m2∑
i=m1+1

bi. (76)

Row “SAI” shows the results of surrogate relaxation using a scaled surrogate constraint, that

is,
∑

jd
∑m1+m2

i=m1+1 aij/|m2|exj ≥ b
∑m1+m2

i=m1+1 bi/|m2|c. The surrogate constraints for “SAI”

are weaker than surrogate constraints for “AI”, but the size of the constraints are scaled

down, which may be advantageous. The row “SR” shows the results from a surrogate

relaxation algorithm that iterates with a subgradient method suggested in Galvao et al.

[26] as described in Section 5.1. For each fixed surrogate multiplier, the time limit for

solving the surrogate relaxation is 10 minutes. Row “LR” represents the results of the

86

lagrangian relaxation with the subgradient method as described in section 5.1. For each

fixed lagrangian multiplier, we use a time limit of 10 minutes for solving zLD(λ). Row

“Lazy” includes the results of lazy relaxations.

Since the solutions found in lazy relaxations are feasible to the original instances, we

also compare the upper bounds obtained in Table 13 and 14. Again, row “All” represents

the upper bounds obtained from solving the original instances, and the rest of the rows

display the difference between the upper bounds obtained from lazy relaxations and the

upper bounds in row “All”. Therefore, a negative number means that a better feasible

solution is found in the lazy relaxation.

For K = 0, except for the lazy relaxation, the lower bounds of all relaxations increase

when the number of active constraints increases. For instances with K = 500, the lower

bounds of all relaxations first increase then decrease when the number of active constraints

increases, which indicates again that for such instances, a large number of constraints are

not helpful in improving the lower bounds. The results confirm that using “LO” order to

indicate the importance of constraints is meaningful for instances with K = 500. However,

for instances with K = 0, because of the degeneracy of the optimal LP solution, the number

of active constraints seems to be more important for obtaining good lower bounds for all

relaxation algorithms.

For most instances, the lower bounds obtained from surrogate and lagrangian relaxations

with iterative updates on multipliers are often the smallest among all lower bounds, because

the number of iterations were limited. Since the success of both relaxation algorithms

depend on searching through a large number of multipliers, rapidly solving the relaxation

problems for each fixed multiplier is required. However, for MKP, the relaxation problem

with only 20 active constraints may still be hard to solve, which prevents the algorithms

from conducting a large number of iterations to find a good multiplier. By further reducing

the time limit for each iteration, we find that the lower bounds obtained are not any better.

Since with 100 active constraints, the number of iterations for all instances with lagrangian

relaxations is around 10, further increasing the time limit for each iteration will decrease

the number of iterations. Therefore, the lower bounds improvements obtained by increasing

87

Table 11: Lower bounds obtained from various relaxations: 50 500 0 0.25 instances
Instance 1 2 3 4 5 6 7 8 9 10 Ave

Active All 7353 7318 7332 7321 7309 7294 7355 7386 7323 7357 7335
20 NI -970 -963 -973 -932 -973 -951 -947 -946 -947 -954 -955

AI -970 -963 -973 -932 -973 -951 -947 -946 -947 -954 -955
SAI -970 -963 -973 -932 -973 -951 -947 -946 -947 -954 -955
SR -932 -921 -921 -917 -906 -908 -931 -900 -898 -912 -914
LR -970 -963 -956 -961 -953 -950 -961 -939 -945 -954 -955

Lazy -36 -35 -31 -30 -15 -17 -23 -11 -3 -11 -21
40 NI -651 -659 -657 -644 -653 -643 -672 -609 -624 -648 -646

AI -658 -654 -659 -642 -650 -644 -675 -613 -630 -650 -647
SAI -660 -656 -657 -644 -658 -644 -670 -615 -628 -653 -648
SR -747 -748 -752 -735 -741 -739 -759 -715 -722 -741 -739
LR -754 -751 -751 -743 -742 -738 -764 -718 -727 -744 -743

Lazy -12 -19 -16 -22 -15 -17 -16 -14 -20 -12 -16
80 NI -399 -408 -410 -407 -417 -437 -416 -409 -397 -426 -412

AI -399 -408 -380 -407 -417 -437 -416 -409 -397 -426 -409
SAI -399 -408 -407 -407 -417 -437 -416 -409 -397 -426 -412
SR -535 -525 -542 -515 -518 -540 -509 -536 -503 -554 -527
LR -529 -537 -504 -541 -540 -547 -547 -542 -515 -535 -533

Lazy -5 -19 -17 -13 -6 -4 -6 -7 -4 -4 -8
100 NI -292 -413 -420 -425 -369 -361 -328 -357 -384 -351 -370

AI -365 -419 -362 -356 -369 -361 -328 -334 -395 -351 -364
SAI -339 -413 -392 -356 -369 -361 -328 -355 -390 -351 -365
SR -485 -511 -456 -468 -475 -476 -446 -465 -489 -484 -475
LR -500 -505 -487 -468 -479 -488 -503 -466 -501 -507 -490

Lazy -14 -4 -15 -7 0 4 5 2 3 3 -2
200 NI -188 -192 -181 -188 -179 -215 -163 -187 -179 -167 -183

AI -187 -190 -182 -184 -175 -199 -161 -167 -180 -181 -180
SAI -194 -185 -175 -184 -181 -205 -161 -176 -175 -182 -181
SR -307 -306 -302 -299 -293 -321 -289 -297 -292 -291 -299
LR -325 -305 -317 -305 -300 -314 -287 -308 -298 -306 -306

Lazy -17 -11 -18 -19 -2 -11 -2 -2 0 -4 -8
300 NI -128 -126 -120 -116 -115 -126 -101 -100 -121 -120 -117

AI -122 -120 -124 -118 -105 -127 -114 -94 -116 -110 -115
SAI -120 -113 -113 -117 -107 -128 -114 -101 -121 -108 -114
SR -239 -236 -236 -236 -222 -238 -224 -214 -234 -232 -231
LR -241 -248 -249 -250 -238 -249 -219 -231 -236 -236 -239

Lazy -15 -19 -10 -19 -11 -12 -6 -9 -2 -9 -11
400 NI -47 -50 -58 -65 -38 -49 -39 -37 -56 -48 -48

AI -54 -54 -57 -48 -43 -50 -41 -37 -54 -46 -48
SAI -54 -60 -62 -50 -52 -45 -41 -53 -54 -45 -51
SR -179 -178 -184 -173 -167 -178 -174 -163 -172 -173 -174
LR -182 -177 -183 -187 -171 -177 -167 -174 -182 -166 -176

Lazy -3 -11 -11 -10 -8 -8 -6 0 5 0 -5

88

Table 12: Lower bounds obtained from various relaxations: 50 500 500 1 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
Active All 36882 36388 35207 37130 36120 35293 36650 37013 38365 36132 36518

20 NI -665 -999 -1083 -806 -1256 -1084 -922 -958 -1068 -449 -929
AI -660 -997 -1072 -799 -1183 -1006 -923 -956 -1059 -449 -910

SAI -667 -996 -1082 -810 -1191 -1023 -922 -956 -1060 -449 -916
SR -424 -601 -559 -542 -500 -481 -577 -560 -542 -453 -524
LR -470 -602 -572 -542 -500 -481 -578 -560 -542 -519 -537

Lazy 79 72 83 57 27 42 77 85 70 33 63
40 NI -68 -237 -262 -263 -187 -250 -198 -48 -227 -80 -182

AI -62 -234 -263 -259 -188 -245 -196 -49 -231 -80 -181
SAI -63 -248 -262 -261 -185 -246 -192 -46 -227 -80 -181
SR -115 -260 -293 -292 -230 -277 -201 -118 -250 -187 -222
LR -131 -297 -312 -317 -239 -292 -252 -125 -282 -200 -245

Lazy 60 52 57 44 48 51 47 62 52 33 51
80 NI 46 -26 44 -3 -4 -28 23 64 -3 33 15

AI 84 -27 50 -6 -2 -32 33 73 0 33 21
SAI 52 -31 52 0 -4 -25 28 75 1 33 18
SR -38 -113 -47 -80 -83 -93 -65 -38 -66 11 -61
LR -38 -123 -58 -91 -84 -92 -67 -41 -85 15 -66

Lazy 91 40 51 40 38 38 39 56 46 33 47
100 NI 79 23 84 30 52 25 56 94 69 33 55

AI 63 52 75 53 46 16 55 88 74 33 56
SAI 48 51 78 57 38 17 50 95 80 33 55
SR -23 -71 -37 -66 -48 -59 -53 -31 -39 33 -39
LR -26 -71 -36 -68 -49 -58 -53 -33 -38 33 -40

Lazy 58 47 48 31 42 25 33 63 53 33 43
200 NI 108 59 63 44 59 47 56 62 59 33 59

AI 46 56 67 41 54 40 55 64 59 33 52
SAI 55 57 65 45 55 39 51 52 45 33 50
SR -38 -70 -54 -56 -50 -50 -55 -55 -63 -29 -52
LR -38 -67 -52 -58 -49 -50 -56 -55 -62 -28 -52

Lazy 39 47 48 36 34 21 40 55 37 33 39
300 NI 16 32 34 27 32 33 13 24 30 33 27

AI 34 30 39 20 34 29 25 41 26 33 31
SAI 45 28 38 12 29 28 15 37 36 33 30
SR -73 -93 -79 -76 -75 -62 -77 -84 -81 -68 -77
LR -73 -92 -80 -78 -79 -63 -76 -82 -82 -67 -77

Lazy 13 33 37 24 28 32 12 34 30 33 28
400 NI -1 13 13 9 22 15 7 14 23 33 15

AI 10 12 16 8 23 16 20 21 13 33 17
SAI 27 1 16 10 13 10 -1 16 10 33 14
SR -95 -107 -90 -88 -81 -77 -92 -94 -88 -92 -90
LR -76 -106 -92 -91 -79 -79 -95 -94 -88 -85 -89

Lazy -2 11 15 8 16 19 15 9 24 33 15

Table 13: Upper bounds obtained from the lazy relaxations: 50 500 0 0.25 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
All 7943 7879 7917 7916 7879 7907 7945 8008 7941 7958 7930
20 -12 -4 -19 -3 -1 -24 17 -19 -29 -17 -11
40 -4 5 1 -6 11 -26 -33 -10 -46 -27 -13
80 -3 14 -46 -13 22 -33 -17 -21 -4 4 -9
100 17 36 26 16 -17 -10 35 5 -34 -5 7
200 37 38 5 15 24 -21 3 20 -15 3 11
300 -16 38 -33 -21 19 -18 20 -10 -21 8 -3
400 -35 22 9 -8 21 8 21 -17 -29 3 0

89

Table 14: Upper bounds obtained from the lazy relaxations: 50 500 500 1 instances

Instance 1 2 3 4 5 6 7 8 9 10 Ave
All 37085 36575 35437 37414 36336 35620 36840 37213 38572 36168 36726
20 -65 0 -15 -41 0 -41 0 -6 0 0 -16
40 -65 0 -21 -41 0 -61 0 -6 0 0 -19
80 -65 0 -21 -41 0 -61 0 -6 0 0 -19
100 -65 0 -21 -22 0 -41 0 -6 0 0 -15
200 36 0 -21 -41 0 28 0 -6 40 0 3
300 -65 0 -21 -41 0 -61 0 -6 0 0 -19
400 36 1 -21 -41 22 -41 0 0 0 0 -4

the time limit for each iteration is also limited.

On the other hand, the lower bounds obtained by lazy relaxations are often the best

among all relaxations. Particularly for instances with K = 500, lazy relaxation shows

a strong advantage when a small number of active constraints are used, which indicates

that many inactive constraints are actually never violated by solutions to the relaxation

problems, and thus can be eliminated without sacrificing the lower bounds. In addition, we

see that for instances with K = 0, the upper bounds of lazy relaxations are better when a

small number of active constraints are used. This indicates that using a small number of

active constraints may also help to obtain better upper bounds.

