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Abstract

Many decision making problems in real life are a↵ected by uncertainty. The area of optimization

under uncertainty has been studied widely and deeply for over sixty years, and it continues to

be an active area of research. The overall aim of this thesis is to contribute to the literature by

developing (i) theoretical models that reflect problem settings closer to real life than previously

considered in literature, as well as (ii) solution techniques that are scalable. The thesis focuses

on two particular applications to this end, the vehicle routing problem and the problem of

patient scheduling in a healthcare system.

The first part of this thesis studies the vehicle routing problem, which asks for a cost-optimal

delivery of goods to geographically dispersed customers. The probability distribution govern-

ing the customer demands is assumed to be unknown throughout this study. This assumption

positions the study into the domain of distributionally robust optimization that has a well de-

veloped literature, but had so far not been extensively studied in the context of the capacitated

vehicle routing problem. The study develops theoretical frameworks that allow for a tractable

solution of such problems in the context of rise-averse optimization. The overall aim is to create

a model that can be used by practitioners to solve problems specific to their requirements with

minimal adaptations.

The second part of this thesis focuses on the problem of scheduling elective patients within the

available resources of a healthcare system so as to minimize overall years of lives lost. This

problem has been well studied for a long time. The large scale of a healthcare system coupled

with the inherent uncertainty a↵ecting the evolution of a patient make this a particularly

di�cult problem. The aim of this study is to develop a scalable optimization model that

allows for an e�cient solution while at the same time enabling a flexible modelling of each

patient in the system. This is achieved through a fluid approximation of the weakly-coupled

counting dynamic program that arises out of modeling each patient in the healthcare system

as a dynamic program with states, actions, transition probabilities and rewards reflecting the

condition, treatment options and evolution of a given patient. A case-study for the National

Health Service in England highlights the usefulness of the prioritization scheme obtained as a

result of applying the methodology developed in this study.

6



Acknowledgements

I am extremely grateful to my supervisor, Prof. Wolfram Wiesemann, for his constant support,

guidance and encouragement through the last few years that made the outcome of this thesis

possible. I am truly indebted to him for the many learning opportunities that I have received

and the research experience that I have gained over the course of my PhD.

I am thankful to my group members, Stefano Moret and Esma Koca, for being wonderful co-

authors, and becoming my friends and confidantes. I will truly cherish the time that I spent

working with them during my PhD. I also appreciate the advice that I have received from the

post-doctoral researchers that have been part of this group during my time here: Clint Ho,

Man-Chung Yue, Zhi Chen and Huikang Liu. I have also had the privilege of co-authoring

with Clint and Huikang, and learning from them. I have benefited greatly from the wisdom of

Hormoz Ramian, who has been a source of encouragement and advice.

I am grateful for the support and motivation that I received outside of my academic circle. My

keen appreciation goes to Aarti, Ekta, Akhil, Venkat, Priya and all the others that I should have

mentioned, for their valuable friendship. I am indebted to Allen for his support and patience

throughout.

Last but not the least, none of this would have been possible without the unconditional love

and support of my parents. Their unwavering faith in me has given me courage through all the

times when I have not believed in myself. I count my blessings everyday to have them as my

parents, and I dedicate this thesis to them.

7



8



To my parents.



Contents

Copyright 3

Declaration 5

Abstract 6

Acknowledgements 7

1 Introduction 21

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Background Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.2 Chance-constrained Programming . . . . . . . . . . . . . . . . . . . . . . 24

1.2.3 Robust Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.4 Distributionally Robust Optimization . . . . . . . . . . . . . . . . . . . . 26

1.2.5 Dynamic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3 Research Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . 27

1.3.1 Stochastic Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . 28

10



CONTENTS 11

1.3.2 Healthcare Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 The Distributionally Robust Chance Constrained Vehicle Routing Problem 36

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Branch-and-Cut Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Theoretical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.5 E�cient Reformulations for Demand Estimators . . . . . . . . . . . . . . . . . . 59

2.5.1 Marginalized Moment Ambiguity Set . . . . . . . . . . . . . . . . . . . . 59

2.5.2 Generic Moment Ambiguity Sets . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.6.1 Marginalized Ambiguity Sets . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6.2 Generic Ambiguity Sets: RCI Cut Evaluation . . . . . . . . . . . . . . . 82

2.6.3 Generic Ambiguity Sets: Branch-and-Cut Scheme . . . . . . . . . . . . . 83

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 A Unifying Framework for the Capacitated Vehicle Routing Problem under

Risk and Ambiguity 103

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



12 CONTENTS

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4 Theoretical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.4.1 Equivalence of VRP(C) and 2VF(d) . . . . . . . . . . . . . . . . . . . . . 112

3.4.2 Demand Estimators for 2VF(d) . . . . . . . . . . . . . . . . . . . . . . . 121

3.5 E�cient Reformulation for Demand Estimators . . . . . . . . . . . . . . . . . . 128

3.5.1 Special Case: Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.6 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.6.1 Runtime Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.6.2 The Impact of Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4 Optimal Elective Scheduling during the SARS-CoV-2 Pandemic 168

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.3 Theoretical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.3.1 Weakly Coupled Counting Dynamic Programs . . . . . . . . . . . . . . . 175

4.3.2 Fluid Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

4.4.2 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

4.4.3 Dynamic Programming Model of an Individual Patient . . . . . . . . . . 216



4.4.4 Optimized Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4.4.5 Comparison with COVID Prioritization Policies . . . . . . . . . . . . . . 222

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

4.5.1 Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.5.2 Additional Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 225

4.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

5 Conclusion 236

5.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Bibliography 240

A Detailed Numerical Results for Chapter 2 257

B Worst-Case Distribution for Scenario-Wise First-Order Ambiguity Set with

Fixed Scenario Probabilities 273

C Detailed Numerical Results for Chapter 3 275

D Detailed Numerical Results for Chapter 4 278

13



14



List of Tables

4.1 Availability of resources and sta↵-to-bed ratios . . . . . . . . . . . . . . . . . . . 216

4.2 Average monthly G&A and CC bed occupancy for di↵erent policies . . . . . . . 221

A.1 Best determined solutions and run times for the deterministic and distribution-

ally robust branch-and-cut-schemes over the ambiguity set . . . . . . . . . . . . 258

A.2 Detailed numerical results for the deterministic branch-and-cut scheme . . . . . 261

A.3 Detailed numerical results for the distributionally robust branch-and-cut scheme

over first order ambiguity sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

A.4 Detailed numerical results for the distributionally robust branch-and-cut scheme

over second order ambiguity sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

A.5 Detailed numerical results for the distributionally robust branch-and-cut scheme

over second order ambiguity sets with diagonal covariance bounds . . . . . . . . 270

C.1 Runtimes and optimality gaps for the distributionally robust CVRP against de-

terministic CVRP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

D.1 Relative performance of randomized policy against policies from literature. . . . 279

D.2 Relative infeasibility of randomized policy against policies from literature. . . . . 280

15



16



List of Figures

2.1 Probability of satisfying capacity restriction of a vehicle for a chance constrained

CVRP instance as the correlation ⇢ of customer demands varies from 0 to 1 . . . 40

2.2 Probability of feasibility of a route for a chance constrained CVRP instance as

the sample size of the historical observations varies . . . . . . . . . . . . . . . . 42

2.3 Probability distribution P‹ which illustrates that RVRPpPq and 2VFpPq are not

equivalent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Examples of probability distributions contained in a marginalized ambiguity set 59

2.5 Joint worst-case distribution for a distributionally robust chance constrained

CVRP over a marginalized first-order ambiguity set with two customers . . . . . 66

2.6 Demand distributions for the instance A-n32-k5 . . . . . . . . . . . . . . . . . . 80

2.7 Minimum number of vehicles and optimal transportation costs for the bench-

mark instance A-n32-k5 over a marginalized variance ambiguity set with varying

variation coe�cients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.8 Optimal route sets for the benchmark instance A-n32-k5 over a marginalized

variance ambiguity set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.9 Runtimes for RCI cut evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.10 Runtimes and optimality gaps for our branch-and-cut schemes . . . . . . . . . . 84

17



18 LIST OF FIGURES

3.1 Demand estimators for a stochastic CVRP instance over di↵erent types of risk

measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.2 Runtimes and optimality gaps for our branch-and-cut schemes. . . . . . . . . . . 147

3.3 Minimum number of vehicles and optimal transportation costs forCVRP instance

with an exponential class of disutility functions. . . . . . . . . . . . . . . . . . . 148

3.4 Optimal route plans for A-n32-k5 with exponential disutilities a “ 0 (left; 5

vehicles), a “ 3.41E-3 (middle; 7 vehicles) and a “ 7.81E-3 (right; 9 vehicles). . 149

4.1 Schematic representation of a dynamic program with two states and two actions 176

4.2 Schematic representation of another dynamic program with 2 states and 2 actions178

4.3 Schematic representation of a weakly coupled dynamic program . . . . . . . . . 178

4.4 Schematic representation of the counting dynamic program for the dynamic pro-

gram from Example 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.5 Schematic representation of the weakly coupled counting DP from Example 4.9 . 186

4.6 Next state distribution for a k-counting dynamic program with k “ 1, k “ 2 and

k “ 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.7 Weekly inflows of elective and emergency patients categorized by disease group . 216

4.8 Schematic representation of a patient dynamic program, from admission to hos-

pital to discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

4.9 Weekly elective admissions and admission denials under the Optimized Schedule,

categorized by disease group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

4.10 Weekly bed occupancy in CC by disease group . . . . . . . . . . . . . . . . . . . 220

4.11 Weekly bed occupancy in G&A by disease group . . . . . . . . . . . . . . . . . . 220

4.12 Pareto analysis: YLL vs. total cost of care . . . . . . . . . . . . . . . . . . . . . 222



4.13 Weekly elective admissions and admission denials under the COVID Prioritiza-

tion policy, categorized by disease group . . . . . . . . . . . . . . . . . . . . . . 223

4.14 Years of Life Gained by the Optimized Schedule relative to the COVID Prioriti-

zation policy, categorized by disease group . . . . . . . . . . . . . . . . . . . . . 224

19



20



Chapter 1

Introduction

1.1 Motivation

Large-scale organizations, across di↵erent industries, face problems a↵ecting their day-to-day

operations wherein they are required to make decisions in the face of incomplete or partially

available information about the future. The numerous scenarios that could unfold in the future

coupled with the large scale of the operations make these problems di�cult to model. Moreover,

these organizations are usually time bound to make these decisions. This necessitates that the

developed models can be solved within a short time span to a desirable accuracy. Typically,

organizations make simplifying assumptions to create suitable models to solve these problems

e↵ectively and e�ciently. However, this simplification comes at the cost of the solution quality

which ultimately may lead to suboptimal decisions for the organization. Eventually over time,

this would translate to higher costs or lower profits for these organizations.

According to a recent Forbes article [Edw20], 85% of Fortune 500 companies, across di↵erent

industries such as aviation, energy, telecommunications, logistics, finance and healthcare, use

mathematical optimization in their operations. Aviation companies are required to decide the

prices of their tickets months before they know the customer demand or the future costs of

their operations (say, driven by uncertain fuel costs). They need to o↵er competitive pricing

while maintaining or improving their profit margins. Within healthcare, hospitals are faced

21



22 Chapter 1.

with the problem of improving surgery schedules while managing capacity for emergency pro-

cedures. This requires improvement in resource planning before the the demand for emergency

procedures or sta↵ availability become known. Moreover, healthcare providers are required to

decide on a course of treatment for patients, without having full information about how the

patient’s condition will evolve given a particular treatment. E-commerce companies have to

decide how to show appropriate assortment of products to new visitors to their websites so as to

increase customer engagement and improve revenues. This is challenging due to the unknown

preferences of the potential customers. Logistics companies are required to provide customers

with estimated delivery times before they have complete information of the total demand that

they will be needed to meet on that day. Suboptimal decisions result in higher costs or lower

customer satisfaction for these companies. The integration of renewable energy sources, such

as wind and solar, into energy production facilities have led to the problem of production plan-

ning under uncertainty for energy companies due to the weather dependent nature of the energy

sources. These examples barely scratch the surface of the large-scale decision making problems

under uncertainty that are faced by various industries.

The aim of this thesis is two-fold: (i) to contribute to the literature on decision making under

uncertainty by creating theoretical frameworks that model large-scale decision making problems

closer to real life than previous formulations considered in literature, and (ii) developing scalable

solution techniques that can be easily adapted by practitioners. This thesis particularly focuses

on two application domains: logistics and healthcare operations.

1.2 Background Information

The previous section has emphasized the importance of large-scale decision making problems

under uncertainty. decision making problems can be modeled as optimization problems. Opti-

mization problems under uncertainty have been studied by the Operations Research community

since the 1950s, and has seen rapid growth in both theory and solution algorithms. The ever

increasing complexity in operations has perpetuated the challenges that need to be addressed,
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and optimization under uncertainty has remained an active area of research. The general

formulation for an optimization problem under uncertainty is

min
xPX px,⇠̃q

fpx, ⇠̃q

where x is the vector of decision variables, X px, ⇠̃q is the feasibility set which may or may not

depend on the uncertain parameter ⇠̃ and fpx, ⇠̃q is the objective function.

This section presents a brief overview of the methodologies developed to address optimization

problems under uncertainty, and also highlight the merits and demerits of each method.

1.2.1 Stochastic Programming

In stochastic programming, the uncertain parameter is either assumed to be governed by a

particular probability distribution on the basis of judgment, or is estimated from historical data

wherein each observation is assigned an equal probability of occurrence (empirical distribution).

The most generic formulation of stochastic programming is

min
xPX px,⇠̃q

E⇠̃tfpx, ⇠̃qu

where E⇠̃p¨q is the expectation operator. The above model falls under the purview of single-

stage stochastic programming wherein a decision is made before the uncertainty parameters

are realized. As such, single-stage stochastic programming is suitable for long-term strategic

planning decisions.

However, organizations often face decision making problems a↵ecting their day-to-day opera-

tions that call for a more flexible modeling approach. The multi-stage stochastic programming

model formulates the problem so that decisions are made in stages as the uncertainty gradually

unfolds in the future and more information becomes available. A first-stage decision is made

before the random variables are realized, followed by recourse decisions that vary by the out-

come of the random variables. The generic formulation for the T -stage stochastic programming
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problem is

min
x1,x2p¨q,...,xT p¨q

E⇠̃rtf1px1q ` f2px2p⇠̃r2sq, ⇠̃2q ` . . . ` fT pxT p⇠̃rT sq, ⇠̃T qus

s.t. x1 P X1, xtp⇠̃rtsq P Xtpxt´1p⇠̃rt´1sq, ⇠̃tq, t “ 2, . . . , T.

Here ⇠̃1, . . . , x̃T is a random data process, and xtp⇠̃rts represents the decision at time t as a

function of the data process up to time t. Notice that the first-stage decision is deterministic.

Although, conceptually simple, stochastic programming requires modeling the underlying prob-

ability distribution which is rarely known with certainty. Moreover, stochastic programming

models for real-world applications can quickly grow in size and become too complex for use. [BL11]

and [WZ05] provide an overview of the theory and applications of stochastic programming.

1.2.2 Chance-constrained Programming

Chance-constrained programming (also called probabilistic programming) was first introduced

by [CC59]. This approach aims to ensure that the optimal decision respects the feasibility of

the model with a minimum pre-specified probability. The general representation for this model

is as follows

minimize fpx, ⇠̃q

subject to Pphipx, ⇠̃q § 0q • p @i “ 1, . . . ,m

x P X px, ⇠̃q

where p P r0, 1s is the minimum prefixed probability of ensuring the feasibility of the model

constraints. This model allows for the constraints to be violated in a small number of scenarios,

instead of being satisfied in all scenarios. This di↵ers from the multi-stage stochastic program-

ming approach wherein the recourse decisions are penalized for violating the feasibility of the

multi-stage problem.

In the above model the probabilistic constraint applies to each constraint individually ; the
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probabilistic constraint may also apply to all the constraints jointly :

Pphipx, ⇠̃q § 0 @i “ 1, . . . ,mq • p

The individual chance constraints model is easier to solve that joint chance constraints. While

the chance-constrained programming is suitable when the focus is on ensuring the reliability

of a system under uncertainty, modeling the underlying probability distribution of the pro-

cess as well as the complexity of evaluating the chance constraints pose limitations to this

approach. [KJ21] provide a detailed review of this approach.

1.2.3 Robust Optimization

This modeling paradigm di↵ers from the above approaches in that it does not take a probabilis-

tic approach to modeling uncertainty. Instead, it models the uncertain parameters to belong to

an uncertainty set. The objective is to generate decisions that are optimal with respect to the

worst-case outcome of the uncertain parameters in the uncertainty set. The generic formulation

for this model is

minimize fpx, ⇠q

subject to x P X px, ⇠q

⇠ P U

where U is the uncertainty set to which ⇠̃ belongs. The design of the uncertainty set is crucial

to the success of the robust optimization solution, else the model may lead to overly conser-

vative solutions. Some commonly studied uncertainty sets in literature include the polyhedral

uncertainty set, 1-norm uncertainty sets, 8-norm uncertainty sets, and elliptical uncertainty

sets.

Although, robust optimization relaxes the requirement for the underlying distribution governing

the uncertain parameters, the tractability of the solution approach as well as the conservative-

ness of the solution is dictated by the design of the uncertainty set. This limits the modeling

flexibility of this approach. [BBC11b] provides a review of the theory and applications of robust
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optimization.

1.2.4 Distributionally Robust Optimization

While stochastic programming and chance-constrained programming require knowledge of the

underlying probability distribution governing the uncertain parameters, robust optimization

disregards all distributional knowledge about the uncertain parameters. Distributionally robust

optimization bridges this gap by relaxing the requirement of knowing the exact probability

distribution governing the uncertain parameters, however it requires the design of an ambiguity

set to which the governing probability distribution must belong. Like robust optimization,

the distributionally robust optimization approach optimizes in view of the realization of the

worst-case distribution in the ambiguity set. The generic formulation for the distributionally

robust optimization model is given by

min
xPX px,⇠̃q

max
P⇠̃PP

EP⇠̃
fpx, ⇠̃q

where P⇠̃ is a plausible distribution governing the uncertain parameter ⇠̃ belonging to the am-

biguity set P . The ambiguity set may be characterized by support information of the uncertain

parameters; estimates of mean or other dispersion measures from data; or as a function of a

probability metric defined over a reference distribution estimated from data.

By design, the distributionally robust optimization o↵ers more flexibility than the other mod-

elling approaches described previously. Later on in this thesis, we consider specific ambiguity

sets and show that the gain in modeling flexibility does not necessarily come at the cost of

solution tractability. However, the ambiguity set requires careful attention to their design as

poorly chosen ambiguity sets could lead to overly conservative solutions. [PM19] provides a

review of distributionally robust optimization.
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1.2.5 Dynamic Programs

Dynamic programming evolved in the 1950’s as an alternative modeling approach to sequential

decision making under uncertainty. Deviating from all the other approaches described so far,

the multistage process is encoded by states, actions, rewards and transition probabilities. As

opposed to solving a single optimization problem, dynamic programming aims to find an optimal

policy that is a parametric description of optimal solutions to a family of optimization problems

parameterized by the initial state of the dynamic system.

The generic form of the model is described as

VtpStq “ min
aPA

˜
CpSt, aq ` �

ÿ

s1PS
pps1

|St, aqVt`1ps
1
q

¸

where St is the state at time t, a is the action in set A, CpSt, aq is the cost associated with

the system being in state St and taking action a, pps1
|s, aq is the probability of the system

transitioning to state s1 at time t ` 1 given that it was in state s at time t and action a was

applied to the system at time t. Finally, Vtpsq represents the value associated with being in

state s at time t. The aim is to find a policy ⇡psq that minimizes the value function. At

each state of the system s, the policy ⇡psq prescribes the action a that must be applied to the

system.

Even though dynamic programming o↵ers great modeling flexibility, it su↵ers from the curse

of dimensionality as the problem size grows exponentially in the number of states and actions.

Many papers in literature aim to address this issue; [Pow16] provides a review of these methods.

1.3 Research Objectives and Contributions

The overarching aim of this thesis is to contribute to the literature of decision making under

uncertainty by: (i) creating more flexible models that allow modeling the problem under study

closer to real life than previously done in literature, and (ii) create solution tractable and

scalable solution algorithms for the models developed in (i). The first part of the thesis studies
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the single-stage decision making problem under uncertainty, while the second part focuses on

the multi-stage decision making problem under uncertainty.

As discussed in Section 1.2, distributionally robust optimization bridges the stochastic op-

timization and robust optimization paradigms. We study distributionally robust optimiza-

tion in conjunction with risk measures to model the decision-maker’s attitude towards un-

certainty. We use this approach specifically to study the problem of the stochastic vehicle

routing problem under demand uncertainty. In literature, stochastic optimization and ro-

bust optimization have been applied to solve this problem with varying degrees of success

[OAW18, OAW17, SO08, GWF13b], which led to the question of how successfully could the

distributionally robust optimization approach be applied to this problem.

The second part of the thesis studies a large-scale multi-stage decision making problem. As

mentioned in Section 1.2, the modeling flexibililty of the dynamic programming approach is o↵-

set by the curse of dimensionality. This thesis aims to contribute to the dynamic programming

literature by developing a close approximation model that scales more gracefully in problem

dimensions, that allows for easier solution of large-scale dynamic programming problems. This

approach was borne out of the need to solve the problem of optimally scheduling patients in

NHS England during the COVID-19 pandemic.

1.3.1 Stochastic Vehicle Routing Problem

A fundamental problem in logistics concerns finding the optimal routes for a set of vehicles

for the delivery of goods from a depot to a set of geographically dispersed customers. The

objective may be to find the set of routes that take the shortest distance or minimize the cost

of travel. The vehicle routing problem (VRP) has been studied since the 1950s [DR59], and

it has found wide-spread applications in waste collection, dial-a-ride services, courier delivery

and the routing of snow plow trucks, school buses as well as maintenance engineers.

We consider a complete and directed graph G “ pV,Aq with nodes V “ t0, . . . , nu and arcs

A “ tpi, jq P V ˆ V : i ‰ ju. The node 0 P V represents the unique depot, and the nodes
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VC “ t1, . . . , nu Ä V denote the customers. The depot is equipped with m vehicles, which we

index through the set K “ t1, . . . ,mu. Each vehicle incurs transportation costs of cpi, jq P R`

if it traverses the arc pi, jq P A. Throughout the thesis, we allow for asymmetric transportation

costs. As is standard in the literature, our models simplify if the transportation costs satisfy

cpi, jq “ cpj, iq for all pi, jq P A; see, e.g., [STV14].

The feasible routes of our problem must form an m-partition of the customer set, wherein each

route is visited by a single vehicle; no two routes overlap at any customer node; the union of all

routes must recover our customer set; and the routes should start and end at the depot node.

We refer to the collection of m feasible routes as a route set. Additionally, each feasible route

must satisfy some ’technological’ constraints. In this chapter, we keep the notation informal in

order to give a broad description of the study area. We make the notation more rigorous in the

next chapters. We denote a route by R where R is an ordered list of customer nodes visited by

a vehicle. We seek to find a collection of routes, called a route set, that forms an m-partition

of the customer set along with satisfying the ‘technological’ constraints.

There are various variants of VRP, but the two variants that have received the most attention

in the vehicle routing community are

(i) Capacitated vehicle routing problem (CVRP). The vehicles that have to deliver

or pick up items from di↵erent locations before returning to the depot, have a maximum

carrying capacity.

(ii) Vehicle routing problem with time windows (VRPTW). The vehicles have to visit

the specific locations where they are to deliver or pick up goods within a specified time

window.

The classical problem considers all parameters to be deterministic. In the case of CVRP, this

would mean that the customer demands are known precisely before the delivery routes are

planned, or that travel times are known exactly before the routes are planned for VRPTW.

In deterministic CVRP, each customer i P VC has a known demand qi P R` and the m vehicles

are homogeneous with capacity Q. Moreover, for a route to be technologically feasible the sum
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of demand served by any single vehicle
∞

iPR qi must not exceed Q. The shorthand notation

R P Rpqq expresses the capactity constraint for the k-th vehicle, that is,
∞

iPR qi § Q.

However, for VRPTW the travel times are highly uncertain depending on tra�c conditions on

any given day, and the customer requirements for pick up may become known only when the

vehicle reaches the customer in the case of CVRP. These examples illustrate that deterministic

vehicle routing problems are rarely useful in practice.

The robust CVRP seeks for a route set that satisfies the vehicle capacities for all anticipated

demand realizations within an uncertainty set Q. Thus, the formulation of the robust CVRP

replaces the deterministic capacity constraints
∞

iPR qi § Q with the robust capacity constraints

R P
ì

qPQ Rpqq. The robust CVRP reduces to a deterministic CVRP if Q “ tqu.

The chance constrained CVRP models the customer demands as a random vector eq governed

by a known probability distribution Q. The objective is to find a route set that satisfies all

vehicle capacities with high probability. Thus, we replace the capacity constraints R P Rpqq

of the deterministic CVRP with the probabilistic capacity constraints Q rR P Rpeqqs • 1 ´ ✏,

where ✏ P p0, 1q represents a prescribed tolerance for capacity violations. Note that the chance

constrained VRP reduces to a deterministic CVRP if P “ �q, where �q denotes the Dirac

distribution that places unit mass on the demand realization eq “ q.

The vehicle routing problem under uncertainty has become a major area of research, and

draws large investments from logistics behemoths such as Amazon. The stochastic optimization

community has contributed significantly to this area. However, most of the literature assumes

that the uncertain parameters are independent and belong to a known probability distribution.

We show in Chapter 2 the limitations of these assumptions in practice. There have been e↵orts

made to solve the chance constrained VRP, but the scalability of the solution algorithms has

remained limited. Chapter 2 of this thesis aims to alleviate the above problems and create more

scalable algorithms using distributionally robust optimization to solve the chance constrained

CVRP. To the best of our knowledge, this is the first attempt to address the gap in literature

identified above.
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In Chapter 2, the probability distribution governing the uncertain customer demands are mod-

eled to belong to an ambiguity set. The chance constrained CVRP requires the feasibility of

a route with a probability of at least 1 ´ ✏ where 0 † ✏ † 1 denotes the risk tolerance of the

route planner. We show that when the ambiguity set satisfies a subadditivity condition the

distributionally robust CVRP can be solved using algorithms that scale favorably and can be

implemented using o↵-the-shelf commercial solvers. Additionally, this subadditivity condition

is satisfied by a wide range of ambiguity sets called the moment ambiguity sets. For a large

class of moment ambiguity sets, we show that the distributionally robust chance constrained

CVRP can be solved without much undue overhead over their deterministic counterparts.

In Chapter 2, the distributionally robust chance-constrained CVRP is shown to be equivalent

to the distributionally robust CVRP under value-at-risk, which is popularly used risk measure

in areas such as finance and energy management. Moreover, Chapter 2 focused exclusively on

solving the distributionally robust CVRP under the moment ambiguity set. This led to the

question of e�ciently solving the distributionally robust CVRP under combinations of various

ambiguity sets and risk measures. Additionally, could the same solution framework be applied

to other variants of distributionally robust VRP apart from CVRP. While there have been

attempts made to study the ditributionally robust VRP under some specific risk measures/

indices and ambiguity sets, there has been no attempt made so far towards a general study of

the distributionally robust VRP under di↵erent risk measures and ambiguity sets. Chapter 3

aims to address these gaps in literature.

Chapter 3 considers an abstract definition of the vehicle routing problem, and derives necessary

and su�cient conditions that a VRP instance must satisfy in order to be solvable by the 2VF

formulation, which is the most commonly used mathematical model for VRP. These models

can be solved e�ciently using algorithms similar to ones developed in Chapter 2 and enjoying

similar scalable properties. The generic consideration of the VRP allows us to solve the distri-

butionally robust CVRP under di↵erent combinations of risk measures or disutility functions

combined with complete or partial characterizations of the probability distribution governing

the uncertain customer demands.
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1.3.2 Healthcare Optimization

While Chapter 2 and Chapter 3 are concerned with solving the single-stage optimization prob-

lem under uncertainty, in the last chapter of the thesis we focus on the multi-stage optimization

problem under uncertainty. Dynamic programming o↵ers a rich formulation to model a multi-

stage decision making problem under uncertainty. However, the solution algorithms scale poorly

due to the curse of dimensionality. Chapter 4 aims to alleviate this shortcoming and derive a

fluid approximation that lends itself to be solved via a linear program that scales favorably in

the problem dimensions.

The first wave of COVID-19 in England challenged the healthcare system, and gave rise to a

variety of decision-making problems under uncertainty. Healthcare operations management has

been a major research area since the 1970s. Problems in this area are di�cult because: (i) they

require modeling of complex systems, (ii) they are a↵ected by uncertainty, and (iii) they have

multiple competing objectives such as reducing mortality while keeping costs low. However,

there were not enough papers in this field to deal with the unprecedented surge in hospital

care demand as was seen during COVID-19. Moreover, most papers focused on individual

hospitals, rather than the entire healthcare system of a country that came under crumbling

pressure during COVID-19 waves.

Motivated by the above gaps in literature, Chapter 4 aims to answer the problem of optimal

scheduling of patients when the total demand for hospital care in a healthcare system far exceeds

its capacity. We develop and apply the dynamic programming formulation as described earlier

to the large-scale setting of NHS England.

Each patient is modeled as a dynamic program wherein the states encode the patient’s health

and treatment condition, the actions denote the available treatment options, the transition

probabilities characterize the stochastic evolution of a patient’s health, and finally the rewards

are indicative of the contribution to the overall objectives of the health system. Moreover,

each dynamic program is linked to the others via the common healthcare resources that they

share. We characterize this problem using the concept of weakly coupled dynamic programs
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and obtain near optimal solutions using the fluid approximation that we mentioned earlier.

The optimization-based prioritization scheme schedules patients into general & acute as well

as critical care to minimize the overall years of life lost (YLL)1, hospital costs or a combination

of both objectives. We consider the healthcare system at the national-level scale (rather than

an individual hospital) in order to inform strategic public health policy-making. To the best

of our knowledge, this is the largest application of the weakly coupled dynamic programming

approach to a real life problem.

1.4 Structure of Thesis

This thesis aims to develop theoretical models and solution methods to address the challenges

identified in the previous section in the field of vehicle routing and scheduling of elective patients

in a healthcare system.

Apart from conclusions in Chapter 5, the thesis is divided into three chapters. The first two

chapters investigate the vehicle routing problem, while the third chapter deals with the problem

of scheduling elective patients in a healthcare system. In the remaining of this section, each of

these chapters is summarized.

In Chapter 2, contrary to the classical CVRP, which assumes that the customer demands are

deterministic, we model the demands as a random vector whose distribution is only known to

belong to an ambiguity set. We require the delivery schedule to be feasible with a probability

of at least 1 ´ ✏, where ✏ characterizes the risk tolerance of the decision maker. We show that

the emerging distributionally robust CVRP can be solved e�ciently with standard branch-and-

cut algorithms whenever the ambiguity set satisfies a subadditivity condition. We then show

that this subadditivity condition holds for a large class of moment ambiguity sets. We derive

e�cient cut generation schemes for ambiguity sets that specify the support as well as (bounds

1YLL quantifies the years of life lost due to premature deaths, accounting for the age at which deaths occur.



34 Chapter 1.

on) the first and second moments of the customer demands. The contents of this chapter are

published in

1. S. Ghosal and W. Wiesemann. The Distributionally Robust Chance Constrained Vehicle

Routing Problem. Operations Research 68(3):716-732, 2020.

In Chapter 3, we propose a generic model for the single-stage CVRP under demand uncertainty.

By combining risk measures or disutility functions with complete or partial characterizations

of the probability distribution governing the demands, our formulation bridges the popular but

often independently studied paradigms of stochastic programming, robust and distributionally

robust optimization. We characterize when an uncertainty-a↵ected CVRP is (not) amenable to

a solution via a branch-and-cut scheme, and we elucidate how this solvability relates to the in-

terplay between the employed decision criterion and the available description of the uncertainty.

Our framework o↵ers a unified treatment of several CVRP variants from the recent literature,

such as formulations that optimize the requirements violation or the essential riskiness indices,

while at the same time it allows us to study new problem variants, such as formulations that

optimize the distributionally robust expected disutility over Wasserstein or �-divergence ambi-

guity sets. All of our formulations can be solved by the same branch-and-cut algorithm with

only minimal adaptations, which makes them attractive for practical implementations. The

contents of this chapter will form the following paper:

2. S. Ghosal, C.P. Ho and W. Wiesemann. A Unifying Framework for the Capacitated

Vehicle Routing Problem under Risk and Ambiguity. Submitted to Operations Research.

In Chapter 4, we propose a nation-wide prioritization scheme that models each individual pa-

tient as a dynamic program whose states encode the patient’s health and treatment condition,

whose actions describe the available treatment options, whose transition probabilities character-

ize the stochastic evolution of the patient’s health and whose rewards encode the contribution

to the overall objectives of the health system. The individual patients’ dynamic programs

are coupled through constraints on the available resources, such as hospital beds, doctors and
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nurses. We show that near-optimal solutions to the emerging weakly coupled counting dynamic

program can be found through a fluid approximation that gives rise to a linear program whose

size grows gracefully in the problem dimensions. We present a case study for the National

Health Service in England to show the usefulness of our approach in saving lives and reducing

costs. The contents of this chapter are split to form the following two publications:

3. J.C. D’Aeth, S. Ghosal, F. Grimm, et al. Optimal National Prioritization Policies for

Hospital Care during the SARS-CoV-2 Pandemic. Nature Computational Science, doi:

https://doi.org/10.1038/s43588-021-00111-1.

4. J.C. D’Aeth, S. Ghosal, F. Grimm, et al. Optimal Hospital Care Scheduling During the

SARS-CoV-2 Pandemic. Available on Optimization Online http://www.optimization

-online.org/DB HTML/2021/02/8261.html. (Under minor revision at Management Sci-

ence.)



Chapter 2

The Distributionally Robust Chance

Constrained Vehicle Routing Problem

2.1 Introduction

In this chapter, we study single-stage decision making problems under uncertainty. Specifically,

we focus on developing models and solution algorithms for the vehicle routing problem under

uncertainty.

In Chapter 1, we motivated the importance of studying vehicle routing problems under un-

certainty. In this chapter we review the various methods that have been applied to solve the

vehicle routing problem under uncertainty. We discuss the limitations of stochastic program-

ming, chance-constrained programming and robust optimization approaches to this problem.

In an attempt to alleviate the identified challenges, we study the distributionally robust chance

constrained CVRP, which assumes that the customer demands follow a probability distribution

that is only partially known, and it imposes chance constraints on the vehicles’ capacities for all

distributions that are deemed plausible in view of the available information. There have been

limited e↵orts to extensively study this problem through the lens of distributionally robust

chance constraints in literature so far. We argue that this formulation can o↵er an attrac-

tive trade-o↵ between the properties of the classical chance constrained CVRP and the robust

36
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CVRP, introduced in Chapter 1. By replacing a single probability distribution with a set of

plausible distributions, the distributionally robust chance constrained CVRP relieves the deci-

sion maker of estimating the entire joint demand distribution for all customers, and it replaces

computationally intractable operations on probability distributions with e�ciently solvable op-

timization problems. Likewise, since the distributionally robust chance constrained CVRP does

not abandon probability distributions altogether, it can determine delivery schedules that are

less conservative than those of the robust CVRP.

We aim to contribute to a deeper understanding of both the structural properties and the

solution of the distributionally robust chance constrained CVRP. We show that the rounded

capacity inequalities (RCIs), a popular class of cutting planes for the deterministic CVRP, can

be adapted to the distributionally robust chance constrained CVRP whenever the underlying

ambiguity set satisfies a subadditivity property. While several classes of popular ambiguity sets,

such as �-divergence [HH13, JG18] and Wasserstein [EK18, ZG18] ambiguity sets, violate this

subadditivity property, the condition holds for a wide class of moment ambiguity sets [EOO03,

DY10]. Motivated by this insight, we study marginal moment ambiguity sets, which characterize

each customer demand individually, and generic moment ambiguity sets, which also describe

the interactions between di↵erent customer demands. We find that the distributionally robust

chance constrained CVRP over a marginal moment ambiguity set reduces to a deterministic

CVRP with altered customer demands. The same problem over a generic moment ambiguity

set, on the other hand, does not have an equivalent reformulation as a deterministic CVRP in

general. We present RCI separation procedures for two classes of generic moment ambiguity

sets. Our numerical experiments indicate that contrary to the deterministic CVRP, which

appears to be best solved with branch-and-cut-and-price schemes, branch-and-cut algorithms

may be competitive for the distributionally robust chance constrained CVRP.

More succinctly, the contributions of this chapter are summarized as follows.

1. We show that whether or not the distributionally robust chance constrained CVRP can

be solved with a standard branch-and-cut scheme depends on the presence or absence of

a subadditivity property in the employed ambiguity set. We prove that this subadditivity
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property is present in a wide class of moment ambiguity sets.

2. We show that for marginal moment ambiguity sets, the distributionally robust chance

constrained CVRP reduces to a deterministic CVRP with altered customer demands.

We derive these demands for various classes of marginal moment ambiguity sets, and we

describe the associated worst-case demand distributions in closed form.

3. We develop cut separation schemes for di↵erent classes of generic moment ambiguity sets,

and we show that the associated worst-case distributions can be determined a posteriori

through the solution of tractable optimization problems.

The intimate connection between the applicability of branch-and-cut schemes and the subad-

ditivity of ambiguity sets appears to have implications well beyond the CVRP, and we believe

that this relationship deserves further study in the wider context of distributionally robust

optimization.

The remainder of this chapter is organized as follows. Section 2.2 covers literature review, and

Section 2.3 introduces and motivates the distributionally robust chance constrained CVRP.

Section 2.4 shows that the problem can be solved with branch-and-cut schemes whenever the

ambiguity set satisfies a subadditivity condition, and that this subadditivity condition holds

for a wide class of moment ambiguity sets. Section 2.5 studies the properties of marginal and

generic moment ambiguity sets in 2.5.1 and 2.5.1 respectively. We present our numerical results

in Section 2.6, and we o↵er concluding remarks in Section 2.7. The source code of the proposed

branch-and-cut algorithm is available online at http://wp.doc.ic.ac.uk/wwiesema/sourcecodes/.

Notation. We denote scalars and vectors by regular and bold lowercase letters, whereas bold

uppercase letters are reserved for matrices. The vectors e and 0 refer to the vectors of all ones

and all zeros, respectively, while ei is the i-th basis vector. For a set A Ñ t1, . . . , nu, the vector

1A P t0, 1u
n satisfies p1Aqi “ 1 if and only if i P A. We define the conjugate of a real-valued

function f : Rn
fiÑ R by f ‹

pyq “ sup tyJx ´ fpxq : x P Rn
u.
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2.2 Literature Review

The classical CVRP assumes that the customer demands are known precisely. This assumption

is frequently violated in pickup problems such as residential waste collection, where the amount

of waste to be collected is only known when the vehicle has arrived at an individual household.

The customer demands are also often uncertain in delivery problems. Internet retailers, online

groceries and delivery companies tend to use simplified models to estimate the vehicle space

consumed by each customer order (which can itself consist of multiple heterogeneous products).

The cumulative space consumed by all customer orders assigned to a vehicle thus becomes an

uncertain quantity which depends on the shapes of the involved products, the employed stacking

configuration, operational loading constraints as well as the packing skills of the sta↵ involved.

The CVRP with uncertain customer demands is typically solved as a two-stage stochastic

program or as a chance constrained program [GLS96, CLSV06, TV14]. In the two-stage version,

a tentative delivery schedule is selected here-and-now, that is, before the uncertain customer

demands are known, and the routes can be modified through a recourse decision once the

customer demands have been observed (e.g., penalty payments for unsatisfied demands, [SG83],

detours to the depot, [DT86] and [BSL96], or preventative restocking, [YMB00]). The chance

constrained CVRP, which we focus on in this chapter, does not allow for any modification of

the selected vehicles routes. Instead, it requires the vehicle routes to be feasible with a high,

pre-specified probability. While being more restrictive than the two-stage model, the chance

constrained CVRP can lead to simpler optimization problems, and it may be favored due to

its planning stability.

Although the chance constrained CVRP reduces to a deterministic CVRP in special cases, e.g,

when the demands are independent and identically distributed [GY79, DLL93], the problem

is typically solved with tailored branch-and-cut methods [LLM92]. The vast majority of exact

solution methods for the chance constrained CVRP assume that the customer demands are

independent. A notable exception is [DFL18], who develop a branch-and-cut-and-price scheme

for the chance constrained CVRP under the assumption that the customer demands follow

either a joint normal distribution or a given discrete distribution.
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Figure 2.1: Chance constrained CVRP instance with uniformly distributed marginal customer
demands (dotted lines) that are combined through a Gaussian copula. The left and middle
graphs illustrate projections of the probability density functions corresponding to the corre-
lations ⇢ “ 0 and ⇢ “ 1 onto two customers, respectively, and the right graph presents the
probabilities of satisfying the vehicle’s capacity for all 20 customers.

Although modeling the customer demands as a random vector that is governed by a known

distribution is intuitively appealing, the practicability of the chance constrained CVRP is chal-

lenged in three ways: (i) most of the solution schemes for chance constrained CVRPs require

the customer demands to be independent; (ii) merely establishing the (in-)feasibility of a fixed

route plan can already be challenging from a computational perspective; and (iii) estimat-

ing the customer demand distribution from historical records may require unrealistically large

amounts of data. In the following, we discuss each of these challenges in turn.

Example 2.1 (Independence) Consider a chance constrained CVRP instance where a single

vehicle of capacity Q “ 12 serves the customers VC “ t1, . . . , 20u. The marginal distribution

of each customer’s demand is a uniform distribution over the interval r0, 1s. We model the de-

pendence between the customer demands via a Gaussian copula. The left and the middle graph

in Figure 2.1 visualize the joint demand distribution for two customers when their demands

are independent (correlation ⇢ “ 0) and perfectly dependent (correlation ⇢ “ 1), respectively.

The right graph in Figure 2.1 visualizes the probability Q
“∞

iPVC
eqi § Q

‰
of satisfying the ca-

pacity restriction of the vehicle for varying levels of demand dependence. While 20 customers

with independently distributed demands can be served with a high probability of approximately

0.95, this probability decreases to 0.6 for perfectly correlated (comonotone) demands. We thus

conclude that it is crucial to model demand dependencies that may be present in the problem

instance.
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For a branch-and-cut-and-price algorithm for the chance constrained CVRP that does not

require independent customer demands, we refer to [DFL18].

Example 2.2 (Complexity) Consider a chance constrained CVRP instance where the cus-

tomer demands are uniformly distributed over a hyperrectangle rq, qs with q, q P Rn
`
. In this

case, evaluating the probability Q
“∞

iPR eqi § Q
‰
of satisfying the capacity of a vehicle is tan-

tamount to calculating the volume of the knapsack polytope, which is known to be #P-hard

[DS06, HKW16]. This is problematic for exact solution schemes, which typically rely on the

repeated evaluation of the feasibility of candidate routes to determine an optimal route set.

We note that if the customer demands follow a multivariate normal distribution, then the

cumulative demand along a candidate route is also normally distributed. In this case, the sat-

isfaction of the corresponding vehicle’s capacity reduces to evaluating the inverse cumulative

distribution function of a standard normal distribution, which can be done e�ciently. More-

over, by invoking a central limit theorem, a similar argument can be made for non-normally

distributed customer demands as long as (i) the customer demands are (su�ciently) indepen-

dent and (ii) each vehicle serves su�ciently many customers (with 30 being a common quote

in the literature).

Example 2.3 (Estimation) Consider a chance constrained CVRP instance where three vehi-

cles of capacity Q “ 10 serve the customer set VC “ t1, . . . , 8u. The expected customer demands

are µ “ p3, 5, 2, 5, 1, 6, 1, 1q
J, and each customer demand q̃i follows an independent uniform dis-

tribution supported on rp2{3qµi, p4{3qµis. The left part of Figure 2.2 shows the route set which

is feasible at the tolerance ✏ “ 0.05 since the vehicles’ capacities are satisfied with probability

0.97, 0.98 and 0.97, respectively. (For ease of illustration, we have duplicated the depot in the

figure.) In practice, the true distribution Q of the customer demands is typically unknown.

In this case, the literature often suggests to replace the unknown true distribution Q with the

empirical distribution Q⌫
“

1
⌫

∞
` �q`, where q1, . . . , q⌫ denote historical observations of the cus-

tomer demands under the distribution Q; this approach is often referred to as ‘sample average

approximation’ in the stochastic programming literature [SDR14]. The right part of Figure 2.2
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Figure 2.2: Chance constrained CVRP instance with independent and uniformly distributed
customer demands. The three graphs in the middle visualize the true probability density
functions of the cumulative customer demands, which correspond to generalized Irwin-Hall
distributions, for the three routes on the left. The graph on the right shows the likelihood of
the route set on the left being feasible if we replace the true distribution with an empirical
distribution Q⌫ of varying sample size ⌫. The box-and-whisker plots report the ranges and the
quartiles of 1,000 statistically independent sets of samples.

shows the likelihood of the same route set being feasible ( i.e., satisfying the capacity constraints

Q⌫
“
q̃1 ` q̃2 § 10

‰
• 0.95, Q⌫

“
q̃3 ` q̃4 ` q̃5 § 10

‰
• 0.95 and Q⌫

“
q̃6 ` q̃7 ` q̃8 § 10

‰
• 0.95) if

we replace the unknown true distribution Q with the empirical distribution Q⌫ resulting from

di↵erent sample sizes ⌫. We observe that despite the small number of customers and vehi-

cles, ⌫ • 800 samples are required for the route set to be feasible under the chance constraints

corresponding to the empirical distribution Q⌫ with a confidence of 0.99.

The aforementioned shortcomings of the chance constrained CVRP can to some degree be

addressed by the robust CVRP, which abandons probability distributions and instead requires

the vehicle routes to be feasible for all customer demands within a pre-specified uncertainty set

(e.g., a box, polyhedron or ellipsoid). The robust CVRP is amenable to solution schemes that

appear to scale better than those for the chance constrained CVRP. However, the solutions

obtained from the robust CVRP can be overly conservative since all demand scenarios within

the uncertainty set are treated as equally likely, and the routes are selected solely in view of the

worst demand scenario from the uncertainty set. Furthermore, the shape of the uncertainty set

is often selected ad hoc, and it remains unclear how this set should be calibrated to historical

demand data that may be available in practice. Branch-and-cut schemes for the exact solution
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of the robust CVRP have been proposed by [SO08] and [GWF13b].

While distributionally robust chance constraints have been considered for other problem classes

(see, e.g., the reviews by [BTN01], [Nem12] and [HRKW15]) and other classes of distribution-

ally robust models have been proposed for variants of the vehicle routing problem (see, e.g.,

[CD13], [AJ16], [JQS16], [CBM18], [FBJ18] and [ZBST18]), the only treatment of the dis-

tributionally robust chance constrained CVRP appears to be in the electronic companion of

[GWF13b] and in Section 4 of [DFL18]. [GWF13b] approximate a particular class of distri-

butionally robust chance constrained CVRPs by a robust CVRP and solve instances with up

to 23 customers using a standard branch-and-bound scheme, which limits the scalability of

their solution algorithms. [DFL18] adapt their branch-and-cut-and-price scheme for the clas-

sical chance constrained CVRP to a distributionally robust chance constrained CVRP where

the uncertain customer demands are characterized by their means and covariances. Under this

assumption, the probability of satisfying a vehicle’s capacity can be derived by replacing the

unknown demand distribution with a normal distribution of the same mean and covariances if

the risk tolerance ✏ is adjusted accordingly. Thus, the approach proposed in [DFL18] applies

only to a very special set of distributionally robust chance constrained CVRP. In this chapter,

we aim to address both the gaps in literature identified above, by developing a framework that

applies to a more general class of distributionally robust chance constrained CVRP, and build

solution algorithms that scale better than the previous approaches.

For a review of the vast literature on the CVRP, we refer the reader to [CLSV06], [GRW08],

[Lap09] and [TV14].

2.3 Problem Formulation

We consider a complete and directed graph G “ pV,Aq with nodes V “ t0, . . . , nu and arcs

A “ tpi, jq P V ˆ V : i ‰ ju. The node 0 P V represents the unique depot, and the nodes

VC “ t1, . . . , nu Ä V denote the customers. The depot is equipped with m homogeneous

vehicles of capacity Q P R`, which we index through the set K “ t1, . . . ,mu. Each vehicle
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incurs transportation costs of cpi, jq P R` if it traverses the arc pi, jq P A. Throughout the

chapter, we allow for asymmetric transportation costs. As is standard in the literature, our

models simplify if the transportation costs satisfy cpi, jq “ cpj, iq for all pi, jq P A; see, e.g.,

[STV14].

We denote byPpVC ,mq the set of all (ordered) partitions of the customer set VC intommutually

disjoint and collectively exhaustive (ordered) routes R1, . . . ,Rm:

PpVC ,mq “

#
pR1, . . . ,Rmq : Rk ‰ H @k, Rk X Rl “ H @k ‰ l,

§

k

Rk “ VC

+

In this definition, each route Rk “ pRk,1, . . . , Rk,nk
q is an ordered list, where Rk,l P VC is the

l-th customer and nk the total number of customers visited by vehicle k P K. With a slight

abuse of notation, we apply set operations to routes whenever the interpretation is clear. We

also refer to the collection of routes R1, . . . ,Rm as the route set R.

The distributionally robust chance constrained CVRP is defined as:

minimize cpRq

subject to P rRk P Rpeqqs • 1 ´ ✏ @P P P , @k P K

R P PpVC ,mq

(RVRP(P))

In this problem, the ambiguity set P contains all distributions that are deemed plausible for

governing the random demand vector eq. In particular, if the unknown true distribution Q is

contained in P , then any feasible solution to RVRP(P) is guaranteed to satisfy each vehicle’s

capacity constraint with a probability of at least 1 ´ ✏ under Q, that is, the corresponding

route set is feasible in the chance constrained CVRP with the unknown true distribution Q.

Note that RVRP(P) reduces to a deterministic CVRP if P “ t�qu, to a robust CVRP if

P “ t�q : q P Qu and to a chance constrained CVRP if P “ tQu. In the remainder of the

chapter, we use the terms ‘distributionally robust chance constrained CVRP’, ‘distributionally

robust CVRP’ and ‘RVRP(P)’ interchangeably.

As we will see in the following, the distributionally robust CVRP simultaneously addresses all
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three of the challenges mentioned for chance constrained CVRP in Chapter 1: (i) it caters

for dependent customer demands through ambiguity sets that contain both independent and

dependent demand distributions; (ii) for large classes of ambiguity sets, the (in-)feasibility of

a fixed route set can be established in polynomial time; and (iii) since an ambiguity set only

characterizes certain properties of the unknown true distribution Q, its estimation requires less

data and can often be done using historical records.

At this stage it is worth pointing out the potential shortcomings of the distributionally robust

CVRP. Firstly, the tractability of RVRP(P) crucially depends on the shape of the ambiguity

set P . As we will see in the remainder of the chapter, some intuitively appealing ambiguity

sets lead to tractable reformulations, whereas others do not. Secondly, since the ambiguity

set P only characterizes certain properties of the unknown true distribution Q, it may contain

other distributions that are unlikely to govern the customer demands eq but that still need

to be considered in the vehicles’ capacity constraints in RVRP(P). Finally, and closely re-

lated, the worst-case distribution infPPP P
“
Rk P Rpeqq

‰
minimizing the probability of the k-th

vehicle’s capacity constraint being satisfied is typically a pathological distribution that is un-

likely to be encountered in practice. In fact, we will see that for the classes of ambiguity sets

considered in this chapter, one can construct worst-case distributions that are supported on

two demand realisations only. The aforementioned shortcomings are intrinsic to the distribu-

tionally robust optimization methodology and are not specific to the distributionally robust

CVRP. We emphasize that despite these weaknesses, distributionally robust optimization has

been successfully applied in many diverse application areas, ranging from finance [GI03] and

energy systems [ZJ18] to communication networks [LSM14] and healthcare [MQZ`15]. We

therefore believe that the distributionally robust CVRP serves as a complement to the exist-

ing modeling paradigms for the CVRP under uncertainty, such as the robust CVRP and the

chance constrained CVRP. In particular, the most appropriate formulation for a specific appli-

cation may depend on a variety of factors, such as runtime and scalability requirements, the

acceptable degree of conservatism and the availability of historical records, and it ultimately

needs to be decided upon by the domain expert.
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Remark 2.4 (Joint Chance Constrained CVRP) Following the conventions of the vehi-

cle routing literature, we consider individual chance constraints. Instead, one could consider

a joint chance constraint, where the individual capacity requirements P rRk P Rpeqqs • 1 ´ ✏,

k P K, are replaced with a single joint capacity requirement P rRk P Rpeqq @k P Ks • 1 ´ ✏.

The individual chance constraints provide a guarantee for each individual route (and hence, for

every customer along that route), whereas the joint chance constraint o↵ers a guarantee for

the entire route plan. Since joint chance constrained optimization problems are typically much

more challenging from a computational perspective (see, e.g., [HRKW17] and [XA18]), we will

focus on the individually chance constrained CVRP throughout this chapter.

The distributionally robust CVRP enforces chance constraints for each route Rk with respect

to all probability distributions P P P , of which there could be uncountably many. It is therefore

not a priori clear how RVRP(P) can be solved numerically. In the following, we show that

under certain conditions, RVRP(P) is equivalent to a two-index vehicle flow (2VF) formulation

of the form

minimize
ÿ

pi,jqPA

cpi, jqxij

subject to
ÿ

jPV :
pi,jqPA

xij “

ÿ

jPV :
pj,iqPA

xji “ �i @i P V

ÿ

iPV zS

ÿ

jPS

xij • dPpSq @S Ñ VC , S ‰ H

xij P t0, 1u @pi, jq P A,

(2VF(P))

where �i “ 1 for i P VC and �0 “ m, and the demand estimator dP : 2VC fiÑ R` maps subsets

of the customer set VC to the non-negative real line. In this formulation, we have xij “ 1 if

and only if one of the m vehicles traverses the arc pi, jq P A. The objective function minimizes

the overall transportation costs across all vehicles. The first constraint set ensures that each

customer is visited by exactly one vehicle, and that m vehicles leave and return to the depot.

The second constraint set is commonly referred to as rounded capacity inequalities (RCIs), and

they ensure that the vehicles’ capacity constraints are met and that every route contains the

depot node.
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For a fixed set S of customers, the left-hand side of the associated RCI represents an upper

bound on the number of vehicles entering S (since some vehicles may enter S several times).

Thus, the demand estimator dPpSq on the right-hand side of the RCI has to provide a (suf-

ficiently tight) lower bound on the number of vehicles required to serve the customers in S.

Since there are exponentially many RCIs, they are typically introduced iteratively as part of

a branch-and-cut scheme. 2VF(P) is one of the most well-studied formulations for the CVRP,

and a large number of branch-and-cut schemes have been designed for its solution (see, e.g.,

[LLE04] and [STV14]). Thus, if we can show that RVRP(P) is equivalent to 2VF(P) for some

demand estimator dP , then we can solve RVRP(P) as long as we can evaluate dP quickly.

For the deterministic CVRP, a popular choice for the demand estimator is
Q

1
Q

∞
iPS qi

U
, which

represents the minimum number of vehicles required to serve S if the deliveries could be split

continuously across vehicles, rounded up to the next integer number. It has been shown that

this lower bound is su�ciently tight to ensure that the capacity constraint of each vehicle is

met by any feasible solution to the corresponding 2VF formulation [LND85]. Moreover, this

demand estimator eliminates short cycles that do not contain the depot node as long as the

customer demands satisfy q ° 0 component-wise. Although tighter RCIs could in principle

be obtained through the solution of bin packing problems, the increased strength of the cuts

typically does not justify the additional computational e↵ort required to evaluate the demand

estimator.

To quantify the number of vehicles required to serve a customer set S in the distributionally ro-

bust CVRP, we define the value-at-risk of a random variable X̃ governed by the distribution Q as

Q-VaR1´✏

“
X̃

‰
“ inf

!
x P R : Q

“
X̃ § x

‰
• 1 ´ ✏

)
,

which denotes the p1 ´ ✏q-quantile of X̃. Indeed, we have that

Q
“
X̃ § ⌧

‰
• 1 ´ ✏ ñ Q-VaR1´✏

“
X̃

‰
§ ⌧,
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which in the case of the CVRP translates to

Q rRk P Rpeqqs • 1 ´ ✏ ñ Q
” ÿ

iPRk

q̃i § Q
ı

• 1 ´ ✏ ñ Q-VaR1´✏

” ÿ

iPRk

q̃i
ı

§ Q.

Instead of considering a single probability distribution Q, however, RVRP(P) enforces chance

constraints for all probability distributions P P P . A similar reasoning as before shows that

P
“
X̃ § ⌧

‰
• 1´✏ @P P P ñ P-VaR1´✏

“
X̃

‰
§ ⌧ @P P P ñ sup

PPP
P-VaR1´✏

“
X̃

‰
§ ⌧,

or, in the context of our distributionally robust CVRP,

P rRk P Rpeqqs • 1 ´ ✏ @P P P ñ P
” ÿ

iPRk

q̃i § Q
ı

• 1 ´ ✏ @P P P

ñ sup
PPP

P-VaR1´✏

” ÿ

iPRk

q̃i
ı

§ Q. (2.1)

In view of the above equivalences and inspired by the RCIs for the deterministic CVRP, we are

led to the following demand estimator for the distributionally robust CVRP:

dPpSq “ max

#S
1

Q
sup
PPP

P-VaR1´✏

” ÿ

iPS

q̃i
ıW

, 1

+
@S ‰ H, (2.2)

as well as dPpHq “ 0. In this expression, the supremum corresponds to the worst-case p1 ´ ✏q-

quantile of the cumulative customer demands in S (also called p1´ ✏q-worst-case value-at-risk),

and the division of this term byQ is supposed to provide a lower bound on the number of vehicles

required to serve the customers in S. We take the maximum between this quantity (rounded

up to the next integer) and 1 to ensure the elimination of short cycles. Indeed, contrary to

the cumulative customer demands in the deterministic CVRP, the worst-case p1 ´ ✏q-quantile

could be zero even if no individual customer demand is deterministically zero. Similar to the

deterministic RCIs, our demand estimator could in principle be tightened through the solution

of a distributionally robust chance constrained bin packing problem. As in the deterministic

case, however, this would usually not be attractive from a computational perspective.
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2.3.1 Branch-and-Cut Algorithm

Notice that the problem 2VF(P) introduced above is an integer linear programming problem

(ILP). More specifically it is a binary integer linear program.

Relaxing the ILP to an LP by removing the requirement that the decision variables need to be

integral lead to solutions that may not only be suboptimal, but may also be infeasible. However,

this method can provide a bound on the objective value of an ILP. Integer linear programming

is an active area of research and we have many exact solution algorithms that perform well.

The branch-and-bound algorithm involves dividing the problem into subproblems (branching),

and using LP-relaxation of the ILP of the subproblem to avoid enumerating the entire solution

space (bounding). The bounding step is essential as branching alone would imply that the tree

of all possible subproblems would grow exponentially in the number of decision variables of

the model. However, the potentially large space implies that the branch-and-bound method

is typically slow for large problems. This is alleviated by the branch-and-cut algorithm that

introduces cuts into the branch-and-bound algorithm, that helps in reducing the search space.

The branch-and-cut algorithm requires that the model has valid inequalities that can be used

as cutting planes. The added cutting planes remove fractional solutions without removing

integral solutions, and thus reduce the search space for the branch-and-bound algorithm. For a

problem of the form 2VF(P), the exponentially many constraints means that finding valid cuts

can be extremely slow. However, the benign structure of 2VF(P) lends itself to branch-and-cut

algorithm wherein the RCIs can be used as the cutting planes. The branch-and-cut algorithm

begins by solving a relaxation of 2VF(P) where the RCIs are disregarded. In subsequent

iterations, the RCIs are introduced iteratively as cutting planes to weed out infeasible and

non-integral solutions.

There are many o↵-the-shelf commercial solvers that implement the branch-and-cut algorithm.

In this chapter, the branch-and-cut algorihtm is implemented with the separation of RCI cuts

according to the Tabu Search procedure proposed by [ABB`98]
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2.4 Theoretical Contributions

One could expect RVRP(P) and 2VF(P) to be equivalent under any ambiguity set P as long

as the demand estimator dP is chosen as in (2.2). Unfortunately, this is not the case.

Example 2.5 Consider a distributionally robust CVRP instance with n “ 2 customers and

m “ 2 vehicles of capacity Q “ 1. We define the ambiguity set for the customer demands as

P “

$
’&

’%
P P P0pR2

q :

»

—–
Ppq̃1 “ 1q “ 0.925, Ppq̃1 “ 2q “ 0.075

Ppq̃2 “ 1q “ 0.925, Ppq̃2 “ 2q “ 0.075

fi

�fl

,
/.

/-
,

that is, each customer has a demand of 1 (2) with probability 0.925 (0.075). Note that the

ambiguity set does not specify that the customer demands are independent.

For ✏ “ 0.1, the route set R “ pR1,R2q with R1 “ p1q and R2 “ p2q is feasible in RVRPpPq

since P
“
q̃i § 1

‰
“ 0.925 • 1 ´ ✏ “ 0.9 for i “ 1, 2 and all P P P. However, this route set R is

infeasible in 2VFpPq since it violates the RCI constraint for S “ t1, 2u. Indeed, we have that

dPpt1, 2uq “ max

"R
1

Q
sup
PPP

P-VaR1´✏ rq̃1 ` q̃2s

V
, 1

*

• P‹-VaR1´✏ rq̃1 ` q̃2s “ 3

since the probability distribution P‹ with the dependence structure

q̃1 “

$
’’&

’’%

2 if ũ P r0, 0.075s,

1 otherwise,

q̃2 “

$
’’&

’’%

2 if ũ P r0.1, 0.175s,

1 otherwise,

where ũ is a uniformly distributed random variable supported on r0, 1s, is contained in P (see

Figure 2.3). We thus conclude that RVRPpPq and 2VFpPq are not equivalent for this instance.

Intuitively, the equivalence between RVRP(P) and 2VF(P) fails to hold in Example 2.5 due

to the combination of two di↵erences between the formulations. Firstly, RVRP(P) ignores

the amount by which a capacity restriction is violated, whereas this amount is considered
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Figure 2.3: Probability distribution P‹ which illustrates that RVRPpPq and 2VFpPq are not
equivalent. The left graph shows the probability distribution itself, whereas the right graph
visualises the customer demands q̃1 and q̃2 as a function of the underlying random variable ũ
used in the construction of P‹.

in the demand estimator (2.2) of 2VF(P). In particular, whenever the cumulative demands

within a single vehicle exceed that vehicle’s capacity in Example 2.5, then the cumulative

demands are so large that they could not be served by both vehicles in 2VF(P) either, even

if the demands could be split continuously. Secondly, since the vehicles’ capacity restrictions

in Example 2.5 are violated in non-overlapping scenarios, the probability of exceeding some

vehicle’s capacity is equal to the sum of probabilities of exceeding each individual vehicle’s

capacity. More generally, RVRP(P) only considers the probabilities of violating each individual

vehicle’s capacity, whereas the demand estimator (2.2) of 2VF(P) considers the joint violation

probability (under the assumption that customer demands can be split continuously).

The aforementioned di↵erences between RVRP(P) and 2VF(P) relate to the fact that the

RCIs are agnostic to the assignment of customers to vehicles, and as such they consider the

interplay between demands allocated to di↵erent vehicles even though such dependencies should

be ignored. To avoid this problem, the demand estimator dP should not assign ‘excessively large’

numbers of vehicles dPpSq to large customer subsets S. It turns out that this intuition can be

formalized.

(S) Subadditivity. For all customer subsets S, T Ñ VC , we have dPpSYT q § dPpSq`dPpT q.

Indeed, the demand estimator in Example 2.5 violates the subadditivity condition (S).
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Example 2.6 For the distributionally robust CVRP instance from Example 2.5, we have

sup
PPP

P-VaR0.9pq̃1q “ sup
PPP

P-VaR0.9pq̃2q “ 1,

but at the same time we have

sup
PPP

P-VaR0.9pq̃1 ` q̃2q • P‹-VaR0.9pq̃1 ` q̃2q “ 3

° sup
PPP

P-VaR0.9pq̃1q ` sup
PPP

P-VaR0.9pq̃2q “ 2.

In other words, the demand estimator dP violates the subadditivity condition (S) since

dPpt1u Y t2uq ⇥ dPpt1uq ` dPpt2uq.

We now show that the condition (S) is su�cient for RVRP(P) and 2VF(P) to be equivalent.

Theorem 2.7 Assume that eq • 0 P-a.s. for all P P P and that dP satisfies the subadditivity

condition (S). Then the problems RVRPpPq and 2VFpPq are equivalent in the following sense:

(i) Any route set R that is feasible in RVRPpPq induces a unique solution x that is feasible

in 2VFpPq via

xij “ 1 ñ Dk P K, Dl P t0, . . . , nku : pi, jq “ pRk,l, Rk,l`1q, (2.3)

and x and R attain the same transportation costs.

(ii) Any solution x that is feasible in 2VFpPq induces a route set R that is feasible in

RVRPpPq via (2.3), and this route set is unique up to a reordering of the individual

routes R1, . . . ,Rm. Moreover, x and R attain the same transportation costs.

Proof of Theorem 2.7. For the first statement, assume that the route set R is feasible in

RVRPpPq. We need to show that x defined through (2.3) satisfies the constraints of 2VFpPq
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and attains the same transportation costs. One readily verifies that x satisfies the binarity and

the degree constraints of 2VFpPq. In view of the RCI constraints, we note that for any S Ñ VC ,

S ‰ H, we have

dPpSq “ dP
´ §

kPK

rRk X Ss

¯
§

ÿ

kPK:
RkXS‰H

dPpRk X Sq §

ÿ

kPK:
RkXS‰H

dPpRkq

“ |k P K : Rk X S ‰ H| §

ÿ

iPV zS

ÿ

jPS

xijpRq,

where the first identity follows from the fact that R P PpVC ,mq and thus
î

k Rk “ VC , the

first inequality holds because dP is subadditive, and the second inequality is due to the fact

that Rk XS Ñ Rk and eq • 0 P-a.s. for all P P P , which in turn implies that dPpSq § dPpT q for

all S Ñ T Ñ VC . The second equality holds since P rRk P Rpeqqs • 1 ´ ✏ for all P P P implies

that supPPP P-VaR1´✏

“∞
iPRk

q̃i
‰

§ Q and hence dPpRkq “ 1. In view of the last inequality, let

jk P Rk XS be the first customer on the route Rk that is contained in S, where k P K satisfies

Rk X S ‰ H. By the feasibility of R and the definition of jk, we have
∞

iPV zS xijkpRq “ 1. The

inequality now follows from the fact that there are |k P K : Rk X S ‰ H| di↵erent customer

nodes jk with this property.1 We thus conclude that x also satisfies the RCI constraints of

2VFpPq. Moreover, equation (2.3) implies that the transportation costs of x and R coincide.

For the second statement, we fix a feasible solution x P 2VFpPq and construct a route set R

satisfying (2.3) as follows. Since
∞

jPVC
x0j “ m, there are j1, . . . , jm P VC , j1 † . . . † jm,

such that x0,j1 “ . . . “ x0,jm “ 1. For each route Rk, k P K, we set Rk,1 – jk and nk – 1.

Since
∞

jPV xRk,nk
,j “ 1, we either have xRk,nk

,j “ 1 for some j P VC or xRk,nk
,0 “ 1. In the

former case, we extend route k by the customer Rk,nk`1 – j, we set nk – nk ` 1 and we

continue the procedure with customer j. In the latter case, we have completed the route Rk.

By construction, the resulting route set R satisfies (2.3). We now show that R is feasible in

RVRPpPq.

To see that R P PpVC ,mq, we first observe that Rk ‰ H due to the existence of the customers

1Note that the same vehicle may enter and leave the customer set S several times, which implies that we
cannot strengthen the inequality to an equality in general.
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j1, . . . , jm. Moreover, the degree constraints in 2VFpPq ensure that Rk XRl “ H for all k ‰ l.

It remains to be shown that
î

k Rk “ VC . Imagine, to the contrary, that there is a customer

j P VC such that j R
î

k Rk. By construction of the above algorithm, j must lie on a short cycle

S Ä VC that is not connected to the depot node 0. Since dPpSq • 1 but
∞

iPV zS

∞
jPS xij “ 0,

the RCI constraint corresponding to the customer set S is violated. We thus conclude that x

cannot be feasible in 2VFpPq, which is a contradiction.

We now show that P rRk P Rpeqqs • 1 ´ ✏ for all P P P and k P K. By construction of the

route set R and the feasibility of x in 2VFpPq, we have
∞

iPV zRk

∞
jPRk

xij “ 1 • dPpRkq for

all k P K, and the definition of dP then implies that supPPP P-VaR1´✏

“∞
iPRk

q̃i
‰

§ Q and thus

P rRk P Rpeqqs • 1 ´ ✏ for all P P P .

Finally, imagine that two route sets R and R1 satisfy (2.3), and that there is no reordering of

the routes in R1 that yields R. Then there must be a customer pair pi, jq P VC ˆ VC such that

pi, jq is visited by the same vehicle in immediate succession in R but not in R1. This, however,

violates the assumption that both R and R1 satisfy (2.3), as xij would have to be both 0 and

1 in that case. We thus conclude that the route set R satisfying (2.3) is indeed unique up to a

reordering of the individual routes R1, . . . ,Rm.

According to the theorem, any ambiguity set P whose demand estimator dP satisfies the sub-

additivity condition (S) allows us to use a branch-and-cut algorithm to solve 2VF(P) in lieu

of RVRP(P). Example 2.5 has shown that the subadditivity condition may be violated if the

ambiguity set P specifies the marginal distribution of each customer’s demand. The example

immediately implies that hypothesis test ambiguity sets [BGK18], which converge to ambiguity

sets that exactly specify the marginal distribution of each customer’s demand as the available

data increases, also give rise to demand estimators that violate the subadditivity condition.

Moreover, data-driven ambiguity sets, such as �-divergence ambiguity sets [BTdHdW`13],

Wasserstein ambiguity sets [EK18] and hypothesis test ambiguity sets [BGK18], converge to

singleton ambiguity sets as the available data increases, and the resulting demand estimators

also violate the subadditivity condition since the involved worst-case values-at-risk converge to
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values-at-risk which are known to violate subadditivity.

In this chapter, we study moment ambiguity sets of the form

P “ tP P P0pRn
q : Ppeq P Qq “ 1, EPreqs “ µ, EPr'peqqs § �u . (2.4)

The moment ambiguity set (2.4) specifies that the uncertain customer demands eq are supported

on a rectangular set Q “ rq, qs with q • 0. It also stipulates that the expected customer

demands EPreqs are known to be µ, and that the upper bounds �i on the demand variations

EPr'ipeqqs, i “ 1, . . . , p, of the customer demands are known. The demand variations are

characterized by a dispersion measure ' : Rn
fiÑ Rp which measures how ‘stretched out’ the joint

probability distribution of the customer demands is. Possible choices of dispersion measures

include the mean absolute deviations, 'ipqq “ |qi ´µi|, the variances 'ipqq “ pqi ´µiq
2, higher

order moments 'ipqq “ |qi ´ µi|
q, q • 3, or Huber loss functions of the customer demands

eq. We will explore di↵erent dispersion measures in Sections 2.5.1 and 2.5.2. Throughout this

chapter, we make the standard regularity assumptions that µ P intQ, that is, the expected

demands are contained in the interior of the support Q, that the dispersion measure ' is closed

and component-wise convex, and that 'pµq † �. These assumptions will allow us to invoke

strong convex duality, which is required for our results to hold. Moment ambiguity sets are

amongst the most popular ambiguity sets studied in the distributionally robust optimization

literature, see, e.g., [EOO03], [DY10], [ZKR13] and [WKS14].

We now show that in contrast to ambiguity sets constructed by marginal histograms, hypoth-

esis tests or deviation measures such as the Wasserstein distance and �-divergences, moment

ambiguity sets lead to demand estimators dP that satisfy the desired subadditivity property.

Theorem 2.8 The demand estimator dP for moment ambiguity sets of the form (2.4) is sub-

additive.

Please see the appendix of this chapter for the proof of Theorem 2.8.

In addition to satisfying the subadditivity condition (S), the distributions that minimize the
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probability of satisfying a vehicle’s capacity requirement have a particularly simple structure if

we restrict ourselves to moment ambiguity sets of the form (2.4).

Proposition 2.9 Consider an instance of the moment ambiguity set (2.4). Then for any

customer subset S Ñ VC, there is a sequence of two-point distributions Pt
“ pt1 ¨�qt

1
`pt2 ¨�qt

2
P P,

pt1, p
t
2 P R` and qt

1, q
t
2 P Q, such that Pt-VaR1´✏

“∞
iPS q̃i

‰
Ñ́ supPPP P-VaR1´✏

“∞
iPS q̃i

‰
as

t Ñ́ 8.

Proof of Proposition 2.9. The proof of Theorem 2.8 implies that for every ⌧ • supPPP P-VaR1´✏

“
�Jeq

‰
,

the optimal value of the optimization problem

maximize ↵ ` µJ� ´ �J�

subject to qJ⌫1 ´ qJ⌫1 ´

pÿ

i“1

�i'
‹

i p�1i{�iq • ↵ ´ 1

qJ⌫0 ´ qJ⌫0 ` ⌧⌘ ´

pÿ

i“1

�i'
‹

i p�0i{�iq • ↵

pÿ

i“1

�1i “ ⌫1 ´ ⌫1,
pÿ

i“1

�0i “ � ` ⌫0 ´ ⌫0 ` ⌘�

↵ P R, � P Rn, � P Rp
`, ⌫1,⌫1,⌫0,⌫0 P Rn

`

⌘ P R`, �1i,�0i P Rn, i “ 1, . . . , p

(2.5)

is greater than or equal to 1´ ✏. We claim that for ⌧ “ ⌧ ‹, where ⌧ ‹
“ supPPP P-VaR1´✏

“
�Jeq

‰
,

the optimal value of problem (2.5) is in fact equal to 1´ ✏. Indeed, assume to the contrary that

for ⌧ “ ⌧ ‹, the optimal solution p↵‹,�‹,�‹,⌫‹

i ,⌫
‹

i , ⌘
‹,�‹

ijq to problem (2.5) satisfied ↵‹
`µJ�‹

´

�J�‹
° 1´✏. In that case, we could replace ↵‹ with ↵̂ † ↵‹ such that p↵̂,�‹,�‹,⌫‹

i ,⌫
‹

i , ⌘
‹,�‹

ijq

remains feasible for ⌧̂ † ⌧ ‹ and still satisfies ↵̂ ` µJ�‹
´ �J�‹

• 1 ´ ✏. This, however, would

contradict the definition of ⌧ ‹ as the smallest value of ⌧ for which there is p↵,�,�,⌫i,⌫i, ⌘,�ijq

feasible in problem (2.5) with an objective value greater than or equal to 1´✏. We thus conclude

that the optimal value of the problem (2.5) for ⌧ “ ⌧ ‹ is exactly 1 ´ ✏. Strong convex duality,

which holds since problem (2.5) admits a Slater point, then implies that the optimal value of
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the dual problem,

minimize ⇠1

subject to ⇠0 ` ⇠1 “ 1, ⇣0 ` ⇣1 “ µ

⇠iq § ⇣i § ⇠iq @i P t0, 1u

�J⇣0 • ⇠0⌧
‹

⇠0 ¨ 'p⇣0{⇠0q ` ⇠1 ¨ 'p⇣1{⇠1q § �

⇠i P R`, ⇣i P Rn, i “ 0, 1,

(2.6)

is also equal to 1 ´ ✏. Let p⇠‹

i , ⇣
‹

i q be an optimal solution to this problem.

We claim that the sequence of two-point distribution Pt defined by

Pt
“ p⇠‹

1 ´ 1{tq ¨ � ⇣‹
1

⇠‹
1

` p⇠‹

0 ` 1{tq ¨ � ⇣‹
0

⇠‹
0

`
1

tp⇠‹
0`1{tq

ˆ
⇣‹
1

⇠‹
1

´
⇣‹
0

⇠‹
0

˙, t “ 1, 2, . . . ,

satisfies (i) Pt
P P for su�ciently large t as well as (ii) Pt-VaR1´✏

“
�Jeq

‰
Ñ́ ⌧ ‹ as t Ñ́ 8.

In view of statement (i), we note that Pt is a probability distribution for t su�ciently large

since p⇠‹

0 , ⇠
‹

1q “ p✏, 1 ´ ✏q due to the first constraint set in (2.6). Also, Pt is supported on Q for

su�ciently large t since ⇣‹

i {⇠‹

i P rq, qs, i “ 0, 1, due to the second constraint in (2.6) and for t

su�ciently large, ⇣‹
0
⇠‹
0

`
1

tp⇠‹
0`1{tq

´
⇣‹
1
⇠‹
1

´
⇣‹
0
⇠‹
0

¯
is a convex combination of ⇣‹

0{⇠‹

0 and ⇣‹

1{⇠‹

1 . Likewise,

we have

EPt

“
eq
‰

“ p⇠‹

1 ´ 1{tq ¨
⇣‹

1

⇠‹

1

` p⇠‹

0 ` 1{tq ¨
⇣‹

0

⇠‹

0

`
1

t

ˆ
⇣‹

1

⇠‹

1

´
⇣‹

0

⇠‹

0

˙
“ µ

due to the first constraint set in (2.6) as well as, for t su�ciently large,

EPt

“
'peqq

‰
“ p⇠‹

1 ´ 1{tq ¨ '

ˆ
⇣‹

1

⇠‹

1

˙
` p⇠‹

0 ` 1{tq ¨ '

ˆ
⇣‹

0

⇠‹

0

`
1

tp⇠‹

0 ` 1{tq

„
⇣‹

1

⇠‹

1

´
⇣‹

0

⇠‹

0

⇢˙

§ p⇠‹

1 ´ 1{tq ¨ '

ˆ
⇣‹

1

⇠‹

1

˙
`

1

t
¨ '

ˆ
⇣‹

1

⇠‹

1

˙
` ⇠‹

0 ¨ '

ˆ
⇣‹

0

⇠‹

0

˙
§ �,

where the inequalities follow from the convexity of ' and the fourth constraint in (2.6), respec-

tively.

To show statement (ii), we note that Pt places a probability mass of ⇠‹

0 ` 1{t “ ✏ ` 1{t on the
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scenario ⇣‹
0
⇠‹
0

`
1

tp⇠‹
0`1{tq

´
⇣‹
1
⇠‹
1

´
⇣‹
0
⇠‹
0

¯
, which satisfies

�J

„
⇣‹

0

⇠‹

0

`
1

tp⇠‹

0 ` 1{tq

ˆ
⇣‹

1

⇠‹

1

´
⇣‹

0

⇠‹

0

˙⇢
• ⌧ ‹

`
1

tp⇠‹

0 ` 1{tq
�J

ˆ
⇣‹

1

⇠‹

1

´
⇣‹

0

⇠‹

0

˙
Ñ́

t Ñ́8

⌧ ‹.