Furthermore, note that for instances with K = 0, the lower bounds from relaxation

problems almost always increase as the number of active constraints increases. Therefore,

it is natural to ask that for MKP with a larger number of constraints, is there an optimal

number of active constraints such that further increasing it does not help increase the lower

bounds? To further explore this question, we generate two sets of instances with 1000 and

5000 constraints, respectively, using methods in Chapter 4. All instances have 50 unbounded

integer variables, α = 0.25, and K = 0, with 10 instances in each group. Since the lazy

relaxation gives the best lower bounds among all relaxations, we use lazy relaxations to

obtain lower bounds, which are shown in Tables 15 and 16.

For instances with 1000 constraints, the lower bounds obtained from relaxing 400 or 500

constraints are often better than the lower bounds obtained in the original problems. For

instances with 5000 constraints, using more than 500 or 1000 active constraints usually pro-

duce good lower bounds. In addition, the improvement on lower bounds always fluctuates

when the number of active constraints increases, that is, increasing the number of active

90

Table 15: LB using Lazy Constraints: 50 1000 0 0.25

Instance 1 2 3 4 5 6 7 8 9 10 Ave
All 7454 7434 7431 7409 7470 7454 7460 7462 7449 7418 7442
20 -40 -21 -30 -39 -34 -32 -47 -36 -68 -18 -36
40 -40 -34 -32 -26 -24 -28 -40 -61 -80 -37 -40
80 -37 -24 -49 -29 -33 -43 -40 -52 -55 -47 -40
100 -17 -26 -17 -23 -21 -22 -14 -24 -34 -27 -22
200 -21 -1 -12 3 1 0 0 -13 -6 -11 -6
300 -3 8 9 -5 -2 -17 -13 -11 -14 12 -3
400 0 16 10 2 1 10 12 -17 -10 16 4
500 9 18 8 20 8 -4 -10 -14 3 16 6
600 2 16 13 1 -4 -1 -6 -12 -16 7 0
700 -13 4 12 -4 4 -6 -6 -7 -12 0 -2
800 -5 10 14 4 -1 -11 -10 -25 -13 11 -2
900 -1 10 17 -4 5 -5 -8 -14 -7 3 0

Table 16: LB using Lazy Constraints: 50 5000 0 0.25

Instance 1 2 3 4 5 6 7 8 9 10 Ave
All 7535 7524 7495 7515 7507 7491 7511 7542 7497 7572 7519
20 6 7 7 28 1 19 28 0 7 -45 6
40 -13 0 18 1 13 20 10 -5 9 -59 0
80 -10 -7 4 -1 18 22 13 -11 11 -49 -1
100 -19 -4 20 -7 11 2 6 -10 8 -64 -5
500 41 60 68 61 60 69 50 27 65 -4 50
1000 15 26 37 14 32 42 30 15 31 -20 23
1500 24 21 35 25 31 40 32 3 32 -39 21
2000 7 28 35 26 43 35 14 -4 17 -32 17
2500 0 22 39 23 40 38 23 0 23 -43 17
3000 8 28 41 25 36 18 34 13 45 -47 21
3500 31 44 36 14 38 41 24 9 32 -16 26
4000 30 22 47 18 30 33 19 1 26 -32 20
4500 4 4 40 3 33 23 17 2 36 -42 12

91

constraints does not have a uniform impact on lower bounds, since adding more active con-

straints may not help tighten the feasible region. Therefore, our results show that for most

instances, solving the relaxations can help to improve lower bounds. However, note that for

Instance 10 with 5000 constraints, the lower bounds obtained from the relaxations never

outperform the lower bounds of the original problem. It demonstrates that the number of

active constraints needed varies.

The advantage of the lazy relaxation algorithm is in its ability to add active constraints

to the relaxation. Especially for instances with K = 0, determining good active constraints

can be challenging, thus adding more active constraints can be useful to strengthen the

relaxation problems and obtain better lower bounds. Next, we study solving relaxations

with diversified sets of active constraints to improve lower bounds.

5.1.3 A Dual Heuristic Algorithm

We consider a dual heuristic algorithm, which solves relaxation problems to improve the

linear relaxation bounds for nodes in the B&B tree. Generally, the integer programming

problem at a node of the B&B tree for problem (70) can be stated as:

min cTx

s.t. A1x ≥ b1

A2x ≥ b2

li ≤ xi ≤ ui, i = 1, ..., n,

x ∈ Z+
n ,

(77)

where li and ui are bounds for variable xi that may be derived from previous branching

decisions. The lower bound of the node is obtained by solving the linear relaxation of (77).

At a chosen node, we solve a relaxation of the associated subproblem. We call a node

special if a relaxation is solved, and processed if it is pruned or two children nodes are

generated from it in the B&B algorithm.

Here we use a surrogate relaxation, where the surrogate constraint is obtained from

summing up all inactive constraints, as it balances time efficiency and bound quality as

shown in Section 5.1.2. Thus, the relaxation for (77) with active constraints A1x ≥ b1 can

92

be written as:

min cTx

s.t. A1x ≥ b1

(

m1+m2∑
i=m1+1

ai)x ≥
m1+m2∑
i=m1+1

bi,

li ≤ xi ≤ ui, i = 1, ..., n,

x ∈ Z+
n ,

(78)

where ai for i = m1 + 1, ...,m1 +m2 are the row vectors of matrix A2.

As suggested in Section 5.1.1, active constraints can be selected according to the dual

solutions and slack values. Because additional constraints may be added during B&B, the

linear dual solutions for the associated subproblems may not be applicable. Therefore,

we use the slack values of the constraints to select active constraints in the relaxations.

In particular, we choose active constraints with slack values less than a threshold value,

indicated by Slack.

Let LB indicate the lower bound obtained from solving the relaxation subproblem, lb

be the LP bound of the node, and UB be the best upper bound obtained in B&B at the

time when the node is processed. If LB is larger than UB, then the node can be pruned.

Otherwise, if LB is greater than lb, the lower bound is improved. To impose the new lower

bound in B&B, we add a cutting plane cTx ≥ LB to the child nodes. However, adding

such cutting planes increases the sizes of the problems for children nodes and may have a

negative influence on the efficiency of the B&B algorithm. Thus, we consider adding the

associated cutting plane only when the improvement on the lower bound is larger than a

threshold value ∆, that is when LB − lb > ∆.

In addition, since the formulations for problems of a node and its child nodes are not

much different, solving the relaxation subproblems at both nodes may be unnecessary. Thus,

we restrict the depth between two special nodes in the same subtree to be greater than a

threshold value Depth.

For an efficient heuristic, the selection of the special nodes is important. Note that even

if the relaxations can be solved efficiently, it is not realistic to solve a relaxation at every

93

node of the B&B tree. Therefore, we use a threshold value Check Percent to indicate

the largest total percentage of special nodes over all processed nodes in the B&B tree. In

addition, to avoid spending too much time on one node, we use a time limit indicated by

Time for solving the relaxation subproblems.

Furthermore, we use the relative gaps to choose special nodes, where the relative gap of

a node is defined as |UB−lb|UB . Our experiments show that with two types of ranges for the

relative gaps, the dual heuristic algorithm obtains the best lower bounds. The first type

only includes special nodes with small relative gaps, because such nodes are more likely to

be pruned by the relaxations, and thus the size of the B&B tree is likely to be reduced.

The second type includes special nodes with large relative gaps. Since the lower bounds of

the B&B algorithm are determined by the minimum lower bounds of the remaining nodes

in the B&B tree, improving on the worst lower bounds may help improve the overall lower

bounds. We use Gap to indicate the range of relative gaps of special nodes. In next section,

we consider choosing nodes with relative gaps in both types of ranges.

The pseudocode of the algorithm is given in Algorithm 1.

Algorithm 1 A Dual Heuristic Algorithm

For each node v in the B&B tree:

if # special nodes
Processed Nodes < Check Percent and |UB−lb|UB ∈ Gap then

Solve relaxation subproblem at v with time limit Time and obtain LB:

if LB > UB then
Node v is pruned.

else if LB > lb then
Lower bound of node v is improved.
if LB − lb > ∆ then

Generate two children nodes with cutting plane cTx ≥ LB.
else

Generate two children nodes.
end if

else
Lower bounds not improved, generate two children nodes.

end if
end if

We conducted all experiments on 10 instances with 50 variables, 500 constraints, α =

0.25 and K = 0. For all tests, we use a time limit of 10 hours for the B&B algorithm,

94

Slack = 1 and Depth = 5. We use Time = 0.05 or 1 second, since we found that extending

Time to 2 or 5 seconds gives worse lower bounds. We compare the results from CPLEX

12.2 with the results from the dual heuristic algorithm using three sets of parameters:

Test 1: Check Percent=100%, Time=1 second, Gap = 0% - 2%, ∆ = 1. Thus for all nodes

with relative gaps less than 2%, a relaxation is solved with time limit 1 second,

a cutting plane is added to children nodes if the lower bound obtained from the

relaxation is greater than the LP relaxation by one.

Test 2: Check Percent=20%, Time= 1 second, Gap = 0 %- 2%, ∆ = 1. Thus for nodes

with relative gaps less than 2% and total percentage of special nodes less than 20%, a

relaxation is solved with time limit 1 second, a cutting plane is added to children nodes

if the lower bound obtained from the relaxation is greater than the LP relaxation by

one.

Test 3: Check Percent=2%, Time= 0.05 second, Gap = 8%-100%, ∆ = 0. Therefore, for

nodes with relative gaps greater than 8% and total percentage of special nodes less

than 2%, a relaxation is solved with time limit 0.05 second, a cutting plane is added

to children nodes if the lower bound obtained from the relaxation is greater than the

LP relaxation.

To compare the results, we study the lower bounds, number of remaining nodes in the

B&B tree, relative gaps, and average time spent on each node in the B&B tree. We report

the results after a certain number of nodes have been processed in the B&B tree in Figures

20 to 39.

95

(a) Instance 1

(b) Instance 2

Figure 20: Lower bounds

96

(a) Instance 3

(b) Instance 4

Figure 21: Lower bounds

97

(a) Instance 5

(b) Instance 6

Figure 22: Lower bounds

98

(a) Instance 7

(b) Instance 8

Figure 23: Lower bounds

99

(a) Instance 9

(b) Instance 10

Figure 24: Lower bounds

100

(a) Instance 1

(b) Instance 2

Figure 25: Relative gaps

101

(a) Instance 3

(b) Instance 4

Figure 26: Relative gaps

102

(a) Instance 5

(b) Instance 6

Figure 27: Relative gaps

103

(a) Instance 7

(b) Instance 8

Figure 28: Relative gaps

104

(a) Instance 9

(b) Instance 10

Figure 29: Relative gaps

105

(a) Instance 1

(b) Instance 2

Figure 30: # Remaining nodes in B&B tree compared with CPLEX

106

(a) Instance 3

(b) Instance 4

Figure 31: # Remaining nodes in B&B tree compared with CPLEX

107

(a) Instance 5

(b) Instance 6

Figure 32: # Remaining nodes in B&B tree compared with CPLEX

108

(a) Instance 7

(b) Instance 8

Figure 33: # Remaining nodes in B&B tree compared with CPLEX

109

(a) Instance 9

(b) Instance 10

Figure 34: # Remaining nodes in B&B tree compared with CPLEX

110

Figures 20 - 24 show that the lower bounds can be improved using the dual heuristic

algorithm for processing the same number of nodes in the B&B tree. In particular, the

improvements on the lower bounds are greater for Tests 1 and 2, where special nodes have

smaller relative gaps. For Test 3, the improvements are usually observed in the earlier

stages of B&B, since special nodes are those with large relative gaps that appear in the

early stages. When the percentage of special nodes decreases as the relative gap falls, the

improvement on lower bounds also decreases. We also observe that over 99% of the special

nodes are pruned by solving the relaxations in Tests 1 and 2 for all instances. However,

nodes are rarely pruned in Test 3. Although the nodes pruned in Tests 1 and 2 are the ones

with small relative gaps, the lower bounds can still be improved. The pruning of the special

nodes helps to maintain a smaller B&B tree, where most of the unpruned nodes have larger

relative gaps. Therefore, the B&B algorithm can focus on dealing with the “hard” nodes.

Figures 25 - 29 show the relative gaps in all tests. Since the relative gaps are determined

by both lower bounds and upper bounds, the advantage of the dual heuristic algorithm is

not significant. However, Tests 1 and 2 show better relative gaps than Test 3 in general.

In Figures 30 - 34, we show the ratio between the number of remaining nodes in the

B&B tree for the dual heuristic algorithms and CPLEX. Note that for Tests 1 and 2, the

number of remaining nodes is greatly reduced, that is, the size of the B&B tree is reduced.

This is because a large percent of special nodes are pruned using the lower bounds obtained

from the relaxations. However, for Test 3, since the special nodes have large relative gaps

and are almost never pruned, the size of the B&B tree is not reduced much.

Figures 35 - 39 show the average time spent on each node in the B&B tree for all tests.

The average time for Tests 1 and 2 is much larger than CPLEX, since the percentage of

special nodes is very high, the time spent on solving the relaxations accumulates. For Test

3, the average time gradually decreases, since a smaller number of relaxations are solved.

Thus, although focusing on special nodes with small relative gaps helps to reduce the size

of the B&B tree and improve the lower bounds, the time used for solving the relaxations

overwhelms the time saved for CPLEX to handle the special nodes. However, focusing on

nodes with large relative gaps helps to improve the lower bounds of “hard” nodes, which

111

(a) Instance1

(b) Instance2

Figure 35: Average time spent on each node in seconds

112

(a) Instance3

(b) Instance4

Figure 36: Average time spent on each node in seconds

113

(a) Instance5

(b) Instance6

Figure 37: Average time spent on each node in seconds

114

(a) Instance7

(b) Instance8

Figure 38: Average time spent on each node in seconds

115

(a) Instance9

(b) Instance10

Figure 39: Average time spent on each node in seconds

116

Figure 40: Frequency of constraints in relaxations

could lead to a large subtree in the B&B algorithm, thus the efficiency of Test 3 is better

then Tests 1 and 2.

Finally, to understand which constraints are used in the relaxations, we show the number

of times that each constraint is used as an active constraint in the relaxations. Since the

results show similar trend, we use instance 2 for demonstration. Figure 40 shows the

frequency of constraints in Test 2 at time 1 hour, 5 hours, and 10 hours.

The results indicate that at the beginning of the B&B algorithm, the constraints are

chosen as active constraints with similar frequency. However, as the B&B algorithm pro-

ceeds, the frequency of constraints varies more. Specifically, in 10 hours, about 10%(50)

constraints were chosen as active constraints in more than 80000 special nodes, about 36%

(180) constraints were chosen in more than 60000 special nodes, and about 66% (330) con-

straints were chosen in more than 40000 special nodes. However, further investigation shows

that the constraints used most often are usually not the constraints with the largest dual

values in the linear relaxation of the original problems, which implies that the LP informa-

tion of the original problem is less useful for the indication of importance of the constraints

in later stages of the B&B algorithm.

Our results indicate that the dual heuristic algorithm can be effective in improving

117

lower bounds for the B&B algorithm for properly chosen parameters. As more relaxations

are solved, better lower bounds can be obtained. However, the efficiency of the algorithm

decreases when a large number of relaxations is solved. In the next section, we study

modifying parameters that control the dual heuristic algorithm to balance its time efficiency

and the effectiveness in improving lower bounds.

5.1.4 Modifying Parameters

To improve the performance of the dual heuristic algorithm by applying proper parameters,

we now consider a dynamic control mechanism that modifies parameters of the algorithm

using information collected during the B&B algorithm.

One factor that impacts the efficiency of the algorithm is the number of special nodes.

Too many special nodes may lead to inefficiency in computing, while too few special nodes

may not be sufficient to improve lower bounds. Since solving relaxations to reduce the size

of the B&B tree and to improve lower bounds is more effective in the earlier stages of B&B,

we consider gradually decreasing the percentage of special nodes in B&B to reduce the time

spent on the subproblems.

In addition, we recognize that the range of relative gaps of the special nodes is important

to the overcall efficiency of the algorithm. Specifically, by choosing special nodes with small

relative gaps, the size of the B&B tree can be well controlled, since a large number of special

nodes can be pruned. However, choosing special nodes with large relative gaps has a direct

impact on the overall lower bounds of the B&B algorithm, and the potential improvement

on lower bounds can be larger. We thus consider a strategy that benefits from choosing

both types of nodes by modifying Gap.

We also consider modifying the level of relaxation for the subproblems, which is con-

trolled by the largest slack value of active constraints, that is, Slack. Therefore, for nodes

that are close to the top of the B&B tree, we may include more constraints for a tighter

relaxation subproblem; Furthermore, for nodes that have larger depth, a smaller number of

active constraints should be included since the bounds on variables are also tighter.

For all tests, we fix ∆ = 0.5, that is, the cutting plane cTx ≥ LB is added only if the

118

lower bound obtained from the relaxation is at least 0.5 larger than the LP bound of the

node. We use two different time limits for solving the relaxations. For nodes with relative

gaps less than 2%, we use a time limit of 1 second, since previous results show that such

nodes are most likely to be pruned in a short time. Otherwise, we use a time limit of 0.02

seconds, since the nodes are harder to prune. We use a total time limit of 10 hours for all

tests.

We conduct three experiments on dynamically controlling Check Percent, Gap and

Slack. For each experiment, we compare the results of CPLEX’s default settings with the

results obtained from the dual algorithm using two sets of initial parameters. The first set,

indicated by Test 1, initializes Check Percent with 20%, and Gap with 0 − 2%, that is,

the special nodes have relative gaps less than 2%. The second set, indicated by Test 2,

initializes Check Percent with 2%, and Gap with 8%-100%, that is, the special nodes have

relative gaps greater than 8%. Note that in Test 1, since a larger number of relaxations

are solved and a longer time may be spent on special nodes with smaller relative gaps, the

total number of nodes processed within the time limit is smaller.

In the first experiment, we examine varying Slack to modify the relaxation level. Specif-

ically, for nodes with depth less than 20, we use Slack = 50; for nodes with depth between

20 and 30, we use Slack = 20; for nodes with depth between 30 and 40, we use Slack = 10,

and for nodes with depth greater than 40, we use Slack = 1. Figures 41 - 45 display the

lower bounds obtained from the algorithm and CPLEX for the same number of nodes pro-

cessed in the B&B tree, while Figures 46 - 50 shows the average time per node for both

algorithms.

Note that the average time per node is slightly increased compared with tests in Section

5.1.3, where Slack = 1. However, lower bounds obtained from Test 1 are still better than

from Test 2 in general. Compared with the ones using a fixed Slack = 1 as in previous

tests, the lower bounds do not change much with varying Slack values. Since the time limit

for solving the relaxations is too small, increasing the number of active constraints may not

boost the lower bounds significantly in a very short time.

In the next experiment, we adjust Check Percent to modify the largest percentage

119

(a) Instance 1

(b) Instance 2

Figure 41: Lower bounds for modifying Slack

120

(a) Instance 3

(b) Instance 4

Figure 42: Lower bounds for modifying Slack

121

(a) Instance 5

(b) Instance 6

Figure 43: Lower bounds for modifying Slack

122

(a) Instance 7

(b) Instance 8

Figure 44: Lower bounds for modifying Slack

123

(a) Instance 9

(b) Instance 10

Figure 45: Lower bounds for modifying Slack

124

(a) Instance 1

(b) Instance 2

Figure 46: Average time per node for modifying Slack

125

(a) Instance 3

(b) Instance 4

Figure 47: Average time per node for modifying Slack

126

(a) Instance 5

(b) Instance 6

Figure 48: Average time per node for modifying Slack

127

(a) Instance 7

(b) Instance 8

Figure 49: Average time per node for modifying Slack

128

(a) Instance 9

(b) Instance 10

Figure 50: Average time per node for modifying Slack

129

of special nodes over the nodes that have been processed in the B&B tree. We make the

modification for every 10,000 nodes processed in the B&B tree. Let IMP be the percentage

of special nodes that are pruned, or where lower bounds obtained from the relaxations are

larger than the LP relaxation bounds. We reduce the value of Check Percent by the

minimum of 1− IMP and 10%, That is, if fewer than 90% of the special nodes are pruned

or with the lower bounds improved, we decrease the threshold value of the total percentage

of special nodes by 10%. By doing this, less time will be spent on solving the ineffective

subproblems.

Figures 51 - 55 display the lower bounds obtained. In Figures 56 - 60, we present the

actual percentage of special nodes over all processed nodes in the B&B tree, indicated by

“Test 1 - TP” and “Test 2 -TP”. The values of Check Percent are indicated by “Test 1 -

TP thresh” and “Test 2 -TP thresh”, respectively.

Note that for both tests, the actual percentage of special nodes converges to the threshold

value. However, for Test 2 where only nodes with large relative gaps are chosen, the values

of Check Percent converge to zero rapidly, which indicates that the lower bounds are only

improved for a small percentage of special nodes. However, for Test 1, the overall decrease

of Check Percent is less than 1% for all instances, which implies that for almost all special

nodes, the lower bounds are improved by solving the relaxations. In addition, although the

percentage of special nodes is decreased in Test 1, the quality of lower bounds is not affected

much. On the other hand, for Test 2, the lower bounds are slightly decreased compared

with previous tests with fixed parameters, as a smaller number of relaxations are solved.

Finally, we study adjusting the range of relative gaps for special nodes. For Test 1, since

the initial relative gaps of special nodes are small, the algorithm tries to choose special nodes

with larger relative gaps. For Test 2, since the initial relative gaps of special node are large,

the algorithm tries to choose special nodes with smaller relative gaps.

Let check be the actual accumulated percentage of special nodes over all processed nodes

in the B&B tree, and Gap = (Lo,Hi) be the range of relative gaps for special nodes, thus the

relative gap of any special node is between Lo and Hi. We examine the value of check for

every 10,000 nodes and make the following modification. If the actual percentage of special

130

(a) Instance 1

(b) Instance 2

Figure 51: Lower bounds for modifying percentage of special nodes

131

(a) Instance 3

(b) Instance 4

Figure 52: Lower bounds for modifying percentage of special nodes

132

(a) Instance 5

(b) Instance 6

Figure 53: Lower bounds for modifying percentage of special nodes

133

(a) Instance 7

(b) Instance 8

Figure 54: Lower bounds for modifying percentage of special nodes

134

(a) Instance 9

(b) Instance 10

Figure 55: Lower bounds for modifying percentage of special nodes

135

(a) Instance 1

(b) Instance 2

Figure 56: Check Percent for modifying percentage of special nodes

136

(a) Instance 3

(b) Instance 4

Figure 57: Check Percent for modifying percentage of special nodes

137

(a) Instance 5

(b) Instance 6

Figure 58: Check Percent for modifying percentage of special nodes

138

(a) Instance 7

(b) Instance 8

Figure 59: Check Percent for modifying percentage of special nodes

139

(a) Instance 9

(b) Instance 10

Figure 60: Check Percent for modifying percentage of special nodes

140

nodes over all processed nodes in the B&B tree is less than 80% of Check Percent, that

is, a relatively small number of special nodes are chosen, we decrease Lo by 0.5%, so that

more nodes with smaller relative gaps can be chosen. Similarly, if the total percentage of

special nodes that are pruned is greater than 80%, indicating that too much time is spent

on special nodes with small relative gaps, we increase Hi by 0.5%, so that more special

nodes with larger relative gaps can be considered.

Figures 61 - 65 present the lower bounds obtained from both settings of the algorithm

compared with CPLEX. In Figures 66 - 70, we show the relative gaps of B&B indicated by

“Test 1 - Gap” and “Test 2 - Gap”, respectively. For Test 1, since the percentage of special

nodes that are pruned is high, we only see an increase in the value of Hi, thus we show

the values of the largest relative gap for an special node indicated by “Test 1 - High”. On

the other hand, for Test 2, since the percentage of special nodes decreases, we only see an

decrease in the value of Lo. Therefore, we present the values of the smallest relative gap

for an special node indicated by “Test 2 - Low”.