Here, the inequality follows from the fact that �J⇣‹

0{⇠‹

0 • ⌧ ‹ due to the third constraint in (2.6).

The convergence of the middle expression to ⌧ ‹ holds since �J
p⇣‹

1{⇠‹

1 ´ ⇣‹

0{⇠‹

0q is finite while

tp⇠‹

0 ` 1{tq Ñ́ 8 as ⇠‹

0 “ ✏ ° 0. We have thus established that Pt-VaR1´✏

“
�Jeq

‰
Ñ́ ⌧ 1 with

⌧ 1
• ⌧ ‹ as t Ñ́ 8. Since Pt

P P for su�ciently large t, on the other hand, the definition of ⌧ ‹

implies that ⌧ 1
§ ⌧ ‹ as well, which concludes the proof.

Proposition 2.9 shows that for moment ambiguity sets of the form (2.4), the worst-case value-at-

risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
is asymptotically attained by a series of probability distributions

that place all probability mass on two demand scenarios. We emphasize that the two-point

nature of the worst-case distribution does not depend on the number of moment constraints

contained in the ambiguity set (2.4). In that sense, Proposition 2.9 strengthens the findings

of the Richter-Rogosinski theorem [SDR14, Theorem 7.37], which applies to more general risk

measures, to the special case of the worst-case value-at-risk.

Proposition 2.9 confirms our intuition that the distributionally robust CVRP constitutes a

compromise between the deterministic CVRP, which optimizes in view of a single expected

(or most likely) demand scenario, and the robust CVRP, which optimizes in view of the worst

demand scenario contained in an uncertainty set. At the same time, the distributionally robust

CVRP also o↵ers a trade-o↵ between the classical chance constrained CVRP, which is often

challenging to solve as it optimizes in view of a distribution that may place positive probability

mass on many demand scenarios, and the robust CVRP, which optimizes in view of a single

worst-case scenario.
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Figure 2.4: Examples of probability distributions contained in a marginalized ambiguity set.
Since the conditions in the ambiguity set (2.7) only restrict the shapes of the marginal distribu-
tions, the ambiguity set contains distributions of varying dependence structure, ranging from
independent (left graph) to perfectly correlated (right graph) ones.

2.5 E�cient Reformulations for Demand Estimators

In this section, we consider some commonly used moment ambiguity sets and derive reformu-

lations to e�ciently evaluate dP over these ambiguity sets.

2.5.1 Marginalized Moment Ambiguity Set

In this section we study marginalized moment ambiguity sets of the form

P “ tP P P0pRn
q : Ppeq P Qq “ 1, EPreqs “ µ, EPr'ipq̃iqs § �i @i P VCu , (2.7)

where Q “ rq, qs with q • 0, µ P intQ, and 'i : R fiÑ Rpi is closed as well as component-

wise convex and satisfies 'ipµiq † �i with �i P Rpi , i P VC . In contrast to the generic

moment ambiguity set (2.4), a marginalized moment ambiguity set only specifies the variability

of individual customer demands and does not characterize the interactions between di↵erent

customer demands. Nevertheless, Figure 2.4 shows that the customer demands may still exhibit

dependencies under the probability distributions contained in a marginalized moment ambiguity

set.

Marginalized moment ambiguity sets of the form (2.7) constitute a subclass of the generic

moment ambiguity sets (2.4), and thus the demand estimator dP over the ambiguity set (2.7)
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is subadditive due to Theorem 2.8. In fact, a much stronger additivity property holds for the

ambiguity set (2.7).

Theorem 2.10 Every marginalized moment ambiguity set of the form (2.7) satisfies

sup
PPP

P-VaR1´✏

” ÿ

iPS

q̃i
ı

“

ÿ

iPS

sup
PPP

P-VaR1´✏

“
q̃i

‰
@S Ñ VC , S ‰ H.

Proof of Theorem 2.10. Since the assumptions of Theorem 2.8 are satisfied, we conclude

that

sup
PPP

P-VaR1´✏

” ÿ

iPS

q̃i
ı

§

ÿ

iPS

sup
PPP

P-VaR1´✏

“
q̃i

‰
@S Ñ VC , S ‰ H.

To show the reverse inequality, we note that for any  ° 0, we have

ÿ

iPS

sup
PPP

P-VaR1´✏

“
q̃i

‰
§

ÿ

iPS

`
P‹

i -VaR1´✏

“
q̃i

‰
` 

˘

“

ÿ

iPS

`
P‹-VaR1´✏

“
q̃i

‰
` 

˘
“ P‹-VaR1´✏

” ÿ

iPS

q̃i
ı

` |S|. (2.8)

Here, P‹

i P P is a distribution that satisfies P‹

i -VaR1´✏

“
q̃i

‰
• supPPP P-VaR1´✏

“
q̃i

‰
´ , which

implies the first inequality. In the second row, we define the probability measure P‹ via

P‹
`
eq § q

˘
“ min

iPS
P‹

i

`
q̃i § qi

˘
@q P Rn.

By construction, P‹ has the same marginal distributions as P‹

i , i P VC , that is, P‹
`
q̃i P A

˘
“

P‹

i

`
q̃i P A

˘
for all i P VC and for every measurable set A [DDG`02, Theorem 2]. From the

definition of the marginalized moment ambiguity sets, we thus conclude that P‹
P P . Since

P‹ is comonotonic [DDG`02, Definition 4 and Theorem 2], the last equality in (2.8) follows

from the comonotone additivity of the value-at-risk [Pfl00, Proposition 3]. As  was chosen

arbitrarily in (2.8) and since P‹
P P , we thus conclude that

ÿ

iPS

sup
PPP

P-VaR1´✏

“
q̃i

‰
§ sup

PPP
P-VaR1´✏

” ÿ

iPS

q̃i
ı

as desired. This completes the proof.
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Theorem 2.10 shows that the worst-case value-at-risk for a marginalized moment ambiguity

set is additive. Nevertheless, the following example illustrates that for individual probability

distributions within a marginalized moment ambiguity set of the form (2.7), the corresponding

values-at-risk typically fail to be additive.

Example 2.11 Consider the following marginalized moment ambiguity set for two customers:

P “
 
P P P0pR2

q : Ppeq P r2, 7s ˆ r5, 15sq “ 1, EPreqs “ p3.2, 7.8q
J, EPr|q̃i ´ µi|s § 1.5, i “ 1, 2

(

Here, | ¨ | denotes the absolute value operator. We have P1 P P for the distribution P1 “

P11 ˆP12 under which the two customer demands are independent and governed by the marginal

distributions P11 “ 0.8 ¨ �3 ` 0.2 ¨ �4 P P0pRq and P12 “ 0.8 ¨ �7 ` 0.2 ¨ �11 P P0pRq. One readily

verifies that

14 “ P1-VaR0.9 rq̃1 ` q̃2s † P1-VaR0.9 rq̃1s ` P1-VaR0.9 rq̃2s “ 4 ` 11,

that is, the 0.9-value-at-risk is subadditive under P1. Likewise, we have P2 P P for the distribu-

tion P2 “ P21ˆP22 with the marginals P21 “ 0.6¨�2`0.4¨�5 P P0pRq and P22 “ 0.9¨�7`0.1¨�15 P

P0pRq. The distribution P2 satisfies

12 “ P2-VaR0.9 rq̃1 ` q̃2s “ P2-VaR0.9 rq̃1s ` P2-VaR0.9 rq̃2s “ 5 ` 7,

that is, the value-at-risk is additive under P2. Finally, we have P3 P P for P3 “ P31 ˆ P32 with

the marginals P31 “ 0.9 ¨ �3 ` 0.1 ¨ �5 P P0pRq and P32 “ 0.9 ¨ �7 ` 0.1 ¨ �15 P P0pRq. One verifies

that

12 “ P3-VaR0.9 rq̃1 ` q̃2s ° P3-VaR0.9 rq̃1s ` P3-VaR0.9 rq̃2s “ 3 ` 7,

that is, the value-at-risk is superadditive under P3.

An immediate consequence of Theorem 2.10 is the following.
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Corollary 2.12 The distributionally robust CVRP over a marginalized moment ambiguity

set (2.7) is equivalent to the deterministic CVRP with customer demands qi “ supPPP P-VaR1´✏

“
q̃i

‰
,

i P VC.

Proof of Corollary 2.12. Since the ambiguity set P is subadditive, Theorem 2.7 implies that

RVRP(P) is equivalent to 2VF(P). Moreover, Theorem 2.10 allows us to interpret 2VF(P)

as the two-index vehicle flow formulation of a deterministic CVRP with customer demands

qi “ supPPP P-VaR1´✏

“
q̃i

‰
, i P VC . The statement now follows from the well-known equivalence

of the two-index vehicle flow formulation and the deterministic CVRP. If only marginal

moment information is available, then Corollary 2.12 implies that a distributionally robust

CVRP can be solved with existing solution schemes for deterministic CVRPs, such as branch-

and-cut [LLE04, STV14] or branch-and-cut-and-price [FLL`06, PPPU17] algorithms. In other

words, we can ‘robustify’ a deterministic CVRP instance without modifying the employed

solution scheme by replacing the deterministic demands qi with the (deterministic) worst-case

value-at-risks supPPP P-VaR1´✏

“
q̃i

‰
for all customers i P VC .

While very attractive from a computational perspective, Corollary 2.12 also points at several

weaknesses of the marginalized moment ambiguity sets. Firstly, marginalized moment ambi-

guity sets fail to capture any potentially known dependencies between customer demands. As

a result, under the worst-case distribution all customer demands will attain their worst values

jointly with probability ✏. This contradicts the common wisdom that extreme demands are

not typically attained simultaneously across all customers. Secondly, when using marginalized

moment ambiguity sets we are unable to obtain a structurally di↵erent feasible region than for

a suitably modified deterministic problem instance. As we will see in Section 2.5.2, this is in

stark contrast to generic moment ambiguity sets that may not correspond to any deterministic

problem instance. Finally, under the marginalized moment ambiguity sets the worst-case de-

mand distribution does not depend on the selected route set, as we would usually expect to be

the case under the distributionally robust optimization framework. In other words, under the

marginalized moment ambiguity sets the decision maker cannot benefit from knowing the true

probability distribution, as long as this distribution could be any of the distributions within
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the ambiguity set.

If we remove the expectation and the dispersion constraint in the marginalized moment ambi-

guity set (2.7), then the distributionally robust CVRP reduces to a deterministic CVRP with

component-wise worst-case customer demands q “ q. If we remove the support and the disper-

sion constraint, on the other hand, then the distributionally robust CVRP becomes infeasible

since the distribution ¨�q1 `p1´q¨�q2 with  P p✏, 1q, q1 “ 2Q¨e and q2 “ pµ´2Q¨eq{p1´q

is contained in the ambiguity set and places probability mass  ° ✏ on the demand scenario

2Q ¨ e, resulting in a worst-case value-at-risk of supPPP P-VaR1´✏

“∞
iPS q̃i

‰
“ 2Q|S|. In the

next three subsections, we develop closed-form solutions for the worst-case value-at-risk un-

der support and expectation constraints combined with first-order, variance and semi-variance

dispersion measures.

2.5.1.1 First-Order Ambiguity Sets

We begin with first-order marginalized moment ambiguity sets of the form

P “
 
P P P0pRn

q : P peq P Qq “ 1, EP reqs “ µ, EP r|eq ´ µ|s § �
(
, (2.9)

where the absolute value operator | ¨ | is applied component-wise. As before, we assume that

Q “ rq, qs with q • 0 and µ P intQ, and we additionally stipulate that � ° 0. Note that (2.9)

is a special case of the marginalized moment ambiguity set (2.7) where 'ipqiq “ |qi ´ µi|,

i P VC . The dispersion constraint imposes an upper bound of �i on the mean absolute deviation

EP r|q̃i ´ µi|s of customer i’s demand, i P VC .

Similar to the standard deviation, the mean absolute deviation measures the dispersion of a

random variable around its expected value. Compared to the standard deviation, however, the

mean absolute deviation is less a↵ected by outliers and deviations from the standard modeling

assumptions (such as normality). Due to these properties, the mean absolute deviation is

preferred in the robust statistics literature, see, e.g., [CB02].

We now show that the worst-case value-at-risk of a customer’s demand q̃i under the marginalized
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first-order moment ambiguity set (2.9) admits a closed-form solution.

Proposition 2.13 Every marginalized first-order ambiguity set of the form (2.9) satisfies

sup
PPP

P-VaR1´✏

“
q̃i

‰
“ µi ` min

"
qi ´ µi,

1 ´ ✏

✏
pµi ´ q

i
q,

1

2✏
�i

*
@i P VC . (2.10)

Proof of Proposition 2.13. We apply Theorem 2.21 to conclude that the worst-case value-

at-risk supPPP P-VaR1´✏

“
q̃i

‰
is equal to the optimal objective value of the following problem.

minimize µi ` min
!`

qi ´ µi

˘
,
1 ´ ✏

✏

`
µi ´ q

i

˘)
¨ r1 ´ 2�s` `

1

✏
⌫�

subject to � P R`.

The first and second terms in the objective function are constant and non-decreasing in �,

respectively, for � • 1{2. Without loss of generality, we can therefore assume that � § 1{2 at

optimality. We thus obtain a linearized version of the problem as follows.

minimize µi ` min
!`

qi ´ µi

˘
,
1 ´ ✏

✏

`
µi ´ q

i

˘)
¨ r1 ´ 2�s `

1

✏
⌫�

subject to � P r0, 1{2s

Since the objective function is linear in �, the problem is optimized by either � “ 0 or � “ 1{2.

The result now follows from a case distinction.

Proposition 2.13 confirms our intuition that the worst-case value-at-risk of the demand of

customer i P VC increases with the range qi ´ q
i
, the safety threshold 1´ ✏ as well as the upper

bound on the mean absolute deviation �i. In particular, if customer i’s demand is unbounded,

then the worst-case value-at-risk simplifies to µi `
1
2✏�i, and if the dispersion bound in (2.9) is

disregarded, then the worst-case value-at-risk becomes min
 
qi,

1
✏µi ´

1´✏
✏ q

i

(
.

It is tempting to conclude from Proposition 2.13 that the worst-case value-at-risk (2.10) is

attained by the Dirac distribution that places all probability mass on the single demand re-

alisation µ ` min
 
q ´ µ, 1´✏

✏ pµ ´ qq, 1
2✏�

(
, where the minimum is applied component-wise.
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This distribution, however, is not contained in the ambiguity set as it violates the expected

value constraint in (2.9). Nevertheless, one can construct sequences of two-point distributions

that are contained in the ambiguity set and that attain the worst-case value-at-risk (2.10)

asymptotically.

Proposition 2.14 A sequence of distributions Pt
i P P, t “ 1, 2, . . ., that attain the worst-case

value-at-risk supPPP P-VaR1´✏

“
q̃i

‰
in Proposition 2.13 asymptotically as t Ñ́ 8 can be defined

as follows:

(i) If (2.10) is minimized by qi ´ µi, then Pt
i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´
✏

1´✏pqi ´ µiqei and q2 “ µ `
1´✏´1{t
✏`1{t

✏
1´✏pqi ´ µiqei.

(ii) If (2.10) is minimized by 1´✏
✏ pµi ´ q

i
q, then Pt

i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´ pµi ´ q
i
qei and q2 “ µ `

1´✏´1{t
✏`1{t pµi ´ q

i
qei.

(iii) If (2.10) is minimized by 1
2✏�i, then Pt

i “ p1´✏´1{tq¨�q1`p✏`1{tq¨�q2 with q1 “ µ´
�i

2p1´✏qei

and q2 “ µ `
1´✏´1{t
✏`1{t

�i
2p1´✏qei.

Proof of Proposition 2.14. We have to show for each of the three cases that Pt
i P P , that is,

that (a) Pt
i is supported on Q, (b) EPt

i

“
eq
‰

“ µ and (c) EPt
i

“ˇ̌
eq ´µ

ˇ̌‰
§ � hold. The claim of the

proposition then follows since in each of the three cases, the distribution places a probability

mass of ✏`1{t on q2, and q2i converges to sup
PPP

P-VaR1´✏

“
q̃i

‰
as t Ñ́ 8. The proof that Pt

i P P

follows along similar lines as the proof of Proposition 2.9 and is thus omitted for the sake of

brevity.

Proposition 2.14 presents a sequence of worst-case distributions Pt
i for the demand q̃i of each

individual customer i P VC . Using similar arguments as in the proof of Theorem 2.10, we can

construct a sequence of worst-case distributions Pt for the demand of all customers i P VC via

the Fréchet-Hoe↵ding upper bound copula

Pt
peq § qq “ min

iPVC

Pt
ipq̃i § qiq.
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Figure 2.5: Fréchet-Hoe↵ding upper bound copula P‹ for a distributionally robust CVRP in-
stance with two customers and a marginalized first-order ambiguity set (2.9) with support
Q “ r4, 6s ˆ r8, 10s, mean µJ

“ p4.5, 9q, mean absolute deviation bounds �J
“ p0.1, 0.15q

and risk threshold ✏ “ 0.1. The marginal distributions are highlighted via dotted green and
red lines, and the worst-case value-at-risk supPPP P-VaR1´✏

“
q̃1 ` q̃2

‰
(the worst-case demand

realization) is indicated by a white (dark gray) circle.

For the ambiguity set (2.9), this sequence of worst-case distributions Pt has a simple description:

it satisfies Pt
Ñ́ p1 ´ ✏q ¨ �q1 ` ✏ ¨ �q2 for the two-point distribution characterized by

pq1i, q2iq “

$
’’’’’’&

’’’’’’%

`
1

1´✏µi ´
✏

1´✏qi, qi
˘

if (2.10) is minimized by qi ´ µi,
´
q
i
, 1

✏µi ´
1´✏
✏ q

i

¯
if (2.10) is minimized by 1´✏

✏ pµi ´ q
i
q,

´
µi ´

�i
2p1´✏q , µi `

�i
2✏

¯
if (2.10) is minimized by 1

2✏�i

@i P VC .

This joint worst-case distribution is illustrated in Figure 2.5 for an example with two customers.

Example 2.15 Proposition 2.13 shows that the 0.9-worst-case values-at-risk for the two cus-

tomer demands q̃1 and q̃2 from Example 2.11 are 5 and 15, respectively. Moreover, Proposi-

tion 2.14 implies that each individual worst-case value-at-risk is attained asymptotically by a

sequence of distributions that converges to the asymptotic distribution 0.9 ¨ �q1 ` 0.1 ¨ �q2 with

q1 “ p3, 7q
J and q2 “ p5, 15q

J. Finally, since each element of the sequence is a two-point

distribution that places a probability mass greater than 0.1 on each scenario, the value-at-risk is

indeed additive for each member of the sequence. Note, however, that although the worst-case

values-at-risk of q̃1 ` q̃2 converge to 20 for the distributions in the sequence, the worst-case
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value-at-risk under the asymptotic distribution is 10.

2.5.1.2 Variance Ambiguity Sets

We next consider marginalized variance ambiguity sets of the form

P “
 
P P P0pRn

q : P req P Qs “ 1, EP reqs “ µ, EP
“
pq̃i ´ µiq

2
‰

§ �i @i P VC

(
, (2.11)

where Q “ rq, qs with q • 0 and µ P intQ as well as � ° 0.

Similar to the mean absolute deviation, the worst-case value-at-risk of a customer’s demand q̃i

under the marginalized variance ambiguity set (2.11) admits a closed-form solution.

Proposition 2.16 Every marginalized variance ambiguity set of the form (2.11) satisfies

sup
PPP

P-VaR1´✏

“
q̃i

‰
“ µi ` min

#
qi ´ µi,

1 ´ ✏

✏
pµi ´ q

i
q,

c
1 ´ ✏

✏
�i

+
@i P VC . (2.12)

Proof of Proposition 2.16. We apply Theorem 2.26 to conclude that the worst-case value-

at-risk supPPP P-VaR1´✏

“
q̃i

‰
is equal to the optimal objective value of the problem

maximize µi ` qi

subject to qJ⌃´1q §
1 ´ ✏

✏

q P
“
q`, qu

‰
,

(2.13)

where q`
“ max

 
´

1´✏
✏ pq ´ µq, q ´ µ

(
, qu

“ min
 
1´✏
✏ pµ ´ qq, q ´ µ

(
and the covariance

matrix satisfies ⌃ “ diag p�1, �2, . . . , �nq. If q is feasible for the above problem, then so is

q1 with q1

i “ qi and q1

j “ 0 for all j ‰ i. Indeed, we have q`
§ 0 since ´

1´✏
✏ pq ´ µq § 0

and q ´ µ § 0, as well as qu
• 0 since 1´✏

✏ pµ ´ qq • 0 and q ´ µ • 0. Moreover, we

have qJ⌃´1q “

nÿ

j“1

q2j {�j • q2i {�i “ q1J⌃´1q1. Since q and q1 attain the same objective value

in (2.13), we thus conclude that problem (2.13) attains the same optimal value as the univariate
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optimization problem

maximize µi ` qi

subject to q2i {�i §
1 ´ ✏

✏

qi P
“
q`i , q

u
i

‰
.

(2.14)

At optimality we have q2i {�i “
1´✏
✏ or qi “ qui . The result now follows from a case distinction.

The worst-case value-at-risk in Proposition 2.16 di↵ers from the one in Proposition 2.13 only

in the last term of the minimum operator, which corresponds to the variance bound in (2.11).

Similar to the previous subsection, the expression (2.12) can be used to derive the worst-case

value-at-risk if the support constraints or the variance constraint in (2.11) is disregarded.

Proposition 2.17 A sequence of distributions Pt
i P P, t “ 1, 2, . . ., that attain the worst-case

value-at-risk supPPP P-VaR1´✏

“
q̃i

‰
in Proposition 2.16 asymptotically as t Ñ́ 8 can be defined

as follows:

(i) If (2.12) is minimized by qi ´ µi, then Pt
i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´
✏

1´✏pqi ´ µiqei and q2 “ µ `
1´✏´1{t
✏`1{t

✏
1´✏pqi ´ µiqei.

(ii) If (2.12) is minimized by 1´✏
✏ pµi ´ q

i
q, then Pt

i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´ pµi ´ q
i
qei and q2 “ µ `

1´✏´1{t
✏`1{t pµi ´ q

i
qei.

(iii) If (2.12) is minimized by
b

1´✏
✏ �i, then Pt

i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´
a ✏

1´✏�iei and q2 “ µ `
1´✏´1{t
✏`1{t

a ✏
1´✏�iei.

Proof of Proposition 2.17. This proposition can be proved in the same way as Proposi-

tion 2.14.
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2.5.1.3 Semi-Variance Ambiguity Sets

We finally consider marginalized semi-variance ambiguity sets of the form

P “

$
’&

’%
P P P0pRn

q :

»

—–
P req P Qs “ 1, EP reqs “ µ,

EP
“
rq̃i ´ µis

2
`

‰
§ �`

i , EP
“
rµi ´ q̃is

2
`

‰
§ �´

i @i P VC

fi

�fl

,
/.

/-
, (2.15)

where Q “ rq, qs with q • 0 and µ P intQ as well as �`,�´
° 0.

As in the preceding two subsections, the worst-case value-at-risk of a customer’s demand q̃i

under the marginalized semi-variance ambiguity set (2.15) admits a closed-form solution.

Proposition 2.18 Every marginalized semi-variance ambiguity set of the form (2.15) satisfies

sup
PPP

P-VaR1´✏

“
q̃i

‰
“ µi ` min

#
qi ´ µi,

1 ´ ✏

✏
pµi ´ q

i
q,

c
�`

i

✏
,

a
p1 ´ ✏q�´

i

✏

+
@i P VC .

(2.16)

Please see the appendix of this chapter for the proof of Proposition 2.18.

The worst-case value-at-risk in Proposition 2.18 di↵ers from the previous ones in the last two

terms of the minimum operator, which correspond to the semi-variance bounds in (2.15). Again,

the expression (2.16) can be used to derive the worst-case value-at-risk if the support constraints

or either or both of the two semi-variance constraint in (2.15) are disregarded.

Proposition 2.19 A sequence of distributions Pt
i P P, t “ 1, 2, . . ., that attain the worst-case

value-at-risk supPPP P-VaR1´✏

“
q̃i

‰
in Proposition 2.18 asymptotically as t Ñ́ 8 can be defined

as follows:

(i) If (2.16) is minimized by qi ´ µi, then Pt
i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´
✏

1´✏pqi ´ µiqei and q2 “ µ `
1´✏´1{t
✏`1{t

✏
1´✏pqi ´ µiqei.

(ii) If (2.16) is minimized by 1´✏
✏ pµi ´ q

i
q, then Pt

i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´ pµi ´ q
i
qei and q2 “ µ `

1´✏´1{t
✏`1{t pµi ´ q

i
qei.
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(iii) If (2.16) is minimized by
b

�`
i
✏ , then Pt

i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with q1 “

µ ´
✏

1´✏

b
�`
i
✏ ei and q2 “ µ `

1´✏´1{t
✏`1{t

✏
1´✏

b
�`
i
✏ ei.

(iv) If (2.16) is minimized by
?

p1´✏q�´
i

✏ , then Pt
i “ p1 ´ ✏ ´ 1{tq ¨ �q1 ` p✏ ` 1{tq ¨ �q2 with

q1 “ µ ´

b
�´
i

1´✏ei and q2 “ µ `
1´✏´1{t
✏`1{t

b
�´
i

1´✏ei.

Proof of Proposition 2.19. This proposition can be proved in the same way as Proposi-

tion 2.14.

2.5.2 Generic Moment Ambiguity Sets

We now study generic moment ambiguity sets of the form (2.4), where the dispersion measure

' characterizes the joint variability of multiple demands. In particular, we consider ambiguity

sets that stipulate bounds on the mean absolute deviations (Section 2.5.2.1) and the covariances

(Section 2.5.2.2).

2.5.2.1 First-Order Ambiguity Sets

We begin with first-order generic moment ambiguity sets of the form

P “
 
P P P0pRn

q : P req P Qs “ 1, EP reqs “ µ, EP
“
1J

Si
|eq ´ µ|

‰
§ ⌫i @i “ 1, . . . , p

(
, (2.17)

where Q “ rq, qs with q • 0, µ P intQ and ⌫ ° 0. As in Section 2.5.1.1, the absolute

value operator | ¨ | is applied component-wise. Note that (2.17) is a special case of the generic

moment ambiguity set (2.4) where 'ipqq “
∞

jPSi
|q̃j ´ µj|, i “ 1, . . . , p. In particular, the

demand estimator dP over the ambiguity set (2.17) is subadditive due to Theorem 2.8.

As we pointed out in Section 2.5.1.1, the mean absolute deviation in (2.17) is a popular dis-

persion measure in robust statistics. It is reminiscent of the standard deviation in classical

statistics, but it is less a↵ected by outliers and deviations from the classical model assumptions
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(e.g., normality), which makes it more robust if the distribution is estimated from historical

data. It can be shown that the sample mean absolute deviation outperforms the standard de-

viation in terms of asymptotic relative e�ciency if the sample distribution has fat tails or if it

is contaminated with another distribution [CB02]. For the use of the mean absolute deviation

in (distributionally) robust optimization, see [BB12], [WKS14] and [PBTdM18].

The first-order generic moment ambiguity set (2.17) generalizes the first-order marginalized

moment ambiguity set (2.9). The possibility to impose upper bounds on the mean absolute

deviations of sums of customer demands allows to reduce the ambiguity whenever customer

demands are not perfectly correlated. While one could in principle impose upper dispersion

bounds on the cumulative demands of any customer subset Si Ñ VC , this approach would re-

quire large amounts of data to estimate the corresponding dispersion bounds ⌫i, and it would

be computationally demanding to determine the associated RCI cuts. Instead, one may impose

upper dispersion bounds on some ‘canonical’ customer subsets that are dictated by the applica-

tion area, for example, all customers within a specific municipality, county or state. For a given

set of demand observations, the dispersion bounds ⌫i for di↵erent subsets Si Ñ VC can be de-

rived analytically using asymptotic arguments [PGH01, Seg14] or empirically via bootstrapping

[Che07].

Contrary to the marginalized ambiguity sets studied in Section 2.5.1, distributionally robust

CVRPs with ambiguity sets of the form (2.17) typically cannot be reformulated as deterministic

CVRPs.

Theorem 2.20 For some instances of the distributionally robust CVRP with ambiguity set (2.17)

there is no deterministic CVRP instance with the same set of feasible route sets.

Proof of Theorem 2.20. To prove the statement, we consider a distributionally robust CVRP

instance with n “ 4 customers, m “ 2 vehicles of capacity Q “ 10, a risk threshold ✏ “ 0.1

and a first-order generic moment ambiguity set of the form (2.17) with support Q “ r1, 10s
4,
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expected demands µ “ 4.6e and the following dispersion constraints:

EP r|q̃1 ´ µ1| ` |q̃3 ´ µ3|s § 0.1, EP r|q̃2 ´ µ2| ` |q̃4 ´ µ4|s § 0.1

Evaluating the worst-case values-at-risk of all customer subsets shows that the subsets t1u,

t2u, t3u, t4u, t1, 3u and t2, 4u can all be served by a single vehicle, t1, 2u, t1, 4u, t2, 3u, t3, 4u,

t1, 2, 3u, t1, 2, 4u, t1, 3, 4u and t2, 3, 4u require two vehicles, and the set of all customers also

requires two vehicles. This implies that the set of feasible route sets consists of the permutations

of tt1, 3u, t2, 4uu. We claim that there is no deterministic CVRP instance that has this set of

feasible route sets.

Assume to the contrary that there is a demand vector q such that the associated deterministic

CVRP instance has the aforementioned set of feasible route sets. In this case, we have q1 `q2 °

10 since t1, 2u cannot be served by a single vehicle. Since the four customers together require

two vehicles, we also have 10 † q1 ` q2 ` q3 ` q4 § 20. We thus conclude that q3 ` q4 § 10.

This is not possible, however, since the route t3, 4u cannot be served by a single vehicle.

Intuitively speaking, the non-existence of a deterministic reformulation is owed to the fact that

the deterministic CVRP cannot capture dependencies between customer demands. The proof

of Theorem 2.20 constructs a distributionally robust CVRP instance with four customers where

the demands of the customers 1 and 3 (as well as 2 and 4) cannot vary much jointly, whereas the

demands of the customers 1 and 2 (as well as 3 and 4) can vary much jointly. As a result, the

customer subsets t1, 3u and t2, 4u can each be served by a single vehicle in the distributionally

robust CVRP instance. In the deterministic CVRP, on the other hand, the potential presence

of joint variability of customer demands implies that at least some of the demands have to be

su�ciently high, which in turn excludes the possibility to serve all customers by two vehicles.

Although we are unable to evaluate the worst-case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
in

closed form for the ambiguity set (2.17), the quantity can be computed in polynomial time.
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Theorem 2.21 The worst-case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
over the generic first-

order ambiguity set (2.17) is equal to the optimal objective value of the following optimization

problem.

minimize 1S
Jµ ` min

!`
q ´ µ

˘
,
1 ´ ✏

✏

`
µ ´ q

˘)
J

”
1S ´ 2

pÿ

i“1

�i1Si

ı

`

`
1

✏
⌫J�

subject to � P Rp
`

(2.18)

Please see the appendix of this chapter for the proof of Theorem 2.21.

Problem (2.18) minimizes a non-smooth convex function over the non-negative orthant. It can

be reformulated as a linear program and solved with a ‘practical’ complexity of Opr|S| ` ps
3
q,

see [BV04, §11]. Faster solution times can be obtained through warm-starting.

We can derive a sequence of distributions that attain the worst-case value-at-risk asymptotically.

Proposition 2.22 A sequence of distributions Pt
P P, t “ 1, 2, . . ., that attain the worst-

case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
in Theorem 2.21 asymptotically as t Ñ́ 8 can be

defined as Pt
“ p⇠1 ´ 1{tq ¨ �q1 ` p⇠2 ` 1{tq ¨ �q2, where q1 “

⇣1
⇠1

and q2 “
⇣2
⇠2

´
1
t

´
⇣2
⇠2

´
⇣1
⇠1

¯
, and

p⇠i, ⇣iq is an optimal solution to the linear program

minimize ⇠1

subject to ⇠1 ` ⇠2 “ 1, ⇣1 ` ⇣2 “ µ

q⇠i § ⇣i § q⇠i, ´⇢i § ⇣i ´ µ⇠i § ⇢i

⇠2⌧ § 1J

S⇣2, Sp⇢1 ` ⇢2q § ⌫

⇠i P R`, ⇣i P Rn, ⇢i P Rn
`
, i “ 1, 2,

where S is a p ˆ n matrix with rows 1J

Si
, i “ 1, . . . , p.

Proof of Proposition 2.22. The proof follows along similar lines as the proof of Proposi-

tion 2.9.
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Although problem (2.18) can be solved in polynomial time, its solution may still be prohibitively

expensive for large CVRP instances, where many RCIs have to be separated during the ex-

ecution of a branch-and-cut scheme. It is therefore instructive to study special cases of the

first-order generic moment ambiguity set (2.17) that allow for a faster computation of the

worst-case value-at-risk (2.18).

Corollary 2.23 If the ambiguity set (2.17) satisfies Si XSj “ H, 1 § i † j † p,
îp´1

i“1 Si “ VC

and Sp “ VC, then the worst-case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
evaluates to

1S
Jµ ` min

#
⌫p
2✏
,

p´1ÿ

i“1

min
!
1SXSi

Jq̂,
⌫i
2✏

)+
, (2.19)

where q̂ “ min
!`

q ´ µ
˘
, 1´✏

✏

`
µ ´ q

˘)
.

Proof of Corollary 2.23. Under the assumption that
îp´1

i“1 Si “ VC , problem (2.18) can be

written as

minimize 1S
Jµ `

p´1ÿ

i“1

ÿ

jPSXSi

q̂j
”
1 ´ 2p�i ` �pq

ı

`

`
1

✏
⌫J�

subject to � P r0, e{2s.

For a fixed value of �p, an optimal choice of �i, i “ 1, . . . , p ´ 1, is �i “ 0 if 1SXSi
Jq̂ § ⌫i{p2✏q

and �i “
1
2 ´ �p otherwise. The problem thus simplifies to the one-dimensional problem

minimize 1S
Jµ `

p´1ÿ

i“1

min

"
p1 ´ 2�pq1SXSi

Jq̂,
⌫i
✏

„
1

2
´ �p

⇢*
`
⌫p
✏
�p

subject to �p P r0, 1{2s.

Since the objective function is concave, its minimum is attained at �‹

p P t0, 1{2u.

The assumption that
îp´1

i“1 Si “ VC comes without loss of generality as we can always add an

auxiliary customer set Si with a su�ciently large dispersion bound ⌫i. The ambiguity set in
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Corollary 2.23 is a generalization of the first-order marginalized ambiguity set (2.9) that allows

to impose upper dispersion bounds on the cumulative demand of arbitrary non-overlapping

customer subsets as well as on the sum of all customer demands. The expression (2.19) can

be evaluated in time Op|S|q. Moreover, if a customer subset S 1
Ñ VC di↵ers from a customer

subset S Ñ VC through the inclusion or removal of a single customer, then the expression (2.19)

associated with S 1 can be computed from the expression (2.19) associated with S in time Oppq.

An important special case of Corollary 2.23 arises when p “ n ` 1 and Si “ tiu, i “ 1, . . . , p.

Corollary 2.24 If the ambiguity set (2.17) satisfies p “ n ` 1, Si “ tiu, i “ 1, . . . , n, and

Sn`1 “ VC, then the worst-case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
has the closed-form

expression

1S
Jµ ` min

#
⌫n`1

2✏
,

ÿ

iPS

min
!
q̂i,

⌫i
2✏

)+
, (2.20)

where q̂ “ min
!`

q ´ µ
˘
, 1´✏

✏

`
µ ´ q

˘)
.

Proof of Corollary 2.24. The statement immediately follows from Corollary 2.23 if we use

the definitions of the sets Si in (2.19) and reorder the summation terms.

Compared to the first-order marginalized ambiguity set (2.9), the ambiguity set in Corol-

lary 2.24 additionally imposes an upper bound on the sum of mean absolute deviations of all

customer demands. The expression (2.20) can be evaluated in time Op|S|q. Moreover, if a cus-

tomer subset S 1
Ñ VC di↵ers from a customer subset S Ñ VC through the inclusion or removal

of a single customer, then the expression (2.20) associated with S 1 can be computed from the

expression (2.20) associated with S in constant time Op1q. If no support is present in Corol-

lary 2.24, then the worst-case value-at-risk (2.20) reduces to 1S
Jµ ` mint⌫n`1,

∞
iPS ⌫iu{p2✏q,

which is reminiscent of a budget uncertainty set in classical robust optimization [BS04].
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2.5.2.2 Covariance Ambiguity Sets

We now consider second-order generic ambiguity sets (or covariance ambiguity sets) of the form

P “
 
P P P0pRn

q : P req P Qs “ 1, EP reqs “ µ, EP
“
peq ´ µqpeq ´ µq

J
‰

® ⌃
(
, (2.21)

where Q “ rq, qs with q • 0, µ P intQ and ⌃ ° 0. Note that (2.21) is a special case of the

generic moment ambiguity set (2.4) where 'pqq “ maxzPRnzt0u

 
zJ

“
pq ´ µqpq ´ µq

J
´ ⌃

‰
z

(

and � “ 0, and thus the demand estimator dP over the ambiguity set (2.21) is subadditive due

to Theorem 2.8.

The covariance ambiguity set (2.21) generalizes the marginalized variance ambiguity set (2.11).

Similar to the mean absolute deviations on sums of customer demands in the previous sub-

section, the possibility to impose upper bounds on the covariances between pairs of customer

demands allows to reduce the ambiguity whenever customer demands are not perfectly corre-

lated. For a given set of demand observations, the upper covariance bound ⌃ can be derived

analytically using McDiarmid’s inequality [DY10] or empirically via bootstrapping [Che07].

As in the previous section, distributionally robust CVRPs with ambiguity sets of the form (2.21)

typically cannot be reformulated as deterministic CVRPs.

Theorem 2.25 For some instances of the distributionally robust CVRP with ambiguity set (2.21)

there is no deterministic CVRP instance with the same set of feasible route sets.

Proof of Theorem 2.25. To prove the statement, we consider the same distributionally

robust CVRP instance as in the proof of Theorem 2.20, with the exception that the expected

demands satisfy µ “ 4.5e and the demand dispersion is bounded from above by the covariance

matrix

⌃ “

»

———————–

0.1 0 ´0.05 0

0 0.1 0 ´0.05

´0.05 0 0.1 0

0 ´0.05 0 0.1

fi

�������fl

.
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An evaluation of the worst-case values-at-risk for all customer subsets reveals that the set of

feasible route sets is exactly the same as in the distributionally robust CVRP instance from

the proof of Theorem 2.20. Thus, we can use the same argument as in that proof to conclude

that there is no deterministic CVRP instance that has the same set of feasible route sets.

Like the first-order generic ambiguity set from the previous section, the worst-case value-at-risk

supPPP P-VaR1´✏

“∞
iPS q̃i

‰
over the ambiguity set (2.21) can be computed in polynomial time.