For Test 1, as we include more special nodes with larger relative gaps, the lower bounds

are weakened when compared with only including special nodes with smaller relative gaps.

However, the lower bounds of Test 2 are clearly increased, which indicates that including

more special nodes with smaller relative gap is effective in improving lower bounds. Note

that the values of Lo indicated by “Test 2 - Low” decrease stepwise, and are very close to the

B&B relative gaps indicated by “Test 2 - Gap”, indicating that the special nodes considered

in Test 2 are always those with the largest relative gaps in the B&B tree. This implies that

for properly chosen special nodes, even solving relaxations on a small percent of nodes can

be effective in improving the lower bounds. In addition, since the percentage of special

nodes is low, the efficiency of the algorithm in Test 2 is close to CPLEX. Therefore, among

all the tests with the dual heuristic algorithm, Test 2 gives the best results by balancing of

the quality of the lower bounds and time efficiency.

The results of tests indicate that always choosing special nodes with the largest relative

gaps and maintaining a low level of Check Percent are effective in improving lower bounds.

However, including more active constraints in the relaxations at nodes with small depths

141

(a) Instance 1

(b) Instance 2

Figure 61: Lower bounds for modifying the relative gap ranges

142

(a) Instance 3

(b) Instance 4

Figure 62: Lower bounds for modifying the relative gap ranges

143

(a) Instance 5

(b) Instance 6

Figure 63: Lower bounds for modifying the relative gap ranges

144

(a) Instance 7

(b) Instance 8

Figure 64: Lower bounds for modifying the relative gap ranges

145

(a) Instance 9

(b) Instance 10

Figure 65: Lower bounds for modifying the relative gap ranges

146

(a) Instance 1

(b) Instance 2

Figure 66: Gap bounds for modifying the relative gap ranges

147

(a) Instance 3

(b) Instance 4

Figure 67: Gap bounds for modifying the relative gap ranges

148

(a) Instance 5

(b) Instance 6

Figure 68: Gap bounds for modifying the relative gap ranges

149

(a) Instance 7

(b) Instance 8

Figure 69: Gap bounds for modifying the relative gap ranges

150

(a) Instance 9

(b) Instance 10

Figure 70: Gap bounds for modifying the relative gap ranges

151

does not help much in obtaining better lower bounds.

5.1.5 Conclusions and future research

In this chapter, we studied using various relaxation algorithms to obtain lower bounds for

MKP, and examined the impact of the number of active constraints on the lower bounds

obtained from the relaxations. Our results indicated that for MKP, the quality of lower

bounds depends heavily on the choice of active constraints and also the number of active

constraints.

In addition, we developed a dual heuristic algorithm which solves relaxations during the

execution of the B&B algorithm with various active constraints to improve lower bounds.

Furthermore, we explored methods in improving the algorithm by modifying parameters

that control the implementation. The results indicated that by always choosing special

nodes with the largest relative gaps among the remaining nodes in the B&B tree, the

quality of the lower bounds can be improved, since the percentage of special nodes does not

decrease. We concluded that for the improvement on lower bounds per node, our algorithm

is effective. However, the efficiency of the algorithm is limited by the efficiency of solving the

relaxation subproblems. We see two directions for future work to improve the algorithm.

As shown in Figure 40, “important” constraints in different stages of the B&B algorithm

may vary depending on the nodes. Therefore, a strategy that chooses diversified active con-

straints may be needed. Exploring diversified neighborhood to find better feasible solutions

has been considered in some effective primal heuristics, a similar idea for the dual heuristic

is to limit the number of the same active constraints that are used in two special nodes.

Specifically, let v be a special node where the lower bound is not improved by solving the

relaxation. Then for special nodes that are in the subtree rooted at v, we may require the

use of a somewhat different set of active constraints. This strategy reduces the dependency

of our algorithm on the linear relaxation solutions, and thus may help when the LPs are

highly degenerate.

On the other hand, we notice that for almost all special nodes, the number of tight

constraints included in the relaxation is less than 25. This indicates that with only a small

152

number of active constraints, the lower bounds of the nodes can still be improved by solving

the relaxations. This provides us hope of improving the efficiency of the algorithm by using

a single surrogate constraint in relaxations, where only a small number of constraints can

have large weights. That is, we obtain lower bounds by solving problem:

max{cTx : λAx ≥ λb, x ∈ Zn+}.

The weights of the constraints, indicated by λ, can be updated using information obtained

during the B&B algorithm. However, for tight constraints at the special nodes, the weights

can be made larger. Since the number of tight constraints is usually very small at all special

nodes, the quality of the lower bounds obtained with the single surrogate constraint may

not be much weaker, but the efficiency in solving the relaxation as a knapsack problem may

be improved.

153

CHAPTER VI

A SUBADDITIVE ALGORITHM AND SHORTEST PATH

ALGORITHM FOR MKP

So far, we have focused on relaxation algorithms that can be used to obtain lower bounds for

general integer programming problems. In this chapter, we examine two special-purposed

algorithms to obtain lower bounds for the multi-dimensional knapsack problem (MKP).

We first develop a subadditive dual algorithm, then reformulate MKP as a shortest path

problem and implement a shortest path algorithm to obtain lower bounds.

6.1 Introduction

Let z(b) be the value function of MKP, which can be stated as:

z(b) = min
n∑
j=1

cjxj

s.t.

n∑
j=1

aijxj ≥ bi, i = 1, ...,m

x ∈ Z+
n ,

(79)

where A = (aij)m×n ∈ Z+
m×n, b ∈ Z+

m and c ∈ R+
n .

The dual problem of MKP can be generally defined as

zD = max{g(b) : g(·) ≤ z(·), g : R+
m → R}. (80)

A feasible solution to the dual problem is called a dual feasible solution. Since the dual

feasible solutions are functions on R+
m, they are also referred to as dual feasible functions.

The set of dual feasible solutions are called the dual (functional) space. Since any dual

feasible solution g(·) satisfies g(b) ≤ z(b), which yields zD ≤ z(b), the dual problem (80)

satisfies weak duality. In addition, the value function z(·) itself is a dual feasible solution,

therefore, the dual problem (80) satisfies strong duality, that is, zD = z(b). Thus, obtaining

the value of z(b) is equivalent to solving the dual problem (80).

154

An advantage of solving the dual problem to obtain lower bounds is that any dual feasible

solution gives a valid lower bound. Thus optimality is not required in (80) to obtain a lower

bound on z(b) in (79). However, the dual feasible solutions defined in problem (80) only

depend on function z(·), where solving z(t) for each t ∈ R+
m is an NP−hard problem. Note

that the value function z(·) is subadditive, where a subadditive function F (·) satisfies

F (x) + F (y) ≥ F (x+ y) for all x, y ∈ Rm+ ,

because if x1, x2 are optimal solutions for z(b1) and z(b2) respectively, then x1 + x2 is a

feasible solution for z(b1 + b2), thus z(b1 + b2) ≤ z(b1) + z(b2). Then the subadditive dual

problem of MKP can be defined as:

zSD = maxF (b)

s.t. F (Aj) ≤ cj , j = 1, ..., n (81)

F (0) = 0 (82)

F : Rm+ → R is non-decreasing and subadditive. (83)

Inequality (81) and subadditivity guarantee that F (Ax) ≤
∑n

j=1 F (aj)xj ≤
∑n

j=1 cjxj =

cTx for all x ∈ Z+
n . Because F (·) is non-decreasing, we have that F (b) ≤ F (Ax) ≤ cTx

for all x satisfying Ax ≥ b. Therefore the subadditive dual problem satisfies weak duality.

Jeroslow (1978) [37] showed that the subadditive dual satisfies strong duality.

During the 1970s and 80s, integer programming duality theory was studied and devel-

oped, see Johnson (1973, 1979) [39][40], Burdet and Johnson (1977) [10], and Wolsey (1981)

[63]. Llewellyn and Ryan (1993) [50] developed a primal-dual algorithm which solves the

dual problem of general IP but is not computationally efficient. Several papers present

constructive algorithms that produce subadditive dual functions. Klabjan (2004, 2006,

2007) [43][44][45] designed a family of subadditive functions on general and specific integer

programming problems.

In particular, for the partitioning problem, Johnson (1980) [38] developed a subadditive

lifting method, which constructs a series of subadditive dual functions and terminates with

an optimal dual solution. He also designed three types of subadditive functions that can be

implemented in the algorithm.

155

b

0

a1

a2

a3 v=(3,2)

u=(1,1)

u+v =(4,3)

a1a3

a2

Figure 71: Shortest Path Problem for MKP

Because the subadditive lifting method continuously improves the lower bound and can

be implemented with various subadditive functions, we use it as a framework and develop a

modified subadditive dual algorithm which constructs a series of subadditive dual functions

for MKP. The algorithm is based on an alternative formulation of MKP, that is, a shortest

path formulation of MKP.

It is well known that the knapsack problem, which is a special case of MKP with m = 1,

can also be formulated as a shortest path problem. With a similar technique, MKP can be

transformed to the shortest path problem.

The shortest path problem for MKP with data (A, b, c) is defined on graph G(A, b, c) =

(V,E) as shown in Figure 71. Each node v ∈ V corresponds to an integer vector v ∈ Z+
m,

where node u + v is denoted by the integer vector (u1 + v1, ..., um + vm) ∈ Z+
m. Nodes

u, v ∈ V satisfy u ≥ v if ui ≥ vi for i = 1, ...,m. The set of nodes V can be partitioned

into two sets: S and V \ S, where S = {v ∈ V : v ≥ b}. For each v ∈ V \ S, there are n

outgoing arcs ej(v) = (v, v + aj) ∈ E with length cj for j = 1, ..., n. For each v ∈ S, there

is an outgoing arc e0(v) = (v, b) ∈ E with cost 0. Note that to find a path from node 0 to

node b, only nodes satisfying vj ≤
∑m

i=1 bi for j = 1, ...,m need to be considered, therefore

the size of set V \ S is finite and depends on b, the right-hand side of the constraint.

Each path from node 0 to node b corresponds to a feasible solution of problem (79), the

number of arcs of the form (v, v+ aj) in a shortest path gives the value of xj in an optimal

solution to (79). Therefore, solving problem (79) is equivalent to finding a shortest path

156

from 0 to b on graph G(A, b, c).

The shortest path problem has been studied extensively and still receives considerable

attention because of its practical uses. There exists a large body of literature on efficient

algorithms for solving the problem exactly. The well known Dijkstra’s Algorithm (1959) [16]

solves the problem in polynomial time as a function of the number of nodes and number of

arcs in the graph. See Gallo and Pallottino (1986) [25] for a detailed survey on the shortest

path algorithms. The shortest path reformulation for the knapsack problem first appeared

in Gilmore and Gomory (1966)[27]. Frieze (1976) [24] proposed a labeling algorithm for the

shortest path formulation of the knapsack problem.

Approximation algorithms for solving the shortest path problem have been considered

because many applications involve very large scale graphs. Nemhauser (1972) [53] developed

an algorithm using an estimated distance to label nodes. The algorithm is similar to the

A∗− search technique for the artificial intelligence field, which also uses estimated distances

for node selection, see Doran et al. (1967) [17] and Nilsson et al. (1968) [34]. Recently,

Goldberg and Harrelson (2005) [29] developed an algorithm usingA∗− search in combination

with a graph lower-bounding technique that uses estimated lower bounds for true distances,

which is very successful in solving large practical shortest path problems.

For MKP with large right-hand sides, the associated shortest path problem on graph

G(A, b, c) has a large number of nodes and arcs, thus algorithms with estimated distances

can be very useful in efficiently obtaining lower bounds on the length of a shortest path. The

second part of this chapter focuses on obtaining lower bounds for MKP using approximation

algorithms on the corresponding shorting path problem. We propose an algorithm based on

the work of Nemhauser (1972) [53] and calculate the estimated distances by solving linear

programming problems. We use a special ordering on the arcs to reduce the total number

of paths considered and conduct computational tests with the algorithm to examine the

quality of lower bounds obtained.

The remainder of the chapter is structured as follows. In section 6.2, we introduce the

subadditive lifting method by Johnson (1980) [38] and present a subadditive dual algorithm

157

using an alternative formulation of MKP. We analyze the algorithm using information ob-

tained from the linear relaxation of MKP and give an example demonstrating the algorithm.

In addition, we present an approximation algorithm to obtain lower bounds for the shortest

path formulation of MKP. In Section 6.3, we show computational results using the shortest

path algorithm.

6.2 Subadditive Dual and Shortest Path Algorithms

6.2.1 The Subadditive Lifting Method

We first introduce the framework of the subadditive lifting method by Johnson (1980)

[38]. The method was developped for the partitioning problem, but can be modified and

implemented on MKP. The partitioning problem can be stated as:

z̄(b) = min
n∑
j=1

cjxj

s.t.

n∑
j=1

aijxj = bi, i = 1, ...,m

x ∈ Z+
n .

(84)

Since the constraints in the partitioning problem are satisfied as equalities, the subadditive

dual of problem (84) is defined as:

maxF (b)

s.t. F (Aj) ≤ cj , j = 1, ..., n

F (0) = 0

F : Rm+ → R is subadditive.

(85)

Therefore, a subadditive feasible function for the partitioning problem does not have to be

non-decreasing.

The subadditive lifting method constructs a series of feasible subadditive dual functions

and terminates with a function F (·) satisfying F (b) = z̄(b). The framework provides a

general scheme to obtain an optimal subadditive dual function. Various types of subadditive

functions can be implemented to build an optimal dual solution.

Three elements are maintained throughout the algorithm: a subadditive dual feasible

function F (·), a fixed set H ⊂ Z+
m and a candidate set C ⊂ Z+

m. The values of F (·) on

158

certain points are changed at each step while the subadditivity of the function is maintained.

For each point x ∈ H, the value F (x) can not be changed any more. For each point x ∈ C,

we maintain an upper bound U(x) of F (x), such that the function satisfies

F (x) ≤ U(x) for x ∈ C. (86)

The upper bounds are obtained from constraints (81) and (83). In addition, F (b − x) =

F (b)− F (x) is maintained for x ∈ H.

For initialization, F can be any feasible subadditive dual function. For example, a linear

function or the constant function F (x) = 0 for all x. H is initialized by H = {0}, and the

candidate set is initialized by C = {Aj}nj=1 with U(Aj) = cj for j = 1, ..., n.

The lifting step and the hitting step are then executed sequentially. In the lifting step,

an increment is made on values of F (·) for all points that are not in H, such that (83) and

inequalities (86) are satisfied. The various methods to “lift” the values of function F (·)

determine the subadditive functions that are constructed.

In the hitting step, at least one point x∗ ∈ C satisfies F (x) = U(x), and the point is

marked as fixed. That is, H = H ∪ {x∗} and C = C \ {x∗}. To maintain subadditivity,

the candidate set is then updated with C = C ∪ {x∗ + y : for all y ∈ H} and U(x + y) =

F (x) + F (y), thus F (x+ y) ≤ U(x+ y) = F (x) + F (y) is always guaranteed.

After an iterative step of lifting and hitting, the algorithm terminates when F (b) can not

be lifted any more, that is when x, b− x ∈ H for some x, therefore F (b) = F (b− x) +F (x)

is the optimal value of the objective function.

The algorithm can be implemented with different methods for “lifting” function F .

Johnson (1980) [38] proposed three types of subadditive functions for solving the knapsack

problem, where m = 1. Next, we provide a subadditive dual algorithm which works with

an alternative formulation for MKP based on this framework.

6.2.2 A Subadditive Dual Algorithm

We first define an alternative formulation for MKP, which allows our algorithm to use

information obtained from the linear relaxation to the problem.

159

Proposition 17 An alternative formulation for MKP can be stated as:

max F (b)

s.t. F (x+Aj)− F (x) ≤ cj , for x � b, j = 1, ..., n,

F (x) ≥ F (b) for x ≥ b,

(87)

Proof Let zIP and zSD be the optimal objective values of problem (79) and its subadditive

dual problem respectively.

The shortest path problem for MKP can be formulated as:

zSP = min
∑

j=1...n

∑
d

cjyj(d)

s.t. −
n∑
j=1

yj(0) = −1,

∑
d≥b,d 6=b

y0(d) +
n∑
j=1

yj(b−Aj) = 1,

n∑
j=1

yj(d−Aj)−
n∑
j=1

yj(d) = 0, for d ∈ V \ S,

n∑
j=1

yj(d−Aj)− y0(d) = 0, for d ∈ S,

yj(d) ∈ {0, 1} for all j = 1, ..., n, d ∈ V,

(88)

where V = Z+
m and S = {v ∈ Z+

m : v ≥ b} as shown in section 6.1. The constraints represent

flow conservation for nodes 0, b, nodes in V \ S and S respectively, where one unit of flow

is sent from node 0 to node b.

The dual problem of the linear relaxation of problem (88) can be written as

zLP = max F (b)− F (0)

s.t. F (d+Aj)− F (d) ≤ cj , for d � b, j = 1, ..., n,

F (d) ≥ F (b) for d ≥ b.

(89)

Since the optimal value of zLP only depends on the difference between F (b) and F (0), we

can set F (0) = 0.

By duality and definitions of the problems, we must have zLP ≤ zSP . Since the shortest

path problem is an alternative formulation for MKP, we must have zSP = zIP = zSD. By

160

comparing the problem formulations for zSD and zLP , we find that the subadditivity and

constraint F (Aj) ≤ cj lead to F (x + Aj) ≤ F (x) + F (Aj) ≤ F (x) + cj , thus F (x + Aj) −

F (x) ≤ cj . Therefore, problem (89) is a relaxation of the subadditive dual problem, that

is, zLP ≥ zSD. Combining the inequalities, we have zSD = zLP , thus problem (87) is an

alternative formulation for MKP. 2

With the new formulation of MKP, the non-decreasing value constraint on the subad-

ditive dual function can be replaced by F (x) ≥ F (b) for x ≥ b.

In addition, note that in the hitting step of the framework, when x∗ is fixed, x∗ + y for

all y ∈ H are put into the candidate set to make sure that the subadditivity of the function

is maintained. Thus the size of the candidate set increases exponentially. By Proposition

17, we modify the hitting step of the framework by adding x∗ + Aj to the candidate set

with U(x∗ +Aj) = F (x∗) + cj for j = 1, ..., n. Since in each step, at most n candidates can

be added, then the size of the candidate set increases linearly.

The pseudocode of the dual algorithm is shown in Algorithm 2.

Algorithm 2 A Subadditive Dual Algorithm
Initialize:

F 0(x) = πTx, H0 = {0}, C0 = {b, Aj}nj=1 with U0(Aj) = cj , j = 1, ..., n and U0(b) = +∞.

Lift:

F i+1(x) =

{
F i(x) x ∈ Hi,
F i(x) + αi x /∈ Hi,

(90)

where αi = min
x∈Ci
{U i(x)− F i(x)}.

Hit:
Let x∗ = arg min

x∈Ci
{U i(x)− F i(x)}, Hi+1 = Hi ∪ {x∗}.

Ci+1 = Ci \ {x∗} ∪ {x∗ +Aj |j = 1, ..., n} with:

U i+1(x∗ +Aj) = min{U i(x∗ +Aj), F
i(x∗) + cj} and

U i+1(b) = min{U i(b),min
db

U i+1(d)}.

Terminate when F i(b) = U i(b).

We initialize F (·) by a linear function F (x) = πTx where π is the optimal linear dual

solution of MKP, and increase the function value by the same amount on all points that are

not fixed. Note that the points satisfying v b do not need to be added to the candidate

or the fixed set, since the values of F (v) are never used except for the upper bound of F (b).

161

Therefore by using F (b) ≤ mindb{U(d)}, F (v) ≥ F (b) for v ≥ b is always satisfied.

Next, we show that although we use the algorithm on the alternative formulation of

MKP, the functions constructed are subadditive.

Proposition 18 The functions F i(·) constructed in Algorithm 2 are subadditive.

Proof We use induction to show that the functions constructed are all subadditive. For

i = 0, F 0 is a linear function which is clearly subadditive.

Suppose F i−1 is a subadditive function, for some i ≥ 1. To show F i(x+y) ≤ F i(x)+F i(y),

we consider the following cases:

• If neither of x or y is in H i−1, then F i(t) = F i−1(t) +αi−1, for t = x, y. Thus we have

F i(x+ y) ≤ F i−1(x+ y) +αi−1 < F i−1(x+ y) + 2αi−1 ≤ F i−1(x) +αi−1 +F i−1(y) +

αi−1 = F i(x) + F i(y).

• If exactly one of x or y is in H i−1, say y ∈ H i−1, then F i−1(y) = F i(y) and F i(x) =

F i−1(x) + αi−1. Thus F i(x+ y) ≤ F i−1(x+ y) + αi−1 ≤ F i−1(y) + F i−1(x) + αi−1 =

F i(y) + F i(x).

• If both x and y are in H i−1, and if x+y ∈ H i−1, then F i−1(t) = F i(t) for t = x, y, x+y.

Thus F i(x+ y) ≤ F i(x) + F i(y) since F i−1 is subadditive. If x+ y /∈ H i−1, suppose

that x is fixed at step t ≤ i−1, thus F i(x) = F t(x) = F 0(x)+
∑t−1

k=0 αk. Similarly, let

F i(y) = F 0(y)+
∑s−1

k=0 αk where s ≤ i−1. Note that F i(x+y) = F 0(x+y)+
∑i−1

k=0 αk.

Therefore F i(x + y) ≤ F i(x) + F i(y) if and only if
∑t−1

k=0 αk +
∑s−1

k=0 αk ≤
∑i−1

k=0 αk,

i.e.
∑s−1

k=0 αk ≤
∑i−1

k=t αk. Note that if this does not hold, i.e.
∑s−1

k=0 αk >
∑i−1

k=t αk,

x+ y would have been fixed before y. Thus this is a contradiction with y ∈ H i−1 but

x+ y /∈ H i−1.

Therefore we have shown that the functions F i for i = 0, 1, ... are subadditive. 2

Since the value of the functions F i(·) are increased by the same amount at all points,

keeping track of the fixed set in each step is sufficient for recording the subadditive function

constructed in each step. For all x /∈ H i, F i(x) = F 0(x) +
∑i−1

k=0 αk. If x ∈ Ht \Ht−1 for

162

some t < i, that is, x is added to the fixed set at step t− 1, then F i(x) = F 0(x) +
∑t−1

k=0 αk.

Also note that F i(b) = F 0(b) +
∑i−1

k=0 αk is a valid lower bound on the optimal solution of

MKP for each i, since at each iteration F i is a feasible subadditive dual solution.

We illustrate the algorithm with the following example.

Example Consider the knapsack problem

min 2x1 + 3x2 + 4x3 + 5x4 + 7x5

s.t. x1 + 2x2 + 3x3 + 4x4 + 5x5 ≥ 10

x ≥ 0, integer.

(91)

The optimal linear dual solution is π = 5
4 .

In step 0, F 0(x) = 5
4x, for all x ≥ 0. H0 = {0}, C0 = {1, 2, 3, 4, 5, 10} with U(1) =

2, U(2) = 3, U(3) = 4, U(4) = 5, U(5) = 7, U(10) = +∞. α0 = min{2− 5
4×1, 3− 5

4×2, 4− 5
4×

3, 5− 5
4×4, 7− 5

4×5} = 0. Therefore, 4 is added to the fixed set and LB = F 0(b)+α0 = 25
2 .

In step 1, F 1(x) = 5
4x. H1 = {0, 4}, C1 = {1, 2, 3, 5, 6, 7, 8, 9, 10} with U(1) = 2, U(2) =

3, U(3) = 4, U(5) = 7, U(6) = 8, U(7) = 9, U(8) = 10, U(9) = 12, U(10) = +∞. α1 =

min{2− 5
4 × 1, 3− 5

4 × 2, 4− 5
4 × 3, 7− 5

4 × 5, 8− 5
4 × 6, 9− 5

4 × 7, 10− 5
4 × 8, 12− 5

4 × 9} = 0.