Theorem 2.26 The worst-case value-at-risk supPPP P-VaR
“∞

iPS q̃i
‰
over the covariance am-

biguity set (2.21) is equal to the optimal objective value of the optimization problem

maximize 1S
Jµ ` 1S

Jq

subject to qJ⌃´1q §
1 ´ ✏

✏

q P
“
q`, qu

‰
,

(2.22)

where q`
“ max

 
´

1´✏
✏ pq ´ µq, q ´ µ

(
and qu

“ min
 
1´✏
✏ pµ ´ qq, q ´ µ

(
.

Please see the appendix of this chapter for the proof of Theorem 2.26.

Problem (2.22) is a convex quadratically constrained quadratic program that maximizes an

a�ne function over the intersection of an ellipsoid and a hyperrectangle. The problem can be

solved with a ‘practical’ complexity of Opn3
q, see [BV04, §11].

We now provide a sequence of distributions that attain the worst-case value-at-risk in the limit.

Proposition 2.27 A sequence of distributions Pt
P P, t “ 1, 2, . . ., that attain the worst-

case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
in Theorem 2.26 asymptotically as t Ñ́ 8 can be

defined as Pt
“ p⇠1 ´ 1{tq ¨ �q1 ` p⇠2 ` 1{tq ¨ �q2, where q1 “

⇣1
⇠1

and q2 “
⇣2
⇠2

`
1

tp⇠2`1{tqp
⇣1
⇠1

´
⇣2
⇠2

q,



78 Chapter 2.

and p⇠i, ⇣iqis an optimal solution to the convex optimization problem

minimize ⇠1

subject to ⇠1 ` ⇠2 “ 1, ⇣1 ` ⇣2 “ µ

q⇠i § ⇣i § q⇠i, 1J

S⇣2 • ⇠2⌧
1

⇠1
p⇣1 ´ ⇠1µq p⇣1 ´ ⇠1µq

J
`

1

⇠2
p⇣2 ´ ⇠2µq p⇣2 ´ ⇠2µq

J ® ⌃

⇠i P R`, ⇣i P Rn, i “ 1, 2.

Proof of Proposition 2.27. The proof follows along similar lines as the proof of Proposi-

tion 2.9.

Rather than solving problem (2.22) directly, we exploit strong convex duality, which applies

since problem (2.22) a↵ords a Slater point, to conclude that the dual second-order cone program

minimize 1J

Sµ `

c
1 ´ ✏

✏

››⌃ 1
2 pe ´ �q

››
2

` quJ�

subject to � P Rn
`

attains the same optimal objective value as problem (2.22). Due to its benign structure, the

dual problem can be solved quickly using the Fast Iterative Shrinkage Thresholding Algorithm

[BT09] with adaptive restarts [OC15] if we move the nonnegativity constraints to the objective

function through indicator functions and apply a Moreau proximal smoothing [BT12] to the

conic quadratic term in the objective function.

An important special case of Theorem 2.26 arises when the upper covariance bound in the

ambiguity set (2.21) satisfies ⌃ “ diag p�2
1, . . . , �

2
nq. This could be due to a priori structural

knowledge about the customer demands, or by bounding a non-diagonal matrix ⌃ from above

(with respect to the positive semidefinite cone) to obtain a conservative (outer) approximation

of (2.21).

Corollary 2.28 If the ambiguity set (2.21) satisfies ⌃ “ diag p�2
1, . . . , �

2
nq, then the worst-case

value-at-risk supPPP P-VaR
“∞

iPS q̃i
‰
is equal to the optimal objective value of the optimization
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problem

maximize 1S
Jµ `

ÿ

iPSp✓q

qui `

gfffe

»

–1 ´ ✏

✏
´

ÿ

iPSp✓q

ˆ
qui
�i

˙2
fi

fl

»

–
ÿ

iPSzSp✓q

�2
i

fi

fl

subject to ✓ P R`,

(2.23)

where Sp✓q “ ti P S : �2
i ° ✓ ¨ qui u and qu

“ min
 
1´✏
✏ pµ ´ qq, q ´ µ

(
, and where the feasible

region is restricted to those values of ✓ for which the expression inside the square root is non-

negative, that is, for which
∞

iPSp✓q

´
qui
�i

¯2

§
1´✏
✏ .

Proof of Corollary 2.28. The statement follows from Theorem 2.26 as well as an adaptation

of Lemma 2 in [PP15] that replaces the box constraints q P r´e,`es from that paper with

q P rq`, qu
s and the ellipsoidal constraint qJq § 2 with qJ⌃´1q §

1´✏
✏ .

Corollary 2.28 allows us to compute the worst-case value-at-risk supPPP P-VaR
“∞

iPS q̃i
‰
over

the covariance ambiguity set (2.21) with a diagonal upper bound ⌃ in time Op|S|q, given that

the ratios qui {�2
i have been sorted upfront. Indeed, we can determine the set Sp✓q Ñ S that

maximizes (2.23) through a linear search that adds a single customer to the candidate set Sp✓q

in each iteration.

2.6 Numerical Results

In Section 2.6.1, we investigate how the parameter values of the marginal ambiguity sets from

Section 2.5.1 impact the solution of the associated deterministic CVRP instance. We compare

the performance of our tailored RCI cut evaluation schemes for the generic ambiguity sets

from Section 2.5.2 with a state-of-the-art commercial solver in Section 2.6.2). And, finally, we

compare the runtimes of the resulting branch-and-cut algorithms for the distributionally robust

chance constrained CVRP with a corresponding implementation for the deterministic CVRP

in Section 2.6.3.
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Figure 2.6: Demand distributions for the instance A-n32-k5. The left graph visualizes the
histogram for customer 1, whereas the middle (right) graph illustrates the joint demand distri-
bution of customers 1 and 12 (1 and 30), which are located nearby (far away).

With the exception of Section 2.6.2 below, all numerical results are based on the CVRP bench-

mark problems compiled by [D0́6]. The instances are named ‘X-nY -kZ’, where X denotes the

literature source of the instance, Y is the number of nodes in the instance (including the depot)

and Z is the number of vehicles. We only consider those problems for which two-dimensional

coordinates for the nodes are available. Following the literature convention, we set the trans-

portation costs cij to the Euclidean distance between i and j, rounded to the nearest integer.

Since the CVRP benchmark problems contain deterministic customer demands, we generate

distributions for our stochastic demands according to the following procedure. The unscaled

demand of customer i P VC is set to �̃i “
1
2 ⇠̃i `

1
2|Ni|

∞
jPNi

⇠̃j, where e⇠ „ N p0, Iq is an n-

dimensional normally distributed random vector and Ni Ñ VC is the set of the t0.1nu customers

closest to i in terms of Euclidean distance. We subsequently apply an a�ne transformation

which ensures that the expected demand of customer i is µi, which we identify with customer i’s

nominal demand from the deterministic CVRP instance, and that 99% of customer i’s demand

falls into the interval rq, qs, where the bounds pq, qq are set to pq, qq “ p0.8µ, 1.2µq, unless

specified otherwise. Finally, we clamp customer i’s scaled demand distribution to the interval

rq, qs. Our construction ensures that the customer demands exhibit a dependence structure that

is informed by geographical proximity, see Figure 2.6. Since the unused vehicle capacities tend

to be small already in the deterministic CVRP instances, we follow the approach in [GWF13b]

and increase the vehicle capacities Q in each benchmark instance by 20%. This ensures that all

distributionally robust CVRP instances remain feasible. We set the risk threshold to ✏ “ 0.2.
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num
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Figure 2.7: Minimum number of vehicles and optimal transportation costs for the instance
A-n32-k5 with a marginalized variance ambiguity set and di↵erent variation coe�cients ⇢.

We solve the deterministic and distributionally robust CVRP instances with a ‘vanilla’ branch-

and-cut algorithm that only separates RCI cuts according to the Tabu Search procedure pro-

posed by [ABB`98]. Our branch-and-cut algorithm is implemented in C++ and uses the

branch-and-bound capability of CPLEX 12.8.2 We solve all problems in single-core mode on

an Intel Xeon 2.66GHz processor with 8GB memory and a runtime limit of 12 hours.

2.6.1 Marginalized Ambiguity Sets

We first solve a distributionally robust version of the benchmark instance A-n32-k5 with a

marginalized variance ambiguity set of the form (2.11). To this end, we identify the expected

customer demands µ with the nominal customer demands from the benchmark instance and set

pq, qq “ p0.5µ, 2µq. Moreover, we select �i “ p⇢µiq
2, i P VC , where ⇢ represents the coe�cient

of variation, which is assumed to be common for all customer demands. Contrary to the other

experiments, we use the same vehicle capacities as in the benchmark instances.

Figure 2.7 illustrates the minimum number of vehicles required to serve all customers’ demands,

as well as the resulting transportation costs, as a function of the coe�cient of variation ⇢.

Moreover, Figure 2.8 shows the optimal route sets corresponding to three di↵erent values of ⇢.

2CPLEX website: https://www.ibm.com/analytics/cplex-optimizer.
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Figure 2.8: Optimal route sets for the instance A-n32-k5 with a marginalized variance ambiguity
set and variation coe�cients ⇢ “ 0 (left; 5 vehicles), ⇢ “ 0.23 (middle; 7 vehicles) and ⇢ “ 0.45
(right; 9 vehicles).

We observe that a higher coe�cient of variation ⇢ in the ambiguity set (2.11) hedges against

larger sets of demand distributions in the distributionally robust CVRP instance, which in turn

leads to higher nominal customer demands in the corresponding deterministic CVRP instance.

As a result, both the number of vehicles and the transportation costs tend to increase with

larger values of ⇢.

2.6.2 Generic Ambiguity Sets: RCI Cut Evaluation

We first compare our tailored evaluation of the worst-case value-at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰

for first-order generic moment ambiguity sets (2.17) and covariance ambiguity sets (2.21) with

their solution as linear and quadratically constrained quadratic programs via CPLEX, respec-

tively. To this end, we generate random problem instances in which n P t10, 15, . . . , 200u

customers have nominal demands µi that are uniformly distributed on the set t1, . . . , 10u as

well as random locations that are uniformly distributed on the square r0, 10s
2. We generate the

demand distributions as described in the beginning of this section.

For the first-order ambiguity set (2.17), we partition the customers into four quadrants of

equal size, and we select mean absolute deviations bounds for each quadrant as well as for the

cumulative demands based on a sample from the joint demand distribution. Similarly, for the

covariance ambiguity set (2.21), we select the covariance bound ⌃ based on a sample from the

joint demand distribution. We also consider the special case of a diagonal covariance bound (see
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Figure 2.9: Runtimes for RCI cut evaluation. Shown are the average runtimes that CPLEX
(solid lines) and our evaluation schemes (dashed lines) for first-order ambiguity sets (left graph),
generic covariance ambiguity sets (middle graph) and covariance ambiguity sets with diagonal
⌃ (right graph) require to evaluate the right-hand side of a single RCI cut. The dotted lines
represent the implied speedups.

Corollary 2.28) where we set all non-diagonal elements of the previously described covariance

bound ⌃ to zero.

Figure 2.9 compares the runtimes of our tailored evaluation schemes with those of CPLEX

for evaluating the right-hand side of a single RCI cut, that is, an individual worst-case value-

at-risk supPPP P-VaR1´✏

“∞
iPS q̃i

‰
, on 1,000 randomly generated problem instances for each

instance size n. While the achieved speedups are most significant for first-order ambiguity sets,

they remain substantial for covariance ambiguity sets, especially if the covariance bound ⌃ is

diagonal. The results are in line with our theoretical complexity estimates from Section 2.5.2,

and they confirm our intuition that it is essential to study special classes of ambiguity sets P

that give rise to easily computable demand estimators dP .

2.6.3 Generic Ambiguity Sets: Branch-and-Cut Scheme

We finally use our RCI cut evaluation schemes for the first-order and the two covariance am-

biguity sets from the previous subsection to solve the CVRP benchmark instances of [D0́6].

We compare the runtimes and optimality gaps of the resulting branch-and-cut procedures with

those of a deterministic branch-and-cut algorithm applied to the deterministic CVRP with

worst-case demands q “ q. The results are summarized in Figure 3.2 as well as in Appendix A.
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Figure 2.10: Runtimes and optimality gaps for our branch-and-cut schemes. Shown are the
runtimes (left graph) and optimality gaps after 12 hours (right graph) for our deterministic
branch-and-cut scheme with nominal demands q “ q (blue, circles) as well as our distribu-
tionally robust branch-and-cut schemes over first order ambiguity sets (green, squares), second
order ambiguity sets (red, triangles) and second order ambiguity sets with diagonal covariance
bounds (cyan, stars).

The results show that our branch-and-cut schemes for the first-order as well as the diagonal co-

variance ambiguity set perform very similar to the branch-and-cut scheme for the deterministic

CVRP, both in terms of the runtimes for successfully solved instances as well as the optimality

gaps after 12 hours of runtime. In particular, all three algorithms can solve about 75% of the

benchmark instances within the time limit, and the optimality gap is below 10% for roughly

90% of the instances. As expected from the previous subsection, our branch-and-cut scheme

for covariance ambiguity sets with a non-diagonal bound ⌃ is slower; it solves about 65% of

the benchmark instances within 12 hours, and the optimality gap is below 10% for about 80%

of the instances.

To assess the conservatism of the obtained solutions, we consider 55 instances where all of

the branch-and-cut schemes determined optimal solutions within the time limit and where the

optimal solution of the deterministic CVRP with expected demands q “ µ (henceforth the

‘nominal solution’) has strictly lower transportation costs than the optimal solution of the

deterministic CVRP with component-wise worst-case demands q “ q (henceforth the ‘worst-

case solution’). We then compute how much of the objective gap between the nominal solution

and the robust solution is covered by each of the distributionally robust solutions. For our

first-order ambiguity set as well as the covariance ambiguity set with a diagonal bound, every
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distributionally robust solution improves upon the worst-case solution, and the solutions close

75.5% of the objective gap on average. For our covariance ambiguity set with a non-diagonal

bound, the distributionally robust solutions improve upon the worst-case solutions in 53 out of

the 55 instances and close 52.1% of the objective gap on average. The results indicate that the

distributionally robust CVRP can help to reduce the conservatism of näıve worst-case solutions.

2.7 Conclusion

Motivated by some of the shortcomings of the classical chance constrained CVRP, which as-

sumes that the uncertain customer demands are governed by a precisely known distribution,

we investigated the distributionally robust CVRP, in which this distribution is only partially

characterized. In particular, we studied the computational tractability of the distributionally

robust CVRP.

The solvability of the distributionally robust CVRP is largely determined by the choice of the

ambiguity set. First and foremost, the ambiguity set should lead to a subadditive demand

estimator so that standard branch-and-cut schemes can be used to solve the problem. This

turns out to be the case for a large class of moment ambiguity sets. Secondly, the demand

estimator should be easily computable. To this end, we have identified several classes of first-

order and second-order moment ambiguity sets whose demand estimators can be computed by

tailored algorithms that outperform an o↵-the-shelf commercial optimization package by orders

of magnitude.

We must point out that despite the benefits of the model presented in this chapter, it has its

shortcomings. The model only applies to moment ambiguity sets. This limits its applicability

to other ambiguity sets in literature which may have better statistical properties, degree of

conservativeness for the optimal solution as well as the amount of data required for a su�ciently

accurate calibration of the ambiguity set. This is a fruitful avenue for future research. Moreover,

even though our solution algorithms show significantly improved performance over the current

literature, there still remains scope to improve the scalability as well as the run time performance
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for these solution algorithms. Finally, this chapter focuses exclusively on CVRP, which is an

important class of VRP. There remain gaps for the proposed framework to be extended to other

VRP variants.

We also note that some of our results may have applications outside the domain of vehicle

routing. For example, Theorem 2.10 can be readily generalized to show that linear worst-case

chance constraints over marginalized moment ambiguity sets reduce to deterministic inequality

constraints. It therefore appears instructive to further explore the consequences of highly

structured ambiguity sets in distributionally robust optimization in general.

2.8 Appendix

The proof of Theorem 2.8 relies on the following auxiliary result.

Lemma 2.29 (Strong Duality) Let Q “ rq, qs, f : Rn
fiÑ R be an arbitrary function and

' : Rn
fiÑ Rp be continuous. Assume that µ P intQ and that 'pµq † �. Then, strong duality

holds between the primal moment problem

minimize

ª

Q
fpqqPpdqq

subject to

ª

Q
Ppdqq “ 1

ª

Q
q Ppdqq “ µ

ª

Q
'pqqPpdqq § �

P P M`pQq

and its semi-infinite dual problem

maximize ↵ ` µJ� ´ �J�

subject to ↵ ` qJ� ´ 'pqq
J� § fpqq @q P Q

↵ P R, � P Rn, � P Rp
`.



2.8. Appendix 87

Proof of Lemma 2.29. The result follows from Proposition 3.4 in [Sha01] if we can show

that the point p1,µ,�q resides in the interior of the convex cone

V “

$
’’’’&

’’’’%

pa, b, cq P R ˆ Rn
ˆ Rp : Dµ P M`pQq such that

≥
µpd⇠q “ a,

≥
q µpd⇠q “ b,

≥
'pqqµpd⇠q § c

,
////.

////-

.

In the following, we denote by B⇢pxq the closed Euclidean ball of radius ⇢ ° 0 that is centered

at x. We prove the statement by showing that any point ps,m, sq P Bp1q ˆ Bpµq ˆ Bp�q,

where  ° 0 is su�ciently small, is contained in V . Indeed, assume that  is small enough

so that m{s P Q and 'pm{sq § s{s. This is possible since µ P intQ, 'pµq † � and ' is

continuous. We then have that the scaled Dirac measure s ¨ �m{s satisfies s ¨ �m{s P M`pQq,
≥
s ¨ �m{s “ s,

≥
q s ¨ �m{s “ m as well as

≥
'pqq s ¨ �m{s “ s ¨ 'pm{sq § s. We thus conclude

that ps,m, sq P V as desired.

Proof of Theorem 2.8. We claim that the epigraph of the worst-case value-at-risk,

M “

"
p�, ⌧q P Rn

ˆ R : sup
PPP

P-VaR1´✏

“
�Jeq

‰
§ ⌧

*
, (2.24)

is convex for moment ambiguity sets of the form (2.4). We then have

sup
PPP

P-VaR1´✏

” ÿ

iPS

q̃i
ı

“ n ¨ sup
PPP

P-VaR1´✏

” 1
n

ÿ

iPS

q̃i
ı

§

ÿ

iPS

sup
PPP

P-VaR1´✏

“
q̃i

‰
,

where the identity follows from the positive homogeneity of the value-at-risk (which carries

over to the worst-case value-at-risk), and the inequality follows from the stated convexity of

the epigraph of the worst-case value-at-risk [Roc70, Theorem 4.2].

We now show that the epigraph (2.24) is indeed convex for moment ambiguity sets. To this

end, we note that supPPP P-VaR1´✏

“
�Jeq

‰
§ ⌧ if and only if the optimal value of the moment
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problem

minimize

ª

Q
Ir�Jq§⌧ s Ppdqq

subject to

ª

Q
Ppdqq “ 1

ª

Q
q Ppdqq “ µ

ª

Q
'pqqPpdqq § �

P P M`pQq

is greater than or equal to 1 ´ ✏. By Lemma 2.29, this is the case if and only if the optimal

objective value of the semi-infinite dual problem

maximize ↵ ` µJ� ´ �J�

subject to ↵ ` qJ� ´ 'pqq
J� § Ir�Jq§⌧ s @q P Q

↵ P R, � P Rn, � P Rp
`

is greater than or equal to 1 ´ ✏. By splitting up the semi-infinite constraint, we obtain

maximize ↵ ` µJ� ´ �J�

subject to ↵ ` qJ� ´ 'pqq
J� § 1 @q P Q

↵ ` qJ� ´ 'pqq
J� § 0 @q P Q : �Jq ° ⌧

↵ P R, � P Rn, � P Rp
`.

(2.25)

We first assume that ⌧ ‰ r�s
J

`
q´r´�s

J

`
q. In that case, we have tq P Q : �Jq ° ⌧u ‰ H if and

only if tq P Q : �Jq • ⌧u ‰ H, and we can replace the strict inequality in the parameterization

of the second constraint with a weak one due to the convexity (and, a fortiori, continuity) of

'.

The first constraint in (2.25) is satisfied if and only if

»

—–
maximize ↵ ` qJ� ´ 'pqq

J�

subject to q P Q

fi

�fl § 1 ñ

»

—–
minimize ´qJ� ` 'pqq

J�

subject to q P rq, qs

fi

�fl • ↵´1.

Strong convex duality, which holds since the support Q has a nonempty interior, implies that
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this is the case if and only if the optimal value of the dual problem,

maximize qJ⌫1 ´ qJ⌫1 ´

pÿ

i“1

�i'
‹

i p�i{�iq

subject to
pÿ

i“1

�1i “ � ` ⌫1 ´ ⌫1

⌫1,⌫1 P Rn
`
, �1i P Rn, i “ 1, . . . , p,

is greater than or equal to ↵ ´ 1. Here, '‹

i is the conjugate function of 'i.

The second constraint in (2.25) is satisfied if and only if

»

————–

maximize ↵ ` qJ� ´ 'pqq
J�

subject to q P Q

�Jq • ⌧

fi

����fl
§ 0 ñ

»

————–

minimize ´qJ� ` 'pqq
J�

subject to q P rq, qs

�Jq • ⌧

fi

����fl
• ↵.

(2.26)

In the following, we distinguish three mutually exclusive and collectively exhaustive cases: (i)

there is a Slater point q P intQ satisfying �Jq ° ⌧ ; (ii) there is no q P Q that satisfies

�Jq • ⌧ ; and (iii) there are q P Q that satisfy �Jq • ⌧ , but none of them satisfies q P intQ

and �Jq ° ⌧ . In the first case, strong convex duality holds, and (2.26) is satisfied if and only

if the optimal value of the dual problem,

maximize qJ⌫0 ´ qJ⌫0 ` ⌧⌘ ´

pÿ

i“1

�i'
‹

i p�0i{�iq

subject to
pÿ

i“1

�0i “ � ` ⌫0 ´ ⌫0 ` ⌘�

⌫0,⌫0 P Rn
`
, ⌘ P R`, �0i P Rn, i “ 1, . . . , p,

(2.27)

is greater than or equal to ↵. In the second case, fix ⌘ P R` and set ⌫0 “ r´� ´ ⌘�s`,

⌫0 “ r� ` ⌘�s` and �0i “ 0, i “ 1, . . . , p. This choice is feasible in (2.27) and attains the

objective value

qJ
r´�´⌘�s` ´qJ

r�`⌘�s` `⌧⌘´c “ ⌘
´
qJ

r´�{⌘´�s` ´qJ
r�{⌘`�s` `⌧

¯
´c Ñ́ `8

as ⌘ Ñ́ `8 since qJ
r´�{⌘ ´ �s` ´ qJ

r�{⌘ ` �s` Ñ́ ´bqJ� for bq P Q defined via q̂i “ q
i
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if �i † 0 and q̂i “ qi otherwise, i “ 1, . . . , n, and �Jq † ⌧ for all q P Q. In this argument,

the term c “
∞p

i“1 �i'
‹

i p�0i{�iq “ �J'‹
p0q is constant. As for the third case, denote by (2.26✏)

and (2.27✏) the variants of problems (2.26) and (2.27) where we replace the parameters pq, qq

with pq ´ ✏e, q ` ✏eq, respectively. Ignoring the trivial case where � “ 0 and ⌧ “ 0, we observe

that strong duality holds between (2.26✏) and (2.27✏) for every ✏ ° 0. Moreover, one readily

verifies that the mapping ✏ fiÑ (2.26✏) is right continuous at ✏ “ 0, that the problems (2.26) ”

(2.260) and (2.27) ” (2.270) are both feasible, and that the optimal value of (2.26) is greater

than or equal to the optimal value of (2.27) by weak duality. Since the optimal value of (2.27✏1)

is greater than or equal to the optimal value of (2.27✏) for all 0 § ✏1
§ ✏, we thus conclude that

the optimal values of the problems (2.26) and (2.27) also coincide.

The previous two paragraphs imply that for all ⌧ P R, ⌧ ‰ r�s
J

`
q ´ r´�s

J

`
q, we have that

supPPP P-VaR1´✏

“
�Jeq

‰
§ ⌧ if and only if

D↵ P R, � P Rn, � P Rp
`, ⌫1,⌫1,⌫0,⌫0 P Rn

`
,

⌘ P R`, �1i,�0i P Rn, i “ 1, . . . , p :

$
’’’’’’’’’’’&

’’’’’’’’’’’%

↵ ` µJ� ´ �J� • 1 ´ ✏

qJ⌫1 ´ qJ⌫1 ´

pÿ

i“1

�i'
‹

i p�1i{�iq • ↵ ´ 1

qJ⌫0 ´ qJ⌫0 ` ⌧⌘ ´

pÿ

i“1

�i'
‹

i p�0i{�iq • ↵

pÿ

i“1

�1i “ � ` ⌫1 ´ ⌫1,
pÿ

i“1

�0i “ � ` ⌫0 ´ ⌫0 ` ⌘�.

We claim that any feasible solution to this system of equations satisfies ⌘ ° 0. Assume to the

contrary that there was a feasible solution with ⌘ “ 0. In that case, the constraint system

would be independent of ⌧ , and we would have supPPP P-VaR1´✏

“
�Jeq

‰
§ ⌧ either for all ⌧ P R

or for no ⌧ P R. However, this cannot be the case since eq P Q P-a.s. for all P P P and the

support Q is bounded. We thus conclude that ⌘ ° 0, which allows us to replace all decision

variables by their division through ⌘ and replace ⌘ with 1{⌘. We have thus established that for
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⌧ ‰ r�s
J

`
q ´ r´�s

J

`
q, we have supPPP P-VaR1´✏

“
�Jeq

‰
§ ⌧ if and only if

D↵ P R, � P Rn, � P Rp
`, ⌫1,⌫1,⌫0,⌫0 P Rn

`
,

⌘ P R`, �1i,�0i P Rn, i “ 1, . . . , p :

$
’’’’’’’’’’’&

’’’’’’’’’’’%

↵ ` µJ� ´ �J� • p1 ´ ✏q⌘

qJ⌫1 ´ qJ⌫1 ´

pÿ

i“1

�i'
‹

i p�1i{�iq • ↵ ´ ⌘

qJ⌫0 ´ qJ⌫0 ` ⌧ ´

pÿ

i“1

�i'
‹

i p�0i{�iq • ↵

pÿ

i“1

�1i “ � ` ⌫1 ´ ⌫1,
pÿ

i“1

�0i “ � ` ⌫0 ´ ⌫0 ` �.

(2.28)

Assume now that ⌧ “ r�s
J

`
q ´ r´�s

J

`
q. In that case, the application of our continuity

argument to equation (2.25) could imply that supPPP P-VaR1´✏

“
�Jeq

‰
§ ⌧ but the equation

system (2.28) is not satisfiable. To prove that this is not possible, we show that the set-valued

mapping ⌧ fiÑ Sp⌧q, where Sp⌧q is the set of all p↵,�,�,⌫i,⌫i, ⌘,�ijq satisfying (2.28), is outer

semicontinuous [RW97, Definition 5.4]. This is the case if and only if the graph of S—that

is, the set of all � P Rn, ⌧ P R and ↵ P R, � P Rn, � P Rp
`, ⌫1,⌫1,⌫0,⌫0 P Rn

`
, ⌘ P R` as

well as �1i,�0i P Rn, i “ 1, . . . , p, satisfying (2.28)—is closed [RW97, Theorem 5.7]. Indeed,

the conjugate functions '‹

i are convex by construction, and their convexity is preserved by

the perspective functions [BV04, §3.2.6]. The result now follows since convex functions are

continuous [RW97, Theorem 2.35] and the lower level sets of continuous functions are closed

[RW97, Theorem 1.6]. We thus conclude that for all ⌧ P R, we have supPPP P-VaR1´✏

“
�Jeq

‰
§ ⌧

if and only if (2.28) is satisfiable.

By construction, the set of all � P Rn, ⌧ P R and ↵ P R, � P Rn, � P Rp
`, ⌫1,⌫1,⌫0,⌫0 P Rn

`
,

⌘ P R` as well as �1i,�0i P Rn, i “ 1, . . . , p, satisfying the equation system (2.28) is convex.

The set M is a projection of this set onto � and ⌧ and is thus convex as well.

Proof of Proposition 2.18. The rectangularity of the ambiguity set P allows us to conclude

that

sup
PPP

P-VaR1´✏

“
q̃i

‰
“ sup

PPPi

P-VaR1´✏

“
q̃i

‰
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with

Pi “

$
’&

’%
P P P0pRq :

»

—–
P

”
q̃i P rq

i
, qis

ı
“ 1, EP rq̃is “ µi,

EP
“
rq̃i ´ µis

2
`

‰
§ �`

i , EP
“
rµi ´ q̃is

2
`

‰
§ �´

i @i P VC

fi

�fl

,
/.

/-
.

For a fixed scalar ⌧ P R, we then have supPPPi
P-VaR1´✏

“
q̃i

‰
§ ⌧ if and only if the optimal

objective value of the moment problem

minimize

ª

rq
i
, qis

Irqi§⌧ sPpdqiq

subject to

ª

rq
i
, qis

Ppdqiq “ 1

ª

rq
i
, qis

qi Ppdqiq “ µi

ª

rq
i
, qis

prqi ´ µis`q
2 Ppdqiq § �`

i

ª

rq
i
, qis

prµi ´ qis`q
2 Ppdqiq § �´

i

P P M`pRq

is greater than or equal to 1´ ✏. A similar reasoning as in the proof of Theorem 2.8 shows that

this is the case if and only if the optimal objective value of the problem

maximize ↵ ` µi� ´ �`

i �
`

´ �´

i �
´

subject to ↵ ´ µip�
q
1 ´ ⇡q

1q `
1

4�`
p⇡q

1 ` ⇡0
1q

2
`

1

4�´
p�q

1 ` �0
1q

2
´ q

i
�
1

` qi�1 § 1

↵ ´ µip�
q
0 ´ ⇡q

0q `
1

4�`
p⇡q

0 ` ⇡0
0q

2
`

1

4�´
p�q

0 ` �0
0q

2
´ q

i
�
0

` qi�0 ´ ⌧! § 0

⇡q
1 ´ �q

1 ` �1 ´ �
1

“ �, ⇡q
0 ´ �q

0 ` �0 ´ �
0

´ ! “ �

↵, � P R, �`, �´
P R`, �

q
j ,�

0
j , ⇡

q
j , ⇡

0
j ,�j

,�j P R`, j “ 0, 1, ! P R`.

(2.29)

is greater than or equal to 1 ´ ✏.
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We now consider the problem supPPPi
P-VaR1´✏rq̃is, which can be formulated as

minimize ⌧

subject to sup
PPP

P-VaR1´✏rq̃is § ⌧

⌧ P R.

Our previous arguments imply that this problem is equivalent to

minimize ⌧

subject to ↵ ` µi� ´ �`

i �
`

´ �´

i �
´

• 1 ´ ✏

↵ ´ µip�
q
1 ´ ⇡q

1q `
1

4�`
p⇡q

1 ` ⇡0
1q

2
`

1

4�´
p�q

1 ` �0
1q

2
´ q

i
�
1

` qi�1 § 1

↵ ´ µip�
q
0 ´ ⇡q

0q `
1

4�`
p⇡q

0 ` ⇡0
0q

2
`

1

4�´
p�q

0 ` �0
0q

2
´ q

i
�
0

` qi�0 ´ ⌧! § 0

⇡q
1 ´ �q

1 ` �1 ´ �
1

“ �, ⇡q
0 ´ �q

0 ` �0 ´ �
0

´ ! “ �

↵, � P R, �`, �´
P R`, �

q
j ,�

0
j , ⇡

q
j , ⇡

0
j ,�j

,�j P R`, j “ 0, 1, ! P R`, ⌧ P R.
(2.30)

Similar manipulations as in the proof of Theorem 2.26 allow us to conclude that this problem

has the same objective value as

minimize pqi ´ µiq�0 `

ˆ
1 ´ ✏

✏

˙
pµi ´ q

i
q�

1
`

1

4�`
p⇡q

0q
2

`

ˆ
1 ´ ✏

✏

˙
1

4�´
p�q

1q
2

` µi `
�`

i

✏
�`

`
�´

i

✏
�´

subject to ⇡q
0 ` �q

1 ` �0 ` �
1

“ 1

�`, �´
P R`, �

q
1, ⇡

q
0,�1

,�0 P R`.

The unconstrained first-order optimality condition with respect to �` gives �`
“ ˘

1
2

b
✏
�`
i
⇡q
0.

Since the second derivative 1
2

p⇡q
0q

2

p�`q3
is non-negative for �`

• 0, we thus conclude that �`
“

1
2

b
✏
�`
i
⇡q
0 is optimal in the above problem. A similar reasoning shows that �´

“
1
2

b
1´✏
�´
i
�q
1 is
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optimal as well. We thus obtain the equivalent optimization problem

minimize µi ` pqi ´ µiq�0 `

ˆ
1 ´ ✏

✏

˙
pµi ´ q

i
q�

1
`

c
�`

i

✏
⇡q
0 `

a
p1 ´ ✏q�´

i

✏
�q
1

subject to ⇡q
0 ` �q

1 ` �0 ` �
1

“ 1

�q
1, ⇡

q
0,�1

,�0 P R`.

Since all objective coe�cients are strictly positive, there is an optimal solution that sets one of

the four decision variables with minimum objective coe�cient to 1 and all other variables to 0.

The statement then follows from a case distinction.

Proof of Theorem 2.21. For any fixed scalar ⌧ P R, we have supPPP P-VaR1´✏

“
1S

Jeq
‰

§ ⌧ if

and only if the optimal objective value of the moment problem

minimize

ª

Q
Ir1S

Jq§⌧ s Ppdqq

subject to

ª

Q
Ppdqq “ 1

ª

Q
q Ppdqq “ µ

ª

Q
1J

Si
|q ´ µ|Ppdqq § ⌫i @i “ 1, . . . , p

P P M`pQq

is greater than or equal to 1´ ✏. A similar reasoning as in the proof of Theorem 2.8 shows that
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this is the case if and only if the optimal objective value of the problem

maximize ↵ ` µJ� ´ ⌫J�

subject to ↵ ` µJ
p⇡`

1 ´ ⇡´

1 q ` qJ�1 ´ qJ�
1

§ 1

↵ ` µJ
p⇡`

0 ´ ⇡´

0 q ` qJ�0 ´ qJ�
0

´ ⌧! § 0

⇡`

1 ´ ⇡´

1 ` �1 ´ �
1

“ �

⇡`

0 ´ ⇡´

0 ` �0 ´ �
0

´ 1S! “ �

⇡`

1 ` ⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 ` ⇡´

0 §

pÿ

i“1

�i1Si

⇡`

i ,⇡
´

i ,�i,�i
P Rn

`
, i “ 0, 1, ! P R`

↵ P R, � P Rn, � P Rp
`.

is greater than or equal to 1 ´ ✏.

We now consider the problem supPPP P-VaR1´✏

“
1S

Jeq
‰
, which can be formulated as

minimize ⌧

subject to sup
PPP

P-VaR1´✏

“
1S

Jeq
‰

§ ⌧

⌧ P R.

Our previous arguments imply that this problem is equivalent to

minimize ⌧

subject to ↵ ` µJ� ´ ⌫J� • 1 ´ ✏

↵ ` µJ
p⇡`

1 ´ ⇡´

1 q ` qJ�1 ´ qJ�
1

§ 1

↵ ` µJ
p⇡`

0 ´ ⇡´

0 q ` qJ�0 ´ qJ�
0

´ ⌧! § 0

⇡`

1 ´ ⇡´

1 ` �1 ´ �
1

“ �

⇡`

0 ´ ⇡´

0 ` �0 ´ �
0

´ 1S! “ �

⇡`

1 ` ⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 ` ⇡´

0 §

pÿ

i“1

�i1Si

⇡`

i ,⇡
´

i ,�i,�i
P Rn

`
, i “ 0, 1, ! P R`

↵ P R, � P Rn, � P Rp
`, ⌧ P R.

(2.31)
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Note that in the absence of the first constraint, it would be optimal to choose ↵ as small as

possible. We can thus remove the first constraint and replace ↵ with p1 ´ ✏q ´ µJ
`
⇡`

1 ´ ⇡´

1 `

�1 ´ �
1

˘
` ⌫J� in the second constraint, resulting in

`
q ´ µ

˘
J

�1 ´
`
q ´ µ

˘
J

�
1

` ⌫J� § ✏,

as well as with p1´ ✏q ´µJ
`
⇡`

0 ´⇡´

0 `�0 ´�
0

´1S!
˘

`⌫J� in the third constraint, resulting

in
`
q ´ µ

˘
J

�0 ´
`
q ´ µ

˘
J

�
0

` ⌫J� ` µJ1S! ´ ⌧! § ´p1 ´ ✏q.

Moreover, since � is unrestricted in sign, we can remove it from the problem by replacing the

fourth and fifth constraint in the above problem with the single constraint

⇡`

1 ´ ⇡´

1 ` �1 ´ �
1

“ ⇡`

0 ´ ⇡´

0 ` �0 ´ �
0

´ 1S!.

The optimization problem (2.31) is thus equivalent to

minimize ⌧

subject to
`
q ´ µ

˘
J

�1 ´
`
q ´ µ

˘
J

�
1

` ⌫J� § ✏
`
q ´ µ

˘
J

�0 ´
`
q ´ µ

˘
J

�
0

` ⌫J� ` µJ1S! ´ ⌧! § ´p1 ´ ✏q

⇡`

1 ´ ⇡´

1 ` �1 ´ �
1

“ ⇡`

0 ´ ⇡´

0 ` �0 ´ �
0

´ 1S!

⇡`

1 ` ⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 ` ⇡´

0 §

pÿ

i“1

�i1Si

⇡`

i ,⇡
´

i ,�i,�i
P Rn

`
, i “ 0, 1, ! P R`, � P Rp

`, ⌧ P R.

We claim that any feasible solution p⇡`

i ,⇡
´

i ,�i,�i
,!,�, ⌧q to this problem must satisfy ! ° 0.

Indeed, if there was a feasible solution with ! “ 0, then the problem would be unbounded,

which is impossible because supPPP P-VaR1´✏

“
1S

Jeq
‰

•
∞

iPS qi ° ´8. We can thus conduct

the substitutions ⇡`

i – ⇡`

i {!, ⇡´

i – ⇡´

i {!, �i – �i{!, �i
– �

i
{!, i “ 0, 1, � – �{! and
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! – 1{! to obtain the equivalent problem

minimize ⌧

subject to
`
q ´ µ

˘
J

�1 ´
`
q ´ µ

˘
J

�
1

` ⌫J� § ✏!
`
q ´ µ

˘
J

�0 ´
`
q ´ µ

˘
J

�
0

` ⌫J� ` µJ1S ´ ⌧ § ´p1 ´ ✏q!

⇡`

1 ´ ⇡´

1 ` �1 ´ �
1

“ ⇡`

0 ´ ⇡´

0 ` �0 ´ �
0

´ 1S

⇡`

1 ` ⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 ` ⇡´

0 §

pÿ

i“1

�i1Si

⇡`

i ,⇡
´

i ,�i,�i
P Rn

`
, i “ 0, 1, ! P R`, � P Rp

`, ⌧ P R.

Note that the second constraint in this problem must be binding at optimality. We can thus

remove this constraint as well as the epigraphical variable ⌧ to obtain the equivalent problem

minimize
`
q ´ µ

˘
J

�0 ´
`
q ´ µ

˘
J

�
0

` µJ1S ` ⌫J� ` p1 ´ ✏q!

subject to
`
q ´ µ

˘
J

�1 ´
`
q ´ µ

˘
J

�
1

` ⌫J� § ✏!

⇡`

1 ´ ⇡´

1 ` �1 ´ �
1

“ ⇡`

0 ´ ⇡´

0 ` �0 ´ �
0

´ 1S

⇡`

1 ` ⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 ` ⇡´

0 §

pÿ

i“1

�i1Si

⇡`

i ,⇡
´

i ,�i,�i
P Rn

`
, i “ 0, 1, ! P R`, � P Rp

`.

In this problem, the left-hand side of the first constraint is nonnegative by construction. We thus

conclude that the constraint is binding at optimality, which allows us to remove the constraint

as well as the variable ! to obtain the equivalent problem

minimize
`
q ´ µ

˘
J

´
�0 `

1 ´ ✏

✏
¨ �1

¯
´

`
q ´ µ

˘
J

´
�

0
`

1 ´ ✏

✏
¨ �

1

¯
`

1

✏
⌫J� ` µJ1S

subject to
`
⇡`

0 ` ⇡´

1

˘
´

`
⇡´

0 ` ⇡`

1

˘
`

`
�0 ` �

1

˘
´

`
�

0
` �1

˘
“ 1S

⇡`

1 ` ⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 ` ⇡´

0 §

pÿ

i“1

�i1Si

⇡`

i ,⇡
´

i ,�i,�i
P Rn

`
, i “ 0, 1, � P Rp

`.

The objective function and the second set of constraints imply that larger values of ⇡`

i , ⇡
´

i ,

�i and �
i
, i “ 0, 1, are all detrimental to the objective function. We can thus assume that
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⇡´

0 “ ⇡`

1 “ �
0

“ �1 “ 0 at optimality. This leads to the simplified formulation

minimize
`
q ´ µ

˘
J

�0 ´
1 ´ ✏

✏

`
q ´ µ

˘
J

�
1

`
1

✏
⌫J� ` µJ1S

subject to
`
⇡`

0 ` ⇡´

1

˘
`

`
�0 ` �

1

˘
“ 1S

⇡´

1 §

pÿ

i“1

�i1Si , ⇡`

0 §

pÿ

i“1

�i1Si

⇡`

0 ,⇡
´

1 ,�0,�1
P Rn

`
, � P Rp

`.

Since the constraints are symmetric in ⇡`

0 and ⇡´

1 , we can replace both variable vectors with

a single vector ⇡ P Rn
`
:

minimize
`
q ´ µ

˘
J

�0 ´
1 ´ ✏

✏

`
q ´ µ

˘
J

�
1

`
1

✏
⌫J� ` µJ1S

subject to 2⇡ `
`
�0 ` �

1

˘
“ 1S

⇡ §

pÿ

i“1

�i1Si

⇡,�0,�1
P Rn

`
, � P Rp

`.

For a fixed value of �, the variable vector ⇡ satisfies ⇡ “ mint1S{2 ´ p�0 ` �
1
q{2,

∞p
i“1 �i1Siu

at optimality. We can thus remove ⇡ from the problem and obtain the equivalent reformulation

minimize
`
q ´ µ

˘
J

�0 ´
1 ´ ✏

✏

`
q ´ µ

˘
J

�
1

`
1

✏
⌫J� ` µJ1S

subject to �0 ` �
1

“ max
!
�0 ` �

1
, 1S ´ 2

pÿ

i“1

�i1Si

)

�0,�1
P Rn

`
, � P Rp

`.

The constraint in this problem is equivalent to �0 `�
1

• 1S ´ 2
∞p

i“1 �i1Si . Since both �0 and

�
1
are penalized in the objective function, we thus conclude that �0`�

1
“

“
1S ´2

∞p
i“1 �i1Si

‰
`

at optimality. The statement then follows since we can assume that �0
J�

1
“ 0 at optimality.

Proof of Theorem 2.26. For a fixed scalar ⌧ P R, we have supPPP P-VaR1´✏

“
1S

Jeq
‰

§ ⌧ if
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and only if the optimal objective value of the moment problem

minimize

ª

Q
Ir1S

Jq§⌧ s Ppdqq

subject to

ª

Q
Ppdqq “ 1

ª

Q
q Ppdqq “ µ

ª

Q
pq ´ µqpq ´ µq

J Ppdqq ® ⌃

P P M`pRn
q

is greater than or equal to 1´ ✏. A similar reasoning as in the proof of Theorem 2.8 shows that

this is the case if and only if the optimal objective value of the problem

maximize ↵ ` µJ� ´ x⌃,�y

subject to ↵ `
1

4
p� ` �

1
´ �1q

J�´1
p� ` �

1
´ �1q

` pq ´ µq
J�1 ´ pq ´ µq

J�
1

` µJ� § 1

↵ `
1

4
p� ` �

0
´ �0 ` 1S!q

J�´1
p� ` �

0
´ �0 ` 1S!q

` pq ´ µq
J�0 ´ pq ´ µq

J�
0

` µJ
p� ` 1S!q ´ ⌧! § 0

�
i
,�i P Rn

`
, i “ 0, 1, ! P R`, ↵ P R, � P Rn, � P Snˆn

`
.

is greater than or equal to 1 ´ ✏.

We now consider the problem supPPP P-VaR1´✏

“
1S

Jeq
‰
, which can be formulated as

minimize ⌧

subject to ↵ ` µJ� ´ x⌃,�y • 1 ´ ✏

↵ `
1

4
p� ` �

1
´ �1q

J�´1
p� ` �

1
´ �1q

` pq ´ µq
J�1 ´ pq ´ µq

J�
1

` µJ� § 1

↵ `
1

4
p� ` �

0
´ �0 ` 1S!q

J�´1
p� ` �

0
´ �0 ` 1S!q

` pq ´ µq
J�0 ´ pq ´ µq

J�
0

` µJ
p� ` 1S!q ´ ⌧! § 0

�
i
,�i P Rn

`
, i “ 0, 1, ! P R`, ↵ P R, � P Rn, � P Snˆn

`
, ⌧ P R.
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As in the proof of Theorem 2.21, we can substitute out ↵ and remove the first constraint,

conclude that ! is strictly positive and replace all remaining decision variables (except for ⌧)

with their divisions by ! and remove the variables ⌧ and ! to obtain the equivalent problem

minimize
1

✏
x⌃,�y `

1

4
p� ` �

0
´ �0 ` 1Sq

J�´1
p� ` �

0
´ �0 ` 1Sq

`
1

4
¨
1 ´ ✏

✏
p� ` �

1
´ �1q

J�´1
p� ` �

1
´ �1q

` pq ´ µq
J

„
�0 `

1 ´ ✏

✏
¨ �1

⇢
´ pq ´ µq

J

„
�

0
`

1 ´ ✏

✏
¨ �

1

⇢
` µJ1S

subject to �
i
,�i P Rn

`
, i “ 0, 1, � P Rn, � P Snˆn

`
.

We can now replace � with its optimal value � “ ✏p�0 ´ �
0

´ 1Sq ` p1 ´ ✏qp�1 ´ �
1
q from the

first-order unconstrained optimality condition to obtain the equivalent reformulation

minimize
1

✏
x⌃,�y `

1

4
p1 ´ ✏qp�1 ´ �

1
` �

0
´ �0 ` 1Sq

J�´1
p�1 ´ �

1
` �

0
´ �0 ` 1Sq

` pq ´ µq
J

„
�0 `

1 ´ ✏

✏
¨ �1

⇢
´ pq ´ µq

J

„
�

0
`

1 ´ ✏

✏
¨ �

1

⇢
` µJ1S

subject to �
i
,�i P Rn

`
, i “ 0, 1, � P Snˆn

`
.

Since �
i
and �i, i “ 0, 1, are all penalized in the second row of the objective function, we can

assume that �1
J�

0
“ 0 and �

1
J�0 “ 0 at optimality. This leads to the simplified formulation

minimize
1

✏
x⌃,�y `

1

4
p1 ´ ✏qp�`

´ �´
` 1Sq

J�´1
p�`

´ �´
` 1Sq

` q`J�`
` q´J�´

` µJ1S

subject to �`,�´
P Rn

`
, � P Snˆn

`
,

where q`
“ min

 
1´✏
✏ pq ´ µq, ´pq ´ µq

(
and q´

“ min
 

´
1´✏
✏ pq ´ µq, q ´ µ

(
. We apply an

epigraph reformulation to obtain the equivalent problem

minimize
1

✏
x⌃,�y `

1

4
p1 ´ ✏q ` q`J�`

` q´J�´
` µJ1S

subject to  • p�`
´ �´

` 1Sq
J�´1

p�`
´ �´

` 1Sq

�`,�´
P Rn

`
, � P Snˆn

`
, P R,

(2.32)
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and an application of Schur’s complement allows us to reformulate the constraint in (2.32) as

¨

˚̋  p�`
´ �´

` 1Sq
J

p�`
´ �´

` 1Sq �

˛

‹‚© 0.

Strong conic duality, which holds since the primal problem (2.32) is strictly feasible, implies

that (2.32) attains the same optimal objective value as its associated dual problem, which—after

some minor simplifications—can be expressed as

maximize 1S
Jµ ´ 2 ¨ 1S

J'

subject to ✓ §
1

4
p1 ´ ✏q

' P
“
´q´

{2, q`
{2

‰

⇤ ® 1

✏
⌃

¨

˚̋✓ 'J

' ⇤

˛

‹‚P Spn`1qˆpn`1q

`

✓ P R, ' P Rn, ⇤ P Snˆn.

Applying Schur’s complement to the last constraint in this problem shows that the last two

constraints are satisfied if and only if 1
✓''

J ® ⇤ ® 1
✏⌃ for some ⇤ P Snˆn, that is, if and only

if 1
✓''

J ® 1
✏⌃. Since the first constraint imposes the only upper bound on ✓, we can replace ✓

with the right-hand side of that constraint, ✓ “
1
4p1´ ✏q, to obtain the equivalent reformulation

maximize 1S
Jµ ´ 2 ¨ 1S

J'

subject to ' P
“
´q´

{2, q`
{2

‰

''J ® 1 ´ ✏

4✏
¨ ⌃

' P Rn.

Finally, two further applications of Schur’s complement yield

1 ´ ✏

4✏
¨ ⌃ ´ ''J © 0 ñ

¨

˚̋1 'J

' 1´✏
4✏ ¨ ⌃

˛

‹‚© 0 ñ 1 ´
4✏

1 ´ ✏
¨ 'J⌃´1' • 0,
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which simplifies the problem to

maximize 1S
Jµ ´ 2 ¨ 1S

J'

subject to ' P
“
´q´

{2, q`
{2

‰

'J⌃´1' §
1 ´ ✏

4✏

' P Rn.

The statement now follows from the variable transformation q – ´2'.



Chapter 3

A Unifying Framework for the

Capacitated Vehicle Routing Problem

under Risk and Ambiguity

3.1 Introduction

In the previous chapter, we studied the distributionally robust chance constrained CVRP. We

showed that the chance constraints enforced over an ambiguity set is equivalent to the worst-

case value-at-risk over the ambiguity set. Moreover, focusing on the class of moment ambiguity

sets, we devised solution schemes via the branch-and-cut algorithm that allow for its solution

without undue overhead over the deterministic case. Motivated by this insight, this chapter

aims to extend the theoretical result from the previous chapter by considering other commonly

used risk measures and ambiguity sets.

We consider a generic model for the single-stage CVRP under demand uncertainty. While a

number of interesting variants of the CVRP, such as the CVRP with compartments (that is

of practical importance to e-groceries), can be treated in our framework; it excludes variants

such as the distance constrained CVRP. The focus of this chapter is on treating a wide variety

103
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of stochastic, robust and distributionally robust formulations of the CVRP within the same

framework. We aim to solve these problems numerically via the 2VF formulation described in

the previous chapter due to its many advantages that we highlight later in this chapter. The

main advantage is that the 2VF formulation can be solved using the branch-and-cut algorithm

o↵ered by many open source solvers, and hence it is easily accessible to a wider range of

practitioners. To this end, we identify su�cient conditions that our generic CVRP model must

satisfy in order to be solvable using the branch-and-cut algorithm.

In the previous chapter, we considered a specific demand estimator in the 2VF formulation to

enable solution of the chance constrained CVRP over a wide range of moment ambiguity sets

via the 2VF formulation. In this chapter, we consider a combination of various risk measures

or disutility functions with complete or partial characterizations of the probability distribution

governing the demands. We provide specific demand estimators to use in the 2VF formulation

depending on the properties satisfied by the risk measures over the ambiguity sets considered.

This allows the 2VF formulation to be adapted to a solve a number of CVRP variants. In

this chapter, we consider popular risk measures such as mean semi-deviation [SDR14], con-

ditional value-at-risk [RU02] and entropic risk measures [FK11] over ambiguity sets such as

the Kullback-Leibler divergence ambiguity set [BL15], type-8 Wasserstein ambiguity set with

8-norm as ground norm [BSS20], and total variation ambiguity set [BL15]. Additionally, we

also consider risk measures that have been proposed in recent vehicle routing literature such as

requirements violation index [JQS16], essential riskiness index [ZBST18] and service fulfilment

risk index [ZZLS21]. We derive algorithms to e�ciently evaluate the demand estimator for the

di↵erent risk measures considered over the various ambiguity sets.

We identified that our proposed solution scheme for distributionally robust chance constrained

CVRP cannot be utilized for ambiguity sets like the Wasserstein ambiguity set or the �-

divergence ambiguity set in the previous chapter. We try to address this issue in this chapter.

We derive more general demand estimators using results from [DFL18] that enable us to solve

the distributioanlly robust chance constrained CVRP over many other ambiguity sets.

More succinctly, the contributions of this chapter may be summarized as follows:
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• We derive the su�cient conditions for a CVRP to be amenable to a solution via the 2VF

formulation which in turn can be solved using the branch-and-cut algorithm.

• We propose demand estimators that can be used in the 2VF formulation given the proper-

ties of the CVRP under consideration. More specifically, we study CVRP under a variety

of risk measures and ambiguity sets.

• We consider a general ambiguity set and show that it can be reduced to many popular

ambiguity sets such as moment ambiguity set, 8-type Wasserstein ambiguity set with

8-norm as ground norm, Kullback-Leibler divergence ambiguity set among others. We

derive e�cient evaluation schemes for the demand estimators for CVRP variants under

this general ambiguity set. Moreover, we extend our findings from the previous chapter

to allow the solution of distributionally robust chance constrained CVRP over ambiguity

sets other than the moment ambiguity set.

The rest of this chapter is organized as follows. Section 3.2 gives a review of the literature

relevant to this chapter. Section 3.3 introduces our problem setting and discusses our assump-

tions. Section 3.4 presents the su�cient conditions that a CVRP variant must satisfy in order

to be amenable to a solution via branch-and-cut. It also provides the demand estimators that

can be used in the 2VF formulation given the properties of the risk measure and uncertainty

characterization considered for the CVRP. Section 3.5 studies a general ambiguity set in con-

junction with many commonly used risk measures. It provides schemes to e�ciently evaluate

the demand estimator under each of these risk measures. We o↵er our concluding remarks in

Section 3.7.

3.2 Literature Review

In the previous chapter, we reviewed stochastic programming and robust optimization ap-

proaches to handling CVRP under demand uncertainty. We also motivated the need for a

distributionally robust approach to the solution of this problem, and made a first attempt at
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studying the distributionally robust chance constrained CVRP. In this chapter, we focus fur-

ther on the ‘risk averse’ optimization approach. This approach to handling uncertainty involves

modeling the uncertainty via risk measures either as constraints or the objective function of

an optimization problem. Risk measures could quantify either the extent of violation or the

probability of violation of constraints under uncertainty or both. The risk-averse approach

has been treated in literature under stochastic programming [Noy18, MR11], robust optimiza-

tion [Bro06, NPS09] as well as distributionally robust optimization [EK18, PdHM16, JG18]

methods. For an overview of the recent developments in risk averse optimization, we refer the

reader to [Rus13, RS09].

Risk-averse optimization has found successes in many application areas, especially in finance

and energy. We review the applications of some popular risk measures here. The mean

semi-deviation of order u has been used in optimal portfolio design [PP14], reinforcement

learning [TCGM17] and chance constrained single newsvendor problem [KP18]. The many

applications of conditional value-at-risk include portfolio optimization [KPU02], portfolio hedg-

ing [CHS10] and credit risk optimization [AMRU01] in finance, inventory management [ZCW08],

supply chain management [WWC`10], energy storage [HSS16], and radiation treatment plan-

ning [CMP14]. For further applications of the conditional value-at-risk outside of finance,

we refer the reader to [FGS20]. The expected disutility risk measure has been used in liter-

ature for structural health monitoring-based decision making [CZG16], decision making un-

der z-information [AMH15] and case-based decision making [GSW02]. The expectiles have

applications in credit risk [FMP18], risk management [BB17] and asset allocation [Man07].

The entropic risk measure has been used in dynamic hedging in finance [TS11], energy sys-

tems [Gon15] and travelling salesman problem [BBIB19]. Another risk measure of interest

is the value-at-risk that has been successfully applied to financial risk management [BS01],

engineering [Kum03, LGG08], energy management [vAHMZ11] and supply chain manage-

ment [GMM00]. We have shown its association with chance constraints in the previous chapter,

and also provided a literature review of chance constrained CVRP. An important contribution

in this area is that of [DFL18]. They introduce a demand estimator that we extend to treat the

value-at-risk under ambiguity sets not limited to the moment ambiguity set. We study each of
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these risk measures in this chapter.

For the applications of risk measures to vehicle routing problem, the reader is referred to [ZZLS21,

JQS16, ZBST18, AJ16, HADJ21, ZLSH21]. These papers deal with the vehicle routing prob-

lem under uncertain travel times, and seek to minimize the risk of not arriving at the customer

nodes within the stipulated time window. These papers consider the distributionally robust case

over di↵erent ambiguity sets. While [JQS16, ZBST18, ZLSH21] consider moment ambiguity

sets, [ZZLS21] consider a Wasserstein distance-based ambiguity set.

The success of the distributionally robust optimization approach has been highlighted in the

previous chapter. The ambiguity sets considered in the above papers and elsewhere in literature

have their own merits and drawbacks. Moreover, the choice of an ambiguity set is driven by

context. In this chapter, we consider the scenario-wise first-order ambiguity set introduced

by [LQZ20, CSX19], and show that it reduces to many commonly used ambiguity sets. Using

this ambiguity set along with a number of risk measures allows us to treat a large number of

variants of CVRP within a single framework.

To the best of our knowledge, this chapter is the first attempt at extensively studying CVRP

under risk and ambiguity.

3.3 Problem Formulation

Consider a complete, directed and weighted graph G “ pV,A, cq with nodes V “ t0, . . . , nu,

arcs A “ tpi, jq P V ˆ V : i ‰ ju and transportation costs c : A fiÑ R`. Here, 0 is the depot

node and VC “ t1, . . . , nu represents the set of customer nodes. The vehicle routing problem we

wish to study asks for a cost optimal route plan for a set K “ t1, 2, . . . ,mu of vehicles starting

and ending at the depot node 0 such that a given set of constraints is met. Firstly, we require

a route plan to form an m-partition of the customer set VC , that is, the route plan R has to
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belong to the set

PpVC ,mq “

#
R “ tR1, . . . ,Rmu :Rk “ pRk,1, . . . , Rk,nk

q with nk • 1 and Rk,i P VC @k, i,

Rk,i ‰ Rl,j @pk, iq ‰ pl, jq,
§

kPK

Rk “ VC

+
.

Each route plan R is a set of m routes Rk, which are themselves nonempty ordered lists of

customers that the vehicles visit sequentially. Here and in the following, we apply set operations

to lists whenever their interpretation is clear. In particular, intersections and unions of ordered

lists are interpreted as the application of the respective operators on the sets formed from the

involved lists.

In addition to the aforementioned partition requirement, we assume that each route Rk of the

route plan R has to satisfy some (technological, economic, ecological, quality-related or other)

intra-route constraints [ITV14, §1.3.3], which we describe by the set

C Ñ tR “ pR1, . . . , R⌫q : ⌫ • 1 and Ri P VC @i “ 1, . . . , ⌫u.

To be feasible, a route plan has to reside in the set PpVC ,mq X Cm, where Cm “ tR “

tR1, . . . ,Rmu : Rk P C @ku. Note that we do not consider inter-route (or global) con-

straints [ITV14, §1.3.5] that tie the feasibility of a route to the characteristics of other routes

(as is the case, e.g., in the presence of globally constrained resources or fairness considerations).

With the above notation, we are interested in solving the problem

minimize
ÿ

kPK

nkÿ

l“0

cpRk,l, Rk,l`1q

subject to R P PpVC ,mq X Cm.

(VRP(C))

Here we use the convention that Rk,0 “ Rk,nk`1 “ 0, which ensures that each vehicle starts and

ends at the depot. To avoid trivially infeasible problem instances, we assume throughout the

chapter that for all customers i P VC , there is R P C such that i P R. In other words, every

customer’s demand can principally be served by a single vehicle in every problem instance.



3.3. Problem Formulation 109

For the results in this chapter, we will typically impose the following two assumptions:

(D) C is downward closed, that is, if R P C for R “ pR1, . . . , R⌫q, then S P C for all S “

pRi1 , . . . , Ri�q with 1 § � § ⌫ and 1 § i1 † i2 † . . . † i� § ⌫.

(P) C is permutation invariant, that is, if R P C then S P C for all permutations S of R.

Condition (D) implies that we cannot model problems that disallow routes in which vehicles

serve “too few” customers, since a subset of the customers of a feasible route can always be

served as well (modulo the requirement imposed by PpVC ,mq that the omitted customers need

to be served by the other vehicles). Condition (P) implies that the order of customers within

a route does not matter for its feasibility (but it will normally still matter in terms of its

optimality). Here and in the following, we say that a set S is contained in a set of lists S if

and only if every permutation of S, expressed as a list, is contained in S. Thus, condition (P)

is equivalent to requiring that S P C only if S P C for the set S formed from the elements of S.

Example 3.1 (Instances of VRP(C)) VRP(C) recovers the classical CVRP if we set

C “

#
R “ pR1, . . . , R⌫q :

ÿ

iPR

qi § Q

+
, (3.1)

where qi is the demand of customer i and Q is the capacity of each vehicle. The set C satisfies

(P) by definition, and it satisfies (D) whenever the customer demands q are nonnegative.

More generally, we obtain a variant of the VRP with compartments if we set

C “

#
R “ pR1, . . . , R⌫q :

ÿ

iPR

qip § Qp @p “ 1, . . . , P

+
, (3.2)

where qip now denotes the demand of customer i for space in compartment p and Qp is the

capacity of compartment p in each vehicle. Again, both (D) and (P) are satisfied as long as q

is nonnegative.
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We recover the chance constrained CVRP if we set

C “

#
R “ pR1, . . . , R⌫q : P

«
ÿ

iPR

eqi § Q

�
• 1 ´ ✏

+
,

where we assume that the customer demands eqi are random variables that are governed by the

probability distribution P, and where ✏ is a risk threshold selected by the decision maker. Both the

chance constrained CVRP and its extension to multiple compartments satisfy the assumptions

(D) and (P) as long as the customer demands satisfy eq • 0 P-almost surely.

While Example 3.1 shows that the CVRP and some of its variants satisfy the assumptions (D)

and (P), it is worth pointing out that many other VRP variants do not fall under our framework.

The distance constrained CVRP, for example, imposes the constraints
∞⌫

l“0 tpRl, Rl`1q § T for

some distance function t, and these constraints violate (P) since di↵erent permutations of the

customers along a route lead to di↵erent route lengths in general. For the same reason, the

CVRP with time windows, which requires each customer i P VC to be visited at some time

ti P rti, tis, violates (P), and it additionally violates (D) if we do not permit idle times. As we

will see in Section 3.5, however, the assumptions (D) and (P) are satisfied for a broad range of

stochastic, robust and distributionally robust formulations of the CVRP, which form the focus

of this chapter.

To solve VRP(C) numerically, we consider its reformulation as the well-known two-index vehicle

flow model [LN83, LLE04]

minimize
ÿ

pi,jqPA

cpi, jqxij

subject to
ÿ

jPV :
pi,jqPA

xij “

ÿ

jPV :
pj,iqPA

xji “ �i @i P V

ÿ

iPV zS

ÿ

jPS

xij • dpSq @H ‰ S Ñ VC

xij P t0, 1u @pi, jq P A,

(2VF(d))

where �i “ 1 for i P VC and �0 “ m. We call the function d : 2VC fiÑ R` the demand estimator,

and the set of constraints involving d are called the capacity constraints. By writing the set S
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in regular (non-bold) font, we emphasize that S is unordered (as opposed to the ordered list

Rk, for example). We assume that dpSq “ 0 ô S “ H. Note that the value of dpHq can be

chosen freely as it does not a↵ect the formulation. Moreover, the choice dpSq ° 0 for S ‰ H

ensures that route plans containing short cycles are excluded from the feasible region of 2VF(d).

Finally, note that for a set S to constitute a feasible route, we must have dpSq “ 1; the capacity

constraints will exclude S as a feasible route at higher values of the demand estimator.

Solving VRP(C) via 2VF(d) enjoys several potential advantages. Firstly, mature (and open

source) solvers are available to solve 2VF(d), see, e.g., [LLE04] and [STV14]. These algorithms

introduce the capacity constraints iteratively as part of a branch-and-cut algorithm. Thus,

if we can show that VRP(C) is equivalent to 2VF(d) for some demand estimator d, then we

can solve VRP(C) as long as we can evaluate d e�ciently. Secondly, 2VF(d) o↵ers a unified

solution framework for di↵erent problem variants where only the demand estimator d needs

to be adapted. In other words, minor variations of the same branch-and-cut algorithm can be

employed to solve di↵erent variants of the problem. This is an important consideration for adop-

tion in practice, where it is unreasonable to expect that fundamentally di↵erent algorithms will

be developed and maintained to solve di↵erent variants of the same problem. Finally, 2VF(d)

constitutes an important building block also for modern branch-and-cut-and-price algorithms,

and we hope that the findings of this chapter are applicable to that algorithm class as well.

We want to investigate when VRP(C) is equivalent to 2VF(d), which is amenable to a solu-

tion via standard branch-and-cut algorithms. To this end, we first formalize our notion of

equivalence.

Definition 3.2 Equivalence. VRP(C) and 2VF(d) are said to be equivalent whenever they

satisfy:

(a) Every feasible route plan R in VRP(C) induces a feasible solution x in 2VF(d) via

xij “ 1 ñ Dk P K, Dl P t0, . . . , nku : pi, jq “ pRk,l, Rk,l`1q. (3.3)

(b) Every feasible solution x in 2VF(d) induces a feasible route plan R in VRP(C) via (3.3).
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Note that if VRP(C) and 2VF(d) are equivalent, then any feasible route plan R in VRP(C)

induces a unique feasible solution x in 2VF(d) via (3.3) and vice versa. In the remainder of the

chapter, we refer to these unique solutions as xpRq and Rpxq, respectively. Note also that the

objective functions in VRP(C) and 2VF(d) coincide, which justifies our notion of equivalence.

3.4 Theoretical Contributions

3.4.1 Equivalence of VRP(C) and 2VF(d)

We first show that the assumptions (D) and (P) are su�cient for VRP(C) and 2VF(d) to be

equivalent under a range of demand estimators d, which we characterize explicitly. We then

demonstrate that the assumptions (D) and(P) are tight in the sense that there are VRP(C)

instances violating either assumption for which no demand estimator d results in an equivalent

2VF(d) instance.

A seemingly natural choice for the demand estimator d in 2VF(d) is

d
m

pSq “ inf

#
J P N : S Ñ

§

k“1,...,J

Rk for tR1, . . . ,RJ , . . . ,Rmu P PpVC ,mq X Cm

+

for H ‰ S Ñ VC , as well as d
m

pHq “ 0. This demand estimator records the minimum number

of vehicles required to serve the customers in S in any feasible route plan R P PpVC ,mq X Cm.

Note that d
m

pSq “ 8 is possible if the problem instance is infeasible, which motivates our

use of the infimum operator. The capacity constraints under the demand estimator d
m

are

commonly referred to as generalized capacity constraints. Since d
m
is di�cult to compute even

for simple sets C, however, it is not typically used in practice. Instead, research has focused

on relaxations (i.e., lower bounds) of this demand estimator that are easier to calculate while

still tight enough to establish an equivalence between VRP(C) and 2VF(d). One such demand
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estimator is

d
1
pSq “ min

#
I P N : S Ñ

§

k“1,...,I

Rk for some R1, . . . ,RI P C

+

for H ‰ S Ñ VC , as well as d
1
pHq “ 0. This demand estimator determines the minimum

number of vehicles required to serve the customers in S Ñ VC , but—in contrast to d
m
—it

ignores the customers in VCzS. Note that d
1
pSq is always finite by our earlier assumption that

i P R for some R P C, i P VC , and thus the use of the minimum operator is justified. The

capacity constraints under the demand estimator d
1
are commonly referred to as weak capacity

constraints. Although d
1
tends to be easier to calculate than d

m
, its computation is still NP-

hard for most commonly employed sets C, and thus it is not normally used to identify violated

capacity constraints in a branch-and-cut scheme. On the other end of the spectrum, we have

the naive demand estimator

dpSq “

$
’’’’’’&

’’’’’’%

0 if S “ H,

1 if H ‰ S P C,

2 otherwise.

Remember that S P C if and only if S P C for every sequence S that can be formed from the

elements of S, and under (P) we have S P C if and only if S P C. While the demand estimator d

is typically easy to compute, the resulting capacity constraints are weak and thus slow down the

branch-and-cut scheme significantly. In the remainder of this section, we will see that the above

three demand estimators characterize the range of demand estimators under which VRP(C) and

2VF(d) are equivalent; in the next section, we will discuss two demand estimators within this

range that are preferable to d
m
, d

1
and d due to their favourable tightness-tractability trade-o↵.

Under the assumptions (D) and (P), the three demand estimators form a natural order.

Proposition 3.3 Assume that (D) and (P) are satisfied. Then for any S Ñ VC, we have

dpSq § d
1
pSq § d

m
pSq.
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Here (D) and (P) are necessary and su�cient for d § d
1
, whereas d

1
§ d

m
holds by construc-

tion.

Proof of Proposition 3.3. To show that dpSq § d
1
pSq, we consider the following three

cases for S Ñ VC :

Case (i): Consider S “ H. Then dpSq “ 0 and d
1
pSq “ 0 by construction.

Case (ii): Consider S ‰ H and S P C. Then dpSq “ 1. Since at least one set is required to

cover a nonempty S, we have d
1
pSq • 1.

Case (iii): Finally, consider H ‰ S R C. Then dpSq “ 2. Assume that d
1
pSq † dpSq. Since

S ‰ H, this must imply that d
1
pSq “ 1. The definition of d

1
pSq then implies that S Ñ R1

for some R1 P C. Since (D) holds, we have that S constructed from R1, where we remove

elements that are not in S, is also in C. Finally, since (P) holds, we have S P C. This, however,

contradicts the assumption that S R C. Therefore, we must have that dpSq § d
1
pSq.

Next, to show that d
1
pSq § d

m
pSq, assume that d

m
pSq “ t. From the definition of d

m
pSq,

we know that S Ñ
î

i“1,...,t Ri where tR1, . . . ,Rmu P Cm X PpVC ,mq. By definition of Cm, we

have that Ri P C for i “ 1, . . . ,m. Hence, we have S Ñ
î

i“1,...,t Ri where R1, . . . ,Rm P C.

Therefore, d
1
pSq § t.

To show that (D) and (P) are necessary and su�cient for d § d
1
, we show that any VRP(C)

instance that violates (D) or (P) also violates d § d
1
. Assume first that the VRP(C) instance

violates (D). Then there is R1 P C such that S1 R C for some subsequence S1 obtained from

deleting one or more elements of R1. This implies that S R C for the set S formed from the

elements of S1, and thus dpSq “ 2 ° d
1
pSq. Assume now that the VRP(C) instance violates

(P). Then there is R1 P C such that S R C for the set S formed from the elements of R1, again

implying that dpSq “ 2 ° d
1
pSq.

It is easy to construct instances where the three demand estimators in Proposition 3.3 produce

the same values for all S Ñ VC . The following example is inspired by [CH93] and shows that
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the inequalities in Proposition 3.3 can also all be strict.

Example 3.4 Consider the VRP(C) instance with n “ 5 customers, m “ 5 vehicles and

C “ ttp1qu, . . . , tp5qu, tp1, 5quu. For S “ t1, 2, 3, 5u, we have dpSq “ 2 since S R C, d
1
pSq “ 3

since S Ñ tp2qu Y tp3qu Y tp1, 5qu, and d
m

pSq “ 4 since no route plan can serve customers 1

and 5 in the same route and at the same time utilize all 5 vehicles.

The natural ordering from Proposition 3.3 typically ceases to hold when the assumptions (D)

and (P) are violated. We now show that under the assumptions (D) and (P), VRP(C) and

2VF(d) are equivalent essentially if and only if the demand estimator d satisfies d § d § d
m
.

We qualify this equivalence with ‘essentially’ as there are pathological cases in which demand

estimators d ⇤ d also result in equivalent formulations, as we will discuss further below in

Proposition 3.6.

Theorem 3.5 VRP(C) is equivalent to 2VF(d) for any d satisfying d § d § d
m
.

Proof of Theorem 3.5. We note that the theorem is proved if we show the following:

(i) Any feasible route plan R P Cm X PpVC ,mq induces a solution xpRq feasible in 2VF(d)

for every d § d
m
.

(ii) Any solution x feasible in 2VF(d) induces a feasible route plan Rpxq P Cm X PpVC ,mq

for every d • d.

We begin by showing (i). Fix any R P Cm X PpVC ,mq and any d § d
m
. We need to show

that xpRq as defined in (3.3) is feasible in 2VF(d). From the definition of xpRq in (3.3), xpRq

satisfies the binarity and degree constraints of 2VF(d). Moreover, for any H ‰ S Ñ VC , we



116 Chapter 3.

have

dpSq § d
m

pSq “ inf

#
J P N : S Ñ

§

k“1,...,J

R1

k for some tR1

1, . . . ,R
1

J , . . . ,R
1

mu P Cm X PpVC ,mq

+

§ inf

#
J P N : S Ñ

§

k“1,...,J

Rjk for j1, . . . , jJ P t1, . . . ,mu

+

“ |k P K : Rk X S ‰ H| §

ÿ

iPV zS

ÿ

jPS

xijpRq.

The second inequality above holds since R P Cm X PpVC ,mq. Then the minimum number of

routes required to cover S for tR1, . . . ,Rmu P Cm XPpVC ,mq cannot be less than the minimum

number of routes required to cover S for any feasible route plan R1
P Cm XPpVC ,mq. The last

equality follows since the minimum number of routes belonging toR required to cover S is equal

to the number of routes Rk, k “ 1, . . . ,m, that have a nonempty intersection with S. In view

of the last inequality, let jk P Rk X S be the first customer on the route Rk that is contained

in S, where k P K satisfies Rk X S ‰ H. By definition of jk, we have
∞

iPV zS xijkpRq “ 1. The

inequality now follows from the fact that there are |k P K : Rk X S ‰ H| di↵erent customer

nodes jk with this property.1 Thus, we have shown that xpRq satisfies the RCI constraints in

2VF(d).

Next we prove (ii). Let x be a feasible solution in 2VF(d) where d • d. We construct a route

plan Rpxq, in the following abbreviated as R, satisfying (3.3) as follows. Since
∞

jPVC
x0j “ m,

there is j1, . . . , jm P VC , j1 † . . . † jm, such that x0,j1 “ . . . “ x0,jm “ 1. For each route Rk,

k P K, we set Rk,1 – jk and nk – 1. Since
∞

jPV xRk,nk
,j “ 1, we either have xRk,nk

,j “ 1

for some j P VC or xRk,nk
,0 “ 1. In the former case, we extend route Rk by the customer

Rk,nk`1 – j, we set nk – nk ` 1 and we continue the procedure with customer j. In the latter

case, we have completed the route Rk. By construction, the route plan R satisfies (3.3).

We first show that R P PpVC ,mq. Note that nk • 1 due to the existence of the customers

j1, . . . , jm. The degree constraints in 2VF(d) ensure that Rk,i ‰ Rl,j for all pk, iq ‰ pl, jq. It

remains to be shown that
î

k Rk “ VC . Imagine, to the contrary, that there is a customer

1Note that the same vehicle may enter and leave the set S multiple times, hence we cannot strengthen the
inequality to an equality in general.
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j P VC such that j R
î

k Rk. By construction of the above algorithm, j must lie on a short cycle

S Ä VC that is not connected to the depot node 0. Since S ‰ H, its associated RCI constraint

would require that
∞

iPV zS

∞
jPS xij • dpSq • dpSq • 1. However,

∞
iPV zS

∞
jPS xij “ 0 because

S is a short cycle not connected to the depot node 0. Thus, the RCI constraint associated with

S is violated.

We now show that tR1, . . . ,Rmu P Cm. We have
∞

iPV zRk

∞
jPRk

xij “ 1 • dpRkq • dpRkq,

where Rk is the set formed from the customers in Rk. Here, the equality follows from the

construction of the routes Rk and the two inequalities hold due to the feasibility of x in

2VF(d) and the fact that d • d, respectively. Since Rk ‰ H, we thus conclude that dpRkq “ 1,

that is, Rk P C, for all k P K. By definition, we have tR1, . . . ,Rmu P Cm. Consequently, we

have R P Cm X PpVC ,mq as desired.

Note that while the assumptions (D) and (P) are not required for the statement of Theorem 3.5,

they are typically required for the function interval rd, d
m

s to be nonempty (cf. Proposition 3.3).

Proposition 3.6 Fix any VRP(C) instance satisfying (D) and (P).

(i) If PpVC ,mq Ñ Cm and d § d
m
, then VRP(C) is equivalent to 2VF(d) even if d ⇤ d.

(ii) If PpVC ,mq * Cm and d § d
m
, then there are d ⇤ d such that VRP(C) and 2VF(d) are

equivalent, but there are also d ⇤ d such that VRP(C) and 2VF(d) are not equivalent.

(iii) VRP(C) fails to be equivalent to 2VF(d) for every d ⇥ d
m
.

Proof of Proposition 3.6. In view of assertion (i), fix any VRP(C) instance and demand

estimator d as described in the statement. The first part of the proof of Theorem 3.5 implies that

any route plan R feasible in VRP(C) induces a solution xpRq that is feasible in 2VF(d). Thus,

we only need to show that any solution x feasible in 2VF(d) also induces a route plan Rpxq

that is feasible in VRP(C). Indeed, the route plan Rpxq considered in the second part of the

proof of Theorem 3.5 satisfies nk • 1 and Rk,ipxq ‰ Rl,jpxq for all pk, iq ‰ pl, jq by construction.
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Moreover, we have
î

k Rkpxq “ VC since dpSq ° 0 for all nonempty S Ñ VC disallows any short

cycles in x. We thus conclude that Rpxq P PpVC ,mq. Since PpVC ,mq Ñ Cm, it follows that

Rpxq P Cm as well.