8 is added to the fixed set and LB = F 1(b) + α1 = 25
2 .

In step 2, F 2(x) = 5
4x. H2 = {0, 4, 8}, C2 = {1, 2, 3, 5, 6, 7, 9, 10} with U(1) = 2, U(2) =

3, U(3) = 4, U(5) = 7, U(6) = 8, U(7) = 9, U(9) = 12, U(10) = 13. α2 = min{2− 5
4 × 1, 3−

5
4 × 2, 4− 5

4 × 3, 7− 5
4 × 5, 8− 5

4 × 6, 9− 5
4 × 7, 12− 5

4 × 9, 13− 5
4 × 10} = 1

4 , where 3, 7 are

added to the fixed set and LB = F 2(b) + α2 = 51
4 .

In step 3, F 3(x) = 5
4x for x ∈ H2 and F 3(x) = 5

4x+ 1
4 for x /∈ H2. H3 = {0, 3, 4, 7, 8},

C3 = {1, 2, 5, 6, 9, 10} with U(1) = 2, U(2) = 3, U(5) = 7, U(6) = 8, U(9) = 12, U(10) = 13.

α3 = min{2− 5
4×1− 1

4 , 3−
5
4×2− 1

4 , 7−
5
4×5− 1

4 , 8−
5
4×6− 1

4 , 12− 5
4×9− 1

4 , 13− 5
4×10− 1

4} = 1
4 ,

where 2, 6, 10 are added to the fixed set and LB = F 3(b) + α3 = 13.

Since F 3(10) = 13 = U(10), optimality is obtained. Note that U(10) is obtained at step

2 with U(10) = F 2(8) + c2 = 5
4 × 8 + 3 = 13, an optimal solution is x4 = 2, x2 = 1 and

xj = 0 for j 6= 2, 4.

Figure 72 and 73 display the steps of the algorithm applied on the example. The solid

163

1

1

2

2

3

3 4

4

5

5

6

6

7 8 9 x

F(x)

Subadditive Algorithm: step 0

1

1

2

2

3

3 4

4

5

5

6

6

7 8 9 x

F(x)

7

8

7

8

Subadditive Algorithm: step 1

10 10

9

10

11

12

U(1)=2
U(2)=3

U(3)=4

F (x) = 5
4x

U(4)=5

U(5)=7

U(1)=2

U(2)=3

U(3)=4

U(5)=7

U(6)=8

U(7)=9

U(8)=10

U(9)=12

F(4)=5

Figure 72: Subadditive Algorithm: step 0-1

dots represent the points in the fixed set, the crosses represent the points in the candidate

set and the corresponding upper bounds, and the dotted line represents the subadditive

function constructed. It is easy to see that the subadditive functions constructed are linear

functions with possible exceptions on points in the fixed set.

2

A major stage in the subadditive dual algorithm is to find the points to add to the fixed

set and to compute the increment αi in each step i. This stage can be done efficiently using

the reduced costs of variables.

Let δj = cj −F 0(Aj) = cj − πTAj denote the reduced cost of xj in the linear relaxation

of MKP, where π is the optimal linear dual solution. The reduced cost of xj indicates the

unit increase of the objective value for xj to be positive in the solution. Therefore, all basic

variables have reduced costs of 0.

Assume that the variables are in order of nondecreasing reduced costs, that is, δ1 ≤

δ2 ≤ ... ≤ δn. Then we can make the following statements.

Proposition 19 The increment made in the function value in step i, αi, depends on the

increments in previous steps α0, ..., αi−1 and the reduced costs of variables.

164

1

1

2

2

3

3 4

4

5

5

6

6

7 8 9 x

F(x)

7

8

Subadditive Algorithm: step 2 Subadditive Algorithm: step 3

9

10

11

12

13

10

1

1

2

2

3

3 4

4

5

5

6

6

7 8 9 x

7

8

9

10

11

12

10

F(x)

13

U(1)=2

U(2)=3

U(3)=4
F(4)=5

U(5)=7

U(6)=8

U(7)=9

F(8)=10

U(9)=12

U(10)=13

U(1)=2

U(2)=3 F(3)=4

F(4)=5

U(5)=7

U(6)=8
F(7)=9

F(8)=10

U(9)=12

U(10)=13

Figure 73: Subadditive Algorithm: step 2-3

Subadditive Algorithm: final step

1

1

2

2

3

3 4

4

5

5

6

6

7 8 9 x

7

8

9

10

11

12

10

F(x)

13

U(1)=2

F(2)=3

F(3)=4
F(4)=5

U(5)=7

F(6)=8

F(7)=9

F(8)=10

U(9)=12

F(10)=13

Figure 74: Subadditive Algorithm: step 4

165

Proof Suppose x ∈ Ht \ Ht−1 and x + Aj ∈ Ci where i ≥ t. Therefore F i(x + Aj) =

F 0(x + Aj) +
∑i−1

k=0 αk and U i(x + Aj) = F t(x) + cj = F 0(x) +
∑t−1

k=0 αk + cj , thus the

maximal increment for x+Aj is

αi(x+Aj) = U i(x+Aj)−F i(x+Aj) = F 0(x)+
t−1∑
k=0

αk+cj−F 0(x+Aj)−
i−1∑
k=0

αk = δj−
i−1∑
k=t

αk.

(92)

That is to calculate the maximal increment of x+Aj , it is sufficient to look at the difference of

the reduced cost of xj and the increments made after x is fixed. Since αi = minx∈Ci{αi(x)},

αi depends on α0, ..., αi−1 and δj for j = 1, ..., n. 2

Proposition 19 shows that calculating the increment made in the function values can

be done efficiently by using the reduced costs, the fixed set and the increments in previous

steps. Therefore, the time spent on calculating the increment αi is O(|Ci|), where |Ci| is

the size of the candidate set at step i.

Proposition 19 also implies that the order of points being fixed are closely related to the

reduced costs. Since δ1 ≤ · · · ≤ δn, we must have αi(x+ A1) ≤ · · · ≤ αi(x+ An) at step i,

given that x+A1, ..., x+An are not fixed yet. Thus, for any x∗ ∈ H, {x∗ +Aj}nj=1 should

be fixed in a nondecreasing order of j. The following proposition extends the results on the

order of points being fixed.

Proposition 20 If x ∈ Ht \Ht−1 and y ∈ Hs \Hs−1 for some t < s. Then x+Aj will be

fixed before y +Aj for j = 1, ..., n.

Proof If x+Aj is fixed before step s, then it is obvious that x+Aj is fixed before y+Aj .

Otherwise, by (92), αi(x+Aj) = δj −
∑i−1

k=t αk ≤ αi(y+Aj) = δj −
∑i−1

k=s αk, for any i > s.

Thus x+Aj is fixed before y +Aj . 2

Proposition 20 shows that if x is fixed before y, x+Aj should be fixed before y+Aj for

j = 1, .., n generally. Thus to calculate the increment αi = min
x∈Ci
{U i(x) − F i(x)}, although

the size of the candidate set at step i is |Ci| = O(n|H i|), where |H i| is the size of the

fixed set, it is sufficient to consider only a small portion of the candidate points using the

pre-determined order indicated by Propositions 19 and 20.

166

The next proposition shows that the total increment in the sequential steps can be

obtained using the reduced costs.

Proposition 21 If x is fixed at step t1 and x+Aj is fixed at step t2, then the total increment

during steps between t1 and t2 is δj, that is,
∑t2−1

k=t1
αk = δj.

Proof Using (92), we know that if x + Aj is fixed at step t2, then αt2(x + Aj) = δj −∑t2−1
k=t1

αk = 0. Thus the total increments since step t1 equals to δj . 2

Proposition 21 indicates that the total increments between the steps where x and x+Aj

are added to the fixed set respectively, can be calculated directly using the reduced cost δj .

Although the above efforts are made to reduce the computational complexity of the

algorithm, for highly degenerate problems with small reduced costs of variables, the im-

provement on lower bounds can be limited, since these depend on the summation of the

reduced costs as shown in Proposition 19. However, the subadditive dual algorithm shares

similar components with a shortest path labeling algorithm, where the fixed set is analogous

to a set of permanently labeled nodes and the candidate set is similar to the temporarily

labeled nodes. In addition, the implementation of the algorithm is based on the shortest

path formulation of MKP. This similarity motivate us to develop a shortest path algorithm

that provides lower bounds for MKP.

6.2.3 A Shortest Path Algorithm

In this section, we consider solving the shortest path problem to obtain lower bounds for

MKP. We first revisit the shortest path algorithm proposed by Nemhauser(1972) [53], which

is a generalization of the Dijkstra’s algorithm and uses estimated distances that are lower

bounds of the true shortest distances between nodes.

Let C be a set of nodes that are temporarily labeled, and P be the set of nodes that

are permanently labeled. Let fv be the distance from node 0 to v ∈ V , which is updated

throughout the algorithm until v is permanently labeled.

Define function hv for each node v ∈ V to be a lower bound of the shortest distance

167

from v to b, satisfying the triangular inequality, which can be stated as:

For any e = (v, w) ∈ E, hv ≤ hw + ce, and hb ≤ 0. (93)

Specifically, hv ≤ hv+aj + cj for all v ∈ V \ S, j = 1, ..., n, and hv ≤ hb for all v ∈ S, where

S = {v ∈ V : v ≥ b} is used as defined in section 6.1.

Let L(Q) denote the length of path Q, which equals to the sum of the lengths of all arcs

on the path. For a path Q = {v = v1, e1, v2, e2, ..., ek−1, vk = b}, since hvi ≤ hvi+1 + cei for

i = 1, ..., k − 1, by summing the inequalities, we have hv ≤ hb + L(Q) ≤ L(Q). Therefore,

hv is an underestimate of the shortest distance from node v to node b.

The pseudocode of the algorithm on graph G(A, b, c) is given in Algorithm 3.

Algorithm 3 A Shortest Path Algorithm for Lower Bounding MKP

Initialize: C = {0}, P = ∅. f0 = 0, fv = +∞ for all v 6= 0. LB = +∞.
while b /∈ P do
v∗ = arg minv∈C{fv + hv}.
P = P ∪ {v∗}, LB = fv∗ + hv∗ .
for j = 1, ..., n do
u = v∗ + aj . If u /∈ P , C = C ∪ {u}, fu = min{fu, fv∗ + cj}

end for
end while

In each step, the algorithm picks a node from set C with the smallest fv + hv value and

labels it permanently. When node v is permanently labeled, fv is the shortest distance from

node 0 to node v. Since hv is an underestimate of the shortest distance from node v to node

b, fv + hv is an underestimate of the shortest distance from node 0 to node b for any path

passing through node v. The algorithm terminates with fb + hb being the shortest distance

from 0 to b. Since the value of fv∗ + hv∗ is non-decreasing, where v∗ is the permanently

labeled node in each step, fv∗ + hv∗ is a valid lower bound of the shortest distance.

If hv is the shortest distance from v to b for all v ∈ V , the lower bounds obtained always

equal to the shortest distance from 0 to b. Therefore, the quality of the lower bounds

obtained from the algorithm is determined by the quality of the estimated distance hv.

We next introduce a new implementation of the algorithm, which obtains the estimated

distance hv by solving a linear programming problem for each v. Define hv by solving the

168

following linear programming (LP) problem:

hv = min cTx

Ax ≥ b− v

x ≥ 0,

(94)

where b− v = (b1 − v1, ..., bm − vm) ∈ Zm. It is easy to see that hv defined by (94) satisfies

the triangular inequality (93) and hb = 0.

The estimated distance hv defined by (94) is easy to compute, since only the right-hand

side of the constraints change when varying v. However, note that the outgoing arcs are

the same for all nodes in V \ S, thus there is a repeated structure in the graph. The LP

formulation for hv estimates the distance from node v to node b without using the recursive

structure and the information obtained from computing fv, thus it can be improved. The

idea is to restrict the paths to be considered while not eliminating the shortest path. Inspired

by previous discussions on the subadditive dual algorithm, we consider paths that use

arcs in a fixed order. For example, consider path P = {v1, ei1 , v2, ei2 , ..., eik−1
, vk} with

i1 ≤ i2 ≤ ... ≤ ik−1, that is, the arcs along the path have a nondecreasing order of index.