As for assertion (ii), we first show that for any VRP(C) instance with PpVC ,mq * Cm the

demand estimator d defined through dpSq “ 0 if S “ H and dpSq “ 1 otherwise satisfies d ⇤ d

and implies that VRP(C) and 2VF(d) are not equivalent. To see that d ⇤ d, we note that

dpVCq ° 1 since otherwise VC P C, which would in turn imply by (D) that PpVC , 1q Ñ C in

contradiction to our assumption for m “ 1. To see that VRP(C) and 2VF(d) are not equivalent,

fix any R P PpVC ,mqzCm. We show that the solution xpRq defined through (3.3) is feasible in

2VF(d), which implies that VRP(C) and 2VF(d) are not equivalent. Indeed, xpRq satisfies the

binarity and degree constraints in 2VF(d) by construction, and it satisfies all RCI constraints

since
∞

iPV zS

∞
jPS xijpRq • 1 “ dpSq for all nonempty S Ñ VC .

We now show that for any VRP(C) instance with PpVC ,mq * Cm the demand estimator d

defined through dpSq “ 1 if S “ VC and dpSq “ dpSq otherwise satisfies d ⇤ d and makes

VRP(C) and 2VF(d) equivalent. To see that d ⇤ d, we note that dpVCq “ 1 † dpVCq “ 2 since

VC R C. In fact, if every permutation of VC , expressed as a list, was in C, then by (D) we would

have that PpVC , 1q Ñ C, in contradiction to our assumptions. To see that VRP(C) and 2VF(d)

are equivalent under d, we again only need to show that any solution x feasible in 2VF(d)

induces a route plan Rpxq that is feasible in VRP(C). The route plan Rpxq constructed in the

second part of the proof of Theorem 3.5 satisfies nk • 1, Rk,ipxq ‰ Rl,jpxq for all pk, iq ‰ pl, jq

and
î

k Rkpxq “ VC . Thus, we have R P PpVC ,mq. To see that Rpxq P Cm, we note that

Rkpxq P C for all k P K as the RCI constraints
∞

iPV zRkpxq

∞
jPRkpxq

xij “ 1 • dpRkpxqq “

dpRkpxqq are satisfied. By definition of Cm, we have Rpxq P Cm, that is, VRP(C) and 2VF(d)

are indeed equivalent.

In view of assertion (iii), fix any VRP(C) instance and demand estimator d as described in the

statement. We prove the assertion by constructing a route plan R1 feasible in VRP(C) such

that the associated solution xpR1
q is not feasible in 2VF(d). To this end, fix S Ñ VC such that

dpSq ° d
m

pSq, and let R “ tR1, . . . ,Rmu be such that S Ñ
î

k“1,...,d
m

pSq
Rk. Such a route plan
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exists since dpSq ° d
m

pSq implies that d
m

pSq ‰ 8. We now construct the desired route plan

R1
“ tR1

1, . . . ,R
1

mu from R as follows. We set R1

k “ Rk for any route k satisfying Rk XS “ H.

For the other routes Rk, we obtain R1

k by reordering the customers in Rk such that those in

Rk X S appear first (in any order). The assumption (P) implies that R1
P Cm X PpVC ,mq as

well. For the solution xpR1
q constructed from (3.3), however, we observe that

ÿ

iPV zS

ÿ

jPS

xijpR
1
q “

ÿ

iPV zS

ÿ

kPK:
SXR1

k‰H

ÿ

jPSXR1
k

xijpR
1
q “

ÿ

kPK:
SXR1

k‰H

ÿ

iPV zS

ÿ

jPSXR1
k

xijpR
1
q

“

ÿ

kPK:
SXR1

k‰H

1 “ |k P K : S X R1

k ‰ H| “ d
m

pSq,

where the third equality follows from the reordering of the customers inR1. Since dpSq ° d
m

pSq,

the solution xpR1
q is infeasible in 2VF(d) even though R1 is feasible in VRP(C).

From Theorem 3.5 and Proposition 3.6 we conclude that under the assumptions (D), (P) and

d • d, the requirement d § d
m

is necessary and su�cient for the equivalence of VRP(C) and

2VF(d). In contrast, under the assumptions (D), (P) and d § d
m
, the requirement d • d is

su�cient but not necessary for the equivalence of the two formulations.

We close this section by showing that there are VRP(C) instances violating either (D) or (P)

for which no demand estimator d results in an equivalent 2VF(d) instance. This establishes

that the assumptions (D) and (P) are not only su�cient, but also (in the aforementioned

sense) tight.

Theorem 3.7 There are VRP(C) instances violating either of the assumptions (D) or (P)

that have no equivalent 2VF(d) instances.

We split the proof of Theorem 3.7 into the following 2 lemmas.

Lemma 3.8 There exist VRP(C) instances violating (D) but satisfying (P) such that VRP(C)

and 2VF(d) are not equivalent for any demand estimators d.
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Proof of Lemma 3.8. Consider the VRP(C) instance with n “ 4 customers, m “ 2 vehicles,

C consisting of all lists of PpVC , 1q that comprise 1, 3 or 4 elements and C2 “ rCs
2. This instance

satisfies the assumption (P), but it violates (D) since p1, 2q R C even though p1, 2, 3q P C. The

feasible route plans of VRP(C) are all partitions in PpVC , 2q where one vehicle serves 1 customer

and the other vehicle serves the remaining 3 customers.

We claim that there is no demand estimator d such that 2VF(d) has the same set of feasible solu-

tions. Indeed, note that any admissible d must satisfy dpSq § 2 for all S Ñ VC in order to result

in a feasible 2VF(d) instance. Moreover, to allow for the feasible solutions xptp1, 2, 3q, p4quq and

xptp1q, p2, 3, 4quq, any admissible d must satisfy dpSq § 1 for all nonempty subsets of t1, 2, 3u

and t2, 3, 4u. This implies, however, that any admissible demand estimator must result in a

2VF(d) instance that also allows for the infeasible solution xptp1, 2q, p3, 4quq.

Lemma 3.9 There exist VRP(C) instances violating (P) but satisfying (D) such that VRP(C)

and 2VF(d) are not equivalent for any demand estimators d.

Proof of Lemma 3.9. Consider the VRP(C) instance with n “ 2 customers, m “ 1 vehicle

and C “ tp1q, p2q, p1, 2qu. This instance satisfies (D), but it violates (P) since p2, 1q R C even

though p1, 2q P C. The only feasible route plan for VRP(C) is tp1, 2qu.

We claim that there is no demand estimator d such that 2VF(d) has the same set of feasible

solutions. Indeed, for the solution xptp1, 2quq to be feasible in 2VF(d), any admissible demand

estimator d must satisfy dpt1uq, dpt2uq, dpt1, 2uq § 1. However, any such demand estimator d

would then also allow the infeasible route plan xptp2, 1quq.

Proof of Theorem 3.7. The proof follows immediately from Lemmas 3.8–3.9.

On the flipside, however, there are VRP(C) instances violating both (D) and (P) for which

there still exist demand estimators d under which VRP(C) and 2VF(d) are equivalent.
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In summary, we have shown that under (D) and (P), we have d § d
1

§ d
m
(cf. Proposition 3.3),

and any demand estimator d P rd, d
m

s makes VRP(C) and 2VF(d) equivalent (cf. Theorem 3.5).

In contrast, if a VRP(C) instance violates either (D) or (P), then there may not be any demand

estimator d that leads to an equivalent 2VF(d) formulation (cf. Theorem 3.7). In the remainder

of this chapter, we will focus on VRP(C) instances that satisfy both assumptions (D) and (P).

3.4.2 Demand Estimators for 2VF(d)

In this section, we represent the intra-route constraints as

C “

!
R “ pR1, . . . , R⌫q : ⌫ • 1 and Ri P VC @i, ' p1Rq § B

)
, (3.4)

where ' : r0, 1s
n

fiÑ R. To recover the classical CVRP, for example, we can choose 'pyq “

∞
iPVC

qiyi and B “ Q. Note that any class of intra-route constraints from Section 3.3 that

satisfies (P) admits a representation of the form (3.4), for example by selecting B “ 0 and

'pyq “ 0 if y “ 1R for some R P C, 'pyq “ 1 otherwise. However, we will be particularly

interested in sets C and functions ' that satisfy certain properties. First and foremost, the

assumptions (D) and (P) should be satisfied in order to ensure that the VRP(C) instance has

an equivalent 2VF(d) instance.

Proposition 3.10 A VRP(C) instance with intra-route constraints expressible in the form

of (3.4) satisfies (P) by construction, and it satisfies (D) whenever ' is monotone.

Proof of Proposition 3.10. For any permutation S of R P C, we have 1S “ 1R and

thus 'p1Sq “ 'p1Rq § B, implying that S P C. Therefore, assumption (P) is satisfied. To

prove that C satisfies (D) whenever ' is monotone, consider any R “ pR1, . . . , R⌫q P C and

S “ pRi1 , . . . , Ri�q such that 1 § � § ⌫ and 1 § i1 † i2 † . . . † i� § ⌫. We then have 1S § 1R,

and the monotonicity of ' implies that ' p1Sq § ' p1Rq § B. Thus, S P C, and assumption

(D) holds.
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Recall that ' is monotone if 'pxq § 'pyq for all x,y P r0, 1s
n satisfying x § y.

We now consider two demand estimators that turn out to be of special interest due to their

tractability as well as their versatility. The summation demand estimator dS is defined as

dSpSq “ max t1, r' p1Sq {Bsu @H ‰ S Ñ VC ,

as well as dSpHq “ 0. For the classical CVRP with 'pyq “
∞

iPVC
qiyi and B “ Q, the

use of the summation demand estimator dS in 2VF(d) reduces to the well-known rounded

capacity inequalities. In the previous chapter, we have used dS with 'pyq “ WC-VaRpeqJyq,

the worst-case value-at-risk of the customer demands, to solve a 2VF(d) formulation of the

chance constrained CVRP. The packing demand estimator dP is defined as

dPpSq “ min
 
I P N : DY P r0, 1s

nˆI such that Y e “ 1S, 'pykq § B @k “ 1, . . . , I
(

for all H ‰ S Ñ VC , as well as dPpHq “ 0. Here, yk P Rn is the k-th column of the matrix Y ,

k “ 1, . . . , I. To our best knowledge, the packing demand estimator dP has not been studied

previously. It can be interpreted as the optimal value of a fractional bin packing problem; this

interpretation is formalized in the following proposition.

Proposition 3.11 If ' is monotone and we restrict ourselves to binary assignment matrices

Y P t0, 1u
nˆI in dP, then dP coincides with the demand estimator d

1
defined in Section 3.4.1.

Proof of Proposition 3.11. By definition, we have dPpHq “ d
1
pHq “ 0. For any H ‰ S Ñ
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VC , we have

d
1
pSq “ min

#
I P N : S Ñ

î
k“1,...,I Rk for some R1, . . . ,RI P C

+

“ min

#
I P N : S Ñ

î
k“1,...,I Rk such that ' p1Rk

q § B for all k P t1, . . . , Iu

+

“ min

#
I P N : DX P t0, 1u

nˆI such that Xe • 1S, 'pxkq § B @k P t1, . . . , Iu

+

“ min

#
I P N : DX P t0, 1u

nˆI such that Xe “ 1S, 'pxkq § B @k P t1, . . . , Iu

+

“ dPpSq

The second identity follows from the definition of C as defined in (3.4). The union in the second

identity can be enforced by the constraint Xe • 1S where xk P t0, 1u
n for k P t1, . . . , Iu so

that a customer can be assigned to more than one vehicle. Choose any X that is feasible in

the third identity. Since ' is monotone, for each i P S, we can arbitrarily choose one of the k’s

for which xik “ 1 and set xik1 “ 0 for all k1
‰ k. The monotonicity of ' guarantees that this

new solution xk, k P t1, . . . , Iu is also feasible, which leads to the fourth identity.

The evaluation of the packing demand estimator dP requires the solution of an assignment

problem, which can become computationally prohibitive if dP has to be evaluated frequently.

It turns out, however, that dP admits a closed-form solution when ' is convex.

Proposition 3.12 If ' is convex, then the packing demand estimator dP evaluates to

dPpSq “ min tI P N : 'p1S{Iq § Bu @H ‰ S Ñ VC .

Proof of Proposition 3.12. We denote the two expressions for the packing estimator dP as

d1pSq “ min
 
I P N : DX P r0, 1s

nˆI such that Xe “ 1S, 'pxkq § B @k “ 1, . . . , I
(
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and

d2pSq “ min tI P N : 'p1S{Iq § Bu ,

where H ‰ S Ñ VC . We want to show that d1pSq “ d2pSq for all H ‰ S Ñ VC . One readily

verifies that d1pSq § d2pSq since for any I P N feasible in the minimization problem that defines

d2pSq, pI 1,X 1
q “ pI,1S eJ

{Iq is feasible in the minimization problem that defines d1pSq and

achieves the same objective value I. To see that d1pSq • d2pSq, fix any solution pI,Xq that

is feasible in the minimization problem that defines d1pSq. In the following, we prove that

'p1S{Iq § B, which shows that I is also feasible in the minimization problem that defines

d2pSq.

Let ⇧ be the group of all permutations ⇡ : t1, . . . , Iu fiÑ t1, . . . , Iu of the set t1, . . . , Iu, and

define ⇡pXq “ px⇡p1q, . . . ,x⇡pIqq for ⇡ P ⇧. By construction, ⇡pXq is feasible in d1pSq for

any ⇡ P ⇧. Moreover, since the feasible region of d1pSq is convex by assumption, the convex

combination

X 1
“

1

|⇧|

ÿ

⇡P⇧

⇡pXq

is also feasible in d1pSq. However, the k-th column of X 1 satisfies

x1

k “
1

I!
¨

ÿ

⇡P⇧

x⇡pkq “
1

I!
¨

Iÿ

l“1

ÿ

⇡P⇧:
⇡pkq“l

x⇡pkq “
1

I!
¨

Iÿ

l“1

pI ´ 1q! ¨ xl “
1S

I
,

where the first and penultimate equalities follow from the fact that a set with ` elements admits

`! permutations, and the last identify holds since Xe “ 1S as X is feasible in d2pSq.

One can construct counterexamples which show that the statement of Proposition 5 ceases to

hold when ' is not convex. In summary, the summation demand estimator dS requires a single

evaluation of '. Assuming that ' is monotone and convex, the packing demand estimator

dP requires Oplogmq evaluations of ' since the monotonicity of ' allows us to determine the

minimizer I‹ in Proposition 3.12 via a binary search. Thus, both demand estimators can be

computed e�ciently whenever ' allows for an e�cient evaluation. As we will see in the next
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section, this is the case for a broad range of CVRP variants under stochastic, robust and

distributionally robust descriptions of the uncertainty governing the customer demands.

We now study the applicability of the two demand estimators dS and dP.

Theorem 3.13 Assume that ' is monotone.

(i) If ' is subadditive, we have d § dS § dP § d
m
. If ' is also positive homogeneous then

dS “ dP; otherwise, dS “ dP does not hold in general.

(ii) If ' is additive, we have d § dS “ dP § d
m
. Furthermore, VRP(C) can be reformu-

lated as a deterministic CVRP instance, and every deterministic CVRP instance can be

reformulated as a VRP(C) instance with additive '.

(iii) If ' is convex but not subadditive, then d § dP § d
m
, whereas dS § d

m
does not hold in

general.

Proof of Theorem 3.13. We first show that d § dP § d
m
, irrespective of whether ' is

sub- or superadditive. The fact that dP § d
m
follows from Proposition 3.11, which implies that

dP § d
1
, and Proposition 3.3, which shows that d

1
§ d

m
. To see that dP • d, we note that

dP pSq • 1 “ dpSq for all S ‰ H by construction, while dP pSq • 2 “ dpSq for all H ‰ S R C

since 'p1Sq ° B.

As for statement (i), we note that dS • d by construction. To see that dS § dP when ' is

subadditive, we observe that for any H ‰ S Ñ VC and any I P N, we have

I • dPpSq ñ DX P r0, 1s
nˆI such that Xe “ 1S, 'pxkq § B @k “ 1, . . . , I

“ñ 'px1q ` . . . ` 'pxIq § I ¨ B

“ñ 'p1Sq § I ¨ B

ñ I • dSpSq.

Here, the first line holds by construction of dP. The third line follows from the subadditivity

of ' and the fact that Xe “ 1S, and the last line holds by construction of dS and since I P N.
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If ' is subadditive and positive homogeneous, then for any H ‰ S Ñ VC and any I P N,

Proposition 3.12 implies that I • dPpSq if and only if 'p1S{Iq § B, that is, 'p1Sq § I ¨ B. By

construction of dS and since I P N, we thus have I • dPpSq if and only if I • dSpSq.

To see that dP “ dS does not hold in general when ' is subadditive but not positive homoge-

neous, consider a VRP(C) instance with n “ 3 customers, m “ 3 vehicles and a set C of the

form (3.4) with 'px1, x2, x3q “
?
x1 ` x2 ` x3 as well as B “ 1. Note that ' is subadditive but

not positive homogeneous. One readily verifies that dPpVCq “ 3 but dSpVCq “ 2.

In view of statement (ii), we first show that dS “ dP whenever ' is additive. We know from

statement (i) that dS § dP in this setting, so we only need to show that dS • dP as well.

Imagine, to the contrary, that dSpSq “ I 1
† dPpSq for some H ‰ S Ñ VC . In that case, we have

'p1Sq{B § I 1. The additivity of ' implies that I 1
¨'p1S{I 1

q “ 'p1Sq § I 1
¨B, however, and the

solution I “ I 1 and X given by xk “ 1S{I 1 for all k “ 1, . . . , I 1 is feasible in the minimization

problem that defines dP. We thus have dPpSq § I 1, which contradicts the assumption that

dSpSq † dPpSq, and we therefore have dS “ dP as desired.

When ' is additive, we have 'p1Sq “
∞

iPS 'peiq. Thus, any VRP(C) instance with additive '

can be reformulated as a deterministic CVRP instance with customer demands qi “ 'peiq and

vehicle capacity Q “ B. Likewise, one readily verifies that any deterministic CVRP instance

can be formulated as an instance of VRP(C) with 'pxq “ qJx and B “ Q.

As for statement (iii), we only need to show that dS § d
m

does not hold in general when ' is

not subadditive. Indeed, consider a VRP(C) instance with n “ 3 customers, m “ 3 vehicles

and the set C of the form (3.4) with 'px1, x2, x3q “ exppx1 ` x2 ` x3q ´ 1 as well as B “ 2.

Note that ' is not subadditive. One readily verifies that dSpVCq “ 10 but d
m

pVCq “ 3.

Recall that ' is subadditive whenever 'px ` yq § 'pxq ` 'pyq for all x,y P r0, 1s
n satisfying

x`y P r0, 1s
n, and that ' is additive if the inequality holds as equality. Likewise, ' is positive

homogeneous if 'p�xq “ �'pxq for all � ° 0 and all x P r0, 1s
n satisfying �x P r0, 1s

n. A

subadditive and positive homogeneous function is also called sublinear.
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Figure 3.1: Demand estimators for a stochastic CVRP instance with 6 customers and joint
probability distribution for customer demands as Preq “ 5es “ 0.05, Preq “ 16es “ 0.9 and
Preq “ 30es “ 0.05 for (a) expected ramp disutility EPrmaxt

∞
iPS eqi, 30us (on the left) with

B “ 30, and (b) entropic risk measure 10 logEPrexp0.1p
∞

iPS eqiqs (on the right) with B “ 17.2.

Theorem 3.13 shows that for a subadditive and positive homogeneous function ', the sum-

mation and packing demand estimators coincide, and we should use the summation demand

estimator due to its favorable complexity. We will see in the next section that examples of

subadditive and positive homogeneous ' include all coherent risk measures (such as the mean

semi-deviation of order u, the conditional value-at-risk and expectile risk measures) as well as

the underperformance risk index under a stochastic as well as a distributionally robust descrip-

tion of the uncertainty. If, on the other hand, ' is subadditive but not positive homogeneous,

then the packing demand estimator can result in tighter capacity constraints. An example of

a subadditive function ' that fails to be positive homogeneous is the ramp disutility function

(discussed in the next section) under a stochastic as well as a distributionally robust description

of the uncertainty. Figure 3.1 (left) illustrates how the packing demand estimator can yield

tighter capacity constraints than the summation demand estimator for this risk measure. An

example of an additive function ' is the expected loss risk measure over a stochastic descrip-

tion of the uncertainty. Examples of convex functions ' that fail to be subadditive include, as

the next section shows, the expected disutility, entropic risk measures, the essential riskiness

index, the service fulfillment risk index and the requirements violation index. Figure 3.1 (right)

illustrates that in this case, we have to use the packing demand estimator as the summation
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demand estimator may fall outside the interval rd, d
m

s and thus cut o↵ feasible route plans.

Since all of the aforementioned risk measures are convex, the packing demand estimator can

be computed e�ciently for all of them.

3.5 E�cient Reformulation for Demand Estimators

From now on, we focus on the intra-route constraints of the distributionally robust CVRP, where

the uncertain customer demands eq can be governed by any distribution P from the ambiguity

set P , and the feasibility of a route depends on its worst-case risk over all distributions P P P :

C “

#
R “ pR1, . . . , R⌫q : ⌫ • 1 and Ri P VC @i, sup

PPP
⇢P

«
ÿ

iPR

eqi

�
§ Q

+
(3.5)

We call the collection ⇢ “ t⇢PuPPP of risk measures an ambiguous risk measure. Each individual

risk measure ⇢P maps scalar random variables to real numbers with the interpretation that

larger numbers correspond to greater risks, and the ambiguous risk measure ⇢ allows us to

quantify the worst-case risk over all distributions P P P . The upper bound Q represents

either the homogeneous capacity of all vehicles (if the risk measure maps to quantities that

have the same unit as the customer demands, such as the worst-case expectation or the worst-

case (conditional) value-at-risk) or more generally a bound on the acceptable risk (e.g., if the

risk measure corresponds to the expected disutility). The intra-route constraints (3.5) emerge

as a special case of the intra-route constraints (3.4) studied in Section 3.4.2 when we set

'pyq “ supPPP ⇢P
“
yJeq

‰
for y P r0, 1s

n and B “ Q. Note that the intra-route constraints (3.5)

of the distributionally robust CVRP generalize those of the stochastic CVRP, which correspond

to instances of (3.5) with singleton ambiguity sets, as well as those of the robust CVRP, which

emerge if the ambiguity set P contains all Dirac distributions supported on a subset of Rn
`

(which is commonly called the uncertainty set).

We assume that eq • 0 P-almost surely for all P P P , and we require the worst-case risk measure

' to be monotone, that is, 'pxq § 'pyq whenever x § y. Taken together, both conditions

imply via Proposition 3.10 that the corresponding instance of VRP(C) satisfies the assumptions
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(D) and (P). Additionally, we will be interested in cases where the worst-case risk measure

is subadditive and/or convex so that we can apply the demand estimators dS and dP from

Section 3.4.2 to solve the corresponding instance of 2VF(d). Finally, we will be interested in

worst-case risk measures that can be evaluated quickly so that the resulting 2VF(d) instances

can be solved e�ciently.

Throughout this section, we consider the scenario-wise first-order ambiguity set

P “

$
’’’’’’’&

’’’’’’’%

P P P0pRn
`

ˆ Wq : Ds P S such that

»

———————–

P
“
qw

§ eq § qw
| w̃ “ w

‰
“ 1

EP req | w̃ “ ws “ µw

EP r|eq ´ µw
| | w̃ “ ws § ⌫w

P rw̃ “ ws “ sw

fi

�������fl

@w P W

,
///////.

///////-

(3.6)

proposed by [CSX19] and [LQZ20]. Here, w̃ is a random scenario supported on the set

W “ t1, . . . ,W u, rqw, qw
s is the support of the uncertain demands eq in scenario w P W ,

µw
P pqw, qw

q and ⌫w
° 0 represent the expectation and the mean absolute deviation of the

demand vector under scenario w, respectively, s denotes the scenario probabilities that are

only known to be contained in the convex subset S of the probability simplex in RW , and

P0pRn
`

ˆ Wq is the set of all probability distributions supported on Rn
`

ˆ W . We allow for

the mean and mean absolute deviation conditions to be absent in (3.6), in which case some of

the risk measures considered below simplify. All of our results also extend to ambiguity sets in

which the mean absolute deviation is replaced by the expectation of a piecewise a�ne convex

function (cf. [LQZ20]), which allows us to stipulate, among others, approximate upper bounds

on the marginal variances or the Huber losses of the customer demands [WKS14].

As we show in the following, the ambiguity set (3.6) is very versatile and allows us to model a

range of well-known ambiguity sets from the literature.

Example 3.14 (Ambiguity Set P) The ambiguity set (3.6) recovers a stochastic CVRP

P “
 
P P P0pRn

`
q : P rq “ bqw

s “ ŝw @w P W
(
,
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if we set qw
“ qw

“ bqw, w P W, S “ tbsu and disregard the expectation and mean absolute

deviation constraints. Likewise, we obtain a distributionally robust CVRP over the marginalized

moment ambiguity set [GW20]

P “
 
P P P0pRn

`
q : P

“
q § eq § q

‰
“ 1, EP reqs “ µ, EP r|eq ´ µ|s § ⌫

(

if we set W “ 1 and S “ t1u. We recover a distributionally robust CVRP over the type-8

Wasserstein ambiguity set [BSS20]

P “

#
P P P0pRn

`
q : dW

8

˜
P, 1

W

ÿ

wPW
�bqw

¸
§ ✓

+
,

where 1
W

∞
wPW �bqw is the empirical distribution over the historical demands bq1, . . . , bqW and

dW
8

pP,Qq “ inf

$
’&

’%
⇧-ess sup

›››e⇠ ´ e⇠1

›››
8

:

»

—–
⇧ is a joint distribution over e⇠ and e⇠1

with marginals P and Q

fi

�fl

,
/.

/-

is the type-8 Wasserstein distance with the 8-norm as ground metric, by setting q “ rbqw
´ ✓ ¨ es

`

and q “ bqw
` ✓ ¨ e for all w P W, S “

 
1
W ¨ e

(
and disregarding the expectation and mean

absolute deviation constraints, see Proposition 3 of [BSS20]. A distributionally robust CVRP

over the Kullback-Leibler (KL) divergence ambiguity set [BL15, §3.1]

P “

#
P P P0pRn

`
q : supp pPq “

 
bq1, . . . , bqW

(
, dKL

˜
P, 1

W

ÿ

wPW
�bqw

¸
§ ✓

+
,

where supp pPq denotes the support of the distribution P and

dKL

˜
ÿ

wPW
pw ¨ �bqw ,

ÿ

wPW
qw ¨ �bqw

¸
“

ÿ

wPW
pw log

ˆ
pw
qw

˙

is the KL divergence between two discrete distributions over the common support
 
bq1, . . . , bqW

(
,

is recovered if we fix qw
“ qw

“ bqw for all w P W, S “
 
s P RW

`
:
∞

wPW sw log pswW q § ✓, eJs “ 1
(

and disregard the expectation and mean absolute deviation constraints. We recover a distribu-
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tionally robust CVRP over the total variation ambiguity set [BL15, §3.1]

P “

#
P P P0pRn

`
q : supp pPq “

 
bq1, . . . , bqW

(
, dTV

˜
P, 1

W

ÿ

wPW
�bqw

¸
§ ✓

+
,

where supp pPq denotes the support of the distribution P and

dTV

˜
ÿ

wPW
pw ¨ �bqw ,

ÿ

wPW
qw ¨ �bqw

¸
“

ÿ

wPW
qw ¨

ˇ̌
ˇ̌pw
qw

´ 1

ˇ̌
ˇ̌

is the total variation between two discrete distributions over the common support
 
bq1, . . . , bqW

(
,

finally, if we fix qw
“ qw

“ bqw for all w P W, S “
 
s P RW

`
:

››s ´
1
W ¨ e

››
1

§ ✓, eJs “ 1
(
and

disregard the expectation and mean absolute deviation constraints.

Example 3.14 highlight the diversity of the ambiguity sets that can be modeled under the

consideration of fixed scenario probabilities in ambiguity set defined in (3.6). In the rest of this

chapter, we focus on the ambiguity set P of the form (3.6) with S “ tbsu. We next discuss

how VRP(C) with the intra-route constraints (3.5) can be solved via its reformulation 2VF(d)

under this ambiguity set.

[LQZ20] optimize the worst-case expectation in two-stage distributionally robust optimization

problems where the uncertain parameters a↵ect the constraint right-hand sides of the second-

stage problem. They show that for ambiguity sets of the form (3.6) with known scenario

probabilities bs, the worst-case expectation is attained by a discrete distribution that does not

depend on the first-stage decisions, and thus the two-stage distributionally robust optimization

problem reduces to a two-stage stochastic program. Our setting di↵ers from theirs in the

following aspects: (i) we consider the random quantity xJeq that is parametric in the weights

x, rather than the optimal value of a second-stage problem that is parametric in the first-

stage decisions; (ii) we consider a broad range of risk measures, whereas [LQZ20] focus on

the expected value, the expected disutility and the optimized certainty equivalent; and (iii)

the random vector eq multiplies the parameters x in our context, whereas it is isolated on

the constraint right-hand sides in their setting. Nevertheless, we can adapt the arguments of

[LQZ20] to show that the worst-case risk 'pxq is attained by a finite demand distribution that
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is independent of ⇢ and x.

Theorem 3.15 ([LQZ20]) Fix an ambiguity set P of the form (3.6) where S “ tbsu, and

assume that 'p¨q can be represented as a worst-case expectation supPPP EP
“
fp¨

Jeqq
‰
of a convex

function f : R Ñ R. Then for all x P r0, 1s
n, Algorithm 2 in Appendix B identifies a common

W p2n ` 1q-point worst-case distribution P‹
“
∞

wPW
∞2n`1

i“1 ŝwp‹

wi ¨ �q‹
wi

P P that is independent

of f and x.

Proof of Theorem 3.15. Fix any x P r0, 1s
n. Since f is convex and x • 0, it follows from

Theorem 2.2.6(a) of [SLCB05] that the mapping q fiÑ fpxJqq is supermodular. Following from

the rectangularity of P , we can write

sup
PPP

EPrfpxJeqqs “ max
sPS

sup
PwPPw:wPW

ÿ

wPW
swEPwrfpxJeqqs

“ sup
PwPPw:wPW

ÿ

wPW
ŝwEPwrfpxJeqqs “

ÿ

wPW
ŝw sup

PwPPw
EPwrfpxJeqqs

where P
w is as defined in (3.7). The second identity holds because S is a singleton.

We can then apply Proposition 3 of [LQZ20] to evaluate supPwPPw EPw

“
f

`
xJeq

˘‰
for each

w P W . Note that this proposition assumes that the function inside the worst-case ex-

pectation constitutes the second-stage cost of a two-stage distributionally robust optimiza-

tion problem; since the proof of that result only makes use of the supermodularity of the

second-stage cost function, however, the proposition extends to our setting. Hence, we have

supPwPPw EPw

“
f

`
xJeq

˘‰
“

∞2n`1
j“1 p‹

wjf
`∞

iPVC
xiq‹

wji

˘
where p‹

wj, q
‹

wj for j “ 1, . . . , 2n ` 1 and

w P W are obtained from Algorithm 2. This implies that

sup
PPP

EPrfpxJeqqs “

ÿ

wPW
ŝw sup

PwPPw
EPwrfpxJeqqs “

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wjf

˜
ÿ

iPVC

xiq
‹

wji

¸
.

From here it follows that a worst-case distribution is the W p2n ` 1q-point distribution P‹
“

∞
wPW ŝw

∞2n`1
j“1 p‹

wj ¨ �q‹
wj

P P .
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The intuition underlying Theorem 3.15 is as follows. If we condition on the event w̃ “ w, then

the resulting ambiguity set Pw becomes rectangular in the customers i P VC in the sense that

P
w

“
 
P P P0pRn

`
q : DQ P P such that P r¨s “ Q r¨ | w̃ “ ws

(

“

°

iPVC

!
P P P0pRq : P

”
qw
i

§ eqi § qwi

ı
“ 1, EP reqis “ µw

i , EP r|eqi ´ µw
i |s § ⌫wi

)
. (3.7)

One can then verify that for a convex function f , supPPPw EP
“
fpxJeqq

‰
is attained by a distri-

bution P‹ that only places positive probability on demand realizations q P
ë

iPVC

 
qw
i
, µw

i , q
w
i

(
,

and that these probabilities do not depend on f or x. This, however, only allows us to conclude

that there is a worst-case distribution with an exponentially large number 3n of realizations.

Next, fix any worst-case distribution P‹ supported on the demands q P
ë

iPVC

 
qw
i
, µw

i , q
w
i

(
,

and assume that P‹
rqs, P‹

rq1
s ° 0 for an unordered pair of demands q and q1, that is, q and

q1 satisfying neither q § q1 nor q • q1. In that case, we can move equal amounts of probabil-

ity mass from the demand realizations q and q1 to their join maxtq, q1
u and meet mintq, q1

u

without a↵ecting the marginal distributions of P‹ and thus guaranteeing, by the rectangularity

of Pw, that the new distribution is also in P
w. On the other hand, one can show that the new

distribution has a weakly larger expected value since fpxJ maxtq, q1
uq ` fpxJ mintq, q1

uq •

fpxJqq ` fpxJq1
q. We can repeat this procedure iteratively until P‹ no longer places positive

probability on any unordered pairs, in which case all probability is concentrated on at most

2n ` 1 demand realizations. Of course, this iterative mass transportation procedure is im-

practical as it may require exponentially many iterations depending on the initial distribution.

Instead, Algorithm 2 in Appendix B computes a worst-case probability distribution over Pw in

Opnq iterations. Applying the same principle to each ambiguity set Pw, w P W , we obtain in

OpWnq iterations a W p2n`1q-point distribution P‹ that maximizes the expectation of fpxJeqq

over all P P P .

Theorem 3.15 implies that for suitable ambiguous risk measures ⇢, the distributionally robust

CVRP over the ambiguity set (3.6) with known scenario probabilities S “ tbsu reduces to

a stochastic CVRP over a probability distribution that does not depend on ⇢ or x. Note,
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however, that the risk itself depends on the choice of ⇢ and x, and hence the feasible region of

the distributionally robust CVRP varies for di↵erent risk measures ⇢.

In the remainder of this section, we review a number of popular risk measures, we show how

their worst-case risk can be computed e�ciently, and we discuss which of the demand estimators

dS and dP can be employed in their associated reformulations 2VF(d).

Theorem 3.16 (Expected Disutility-Based Risk Measures) Fix an ambiguity set P of

the form (3.6) with S “ tbsu.

1. Expected Disutility. The worst-case expected disutility ⇢ED “ supPPP P-ED with

P-EDpxJeqq “ EP
“
U

`
xJeq

˘‰
,

where the disutility function U is monotonically non-decreasing and convex with Up0q • 0,

a↵ords a W p2n ` 1q-point worst-case distribution that can be computed with Algorithm 2

and that is independent of U and x. Moreover, ⇢ED is monotone, convex and not subad-

ditive.

2. Essential Riskiness Index [ZBST18]. The essential riskiness index ⇢ERI with

⇢ERIpx
Jeqq “ min

"
↵ • 0 : sup

PPP
EP

“
max

 
xJeq ´ ⇢, ´↵

(‰
§ 0

*
,

where xJeq ´ ⇢ represents the excess demand over the acceptable demand threshold ⇢, can

be computed in time OpnW log nW q, with an initial computation of time Opn2W q for

each 2VF(d) instance. Moreover, ⇢ERI is monotone, convex and not subadditive.

3. Expectiles. The worst-case expectile risk measure ⇢E with

⇢E
`
xJeq

˘
“ argmin

uPR

"
sup
PPP

↵EP

„´“
xJeq ´ u

‰
`

¯2
⇢

` p1 ´ ↵q sup
PPP

EP

„´“
xJeq ´ u

‰
´

¯2
⇢*

,

where r¨s` “ maxt¨, 0u, r¨s´ “ maxt´¨, 0u and ↵ P r1{2, 1q, can be computed in time

OpnW log nW q, with an initial computation of time Opn2W q for each 2VF(d) instance.



3.5. E�cient Reformulation for Demand Estimators 135

Moreover, ⇢E is monotone, convex and subadditive.

4. Entropic Risk. The worst-case entropic risk ⇢ent “ supPPP P-ent with

P-ent
`
xJeq

˘
“

1

✓
logEP

”
exp✓¨xJ eq

ı
,

where ✓ ° 0, a↵ords a W p2n` 1q-point worst-case distribution that can be computed with

Algorithm 2 and that is independent of ⇢ and x. Moreover, ⇢ent is monotone, convex and

not subadditive.

5. Requirements Violation Index [JQS16] The requirements violation index ⇢RV with

⇢RVpxJeqq “ inf
 
↵ • 0 : C↵pxJeqq § ⇢

(
,

where C↵ is the worst-case certainty equivalent under an exponential disutility,

C↵pxJeqq “

$
’’&

’’%

sup
PPP

↵ logEP

„
exp

ˆ
xJeq
↵

˙⇢
if ↵ ° 0

lim
�Ñ0

C�pxJeqq if ↵ “ 0,

and ⇢ is the acceptable demand threshold, can be computed using bisection search, with

an initial computation of time Opn2W q for each 2VF(d) instance. Moreover, ⇢RV is

monotone, convex and not subadditive.

Proof of Theorem 3.16. The proof follows from Lemmas 3.29- 3.33 in the appendix of this

chapter.

For the requirement violation index, it is not easy to upper bound ↵, therefore we cannot give

a priori estimate of the complexity of computing ⇢RV.

Since the worst-case expectiles are subadditive as well as positive homogeneous [BB15, Theo-

rem 4.9(b)], Theorem 3.13 (i) implies that both demand estimators dS and dP can be applied

and yield the same results. We thus prefer dS for its ease of computation. In contrast, the other

risk measures of Theorem 3.16 fail to be subadditive, and Theorem 3.13 (iii) implies that we
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have to use the demand estimator dP. Fortunately, since all of these risk measures are convex,

dP can be computed e�ciently thanks to Proposition 3.12.

Two commonly used risk measures are variants of the worst-case expected disutility. The worst-

case expected demand supPPP EPr¨s emerges as a special case of the worst-case expected disutility

if we set Upxq “ x. Following from the worst-case distribution P‹ identified via Theorem 3.15,

we notice that supPPP EPr¨s is additive. Hence, Theorem 3.13 (ii) implies that the corresponding

worst-case distributionally robust CVRP instance reduces to a deterministic CVRP. The worst-

case expected ramp disutility supPPP EPrmaxt¨, ⌧us, where ⌧ P R`, is monotone and subadditive

but not positive homogeneous. According to Theorem 3.13 (i), we thus prefer the packing

demand estimator dP as it can o↵er tighter bounds than dS.

Theorem 3.17 (CVaR-Based Risk Measures) Fix an ambiguity set P of the form (3.6)

with S “ tbsu.

1. Conditional Value-at-Risk. The worst-case conditional value-at-risk at level 1´✏, ⇢CVaR “

supPPP P-CVaR1´✏ with

P-CVaR1´✏px
Jeqq “ inf

uPR
u `

1

1 ´ ✏
EP

“
xJeq ´ u

‰
`
,

where ✏ P r0, 1q, can be computed in time OpnW logpnW qq, with an initial computation of

time Opn2W q per 2VF(d) instance. Moreover, ⇢CVaR is monotone, convex and subadditive.

2. Service Fulfillment Risk Index [ZZLS21]. The service fulfillment risk index ⇢SRI with

⇢SRI

`
xJeq

˘
“ inf

 
↵ • 0 : ⇢-CVaR�

`
max

 
xJeq ´ ⇢, ´↵

(˘
§ 0

(

where xJeq´⇢ represents the excess demand over the acceptable demand threshold ⇢, can be

computed to �-accuracy in time O
´
nW log

´´
⇢ ´

∞
wPW ŝw

∞2n`1
j“1 p‹

wj

∞
iPVC

xiq‹

wji

¯
{��

¯¯
,

with an initial computation of time Opn2W q per 2VF(d) instance. Moreover, ⇢SRI is

monotone, convex but not subadditive.
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Proof of Theorem 3.17. The proof follows from Lemmas 3.34- 3.35 in the appendix of this

chapter.

Since the worst-case conditional value-at-risk is subadditive and positive homogeneous [RU02,

Corollary 12], Theorem 3.13 (i) implies that we can use either dP or dS, and both demand

estimators yield the same results. We thus prefer dS because it is easier to evaluate than dP.

In contrast, the service fulfilment risk index is not subadditive, and Theorem 3.13 (iii) implies

that we have to use dP. Fortunately, dP can be evaluated e�ciently since the service fulfilment

risk index is convex.

Theorem 3.18 (Other Risk Measures) Fix an ambiguity set P of the form (3.6) with S “

tbsu.

1. Mean Semi-Deviation. The worst-case mean semi-deviation ⇢MSD “ supPPP P-MSD of

order u with

P-MSDpxJeqq “ EP
“
xJeq

‰
` ↵

´
EP

“
xJeq ´ EP

“
xJeq

‰‰u
`

¯ 1
u
, where u • 1 and ↵ P r0, 1s,

a↵ords a W p2n ` 1q-point worst-case distribution that can be computed with Algorithm 2

and that is independent of ↵, u and x. Moreover, ⇢MSD is monotone, convex and subad-

ditive.

2. Underperformance Risk Index [HLQS15]. The underperformance risk index ⇢URI with

⇢URIpx
Jeqq “ inf

"
1

↵
: sup

PPP
 P

`
↵

`
xJeq ´ ⇢

˘˘
§ 0, ↵ ° 0

*
,

where  P is a monotone, translation invariant, convex risk measure satisfying  Pp0q “ 0,

that can be expressed as the expectation of a convex function and ⇢ is the acceptable

demand threshold, can be evaluated using bisection search, with an initial computation of

time Opn2W q per 2VF(d) instance. Moreover, ⇢URI is monotone, convex and subadditive.
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Proof of Theorem 3.18. The proof follows from Lemmas 3.36- 3.37 in the appendix of this

chapter.

It is not straightforward to upper bound ↵ given the general form of the underperformance risk

index, therefore we cannot give an a priori estimate of the complexity of computing ⇢URI.

Since both risk measures in Theorem 3.18 are subadditive and positive homogeneous (cf. [SDR14,

Example 6.20] and [HLQS15, Definition 3]), Theorem 3.13 (i) implies that dS and dP are both

applicable and yield the same results. We thus prefer the summation demand estimator dS for

its ease of computation.

We next discuss how the above results simplify when the expectation and mean absolute devi-

ation conditions in the ambiguity set (3.6) are absent.

Observation 3.19 Fix an ambiguity set of the form (3.6) with S “ tbsu, where the expectation

and mean absolute deviation constraints are absent. Consider 'p¨q that can be expressed as

a worst-case expectation supPPP EPrfp¨
Jeqqs of convex monotonically non-decreasing function

f : R fiÑ R. Then 'p¨q is maximized over P by the W -point distribution P‹
“

∞
wPW ŝw ¨ �qw

that is independent of f and x.

Proof of Observation 3.19. Fix x P r0, 1s
n and an ambiguity set P of the form (3.6) with

S “ tbsu, and expectation and mean absolute deviation constraints absent. We have

sup
PPP

EP
“
fpxJeqq

‰
“ max

sPS
sup

PwPPw:wPW

ÿ

wPW
ŝwEPw

“
fpxJeqq

‰

“

ÿ

wPW
ŝw sup

PwPPw
EPw

“
fpxJeqq

‰

where P
w

“

!
P : P

`
qw

§ q § qw
˘

“ 1, P P PpQ
w

q

)
. From our assumption that fp¨q is

monotonically non-decreasing, EPw

“
fpxJeqq

‰
is maximized at maxtq : q P Q

w
u “ qw for each
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scenario w P W . Therefore, we have

sup
PPP

EP
“
fpxJeqq

‰
“

ÿ

wPW
ŝw sup

PwPPw
EPw

“
fpxJeqq

‰
“

ÿ

wPW
ŝwEPw

“
fpxJqw

q
‰

where P‹

w “ �qw for each w P W , and the statement of the observation follows.

Observation 3.19 allows us to consider worst-case risk measures over 8-type Wasserstein ambi-

guity sets (cf. Example 3.14), which are now readily verified to be maximized by the worst-case

distribution P‹
“ 1{W ¨

∞
wPW �bqw`✓e that does not depend on the risk measure ⇢ or the current

solution x. Moreover, for an ambiguity set P as described in Observation 3.19, the worst-

case distribution can be identified in time OpW q, as opposed to Opn2W q as identified through

Theorem 3.15.

Remark 3.20 (Incremental Evaluation of Risk Measures) In branch-and-cut implemen-

tations, the worst-case risk 'pxq rarely needs to be computed from scratch; instead, it is com-

puted iteratively for vectors x that di↵er in one or very few components. In this case, incre-

mental evaluations of the worst-case risks in Theorems 3.16–3.18 can reduce the runtime for

the cut evaluation by a factor of n.

In the following section, we consider the value-at-risk and explain why the discussion so far

cannot be used for this risk measure. Finally, we suggest a special scheme to handle value-at-

risk.

3.5.1 Special Case: Value-at-Risk

In this section, we consider the ambiguous chance constrained CVRP with technology sets

CCC “

#
R “ pR1, . . . , R⌫q : ⌫ • 1 and Ri P VC @i, P

«
ÿ

iPR

eqi § B

�
• 1 ´ ✏ @P P P

+
, (3.8)
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where the ambiguity set P is of the form (3.6) and ✏ P r0, 1s is a risk threshold selected by the

decision maker. In the following, we assume that ✏ † 1{m.

Observation 3.21 For any S Ñ VC, we have

P
«

ÿ

iPR

eqi § B

�
• 1 ´ ✏ @P P P ñ 'VaRp1Rq § B,

where 'VaRpxq “ supPPP P-VaR1´✏

“
xJeq

‰
and P-VaR1´✏ denotes the p1 ´ ✏q-value-at-risk.

Proof of Observation 3.21. We need to show that P r
∞

iPR eqi § Bs • 1 ´ ✏ @P P P ñ

'VaRp1Rq § B where 'VaRpxq “ supPPP P-VaR1´✏

“
xJeq

‰
and P-VaR1´✏ denotes the p1 ´ ✏q-

value-at-risk. We notice the following:

inftu P R : P r
∞

iPR eqi § us • 1 ´ ✏u § B @P P P ñ P-VaR1´✏ r
∞

iPR eqis § B @P P P

ñ supPPP P-VaR1´✏ r
∞

iPR eqis § B

ñ 'VaRp1Rq § B.

The statement of the observation then follows.

Observation 3.21, whose statement is well known and immediately follows from the properties of

the value-at-risk, allows us to use technology sets of the form (3.5) with ' “ 'VaR to model the

ambiguous chance constrained CVRP. In order to solve the corresponding 2VF(d) formulation,

'VaR has to satisfy certain properties as outlined in Section 3.4.2. We examine this next.

Proposition 3.22 For an ambiguity set of the form (3.6), 'VaR is monotone and positive

homogeneous, but it is neither subadditive nor convex.

Proof of Proposition 3.22. Note that P-VaR is monotone and positive homogeneous for all

P P P [FS10, p. 3]. Consequently, for x P r0, 1s
n, 'VaRpxq “ supPPP PVaR1´✏pxJeqq is monotone

and positive homogeneous by Lemma 3.28. Next, we prove that 'VaR is neither convex nor
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subadditive. To this end, consider the ambiguity set P with S “ tbsu, qw
“ qw

“ bqw for

each w P W , and the expectation and mean absolute deviation constraints disregarded. For

x P r0, 1s
n and this choice of ambiguity set, 'pxq reduces to P-VaR1´✏pxJeqq for the distribution

P under which the demands attain the values bq with probability sw for each w P W .

Thus, 'pxq in this case involves finding the value-at-risk over the discrete scenario probabil-

ity distribution bs. We know that the P-VaR for a single distribution is neither convex nor

subadditive [FS10, p. 3]. Therefore, 'pxq is neither convex nor subadditive.

Following from the discussion surrounding Theorem 3.13, we conclude that we cannot use the

demand estimator dS in conjunction with 'VaR, and the demand estimator dP is di�cult to

evaluate.

Example 3.23 Consider an ambiguous chance constrained CVRP instance with n “ 2 cus-

tomers and m “ 2 vehicles. Fix an ambiguity set of the form (3.6) with W “ 3, s “ 0.3e,

expectation and mean absolute deviation constraints disregarded, and qw
“ qw

“ bqw for each

w P W. Further, let bq1
“ p1, 3q

J, bq2
“ p8, 3q

J and bq3
“ p1, 11q

J. Setting ✏ “ 0.3 and B “ 3,

we have CCC “ tp1q, p2qu, which implies that d
m

pVCq “ 2. On the other hand, the technology

sets (3.5) with ' “ 'VaR yield dSpVCq “ maxt1, r11{3su “ 4 ° d
m

pVCq, and Theorem 3.5 im-

plies that this demand estimator cannot be used. To evaluate dP under these technology sets,

we need to solve a non-convex optimization problem. However, note that Y with y1 “ p1, 0q
J

and y2 “ p0, 1q
J is a feasible solution for dP, which implies that dPpVCq § 2 “ d

m
pVCq.

In our previous chapter, we use the demand estimator dS to solve the ambiguous chance con-

strained CVRP over moment ambiguity sets. This is possible since for their class of moment

ambiguity sets, 'VaR is monotone, positive homogeneous, convex and subadditive. In contrast,

our scenario-wise ambiguity sets (3.6) require a di↵erent approach, which we develop in the

remaining of this section.
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To this end, following [DFL18], we define 'mVaR : r0, 1s
n

Ñ R as

'mVaRpxq “ B ¨ max
kPK

apx, kq

where apx, 1q “ 1 and apx, kq “ mintk, rsupPPP P-VaR1´pk´1q✏pxJeqq{Bsu otherwise, as well as

CmVaR “ tR “ pR1, . . . , R⌫q : ⌫ • 1 and Ri P VC @i, 'mVaRpxq § Bu .

Proposition 3.24 We have CmVaR “ CCC.

Proof of Proposition 3.24. To prove the statement of the proposition, we need to show

that R P CCC ñ R P CmVaR. We observe that R P CmVaR ñ 'mVaRp1Rq “ B. While ““”

is trivial, the ““ñ” holds because apx, 1q “ 1 ensures that 'mVaRp1Rq ‰ 0. We notice the

following:

R P CCC ñ supPPP P-VaR1´✏p1J

Reqq § B

ñ rsupPPP P-VaR1´✏p1J

Reqq{Bs § 1

ñ rsupPPP P-VaR1´pk´1q✏p1J

Reqq{Bs § 1 for k “ 2

ñ rsupPPP P-VaR1´pk´1q✏p1J

Reqq{Bs § 1 @k P K : k • 2

ñ mintk, rsupPPP P-VaR1´pk´1q✏p1J

Reqq{Bsu § 1 @k P K : k • 2

ñ maxk“2,...,m ap1R, kq § 1 ñ maxkPK ap1R, kq “ 1

ñ 'mVaRp1Rq “ B ñ R P CmVaR

The fourth equivalence holds because supPPP P-VaR1´pk´1q✏p1J

Reqq is non-increasing in k. The

seventh equivalence follows from the fact that ap1R, 1q “ 1 by definition. The final equivalence

follows from our observation at the beginning of this proof.

While [DFL18] show that 'mVaR is a valid lower bound for the minimum vehicle requirements

in their edge-based formulation. They relax the edge-based formulation in order to use the

branch-cut-price algorithm. They show that a route that is feasible in the chance constrained
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problem is feasible in their relaxed formulation. We make this tighter in Proposition 3.24 by

showing that the set of feasible routes under chance constraints (CCC) is exactly the same as the

set of feasible routes under 'mVaR. Moreover, in contrast to 'VaR, 'mVaR has desirable features

in view of our demand estimators.

Proposition 3.25 The function 'mVaR is monotone and subadditive, but it is neither convex

nor positive homogeneous.

Proof of Proposition 3.25. The monotonicity and subadditivity of 'mVaR follow from Lem-

mas 3.41 and 3.42, respectively that we prove in the appendix of this chapter. It is straightfor-

ward to see that 'mVaR does not satisfy positive homogeneity. This is because for any � P R`,

we have 'mVaRp�xq{B P Z` whereas �'mVaRpxq{B P R` where x P r0, 1s
n.

In order to prove the non-convexity of 'mVaR, consider an ambiguous chance constrained CVRP

instance with n “ 3 customers, m “ 3 vehicles, ✏ “ 0.1 and B “ 20.6. Consider an ambiguity

set of the form (3.6) with W “ 1, q1
“ p1, 5, 1q

J, q1
“ p30, 20, 30q

2, µ1
“ p16, 10, 16q

J and

⌫1
“ p2, 0.5, 2q

J. Fixing y1 “ p1, 0, 1q
J, y2 “ p0, 1, 0q

J and � “ 0.67, we have 'mVaRpy1q “

2B,'mVaRpy2q “ 1B,'mVaRp�y1 ` p1 ´ �qy2q “ 2B. Clearly, 'mVaRp�y1 ` p1 ´ �qy2q °

�'mVaRpy1q ` p1 ´ �q'mVaRpy2q “ p5{3qB.

The monotonicity of 'mVaR guarantees via Proposition 3.10 that the technology sets (3.5) with

' “ 'mVaR satisfy (D) and (P). Since 'mVaR is subadditive but not positive homogeneous,

Theorem 3.13 implies that dS § dP and that dS “ dP does not hold in general. However, dP is

hard to evaluate due to the non-convexity of 'mVaR, and we thus prefer to use dS.

Example 3.26 Consider the ambiguous chance constrained CVRP of Example 3.23. We have

ap1VC , 1q “ 1 by definition and ap1VC , 2q “ mint2, 4u “ 2, implying that 'mVaRp1VC q “ 2B “ 6

and thus dSp1VC q “ 2 “ d
m
.

In the remainder of this section, we derive an e�cient reformulation to evaluate 'mVaR.
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Theorem 3.27 For an ambiguity set of the form (3.6) with S “ tbsu, 'mVaRpxq can be evaluated

in time OpnWm logm logp1{� ´ 1q logppu ´ uq{�qq. Here

u “ max
wPW

ÿ

iPVC

xi

ˆ
µw
i ` min

"
qwi ´ µw

i ,

ˆ
1 ´ �

�

˙
pµw

i ´ qw
i

q,
⌫wi
2�

*˙

and

u “ min
wPW

ÿ

iPVC

xi

ˆ
µw
i ` min

"
qwi ´ µw

i ,
⌫wi
2

*˙
.

Proof of Theorem 3.27. Fix an ambiguity set of the form (3.6) with S “ tbsu and

x P r0, 1s
n. By definition we have 'mVaRpxq “ BmaxkPK apx, kq where apx, kq “ mintk, Zku,

and Zk “ supPPP P-VaR1´pk´1q✏pxJeqq. We first find Zk for a fixed k P K. For x P r0, 1s
n, we

have

sup
PPP

P-VaR1´pk´1q✏px
Jeqq “ inf

uPR

!
u : inf

PPP
PpxJeq § uq • 1 ´ pk ´ 1q✏

)

“ inf
uPR

#
u : min

sPS
inf

PwPPw:wPW

ÿ

wPW
swPwpxJeq § uq • 1 ´ pk ´ 1q✏

+

“ inf
uPR

#
u : min

sPS

ÿ

wPW
sw inf

PwPPw
PwpxJeq § uq • 1 ´ pk ´ 1q✏

+

“ inf
uPR

#
u :

ÿ

wPW
ŝw inf

PwPPw
PwpxJeq § uq • 1 ´ pk ´ 1q✏

+

The second identity follows from the rectangularity of P and the law of total probability. The

fourth identity holds because S “ tbsu by assumption. For a fixed u P R, the satisfaction of the

inequality
ÿ

wPW
ŝw inf

PwPPw
PwpxJeq § uq • 1 ´ pk ´ 1q✏

can be verified easily if we can compute the expressions

inf
PwPPw

PwpxJeq § uq, w P W .
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Note that for any w P W , Proposition 2.13 in the previous chapter implies that

inf
PwPPw

PwpxJeq § uq “ sup
✓wPr0,1s

"
1 ´ ✓w : sup

PwPPw
Pw-VaR1´✓wpxJeqq § u

*

“ sup
✓wPr0,1s

#
1 ´ ✓w :

ÿ

iPVC

xi

ˆ
µw
i ` min

"
qwi ´ µw

i ,

ˆ
1 ´ ✓w
✓w

˙
pµw

i ´ qw
i

q,
⌫wi
2✓w

*˙
§ u

+
,

and the last supremum can be evaluated via a bisection over ✓w P r0, 1s. Combining this bisec-

tion with a bisection over u P R yields the desired result. We now find lower and upper bounds

for u. Notice that the function
∞

iPVC
xi

´
µw
i ` min

!
qwi ´ µw

i ,
´

1´✓w
✓w

¯
pµw

i ´ qw
i

q, ⌫wi
2✓w

)¯
is non-

increasing in ✓w. As a result, this function attains the maximum value when ✓w “ � for each w P

W where � Ñ 0, and it attains the minimum value when ✓w “ 1 for each w P W . Accordingly,

a lower bound for u is given by u “ minwPW
∞

iPVC
xi

´
µw
i ` min

!
qwi ´ µw

i ,
⌫wi
2

)¯
and an upper

bound for u is given by u “ maxwPW
∞

iPVC
xi

´
µw
i ` min

!
qwi ´ µw

i ,
`
1´�
�

˘
pµw

i ´ qw
i

q, ⌫wi
2�

)¯
. The

bisection search for the optimal u for a fixed k thus takes time Oplogp1{� ´ 1q logppu ´ uq{�qq.

We have Zk “ ru{Bs for k P K. Let k‹ :“ min argmax apx, kq where apx, kq “ mintk, Zku. We

claim that for all k P K: (i) if k ° Zk, then k ° k‹, and (ii) if k § Zk, then k § k‹. If we

can prove our claim, we can conduct a binary search over K to find k‹. Based on our earlier

discussion, apx, kq at each iteration of the binary search can be evaluated in time Oplogp1{� ´

1q logppu ´ uq{�qq, and thus the overall algorithm terminates in time OpnWm logm logp1{� ´

1q logppu ´ uq{�qq. Finally, we prove our claim below.

In view of (i), assume to the contrary that there is k1
° Zk1 such that 1 § k1

§ k‹. We

then have Zk1 † k1
§ k‹

§ Zk‹ , where k‹
§ Zk‹ due to Lemma 3.38, which shows that

maxkPK apx, kq “ k‹. However, this contradicts the fact that Zk‹ § Zk1 since k1
§ k‹ by

assumption and Zk is a monotonically non-increasing function in k. As for (ii), assume to the

contrary that there is k1
§ Zk1 such that k1

° k‹. We then have k‹
† k1

§ Zk1 § Zk‹ , where the

last inequality holds because Zk is a monotonically non-increasing function in k. This implies

that apx, k1
q “ k1

° apx, k‹
q, which contradicts the fact that k‹

P argmax apx, kq.

Thus, Theorem 3.27 allows us to evaluate dS for 'mVaR for use in our 2VF(d) formulation to
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solve the ambiguous chance constrained CVRP.

3.6 Numerical Experiments

Our numerical experiments use the standard CVRP benchmark instances compiled by [D0́6].

Each instance label ‘X-nY -kZ’ indicates the literature source X of the instance, the number

Y of nodes (including the depot) as well as the number Z of vehicles. Since our ambiguity

set construction below is based on geographic information, we disregard instances that do not

provide Euclidean coordinates for the nodes. Following the literature convention, we identify

the transportation costs cij with the 2-norm distance between i and j, rounded to the nearest

integer number.

The customer demands in the CVRP benchmark problems are deterministic. To construct

stochastic demands whose distribution is characterized by an ambiguity set of the form (3.6),

we subdivide each instance into 4 quadrants (northwest, northeast, southwest and southeast)

according to the nodal coordinates. We then create W “ 4 scenarios with equal probabilities

ŝ “ e{4, each of which is associated with one of the quadrants. In each scenario we set the

expected demands of the customers in the associated quadrant to 110%, of the customers in the

horizontally or vertically adjacent quadrants to 100%, and of the customers in the diagonally

opposite quadrant to 90% of the nominal demands from the deterministic instance. The lower

and upper demand bounds undercut and exceed these expected demands in each scenario by

10% of the nominal demands. The mean absolute deviations of the customer demands are set

to those of a Normal distribution that is centered at the mean demands and that places 90%

of its probability mass onto the demand interval. Since the CVRP benchmark instances tend

to have little slack in the vehicle capacities, we follow [GWF13a] and [GW20] and increase the

vehicle capacities Q by 20% to ensure that the distributionally robust instances are feasible.

We implemented a ‘vanilla’ CVRP solution scheme that augments the branch-and-cut capacility

of CPLEX Studio 20.1.0 with an RCI cut separation procedure that follows the tabu search

algorithm outlined by [ABB`98]. Our method is implemented in C++, and the source code



3.6. Numerical Experiments 147

Figure 3.2: Runtimes and optimality gaps for our branch-and-cut schemes. Shown are the
runtimes (left graph) and optimality gaps after 12 hours (right graph) for the determinis-
tic branch-and-cut scheme as well as the distributionally robust branch-and-cut schemes with
known scenario probabilities.

is available on the authors’ webpages2 (see Footnote 2). All problems are solved in single-core

mode on an Intel Xeon 2.66GHz processor with 8GB main memory and a runtime limit of 12

hours.

3.6.1 Runtime Comparison

In our first experiment, we compare the runtimes and optimality gaps of our branch-and-cut

algorithm for the deterministic CVRP with those of our algorithm for the distributionally

robust CVRP under the 90%-CVaR risk measure. To this end, we consider two variants of the

deterministic CVRP: one (‘deterministic’) where the original vehicle capacities are employed,

and another one (‘relaxed deterministic’) where the vehicle capacities are increased by 20% as in

the uncertainty-a↵ected CVRP. We also consider our ambiguity set (3.6) in the ‘stochastic’ case,

the scenario probabilities are known to be ŝ “ e{4. The results are summarized in Figure 3.2

and presented in further detail in Table C.1 in Appendix C.

2The source code is available at: http://wp.doc.ic.ac.uk/wwiesema/sourcecodes/.
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Figure 3.3: Minimum number of vehicles and optimal transportation costs for A-n32-k5 with
an exponential class of disutility functions parameterized by a. The vertical lines indicate the
parameter ranges covered by 5, 6, . . . , 11 vehicles (from left to right).

The results show that, as expected, increasing the vehicles’ capacity by 20% in the determin-

istic CVRP substantially simplifies the problem instances. If the price to paid by accounting

for uncertainty was to be small, we would expect the runtimes and optimality gaps for the

stochastic and ambiguous instances to be contained in the interval spanned by the determin-

istic and relaxed deterministic instances. In fact, although the stochastic instance enjoy a

capacity increase of 20% (akin to the relaxed deterministic instances), the incorporation of

demand variability and distributional ambiguity as well as risk and ambiguity aversion reduce

the factually available vehicle capacity. On the other hand, our construction of the stochastic

instance guarantees that the uncertain customer demands never exceed 20% of their nominal

values from the deterministic instances. The results show that, broadly, the runtimes and

optimality gaps for the stochastic instance are upper and lower bounded by those of the deter-

ministic and the relaxed deterministic instances, which indicates that the computational price

to be paid is mainly determined by the slack in the vehicle capacities and less so by the incor-

poration of risk and ambiguity. We thus conclude that the same branch-and-cut algorithm can

solve all three problem classes in runtimes and optimality gaps that are of the same order of

magnitude.
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Figure 3.4: Optimal route plans for A-n32-k5 with exponential disutilities a “ 0 (left; 5 vehi-
cles), a “ 3.41E-3 (middle; 7 vehicles) and a “ 7.81E-3 (right; 9 vehicles).

3.6.2 The Impact of Risk Aversion

In our second experiment, we focus on the benchmark instance A-n32-k5 and solve the distri-

butionally robust CVRP associated with the family of exponential disutility functions Uapqq “

pexppaqq ´ 1q{a, a ° 0, and U0pqq “ q. The scalar parameter a P R` controls the risk aversion

of the decision maker: a “ 0 reflects a neutral stance towards demand variability, whereas

larger values correspond to an increasing risk aversion. For every value of a, we set the budget

B in (3.5) to B “ Uap1.2Qq, where Q is the nominal vehicle capacity from the deterministic

CVRP instance and the factor 1.2 corresponds to the 20% capacity increase described earlier.

This choice ensures that the feasibility of route plans for deterministic demands is una↵ected

by the choice of the risk aversion a and coincides with that of the deterministic instance (apart

from the 20% capacity increase). Figure 3.3 visualizes how the minimum number of vehicles

required to serve the customer demands, as well as the resulting transportation costs, vary as a

function of the risk aversion a. Moreover, Figure 3.4 illustrates the optimal route plans for three

di↵erent choices of a. We observe that higher degrees of risk aversion require larger numbers

of vehicles to serve the customer demands, which in turn tends to increase the transportation

costs (apart from two dips where the necessity to increase the number of vehicles results in

smaller overall costs).
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3.7 Conclusion

In this chapter, we have extensively studied the CVRP under risk and ambiguity. We have

characterized the CVRP variants that can be treated under the 2VF formulation allowing

solution via the branch-and-cut algorithm. We proposed custom demand estimators suitable

to a wide choice of risk measures and ambiguity sets for the distributionally robust CVRP.

The work in this chapter allows a variety of CVRP variants to be handled by a single solution

framework with only minimal adaptations.

We also derived schemes to e�ciently evaluate demand estimators for a wide range of risk

measures under a scenario-wise first-order ambiguity set for fixed scenario probabilities. In the

future, algorithms could be developed to consider the case of uncertain scenario probabilities

wherein S is a convex subset of the probability simplex in RW in the definition of (3.6). This

will allow our framework to be extended to an even wider range of CVRP variants.

In the previous chapter, we have shown that the distributionally robust CVRP under value-

at-risk and moment ambiguity sets can be solved without much undue di�culty compared to

the deterministic CVRP. It is, thus, of interest to numerically compare the performance of

the distributionally robust CVRP under di↵erent consideration of risk measures and ambiguity

sets.

3.8 Appendix

We first prove a lemma that we have used repeatedly to prove a number of results in this

chapter. This lemma proves that the below mentioned properties of a risk measure carry on to

the worst-case risk. The rest of the appendix details lemmas that are required for the proofs

of results in the main text.

Lemma 3.28 Fix x,y P r0, 1s
n. If ⇢PpxJeqq satisfies (X) for all P P P, then 'pxq “ supPPP ⇢PpxJeqq

satisfies (X), where (X) could be any property (i) to (iv) in List 1.
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List 1. [Properties of Risk Measures] For any random variable eq and x,y P r0, 1s
n, ⇢P satisfies:

(i) monotonicity: If xJeq § yJeq P-a.s., then ⇢PpxJeqq § ⇢PpyJeqq.

(ii) positive homogeneity: For � • 0, ⇢Pp�xJeqq “ �⇢PpxJeqq.

(iii) subadditivity: ⇢PpxJeq ` yJeqq § ⇢PpxJeqq ` ⇢PpyJeqq.

(iv) convexity: For � P r0, 1s, ⇢Pp�xJeq ` p1 ´ �qyJeqq § �⇢PpxJeqq ` p1 ´ �q⇢PpyJeqq.

Proof of Lemma 3.28. Fix x,y P r0, 1s
n. We begin by showing (i). Assume that xJeq § yJeq

P-a.s. for all P P P . Following from monotonicity of ⇢P for all P P P , we notice that

⇢PpxJeqq § ⇢PpyJeqq @P P P “ñ ⇢PpxJeqq § sup
PPP

⇢PpyJeqq @P P P

ñ sup
PPP

⇢PpxJeqq § sup
PPP

⇢PpyJeqq ñ 'pxq § 'pyq

Thus, for x § y, 'pxq § 'pyq.

We next show (ii). Consider any � • 0. We observe the following:

'p�xq “ sup
PPP

⇢Pp�xJeqq “ sup
PPP

�⇢PpxJeqq “ � sup
PPP

⇢PpxJeqq “ �'pxq

The second identity above follows from positive homogeneity of ⇢P for all P P P .

Next, we show (iii). We notice the following:

⇢Pppx ` yq
Jeqq § ⇢PpxJeqq ` ⇢PpyJeqq @P P P

“ñ ⇢Pppx ` yq
Jeqq § sup

PPP
p⇢PpxJeq ` ⇢PpyJeqqq @P P P

“ñ ⇢Pppx ` yq
Jeqq § sup

PPP
⇢PpxJeqq ` sup

PPP
⇢PpyJeqq @P P P

ñ sup
PPP

⇢Pppx ` yq
Jeqq § sup

PPP
⇢PpxJeqq ` sup

PPP
⇢PpyJeqq

ñ 'px ` yq § 'pxq ` 'pyq

The second implication follows from the subadditivity of sup.
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To show (iv), consider any � P r0, 1s. Following from the assumption of convexity of ⇢P for all

P P P , we have

⇢Pp�xJeq ` p1 ´ �qyJeqq § �⇢PpxJeqq ` p1 ´ �q⇢PpyJeqq @P P P

“ñ ⇢Pp�xJeq ` p1 ´ �qyJeqq § supPPPp�⇢PpxJeqq ` p1 ´ �q⇢PpyJeqqq @P P P

“ñ ⇢Pp�xJeq ` p1 ´ �qyJeqq § � supPPP ⇢PpxJeqq ` p1 ´ �q supPPP ⇢PpyJeqq @P P P

ñ supPPP ⇢Pp�xJeq ` p1 ´ �qyJeqq § � supPPP ⇢PpxJeqq ` p1 ´ �q supPPP ⇢PpyJeqq

ñ 'p�x ` p1 ´ �qyq § �'pxq ` p1 ´ �q'pyq

The second implication follows from the subadditivity of sup.

Lemma 3.29 (Expected Disutility) The worst-case expected disutility ⇢ED “ supPPP P-ED

with

P-EDpxJeqq “ EP
“
U

`
xJeq

˘‰
,

where the disutility function U is monotone and convex with Up0q • 0, is monotone, convex

and not subadditive. Moreover for an ambiguity set of the form (3.6) with S “ tbsu, ⇢ED a↵ords

a W p2n ` 1q-point worst-case distribution that can be computed with Algorithm 2 and that is

independent of U and x.

Proof of Lemma 3.29. Note that EPrUp¨qs is monotone and convex for all P P P since

Up¨q is monotone and convex by assumption. Following from Lemma 3.28, ⇢ED is monotone

and convex since P-ED is monotone and convex. We next show that ⇢ED is not subadditive.

To this end, consider P of the form (3.6) with W “ 2, s “ p0.3, 0.7q
J, and bqw

“ qw
“ qw,

and assume for simplicity that the expectation and mean absolute deviation constraints are

absent (the example can easily be adapted to the presence of these constraints). Consider

a CVRP instance with n “ 2, bq1
“ p5, 7q

J, bq2
“ p6, 3q

J, UpXq “ X2, x1 “ p1, 0q
J and

x2 “ p0, 1q
J. We have ⇢EDpxJ

1 eqq “ 32.7, ⇢EDpxJ

2 eqq “ 21 and ⇢EDppx1 ` x2q
Jeqq “ 99.9.

Clearly, ⇢EDpxJ

1 eqq ` ⇢EDpxJ

2 eqq “ 53.7 † ⇢EDppx1 ` x2q
Jeqq. Therefore, ⇢ED is not subadditive.
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Notice that 'pxq “ ⇢EDpxJeqq satisfies the assumptions of Theorem 3.15. It follows that

P‹
“
∞

wPW
∞2n`1

j“1 ŝwp‹

wj ¨ �q‹
wj

P P where p‹

wj, q
‹

wj for j “ 1, . . . , 2n` 1 and w P W are obtained

from Algorithm 2 in Appendix B is a worst-case distribution, and P‹ is independent of Up¨q

and x. Therefore, we have ⇢EDpxJeqq “
∞

wPW ŝw
∞2n`1

j“1 p‹

wjU
`∞

iPVC
xiq‹

wji

˘
.

Lemma 3.30 (Essential Riskiness Index) The essential riskiness index ⇢ERI with

⇢ERIpx
Jeqq “ min

"
↵ • 0 : sup

PPP
EP

“
max

 
xJeq ´ ⇢, ´↵

(‰
§ 0

*
,

where xJeq ´ ⇢ represents the excess demand over the acceptable demand threshold ⇢, is mono-

tone, convex and not subadditive. Moreover, for an ambiguity set P of the form (3.6) with

S “ tbsu, ⇢ERIpxJeqq can be computed in time OpnW log nW q, with an initial computation of

time Opn2W q for each 2VF(d) instance.

Proof of Lemma 3.30. Notice that the mapping X fiÑ maxtX,´↵u is convex for a fixed

↵ • 0. Consider an ambiguity set P of the form (3.6) with S “ tbsu. Fixing ↵ • 0, 'pxq “

⇢ERIpxJeqq satisfies the assumptions of Theorem 3.15. Using Theorem 3.15, we have P‹
“

∞
wPW

∞2n`1
i“1 ŝwp‹

wj ¨ �q‹
wj

P P is a worst-case distribution where p‹

wj, q
‹

wj for j “ 1, . . . , 2n ` 1

and w P W are obtained from Algorithm 2 in Appendix B, and P‹ is independent of ⇢, ↵ and x.

Therefore, supPPP EPrmaxtxJeq ´ ⇢,´↵us “
∞

wPW ŝw
∞2n`1

j“1 p‹

wj maxtxJq‹

wj ´ ⇢,´↵u. Hence,

we have

⇢ERIpx
Jeqq “ min

#
↵ • 0

ˇ̌
ˇ

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj max
 
xJq‹

wj ´ ⇢,´↵
(

§ 0

+
.

The expression
∞

wPW ŝw
∞2n`1

j“1 p‹

wj maxtxJq‹

wj ´ ⇢,´↵u is monotonically non-increasing and

piecewise a�ne in ↵ with breakpoints t⇢ ´ xJq‹

wj : w P W , j “ 1, . . . , 2n ` 1u. We can

thus sort these breakpoints in time OpnW log nW q and conduct a binary search over them to

determine the root of the equation
∞

wPW ŝw
∞2n`1

j“1 p‹

wj maxtxJq‹

wj ´ ⇢,´↵u “ 0. The binary

search requires Oplog nW q iterations, and the evaluation of the summation in each iteration
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requires time OpnW q. Since the worst-case distribution P‹ is independent of ↵ and x, it can

be determined once per 2VF(d) instance.

By Proposition 3 of [ZBST18], ⇢ERIp¨q is convex. Next, we prove the monotonicity of ⇢ERI . Con-

sider x,y P r0, 1s
n and assume that xJeq § yJeq P-a.s. for all P P P . This implies that xJeq §

yJeq P‹-a.s. Let ↵‹

y :“ ⇢ERIpyJeqq. By our assumption, we have EP‹rmaxtxJeq ´ ⇢,´↵‹

yus §

EP‹rmaxtyJeq ´ ⇢,´↵‹

yus § 0. This implies that ↵‹

y is a feasible solution for ⇢ERIpxJeqq. There-

fore, we must have ⇢ERIpxJeqq § ↵‹

y “ ⇢ERIpyJeqq, which proves the monotonicity of ⇢ERI . Next

we show that ⇢ERI is not subadditive. To this end, consider a CVRP instance with n “ 2

customers and an ambiguity set P of the form (3.6) with W “ 2, S “ tŝu and q “ q “ bq

where bs “ p0.2, 0.8q
J, bq1

“ p5, 10q
J and bq2

“ p10, 5q
J. Consider x “ p1, 0q

J and y “ p0, 1q
J

and ⇢ “ 12. We have ⇢ERIppx ` yq
Jeqq “ 8, ⇢ERIpxJeqq “ ⇢ERIpyJeqq “ 0. Clearly, ⇢ERI does

not satisfy subadditivity.

Lemma 3.31 (Expectiles) The worst-case expectile risk measure ⇢E with

⇢E
`
xJeq

˘
“ argmin

uPR

"
sup
PPP

↵EP

„´“
xJeq ´ u

‰
`

¯2
⇢

` p1 ´ ↵q sup
PPP

EP

„´“
xJeq ´ u

‰
´

¯2
⇢*

,

where r¨s` “ maxt¨, 0u, r¨s´ “ maxt´¨, 0u and ↵ P r1{2, 1q, is monotone, convex and subaddi-

tive. Moreover, for an ambiguity set of the form (3.6) with S “ tbsu, ⇢E can be computed in

time OpnW log nW q, with an initial computation of time Opn2W q for each 2VF(d) instance.

Proof of Lemma 3.31. Fix an ambiguity set P of the form (3.6) with S “ tbsu, and

x P r0, 1s
n and ↵ P r1{2, 1q. Fix u P R. Notice that ry´us´ “ ru´ys` for y P R. The functions

ry ´ us`, ry ´ us´ and y2 are convex in y. Moreover, y2 is an increasing function in y which

implies that pry´us`q
2 and pry´us´q

2 are convex in y. Thus, supPPP EP

„´“
xJeq ´ u

‰
`

¯2
⇢
and

supPPP EP

„´“
xJeq ´ u

‰
´

¯2
⇢
satisfy the assumptions of Theorem 3.15, which implies that the

worst-case distribution is the W p2n ` 1q-point distribution P‹
“

∞
wPW

∞2n`1
j“1 ŝwp‹

wj ¨ �q‹
wj

P P

that is independent of u and x, and p‹

wj, q
‹

wj for w P W and j “ 1, . . . , 2n`1 are obtained from
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Algorithm 2 in Appendix B. Accordingly, we have

sup
PPP

EP

„
↵

´“
xJeq ´ u

‰
`

¯2
⇢

` sup
PPP

EP

„
p1 ´ ↵q

´“
xJeq ´ u

‰
´

¯2
⇢

“

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

«
↵

˜«
ÿ

iPVC

xiq
‹

wji ´ u

�

`

¸2

` p1 ´ ↵q

˜«
ÿ

iPVC

xiq
‹

wji ´ u

�

´

¸2�

The above expression is convex in u with breakpoints t
∞

iPVC
xiq‹

wji : w P W , j “ 1, . . . , 2n`1u.

We can thus sort these breakpoints in time OpnW log nW q and conduct a trisection search over

them to determine the value of u that minimizes this expression. The trisection search requires

Oplog nW q iterations, and the evaluation of the expression in each iteration requires time

OpnW q since the value of
∞

iPVC
xiq‹

wji can be precomputed and stored for a 2VF(d) instance.

Since the worst-case distribution P‹ is independent of u and x, it can be determined once per

2VF(d) instance.

From the above discussion, we notice that

⇢E
`
xJeq

˘
“ argmin

uPR

"
EP‹

„
↵

´“
xJeq ´ u

‰
`

¯2
⇢

` EP‹

„
p1 ´ ↵q

´“
xJeq ´ u

‰
´

¯2
⇢*

where P‹ is the worst-case distribution identified via Theorem 3.15. Following from Proposi-

tion 6 of [BKMG14], ⇢E is coherent for ↵ P r1{2, 1q which implies that it is monotone, convex

and subadditive for ↵ P r1{2, 1q.