Since the paths that use the same composition of arcs have the same length, the length of

the shortest path remains the same.

The reduced cost is an indicator of the importance of variables, thus we order the

variables in a nondecreasing order of reduced costs. For the paths that are considered in

the algorithm, the arcs on the paths have nondecreasing reduced costs.

To enforce this order on paths, for each node v with finite fv value, we keep the smallest

index i of the incoming arcs of v, such that fv = fv−ai +ci. By adding constraints xj = 0 for

all j < i in problem (94), we make sure that the estimated distance from v to b is based on

paths that do not use arcs with index smaller than i, thus that the estimated distance from

0 to b via node v satisfies the requirements on the order of arcs. In addition, the modified

LP formulation for computing hv is tighter than (94) and the values of hv can be increased.

If node u is permanently labeled and v = u+ ai is temporarily labeled, then the temporary

169

incoming arc for node v is ai. Then the modified LP for hv can be stated as:

hv = min cTx

Ax ≥ b− v

xj = 0, for j = 1, ..., i− 1

x ≥ 0,

(95)

Note that the modified LP problem for calculating hv can not be determined until the

arc that goes into the node can be determined, that is when node v is temporarily labeled.

Therefore, if (w, v) ∈ E with v = w + aj and w is permanently labeled, then the LP

formulation for computing hv must include constraints xi = 0 for i = 1, .., j − 1. Since the

index of the arc going into node w is no greater than the index of the arc going into node

v, we must have hw ≤ hv + cj . Therefore, the modified formulation for hv satisfies the

triangular inequalities.

6.3 Computational Results

In this section, we report the results of the computational tests we conducted with the

shortest path algorithm for obtaining lower bounds for the MKP.

For consistency, we continue to use instances generated in Chapter 4. The instances are

indicated by (n,m,α,K), where n is the number of variables, m is the number of constraints,

α is the tightness indicator of the constraints and K is the correlation between the objective

function and constraints. We test on four groups of instances, where each group contains

10 instances. Two groups have instances with 50 variables and 500 constraints, and two

groups have instances with 50 variables and 1000 constraints. To include instances with

different features, we use two groups of instances with α = 0.25 and K = 0, and two groups

with α = 1 and K = 500.

We compare the results of the shortest path algorithm with the result we obtained from

CPLEX 12.2 with default settings. We report the relative gaps and lower bounds obtained

by both methods with time limits of 1 hour and 5 hours.

Note that for each node v, the value of fv +hv is a lower bound on the shortest distance

from 0 to b passing through node v. Therefore, with an upper bound UB for the shortest

170

Table 17: Lower Bounds of the Shortest path Algorithm: 50 500

instance 1 hour 5 hour

SP algorithm Cplex SP algorithm Cplex

α = 0.25
LB Gap LB Gap LB Gap LB Gap

K = 0

1 7191 9.07% 7349 7.49% 7247 8.36% 7468 5.85%
2 7163 9.04% 7314 7.17% 7220 8.32% 7435 5.64%
3 7168 8.89% 7328 7.45% 7225 8.16% 7445 5.91%
4 7162 9.27% 7322 7.51% 7218 8.56% 7436 5.80%
5 7157 8.96% 7311 7.22% 7214 8.23% 7429 5.50%
6 7137 9.36% 7290 7.81% 7196 8.61% 7409 5.96%
7 7202 8.97% 7353 7.46% 7258 8.27% 7904 5.45%
8 7242 9.16% 7384 7.80% 7292 8.53% 7505 5.87%
9 7171 9.17% 7324 7.63% 7226 8.47% 7448 6.02%
10 7204 9.17% 7358 7.54% 7262 8.44% 7477 5.70%

α = 1
LB Gap LB Gap LB Gap LB Gap

K = 500

1 36642 1.02% 36881 0.55% 36681 0.92% 37017 0.01%
2 36131 1.21% 36390 0.51% 36180 1.08% 36572 0.01%
3 34976 1.24% 35210 0.64% 35020 1.12% 35336 0.23%
4 36915 1.23% 37136 0.63% 36955 1.12% 37241 0.35%
5 35904 1.19% 36122 0.59% 35948 1.07% 36235 0.28%
6 35087 1.33% 35295 0.91% 35127 1.21% 35394 0.52%
7 36395 1.21% 36653 0.51% 36436 1.10% 36781 0.16%
8 36762 1.20% 37016 0.53% 36810 1.07% 37164 0.12%
9 38143 1.11% 38369 0.53% 38188 1.00% 38502 0.18%
10 35837 0.92% 36165 0.01%* 35877 0.80% - -

distance from 0 to b with UB < fv + gv, the node v needs not be labeled, since no shortest

path passes through it. In the computational tests, we obtain such an upper bound from

CPLEX. The instances marked with ∗ are solved within the time limit.

All tests are implemented on Linux machines with 2.27GHz processor and 6 GB of

memory. The results are shown in Tables 17 and 18.

The empirical results show that for almost all instances, the lower bounds obtained from

the shortest path algorithm are no better than the lower bounds obtained from CPLEX.

With a time limit of one hour, the relative differences between the gaps of CPLEX and the

shortest path algorithm are within 30% for instances with α = 0.25 and K = 0, and go up

to more than 50% for instances with α = 1, and K = 500.

In addition, we notice that the ratio between the number of temporarily labeled nodes

171

Table 18: Lower Bounds of the Shortest path Algorithm: 50 1000

instance 1 hour 5 hour

SP algorithm Cplex SP algorithm Cplex

α = 0.25
LB Gap LB Gap LB Gap LB Gap

K = 0

1 7361 12.15% 7454 11.18% 7429 11.34% 7582 9.51%
2 7348 12.68% 7434 11.69% 7414 11.90% 7563 10.13%
3 7324 12.89% 7431 11.72% 7398 12.01% 7556 10.08%
4 7291 12.69% 7409 11.35% 7364 11.82% 7536 9.74%
5 7361 12.77% 7470 11.66% 7434 11.91% 7593 9.82%
6 7345 12.67% 7454 11.59% 7414 11.85% 7576 9.92%
7 7351 12.77% 7460 11.60% 7422 11.93% 7586 9.98%
8 7337 12.97% 7462 11.62% 7409 12.11% 7582 10.00%
9 7318 12.77% 7449 11.21% 7390 11.91% 7571 9.73%
10 7317 12.72% 7418 11.71% 7383 11.93% 7548 9.88%

α = 1
LB Gap LB Gap LB Gap LB Gap

K = 500

1 36823 1.27% 37038 0.70% 36879 1.12% 37145 0.41%
2 37373 0.61% 37565 0.1%* 37427 0.47% - -
3 37677 0%* 37677 0%* - - - -
4 35420 1.37% 35649 0.83% 35472 1.23% 35753 0.45%
5 37802 1.07% 38019 0.50% 37857 0.92% 38162 0.12%
6 38207 0.02%* 38160 0.14%* - - - -
7 36569 1.40% 36770 0.86% 36622 1.26% 36878 0.57%
8 37382 1.28% 37572 0.81% 37430 1.15% 37668 0.53%
9 37872 0.01%* 37869 0.02%* - - - -
10 37331 1.22% 37537 0.75% 37391 1.06% 37652 0.44%

172

and the number of the permanently labeled nodes is much smaller for instances with α = 1

and K = 500 than instances with α = 0.25 and K = 0. This indicates that for each

permanently labeled node, a much smaller number of nodes on average get temporarily

labeled for instances with α = 1 and K = 500. Since the paths use a nonincreasing order

of the arcs in terms of importance, nodes incident to incoming arcs with a large index are

likely to be eliminated by the upper bound, because the values of hv can be large for these

nodes. The conclusion is consistent with the results in Chapter 4 that for instances with

α = 1 and K = 500, some columns are less important and less likely to be used in an

optimal solution.

The advantage of CPLEX increases as time increases since the number of temporarily

labeled nodes increases exponentially. Thus searching for nodes to label permanently takes

more time and the memory used explodes. For most instances, the lower bounds obtained

by the shortest path algorithm within 5 hours are not as good as the lower bounds of

CPLEX within 1 hour. To improve the efficiency of the algorithm, better data structures

and graph reduction techniques may be needed.

6.4 Conclusion

In this chapter, we reviewed a subadditive method and developed a new implementation for

the subadditive lifting method on MKP. We then presented an approximation algorithm on a

shortest path problem that is equivalent to MKP. Both algorithms provide an approximation

for the optimal value of MKP from below and utilize the shortest path formulation of MKP.

Our computational results show that the quality of lower bounds obtained from the shortest

path algorithm is limited, which may be improved by using advanced data structures and

additional techniques for solving large-scale shortest path problems.

173

CHAPTER VII

CONCLUSIONS AND FUTURE RESEARCH

This thesis studies the development of models and design of algorithms for integer pro-

gramming problems that involve real-life applications and theoretical and computational

innovations.

Chapter 2 presents a production planning model that uses discounts in pricing to reduce

costs and further increase profit. We use time windows to increase flexibility of production

and delivery, and develop a polynomial-time algorithm that simultaneously determines op-

timal discount and production planning decisions. In addition, we discuss variations of the

model that further extend the flexibility of production and delivery. The computational

experiments demonstrate that the benefit of using flexibility in production and delivery is

closely related to the demand level, density of setups and the size of time windows. The

results confirm that profit can be increased not only by increasing revenues, but also by

focusing on reducing costs. We believe this is a fertile area for further research, which com-

plements the traditional research on pricing to increase revenues with wide applicability in

production planning and distribution management.

Chapter 3 through Chapter 6 study theoretical and computational methods for obtaining

lower bounds for minimization integer programming problems. The research specifically

focuses on the multidimensional knapsack problems (MKP), and considers both general

and special-purpose methods.

Chapter 3 studies the corner relaxation for MKP and examines the worst-case gap of the

lower bounds obtained from the corner relaxation. We also provide a sufficient condition

under which the corner relaxation is tight. In addition, a periodic property of the value

function is extended from the knapsack problem to MKP, thus the complexity for solving

MKP with large right-hand side can be reduced using the periodicity. The results on the

corner relaxation motivate further investigations on the quality of lower bounds from a

174

computational perspective.

Chapter 4 establishes meaningful benchmark instances for the computational experi-

ments with MKP. We conduct computational tests to analyze the characteristics that affect

the hardness of MKP, including the correlation between the objective function and con-

straints and the size of right-hand side values.

Chapter 5 compares the lower bounds obtained from various relaxation algorithms, and

presents a dual heuristic algorithm that solves relaxations to improve lower bounds. Our

results demonstrate that using information based on linear relaxations to choose active

constraints is generally effective. However, for many hard instances, choosing the right con-

straints to relax may still be challenging, thus a large number of active constraints are needed

to obtain good lower bounds. Furthermore, we compare the lower bounds obtained from

constraint relaxations (which include the corner relaxation as a special case), lagrangian

relaxation algorithms, surrogate relaxation algorithms, and lazy relaxations. The results

indicate that lazy relaxations perform the best, since it allows adding the active constraints

during the B&B algorithm. This motivates the design of a dual heuristic algorithm, which

solves relaxed subproblems and uses the obtained lower bounds to improve linear relaxation

bounds in the B&B algorithm. The computational results show that the dual heuristic algo-

rithm has a significant potential in improving lower bounds for B&B and effectively reduces

the size of the B&B tree. By modifying the parameters of the algorithm to properly select

special nodes and formulate the relaxations, we demonstrate that there is a significant po-

tential for improving the lower bounds by only solving a small number of relaxations. Since

our goal is to develop an efficient algorithm to obtain lower bounds, further improvements

on the efficiency of solving relaxations can be beneficial. In addition, investigations on how

to collect information during the algorithm and use that to guide constraint selection in re-

laxations may also help to improve the quality of lower bounds. We propose two directions

for future works that focus on these two aspects.

Finally, Chapter 6 examines two special-purpose algorithms for obtaining lower bounds

for MKP: 1) a new implementation of the subadditive lifting method, which produces an

exact optimal dual solution, and 2) a shortest path algorithm using the shortest path

175

formulation for MKP. We adopt a scheme that uses approximate distances for node labeling.

The computational tests show that the quality of lower bounds obtained from the shortest

path algorithm is limited. However, as more efficient large-scale shortest path algorithms

are developed, it will be interesting to see if using these techniques and combining the

recursive network structure can produce better performance.

176

REFERENCES

[1] Aarts, E. and Lenstra, J. K., Local search in combinatorial optimization. John
Wiley & Sons, Inc., 1997.

[2] Applegate, D., Bixby, R., Chvatal, V., and Cook, W., The traveling salesman
problem: a computational study. Princeton University Press, 2007.

[3] Ata, B. and Olsen, T. L., “Near-optimal dynamic lead-time quotation and schedul-
ing under convex-concave customer delay costs,” Operations Research, vol. 57, no. 3,
pp. 753–768, 2009.

[4] Balas, E., “Disjunctive programming,” Annals of Discrete Mathematics, vol. 5, pp. 3–
51, 1979.

[5] Balas, E., Ceria, S., and Cornuéjols, G., “A lift-and-project cutting plane algo-
rithm for mixed 0–1 programs,” Mathematical programming, vol. 58, no. 1, pp. 295–324,
1993.

[6] Beasley, J., “OR - library: distributing test problems by electronic mail,” Journal
of the Operational Research Society, vol. 41, no. 11, pp. 1069–1072, 1990.

[7] Benichou, M., Gauthier, J. M., Girodet, P., Hentges, G., Ribiere, G., and
Vincent, O., “Experiments in mixed-integer linear programming,” Mathematical Pro-
gramming, vol. 1, no. 1, pp. 76–94, 1971.

[8] Brahimi, N., Dauzère-Pérès, S., and Najid, N., “Capacitated multi-item lot-sizing
problems with time windows,” Operations Research, vol. 54, no. 5, p. 951, 2006.

[9] Brahimi, N., Dauzere-Peres, S., and Wolsey, L., “Polyhedral and lagrangian
approaches for lot sizing with production time windows and setup times,” Computers
& Operations Research, vol. 37, no. 1, pp. 182–188, 2010.

[10] Burdet, C. and Johnson, E., “A subadditive approach to solve linear integer pro-
grams,” Annals of Discrete Mathematics, vol. 1, pp. 117–144, 1977.

[11] Celik, S. and Maglaras, C., “Dynamic pricing and lead-time quotation for a multi-
class make-to-order queue,” Management Science, vol. 54, no. 6, pp. 1132–1146, 2008.

[12] Chu, P. and Beasley, J., “A genetic algorithm for the multidimensional knapsack
problem,” Journal of heuristics, vol. 4, no. 1, pp. 63–86, 1998.

[13] Chvátal, V., “Edmonds polytopes and a hierarchy of combinatorial problems,” Dis-
crete Mathematics, vol. 4, no. 4, pp. 305–337, 1973.

[14] Danna, E., Rothberg, E., and Pape, C., “Exploring relaxation induced neighbor-
hoods to improve mip solutions,” Mathematical Programming, vol. 102, no. 1, pp. 71–
90, 2005.

177

[15] Dauzère-Pérès, S., Brahimi, N., Najid, N., and Nordli, A., “The single-item lot
sizing problem with time windows,” tech. rep., Technical Report, 02/4/AUTO, Ecole
des Mines de Nantes, France, 2002.

[16] Dijkstra, E., “A note on two problems in connexion with graphs,” Numerische math-
ematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] Doran, J., “An approach to automatic problem-solving,” Machine Intelligence, vol. 1,
no. 105-124, p. 35, 1967.

[18] Fischetti, M., Glover, F., and Lodi, A., “The feasibility pump,” Mathematical
Programming, vol. 104, no. 1, pp. 91–104, 2005.

[19] Fischetti, M. and Lodi, A., “Local branching,” Mathematical Programming, vol. 98,
no. 1, pp. 23–47, 2003.

[20] Fisher, M., “The lagrangian relaxation method for solving integer programming prob-
lems,” Management science, vol. 50, no. 12 supplement, pp. 1861–1871, 2004.

[21] Fréville, A. and Hanafi, S., “The multidimensional 0-1 knapsack problembounds
and computational aspects,” Annals of Operations Research, vol. 139, no. 1, pp. 195–
227, 2005.

[22] Freville, A. and Plateau, G., “Hard 0-1 multiknapsack test problems for size
reduction methods,” Investigation Operativa, vol. 1, pp. 251–270, 1990.

[23] Fréville, A. and Plateau, G., “An efficient preprocessing procedure for the mul-
tidimensional 0–1 knapsack problem,” Discrete Applied Mathematics, vol. 49, no. 1,
pp. 189–212, 1994.

[24] Frieze, A., “Shortest path algorithms for knapsack type problems,” Mathematical
Programming, vol. 11, no. 1, pp. 150–157, 1976.

[25] Gallo, G. and Pallottino, S., “Shortest path methods: a unifying approach,” in
Netflow at Pisa, pp. 38–64, Springer, 1986.

[26] Galvao, R., Gonzalo Acosta Espejo, L., and Boffey, B., “A comparison of
lagrangean and surrogate relaxations for the maximal covering location problem,” Eu-
ropean Journal of Operational Research, vol. 124, no. 2, pp. 377–389, 2000.

[27] Gilmore, P. C. and Gomory, R. E., “The theory and computation of knapsack
functions,” Operations Research, vol. 14, no. 6, pp. 1045–1074, 1966.

[28] Glover, F., “Surrogate constraints,” Operations Research, vol. 16, no. 4, pp. 741–749,
1968.

[29] Goldberg, A. and Harrelson, C., “Computing the shortest path: A search meets
graph theory,” in Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 156–165, Society for Industrial and Applied Mathematics, 2005.

[30] Gomory, R., “An algorithm for the mixed integer problem,” tech. rep., DTIC Docu-
ment, 1960.

178

[31] Gomory, R., “Outline of an algorithm for integer solutions to linear programs,” Bul-
letin of the American Mathematical Society, vol. 64, no. 5, pp. 275–278, 1958.

[32] Gomory, R., “Some polyhedra related to combinatorial problems,” Linear Algebra
and its Applications, vol. 2, no. 4, pp. 451–558, 1969.

[33] Guzelsoy, M., Dual Methods in Mixed Integer Linear Programming. Lehigh Univer-
sity, 2009.

[34] Hart, P., Nilsson, N., and Raphael, B., “A formal basis for the heuristic determi-
nation of minimum cost paths,” Systems Science and Cybernetics, IEEE Transactions
on, vol. 4, no. 2, pp. 100–107, 1968.

[35] Held, M. and Karp, R., “The traveling-salesman problem and minimum spanning
trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970.

[36] Held, M. and Karp, R., “The traveling-salesman problem and minimum spanning
trees: Part ii,” Mathematical programming, vol. 1, no. 1, pp. 6–25, 1971.

[37] Jeroslow, R., “Cutting-plane theory: Algebraic methods,” Discrete mathematics,
vol. 23, no. 2, pp. 121–150, 1978.

[38] Johnson, E. L., “Subadditive lifting methods for partitioning and knapsack prob-
lems,” Journal of Algorithms, vol. 1, no. 1, pp. 75–96, 1980.

[39] Johnson, E., “Cyclic groups, cutting planes and shortest paths,” Mathematical pro-
gramming, pp. 185–211, 1973.

[40] Johnson, E., “On the group problem and a subadditive approach to integer program-
ming,” Annals of Discrete Mathematics, vol. 5, pp. 97–112, 1979.

[41] Karwan, M. and Rardin, R., “Surrogate dual multiplier search procedures in integer
programming,” Operations Research, vol. 32, no. 1, pp. 52–69, 1984.

[42] Kellerer, H., Pferschy, U., and Pisinger, D., Knapsack problems. Springer,
2004.

[43] Klabjan, D., “A practical algorithm for computing a subadditive dual function for set
partitioning,” Computational optimization and applications, vol. 29, no. 3, pp. 347–368,
2004.

[44] Klabjan, D., “A new subadditive approach to integer programming,” in Integer Pro-
gramming and Combinatorial Optimization, pp. 384–400, Springer, 2006.

[45] Klabjan, D., “Subadditive approaches in integer programming,” European journal of
operational research, vol. 183, no. 2, pp. 525–545, 2007.

[46] Kunreuther, H. and Schrage, L., “Joint pricing and inventory decisions for con-
stant priced items,” Management Science, vol. 19, no. 7, pp. 732–738, 1973.

[47] Land, A. H. and Doig, A. G., “An automatic method of solving discrete program-
ming problems,” Econometrica: Journal of the Econometric Society, vol. 28, no. 3,
pp. 497–520, 1960.

179

[48] Lee, C., Çetinkaya, S., and Wagelmans, A., “A dynamic lot-sizing model with
demand time windows,” Management Science, vol. 47, no. 10, pp. 1384–1395, 2001.

[49] Linderoth, J. and Savelsbergh, M., “A computational study of search strategies
for mixed integer programming,” INFORMS Journal on Computing, vol. 11, no. 2,
pp. 173–187, 1999.

[50] Llewellyn, D. and Ryan, J., “A primal dual integer programming algorithm,” Dis-
crete Applied Mathematics, vol. 45, no. 3, pp. 261–275, 1993.

[51] Lodi, A., “Mixed integer programming computation,” in 50 Years of Integer Program-
ming 1958-2008, pp. 619–645, Springer, 2010.

[52] Martello, S. and Toth, P., Knapsack problems: algorithms and computer imple-
mentations. John Wiley & Sons, Inc., 1990.

[53] Nemhauser, G., “A generalized permanent label setting algorithm for the shortest
path between specified nodes,” Journal of Mathematical Analysis and Applications,
vol. 38, no. 2, pp. 328–334, 1972.

[54] Nemhauser, G. and Wolsey, L., Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

[55] Osorio, M., Glover, F., and Hammer, P., “Cutting and surrogate constraint analy-
sis for improved multidimensional knapsack solutions,” Annals of Operations Research,
vol. 117, no. 1, pp. 71–93, 2002.

[56] Pochet, Y. and Wolsey, L., Production planning by mixed integer programming.
Springer, 2006.

[57] Richard, J. and Dey, S., “The group-theoretic approach in mixed integer program-
ming,” in 50 Years of Integer Programming 1958-2008, pp. 727–801, Springer, 2010.

[58] Savasaneril, S., Griffin, P. M., and Keskinocak, P., “Dynamic lead-time quo-
tation for an m/m/1 base-stock inventory queue,” Operations Research, vol. 58, no. 2,
pp. 383–395, 2010.

[59] Shapiro, J., “Generalized lagrange multipliers in integer programming,” Operations
Research, vol. 19, no. 1, pp. 68–76, 1971.

[60] Thomas, J., “Price-production decisions with deterministic demand,” Management
Science, vol. 16, no. 11, pp. 747–750, 1970.

[61] Van den Heuvel, W. and Wagelmans, A., “A polynomial time algorithm for a
deterministic joint pricing and inventory model,” European Journal of Operational
Research, vol. 170, no. 2, pp. 463–480, 2006.

[62] Wagner, H. M. and Whitin, T. M., “Dynamic version of the economic lot size
problem,” Management Science, vol. 5, no. 1, pp. 89–96, 1958.

[63] Wolsey, L., “Integer programming duality: Price functions and sensitivity analysis,”
Mathematical Programming, vol. 20, no. 1, pp. 173–195, 1981.

180

[64] Wolsey, L., “Lot-sizing with production and delivery time windows,” Mathematical
Programming, vol. 107, no. 3, pp. 471–489, 2006.

[65] Zhu, N., “A relation between the knapsack and group knapsack problems,” Discrete
applied mathematics, vol. 87, no. 1, pp. 255–268, 1998.

181