Lemma 3.32 (Entropic Risk) The worst-case entropic risk measure, ⇢ent “ supPPP P-ent

with

P-ent
`
xJeq

˘
“

1

✓
logEP

”
exp✓¨xJ eq

ı
,

where ✓ ° 0, is monotone, convex and not subadditive. Moreover, for an ambiguity set P of

the form (3.6) with S “ tbsu, ⇢ent a↵ords a W p2n ` 1q-point worst-case distribution that can be

computed with Algorithm 2 and that is independent of ✓ and x.

Proof of Lemma 3.32. By Definition 2.3 of [FK11], P-ent is monotone and convex. Fol-
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lowing from Lemma 3.28, 'pxq “ ⇢entpxJeqq is monotone and convex. To show that ⇢ent

is not subadditive, consider the ambiguity set described in the proof of Lemma 3.29. Let

n “ 2, ✓ “ 1, x1 “ p1, 0q
J and x2 “ p0, 1q

J. Then ⇢entpxJ

1 eqq “ 5.79, ⇢entpxJ

2 eqq “ 5.84 and

⇢entppx1`x2q
Jeqq “ 17.81. Clearly, ⇢entppx1`x2q

Jeqq ° 11.63 “ ⇢entpxJ

1 eqq`⇢entpxJ

2 eqq, implying

that ⇢ent is not subadditive.

For fixed x P r0, 1s
n, we have

sup
PPP

„
1

✓
logEP

”
exp✓¨xJ eq

ı⇢
“

1

✓
sup
PPP

”
logEP

”
exp✓¨xJ eq

ıı

“
1

✓

„
log sup

PPP
EP

”
exp✓¨xJ eq

ı⇢

The second identity holds because x fiÑ logpxq is an increasing function. Notice that the

embedded worst-case expectation satisfies the assumptions of Theorem 3.15, which implies that

the worst-case distribution is theW p2n`1q-point distribution P‹
“
∞

wPW
∞2n`1

j“1 ŝwp‹

wj ¨�q‹
wj

P P

that is independent of ✓ and x, and p‹

wj, q
‹

wj for w P W and j “ 1, . . . , 2n`1 are obtained from

Algorithm 2 in Appendix B. Hence, we have

sup
PPP

EP

”
exp✓¨xJ eq

ı
“

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

”
exp✓¨

∞
iPVC xiq‹

wji

ı
,

which implies that

sup
PPP

1

✓
logEP

”
exp✓¨xJ eq

ı
“

1

✓
log

«
ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

”
exp✓¨

∞
iPVC xiq‹

wji

ı�
.

Lemma 3.33 (Requirements Violation Index) The requirements violation index ⇢RV with

⇢RVpxJeqq “ inf
 
↵ • 0 : C↵pxJeqq § ⇢

(
,

where C↵ is the worst-case certainty equivalent under an exponential disutility and ⇢ is the

acceptable demand threshold, is monotone, convex but not subadditive. Moreover, for an ambi-



3.8. Appendix 157

guity set P of the form (3.6) with S “ tbsu, ⇢RVpxJeqq can be evaluated using bisection search,

with an initial computation of time Opn2W q for each 2VF(d) instance.

Proof of Lemma 3.33. Fix an ambiguity set P of the form (3.6) with S “ tbsu and x P r0, 1s
n.

Replacing the worst-case certainty equivalent with its definition and using Lemma 3.32 with

✓ “ 1{↵, we have

C↵pxJeqq “ sup
PPP

↵ logEP

ˆ
exp

ˆ
xJeq
↵

˙˙
“ ↵ log

˜
ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj exp

˜
ÿ

iPVC

xiq
‹

wji{↵

¸¸
,

where p‹

wj, q
‹

wj for j “ 1, . . . , 2n` 1 and w P W are obtained from Algorithm 2 in Appendix B.

By Lemma 1 of [JQS16], lim↵Ñ8 C↵pxJeqq “ supPPP EPrxJeqs. By the abandonment property

of ⇢RV [JQS16, Proposition 1], if supPPP EPrxJeqs ° ⇢, then ⇢RVpxJeqq “ 8. Note that the

function C↵ is monotonically decreasing in ↵ [JQS16, Lemma 1]. If supPPP EPrxJeqs § ⇢, it

implies that there exists a finite value for ⇢RVpxJeqq and we proceed as follows. For ↵ “ 1,

we check if C↵pxJeqq § ⇢. If it is, we do a bisection search over [0, 1] to find an ✏-minimizer.

Otherwise, starting from ↵ “ 1 we search for an ↵u by multiplying ↵ by 2 at every search

iteration, such that C↵upxJeqq § ⇢ holds. We then do a bisection search over r↵u{2,↵us to find

⇢RVpxJeqq.

The convexity of ⇢RV follows from Proposition 1 of [JQS16]. We now prove that ⇢RV is monotone.

Consider x,y P r0, 1s
n and assume that xJeq § yJeq P-a.s. for all P P P . This implies that

xJeq § yJeq P‹-a.s. Let ↵‹

y :“ ⇢RVpyJeqq. By our assumption, we have

↵‹

y log

˜
ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj exp

˜
ÿ

iPVC

xiq
‹

wji{↵
‹

y

¸¸
§ ↵‹

y log

˜
ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj exp

˜
ÿ

iPVC

yiq
‹

wji{↵
‹

y

¸¸
§ ⇢.

Since P‹ is independent of x,y, this implies that ↵‹

y is a feasible solution for ⇢RVpxJeqq. There-

fore, we must have ⇢RVpxJeqq § ↵‹

y “ ⇢RVpyJeqq, which proves the monotonicity of ⇢RV. Finally,

we show that ⇢RV is not subadditive. To this end, consider the same CVRP instance and P as in

the proof of Lemma 3.30. Consider x “ p1, 0q
J, y “ p0, 1q

J and ⇢ “ 12. We have ⇢RVpxJeqq “ 0,

⇢RVpyJeqq “ 0 and ⇢RVppx ` yq
Jeqq “ 8. Clearly, ⇢RV does not satisfy subadditivity.
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Lemma 3.34 (CVaR) The worst-case conditional value-at-risk, ⇢CVaR “ supPPP P-CVaR1´✏

with

P-CVaR1´✏px
Jeqq “ inf

uPR
u `

1

1 ´ ✏
EPrxJeq ´ us`

where ✏ P r0, 1q is monotone, convex and subadditive. Moreover, for an ambiguity set P

of the form (3.6) with S “ tbsu and for x P r0, 1s
n, ⇢CVaRpxJeqq can be evaluated in time

OpnW logpnW qq, with an initial computation time of Opn2W q that needs to be executed once

per 2VF(d) instance.

Proof of Lemma 3.34. By Corollary 12 of [RU02], P-CVaR is coherent, which implies

that it is monotone, convex and subadditive. Following from Lemma 3.28, ⇢CVaR is monotone,

convex and subadditive. For x P r0, 1s
n, we have

'pxq “ sup
PPP

P-CVaR1´✏px
Jeqq “ sup

PPP
inf
uPR

u`
1

1 ´ ✏
EPrxJeq´us` “ inf

uPR
u`

1

1 ´ ✏
sup
PPP

EPrxJeq´us`.

The final identity here follows from Proposition 3.1 of [SK02]. For a fixed u P R, the function

rxJq ´ us` is convex. Thus, supPPP EPrxJeq ´ us` satisfies the assumptions of Theorem 3.15.

Hence, the worst-case distribution is the W p2n`1q-point distribution P‹
“
∞

wPW
∞2n`1

j“1 ŝwp‹

wj ¨

�q‹
wj

P P that is independent of P-CVaR and x, and p‹

wj, q
‹

wj for w P W and j “ 1, . . . , 2n ` 1

are obtained from Algorithm 2 in Appendix B. It follows that

sup
PPP

EPrxJeq ´ us` “

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

«
ÿ

iPVC

xiq
‹

wji ´ u

�

`

where p‹

wj, q
‹

wji for j “ 1, . . . , 2n ` 1 and w P W is obtained from Algorithm 2. Thus,

⇢CVaRpxJeqq “ inf
uPR

u `

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wjrxiq
‹

wji ´ us`.

Note that the objective function is convex and has kinks at q‹

wji where j “ 1, . . . , 2n ` 1 and

w P W . Hence, we can obtain the optimal u‹ by performing a trisection search over these

breakpoints that are sorted in time OpnW logpnW qq. The trisection search requires OpnW q

iterations, and Each iteration requires time OpnW q to evaluate the expression assuming that
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Algorithm 1: Trisection Algorithm for finding u‹ for CVaR
Input: Let �p2n`1q¨pw´1q`j “ xiq‹

wji such that �1 § �2 § . . . § �L where
L “ p2n ` 1q ˆ W , j “ 1, . . . , 2n ` 1, w P W .

Initialize a “ 1, b “ p2n ` 1q ˆ W ;
while |a ´ b| • 1 do

c “ a ` rpb ´ aq{3s; d “ a ` r2pb ´ aq{3s;
fp�cq “ �c `

∞
wPW ŝw

∞2n`1
j“1 r

∞
iPVC

xiq‹

wji ´ �cs`, fp�dq “

�d `
∞

wPW ŝw
∞2n`1

j“1 r
∞

iPVC
xiq‹

wji ´ �ds`;

if fp�cq † fp�dq then b – d;
else if fp�cq ° fp�dq then a – c;
else a – c, b – d;

end
return fp�aq;

we are storing value of xJeq. The overall algorithm to find u‹ is outlined in Algorithm 1.

Lemma 3.35 (Service Fulfilment Risk Index) The service fulfillment risk index ⇢SRI with

⇢SRI

`
xJeq

˘
“ inf

!
↵ • 0

ˇ̌
ˇ ⇢CVaR�

`
maxtxJeq ´ ⇢,´↵u

˘
§ 0

)

where � P r0, 1s and xJeq ´ ⇢ represents the excess demand over the acceptable demand thresh-

old ⇢, is monotone, convex but not subadditive. Moreover, for an ambiguity set P of the

form (3.6) with S “ tbsu and for x P r0, 1s
n, ⇢SRIpxJeqq can be computed to �-accuracy in time

O pnW log pM{��qq where M “ ⇢´
∞

wPW ŝw
∞2n`1

j“1 p‹

wj

∞
iPVC

xiq‹

wji, with an initial computation

time of Opn2W q that needs to be executed once per 2VF(d) instance.

Proof of Lemma 3.35. Following from Theorem 1 of [ZZLS21], ⇢SRI can be equivalently

expressed as

⇢SRI

`
xJeq

˘
“ inf

"
↵ • 0 : sup

PPP
EP

“
max

 
xJeq ´ ⇢ ` ↵, 0

(‰
§ p1 ´ �q↵

*
.

Fix an ambiguity set P of the form (3.6) with S “ tbsu, and x P r0, 1s
n. Since the function

maxtxJeq ´ ⇢ ` ↵, 0u is convex for a fixed ↵ • 0, supPPP EPrmaxtxJeq ´ ⇢ ` ↵, 0us satisfies

the assumptions of Theorem 3.15. Hence, the worst-case distribution is the W p2n ` 1q-point
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distribution P‹
“
∞

wPW
∞2n`1

j“1 ŝwp‹

wj ¨ �q‹
wj

P P that is independent of ⇢ and x, and p‹

wj, q
‹

wj for

w P W and j “ 1, . . . , 2n ` 1 are obtained from Algorithm 2 in Appendix B. Accordingly, we

have

sup
PPP

EPrmaxtxJeq ´ ⇢ ` ↵, 0us “

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

«
max

#
ÿ

iPVC

xiq
‹

wji ´ ⇢ ` ↵, 0

+�
.

Therefore,

⇢SRI

`
xJeq

˘
“ min

#
↵ • 0 :

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

«
max

#
ÿ

iPVC

xiq
‹

wji ´ ⇢ ` ↵, 0

+�
§ p1 ´ �q↵

+

“ min

#
↵ • 0 :

ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

«
max

#
ÿ

iPVC

xiq
‹

wji ´ ⇢ ` ↵, 0

+�
´ p1 ´ �q↵ § 0

+
.

The function in the constraint is convex in ↵. We can use bisection search to find the minimum

↵ for which the constraint is satisfied. To this end, we first find an upper bound ↵u for the

search region for ↵. Note that for the case
∞

iPVC
xiq‹

wji ´ ⇢ ` ↵ § 0, the constraint in the

problem for finding ⇢SRI

`
xJeq

˘
holds trivially. Consider the case

∞
iPVC

xiq‹

wji ´⇢`↵ ° 0. This

implies that ↵ must satisfy the constraint in the definition of ⇢SRI

`
xJeq

˘
:

∞
wPW ŝw

∞2n`1
j“1 p‹

wj

“∞
iPVC

xiq‹

wji ´ ⇢ ` ↵
‰

´ p1 ´ �q↵ § 0

ñ
∞

wPW ŝw
∞2n`1

j“1 p‹

wj

∞
iPVC

xiq‹

wji ´ ⇢ ` ↵ ´ p1 ´ �q↵ § 0

ñ
∞

wPW ŝw
∞2n`1

j“1 p‹

wj

∞
iPVC

xiq‹

wji ´ ⇢ ` �↵ § 0

ñ ↵ §
1
�

´
⇢ ´

∞
wPW ŝw

∞2n`1
j“1 p‹

wj

∞
iPVC

xiq‹

wji

¯

Thus, ↵u “
1
�

´
⇢ ´

∞
wPW ŝw

∞2n`1
j“1 p‹

wj

∞
iPVC

xiq‹

wji

¯
, and the bisection search to find ↵‹ re-

quires O

´
log

´
⇢ ´

∞
wPW ŝw

∞2n`1
j“1 p‹

wj

∞
iPVC

xiq‹

wji{��
¯¯

iterations to obtain a �-minimizer,

and each iteration takes time OpnW q to evaluate the value of the LHS of the constraint.

By Proposition 1 of [ZZLS21], ⇢SRI is convex. Next, we prove the monotonicity of ⇢SRI. Consider

x,y P r0, 1s
n and assume that xJeq § yJeq P-a.s. for all P P P . This implies that xJeq § yJeq
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P‹-a.s. Let ↵‹

y :“ ⇢SRIpyJeqq. By our assumption, we have

EP‹rmaxtxJeq ´ ⇢ ` ↵‹

y, 0us § EP‹rmaxtyJeq ´ ⇢ ` ↵‹

y, 0us § p1 ´ �q↵‹

y.

Since P‹ is independent of ↵‹

y, this implies that ↵‹

y is a feasible solution for ⇢SRIpxJeqq. Therefore,

we must have ⇢SRIpxJeqq § ↵‹

y “ ⇢SRIpyJeqq, which proves the monotonicity of ⇢SRI. Next we

show that ⇢SRI is not subadditive. Consider the same CVRP instance and ambiguity set as

described in the proof of Lemma 3.30. Consider x “ p1, 0q
J, y “ p0, 1q

J, � “ 1 and ⇢ “ 12.

We have ⇢SRIppx ` yq
Jeqq “ 8, ⇢SRIpxJeqq “ ⇢SRIpyJeqq “ 0. Clearly, ⇢SRI does not satisfy

subadditivity.

Lemma 3.36 (Mean Semi-Deviation) The worst-case mean semi-deviation of order u, ⇢MSD “

supPPP P-MSD with

P-MSD
`
xJeq

˘
“ EP

“
xJeq

‰
` ↵

´
EP

“
xJeq ´ EP

“
xJeq

‰‰u
`

¯ 1
u

for u • 1 and ↵ P r0, 1s,

is monotone, convex and subadditive. Moreover, for an ambiguity set P of the form (3.6) with

S “ tbsu and for x P r0, 1s
n, ⇢MSD a↵ords a W p2n` 1q-point worst-case distribution that can be

computed with Algorithm 2, and that is independent of ↵, u and x.

Proof of Lemma 3.36. The mean semi-deviation of order u is coherent [SDR14, Example

6.20], which implies that it is monotone, convex and subadditive. Following from Lemma 3.28,
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supPPP P-MSD is monotone, convex and subadditive. For fixed x P r0, 1s
n, we can write

sup
PPP

„
EP

“
xJeq

‰
` ↵

´
EP

“
xJeq ´ EP

“
xJeq

‰‰u
`

¯1{u
⇢

“ max
sPS

sup
PwPPw:wPW

«
ÿ

wPW
swEPw

“
xJeq

‰
` ↵

˜
ÿ

wPW
swEPw

«
xJeq ´

ÿ

wPW
swEPw

“
xJeq

‰
�u

`

¸1{u �

“ sup
PwPPw:wPW

«
ÿ

wPW
ŝwEPw

“
xJeq

‰
` ↵

˜
ÿ

wPW
ŝwEPw

«
xJeq ´

ÿ

wPW
ŝwEPw

“
xJeq

‰
�u

`

¸1{u �

“ sup
PwPPw:wPW

«
ÿ

wPW
ŝwx

Jµw
` ↵

˜
ÿ

wPW
ŝwEPw

«
xJeq ´

ÿ

wPW
ŝwx

Jµw

�u

`

¸1{u �

“

ÿ

wPW
ŝwx

Jµw
` ↵ sup

PwPPw:wPW

˜
ÿ

wPW
ŝwEPw

«
xJeq ´

ÿ

wPW
ŝwx

Jµw

�u

`

¸1{u

“

ÿ

wPW
ŝwx

Jµw
` ↵

˜
sup

PwPPw:wPW

ÿ

wPW
ŝwEPw

«
xJeq ´

ÿ

wPW
ŝwx

Jµw

�u

`

¸1{u

“

ÿ

wPW
ŝwx

Jµw
` ↵

˜
ÿ

wPW
ŝw sup

PwPPw
EPw

«
xJeq ´

ÿ

wPW
ŝwx

Jµw

�u

`

¸1{u

The second identity follows from the rectangularity of P where P
w is as defined in (3.7). The

third identity holds because S is a singleton. The fourth identity holds from the definition of

EPw . Since u • 1, 1{u P p0, 1s. Note that the function x fiÑ x
1
u is monotonically increasing for

x P R`. The sixth identity then follows. The final identity holds because bs is independent of

P
w.

Notice that the function
“
xJeq ´

∞
wPW ŝwxJµw

‰u
`
is convex, hence supPPP EP

“
xJeq ´

∞
wPW ŝwxJµw

‰u
`

satisfies the assumptions of Theorem 3.15. Thus the worst-case distribution is the W p2n ` 1q-

point distribution P‹
“

∞
wPW

∞2n`1
j“1 ŝwp‹

wj�q‹
wj

P P that is independent of ↵, u and x, and

p‹

wj, q
‹

wj for w P W and j “ 1, . . . , 2n ` 1 are obtained from Algorithm 2 in Appendix B.

Therefore, we have

sup
PwPPw

EPw

«
xJeq ´

ÿ

wPW
ŝwx

Jµw

�u

`

“

2n`1ÿ

j“1

p‹

wj

«
ÿ

iPVC

xiq
‹

wji ´

ÿ

wPW
ŝwx

Jµw

�u

`
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which implies that

⇢MSDpxJeqq “

ÿ

wPW
ŝwx

Jµw
` ↵

¨

˝
ÿ

wPW
ŝw

2n`1ÿ

j“1

p‹

wj

«
ÿ

iPVC

xiq
‹

wji ´

ÿ

wPW
ŝwx

Jµw

�u

`

˛

‚

1
u

.

Lemma 3.37 (Underperformance Risk Index) The underperformance fulfillment risk in-

dex ⇢URI with

⇢URIpx
Jeqq “ inf

"
1

↵
: sup

PPP
 Pp↵pxJeq ´ ⇢qq § 0, ↵ ° 0

*

where  P is a monotone, translation invariant, convex risk measure that can be expressed as the

expectation of a convex function and xJeq´⇢ is the excess demand over an acceptable threshold

⇢, can be evaluated using bisection search, with an initial computation of time Opn2W q that

needs to be executed once per 2VF(d) instance. Moreover, the underperformance risk index is

monotone, convex and subadditive.

Proof of Lemma 3.37. By Definition 3 of [HLQS15], ⇢URI is monotone, convex and positive

homogeneous. Convexity and positive homogeneity of ⇢URI imply that ⇢URI is subadditive.

Fix an ambiguity set P of the form (3.6) with S “ tbsu, and x P r0, 1s
n. Following from

our assumption that  P can be expressed as the expectation of a convex function, we have

supPPP  Pp↵xJeqq “ supPPP EPfp↵pxJeq ´ ⇢qq where f is convex. Since the assumptions of

Theorem 3.15 are satisfied, the worst case distribution is the W p2n ` 1q-point probability

distribution P‹
“

∞
wPW ŝw

∞2n`1
j“1 p‹

wj�q‹
wj

where p‹

wj, q
‹

wj for w P W and j “ 1, . . . , 2n ` 1

are obtained from Algorithm 2 in Appendix B. Thus, we have supPPP  Pp↵pxJeq ´ ⇢qq “

supPPP EPfp↵pxJeq ´ ⇢qq “
∞

wPW ŝw
∞2n`1

j“1 p‹

wjfp↵p
∞

iPVC
xiq‹

wji ´ ⇢qq. Thus, we have

⇢URIpxJeqq “ inf
 

1
↵ : supPPP  P

`
↵pxJeq ´ ⇢q

˘
§ 0, ↵ ° 0

(

“ inf
!

1
↵ :

∞
wPW ŝw

∞2n`1
j“1 p‹

wjf
`
↵p
∞

iPVC
xiq‹

wji ´ ⇢q
˘

§ 0, ↵ ° 0
)

The function f in the constraint is convex in ↵. Thus we can use bisection search to find

the smallest ↵ to ✏-accuracy. The bisection search requires Oplogp↵pfq{✏qq iterations where ↵
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denotes the upper bound on the search region for ↵, and each iteration requires OpMq time to

evaluate the value of the LHS of the constraint. We now find ↵. To this end, note that for a

fixed ↵ ° 0 by the monotone property of  P we have

 �qw

`
↵pxJqw

´ ⇢q
˘

§ sup
PwPPw

 Pw

`
↵pxJeq ´ ⇢q

˘
§  �qw

`
↵pxJqw

´ ⇢q
˘
.

From the definition of ⇢URI, it follows that ⇢URIpxJeqq § inf
 

1
↵ :

∞
wPW ŝwfp↵pxJqw

´ ⇢qq § 0
(
.

Thus, we must have ↵ “ sup
 
↵ ° 0 :

∞
wPW ŝwfp↵pxJqw

´ ⇢qq § 0
(
which can be evaluated

using bisection search once per 2VF(d) instance.

Lemma 3.38 Let k‹
“ min argmaxtapx, kq : k P Ku. Then apx, k‹

q “ k‹.

Proof of Lemma 3.38. Let k‹
“ min argmaxtapx, kq : k P Ku. If k‹

“ 1, we have apx, k‹
q “

1 by definition. Next, consider the case k‹
• 2. Let Zk “ rsupPPP P-VaR1´pk´1q✏

`
xJeq

˘
{Bs.

Then apx, kq “ mintk, Zku. We need to show that k‹
§ Zk‹ .

Assume to the contrary that Zk‹ † k‹ which implies that apx, k‹
q “ Zk‹ . Then Zk‹ § pk‹

´ 1q

because Zk‹ P Z`. Further, note that Zk‹ § Zk‹´1 because supPPP P-VaR1´pk‹´1q✏

`
xJeq

˘
§

supPPP P-VaR1´pk‹´1´1q✏

`
xJeq

˘
. Thus, we have the following two relationships: Zk‹ § pk‹

´1q †

k‹ and Zk‹ § Zk‹´1. The following two cases arise:

Case(i): pk‹
´ 1q § Zk‹´1. We have either Zk‹ § pk‹

´ 1q § Zk‹´1 § k‹ or Zk‹ § pk‹
´ 1q †

k‹
§ Zk‹´1. Clearly, apx, k‹

´ 1q “ pk‹
´ 1q • apx, k‹

q “ Zk‹ . This implies that k‹
´ 1 P

argmaxtapx, kq : k P Ku. This violates the optimality of k‹
“ min argmaxtapx, kq : k P Ku

because k‹
´ 1 † k‹.

Case(ii): pk‹
´ 1q ° Zk‹´1. Following from Zk‹ § pk‹

´ 1q † k‹ and Zk‹ § Zk‹´1, we have

Zk‹ § Zk‹´1 † pk‹
´1q † k‹. We have apx, k‹

´1q “ Zk‹´1 • apx, k‹
q “ Zk‹ which implies that

k‹
´ 1 P argmaxtapx, kq : k P Ku. This violates the optimality of k‹

“ min argmaxtapx, kq :

k P Ku because k‹
´ 1 † k‹.
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Lemma 3.39 Let k‹
“ min argmaxtapx, kq : k P Ku. Then apx, k‹

` 1q § k‹, that is,

supPPP P-VaR1´k‹✏
`
xJeq

˘
§ k‹B.

Proof of Lemma 3.39. From the definition of k‹ we have apx, k‹
` 1q § maxtapx, kq : k P

Ku “ apx, k‹
q. From Lemma 3.38, we have apx, k‹

q “ k‹. This means that

min

"
pk‹

` 1q,

R
sup
PPP

P-VaR1´k‹✏
`
xJeq

˘
{B

V*
§ k‹.

But k‹
` 1 ° k‹. Hence, we have supPPP P-VaR1´k‹✏

`
xJeq

˘
§ k‹B.

Lemma 3.40 For any two random variables X̃1 and X̃2, we have supPPP P-VaR1´✏1´✏2pX̃1 `

X̃2q § supPPP P-VaR1´✏1pX̃1q ` supPPP P-VaR1´✏2pX̃2q.

Proof of Lemma 3.40. Notice that supPPP P-VaR1´✏1´✏2pX̃1`X̃2q § supPPP P-VaR1´✏1pX̃1q`

supPPP P-VaR1´✏2pX̃2q holds if and only if PpX̃1 ` X̃2 § '1 ` '2q • 1 ´ ✏1 ´ ✏2 holds for all

P P P where '1 “ supPPP P-VaR1´✏1pX̃1q and '2 “ supPPP P-VaR1´✏2pX̃2q.

Fix P P P . We observe the following:

PpX̃1 ` X̃2 § '1 ` '2q • PpX̃1 § '1 X X̃2 § '2q

“ 1 ´ PpX̃1 ° '1 Y X̃2 ° '2q

• 1 ´ rPpX̃1 ° '1q ` PpX̃2 ° '2qs

“ 1 ´ r1 ´ PpX̃1 § '1q ` 1 ´ PpX̃2 § '2qs

“ 1 ´ ✏1 ´ ✏2.

The second inequality follows from Bonferroni inequality. Since this holds for any arbitrary

P P P , it holds for all P P P thus proving the statement of the lemma.

Lemma 3.41 For an ambiguity set of the form (3.6), 'mVaR satisfies monotonicity.
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Proof of Lemma 3.41. Consider x,y P r0, 1s
n satisfying x § y. Fix some k P K. Since

P-VaR is monotone [FS10, p. 3], and eq • 0 P-a.s., we have rsupPPP P-VaR1´pk´1q✏pxJeqq{Bs §

rsupPPP P-VaR1´pk´1q✏pyJeqq{Bs following from Lemma 3.28. It follows that

min

"
k,

R
sup
PPP

P-VaR1´pk´1q✏px
Jeqq{B

V*
§ min

"
k,

R
sup
PPP

P-VaR1´pk´1q✏py
Jeqq{B

V*
.

Since this holds for any k P K, it follows that

min

"
k,

R
sup
PPP

P-VaR1´pk´1q✏px
Jeqq{B

V*
§ max

kPK
min

"
k,

R
sup
PPP

P-VaR1´pk1´1q✏py
Jeqq{B

V*
@k P K.

Therefore, we must have

max
kPK

min

"
k,

R
sup
PPP

P-VaR1´pk´1q✏px
Jeqq{B

V*
§ max

kPK
min

"
k,

R
sup
PPP

P-VaR1´pk´1q✏py
Jeqq{B

V*
.

Lemma 3.42 For an ambiguity set of the form (3.6), 'mVaR satisfies subadditivity.

Proof of Lemma 3.42. To prove subadditivity of 'mVaR, we need to show that for all

x1,x2 P r0, 1s
n satisfying x1 ` x2 § e, we have

'mVaRpx1`x2q “ Bmax
kPK

apx1`x2, kq § Bmax
kPK

apx1, kq`Bmax
kPK

apx2, kq “ 'mVaRpx1q`'mVaRpx2q.

(3.9)

From Lemma 3.38, we have maxtapx1, kq : k P Ku “ k‹

1 and maxtapx2, kq : k P Ku “ k‹

2 for

some k‹

1, k
‹

2 P K. Then 'mVaRpx1q “ k‹

1B and 'mVaRpx2q “ k‹

2B.

Assume to the contrary that 'mVaR violates subadditivity. Then there exist x1,x2 P r0, 1s
n
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such that

'mVaRpx1 ` x2q ° 'mVaRpx1q ` 'mVaRpx2q

ñ BmaxkPK apx1 ` x2, kq ° pk‹

1 ` k‹

2qB

ñ maxkPK apx1 ` x2, kq ° k‹

1 ` k‹

2

ñ Dk P K : apx1 ` x2, kq ° k‹

1 ` k‹

2

ñ Dk P tk‹

1 ` k‹

2 ` 1, . . . ,mu : apx1 ` x2, kq ° k‹

1 ` k‹

2

ñ apx1 ` x2, k1
q ° k‹

1 ` k‹

2 for some k‹

1 ` k‹

2 ` 1 § k1
§ m

ñ min
 
k1, rsupPPP P-VaR1´pk1´1q✏

`
px1 ` x2q

Jeq
˘

{Bs
(

° k‹

1 ` k‹

2 for some k‹

1 ` k‹

2 ` 1 § k1
§ m

ñ rsupPPP P-VaR1´pk1´1q✏

`
px1 ` x2q

Jeq
˘

{Bs ° k‹

1 ` k‹

2 for some k‹

1 ` k‹

2 ` 1 § k1
§ m

ñ supPPP P-VaR1´pk1´1q✏

`
px1 ` x2q

Jeq
˘

{B ° k‹

1 ` k‹

2 for some k‹

1 ` k‹

2 ` 1 § k1
§ m

ñ supPPP P-VaR1´pk1´1q✏

`
px1 ` x2q

Jeq
˘

° pk‹

1 ` k‹

2qB for some k‹

1 ` k‹

2 ` 1 § k1
§ m

(3.10)

Let ✏1 “ k‹

1✏ and ✏2 “ k‹

2✏. Since we assumed that ✏ † 1{m, for k1, k2 P K it follows that

✏1, ✏2 P p0, 1q. We have

sup
PPP

P-VaR1´pk1´1q✏

`
px1 ` x2q

Jeq
˘

§ sup
PPP

P-VaR1´pk‹
1`k‹

2q✏

`
px1 ` x2q

Jeq
˘

“ sup
PPP

P-VaR1´✏1´✏2

`
px1 ` x2q

Jeq
˘

§ sup
PPP

P-VaR1´✏1

`
xJ

1 eq
˘

` sup
PPP

P-VaR1´✏2

`
xJ

2 eq
˘

§ pk‹

1 ` k‹

2qB

The first inequality above holds because k1
• k‹

1 ` k‹

2 ` 1. The second inequality above fol-

lows from Lemma 3.40, while the third inequality follows from Lemma 3.39. Clearly, this

violates (3.10) above, and we have that 'mVaR is subadditive. This concludes the proof.



Chapter 4

Optimal Elective Scheduling during the

SARS-CoV-2 Pandemic

4.1 Introduction

In the previous two chapters of this thesis, single-stage decision making problems under uncer-

tainty were studied. The chapters focused on the vehicle routing problem under uncertainty

in particular. In these chapters, the proposed models relax the assumptions in literature, and

develop solution algorithms that scale better than has been proposed in literature so far. This

chapter studies the multi-stage decision-making problem under uncertainty using the dynamic

programming paradigm. As described in Chapter 1, this approach su↵ers from the curse of

dimensionality. This chapter aims to develop a model that can produce approximate solutions

of good quality to large-scale dynamic programming problems.

The first wave of COVID-19 posed challenges to healthcare systems around the world, and

created opportunities for applying our proposed framework. The following paragraphs describe

in detail the research problems that arose in the light of COVID-19, and how this chapter

contributes towards solving those problems.

Across health systems globally, hospitals struggled to meet the demand surges caused by

168
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the SARS-CoV-2 (hereafter COVID) pandemic. Despite the expansion of hospital capacity

(e.g., through field hospitals; [MSC`20] and [CDL`21]) and the implementation of lockdown

measures to smooth over time the pressures on care provision, policy makers were faced with

an unprecedented challenge in managing scarce hospital capacity and treating non-COVID pa-

tients whilst maintaining the ability to respond to any potential future increases in demand for

COVID care.

In this context, care prioritization policies become vital to mitigate the morbidity and mortality

associated with surges of demand overflowing the existing capacity. prioritization policies are

common in health systems where the available resources are insu�cient to cope with significant

seasonal demand peaks [RMA`19]. While those pressures are normally short-lived and do not

require a drastic change in care prioritization or investments in extra capacity, the pressures

of the COVID pandemic are more severe due to its prolonged duration, the uncertainty in the

number of COVID patients that require care, the timing of the demand surges, the intensity

of resource usage required to address the needs of COVID patients and the fact that the

pandemic impacts the entire population. In response, several countries deployed a wide range

of prioritization policies to delay access to care for some patients who are perceived as requiring

less urgent treatment [NHS20d, NIC20]. The National Health Service (NHS) in England,

for example, provided national level guidance on the cancellation of non-urgent elective (i.e.,

planned) procedures as well as a prioritization to intensive care of COVID patients below the

age of 65 and with a high capacity to benefit [GFP20]. The ethical guidelines published by the

German Interdisciplinary Association for Intensive Care and Emergency Medicine discuss the

prioritization to intensive care of COVID patients who do not su↵er from severe respiratory

illness [DIV20]. The Italian College of Anesthesia, Analgesia, Resuscitation and Intensive Care

advised the prioritization to intensive care of COVID patients above 70 years of age that do not

have more than one admission per year for a range of diseases [RBG`20]. We refer the reader to

[JBA20] for a review of the prioritization guidelines applied in di↵erent countries during 2020.

The aforementioned blanket policies tend to prioritize COVID patients in detriment to patients

with other diseases without systematically accounting for the trade-o↵s between the provision

of COVID and non-COVID care. For example, non-prioritized patients that see their planned
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care postponed or cancelled might have a higher capacity to benefit from treatment than those

prioritized; also, these patients’ diseases might progress considerably while they wait for care,

and they may subsequently require emergency or more complex treatment, thus creating further

pressures on hospital capacity. As a result, blanket policies are likely to impact morbidity and

mortality as well as increase the financial burden on health systems. Against this backdrop,

the Nu�eld Council on Bioethics, the UK’s main health and healthcare ethics authority, urged

policy makers to develop optimal tools and national guidance to best allocate scarce hospital

capacity to minimize the detrimental impact the pandemic has on population health [The20].

In this chapter, we develop an optimization-based prioritization scheme that schedules patients

into general & acute (G&A) as well as critical care (CC) so as to minimize overall years of life

lost (YLL),1 hospital costs or a combination of both objectives. We consider a national-level

scale (rather than an individual hospital) in order to inform strategic public health policy-

making, which is particularly relevant in the case of a pandemic a↵ecting an entire country. Our

optimization scheme is dynamic and considers weekly patient cohorts subdivided into di↵erent

patient groups (defined by disease, age group and admission method: elective and emergency)

over a 52-weeks’ time horizon. We model each patient as a dynamic program (DP) whose

states encode the patient’s health status (proxied by the categorization elective/emergency,

recovered or deceased) and treatment condition (waiting for treatment, in G&A or in CC),

whose actions describe the treatment options (admit or move to G&A or to CC, deny care or

discharge from hospital), whose transition probabilities characterize the stochastic evolution of

the patient’s health and whose rewards amount to the years of life gained, the hospital costs

saved, or a combination thereof. Our model simultaneously optimizes the treatment of all

patients while accounting for capacity constraints on the supply side, including the availability

of G&A as well as CC beds and sta↵ (senior doctors, junior doctors and nurses). By clustering

the patients into groups (defined through the same arrival time, disease type, age group and

admission type) that can each be described through the same DP, we obtain a weakly coupled

counting DP that records for each patient group how many patients are in a particular state,

1YLL quantifies the years of life lost due to premature deaths, accounting for the age at which deaths occur.
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and how many times which action is applied to those patients. We show that this weakly

coupled counting DP is amenable to a fluid approximation that gives rise to a tractable linear

program (LP). Moreover, the solutions to this LP allow us to recover near-optimal solutions

to the weakly coupled counting DP with high probability. We demonstrate the power of our

modeling framework in a case study of the NHS in England, where we cluster approximately

10 million patients (the entire population in need of care) into 3,120 patient groups whose

admission we manage over the course of one year in weekly granularity.

The contributions of this chapter may be summarized as follows.

(i) We develop the concept of weakly coupled counting DPs, which constitute large-scale

DPs that are amenable to a tractable fluid relaxation. The fluid relaxation can be solved

as an LP, and it allows recovering high-quality solutions to the weakly coupled counting

DP.

(ii) We apply our findings to a case study of the NHS in England, where we show how weakly

coupled counting DPs allow to prioritize access to elective and emergency care.

While the concept of weakly coupled counting DPs was developed with the outlined healthcare

application in mind, we emphasize its applicability in other applications as well, such as B2C

marketing where current and prospective customers should be assigned to marketing campaigns

based on their purchase likelihood. Here, customers can be modelled as DPs whose states encode

the current product portfolio as well as preferences learnt from previous campaigns, and whose

actions describe the inclusion to (or exclusion from) a particular campaign.

The remainder of the chapter is organized as follows. We present the literature review in

Section 4.2. We introduce weakly coupled counting DPs, which will serve as our model of

the health system, in Section 4.3.1. Section 4.3.2 shows that weakly coupled counting DPs are

amenable to a fluid approximation that allows us to obtain high-quality solutions in polynomial

time. Section 4.4 discusses our case study of the NHS in England, and reports on numerical

results for this case study. Section 4.5 concludes with a discussion of possible extensions to our

model.
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4.2 Literature Review

The methodology and application of this chapter builds upon a rich body of medical and

methodological literature, which we review in the remainder of this section.

Under normal operation, elective care is typically scheduled via prioritization schemes [MCP03,

DRR`20]. Recent months have seen a rapidly growing body of literature that discusses the

scheduling of elective care surgeries in light of the COVID pandemic. In contrast to our

work, which studies hospital care in a broader sense, the majority of that literature focuses

on prioritization of COVID care (e.g., [PWL`20]) or surgeries (mostly for cancer), with most

papers evaluating the impact of the pandemic on elective surgeries [FIS`20, NCH20, SJB`20,

YKD`20], proposing guidelines based on best practices in individual hospitals [AFS20, ESL`20,

TTK`20] or reviewing the guidelines of national authorities [Bur20]. These guidelines are

developed by domain experts and tend to be qualitative in nature [MF20, SHG`20]. In con-

trast, [BPS`20], [BLM`20], [DGN`20], [GCF`20] and [VSR`20] employ machine learning tech-

niques (such as support vector machines, tree ensembles and neural networks) to estimate the

mortality risk of COVID patients, which can subsequently be used as a proxy of need for patient

prioritization. While these contributions are important, they highlight prioritization schemes

within a specific disease or sub-group of patients or care settings within a single hospital, and

they are static and thus consider neither the dynamic nature of surges in demand nor the

complexity of the dynamic needs of patients. In contrast, we propose a national prioritization

scheme across all disease groups that accounts for future demand surges and capacity fluctua-

tions as well as the evolution of the patients’ needs over the course of the pandemic, which to

the best of our best knowledge has not been proposed so far.

As an alternative to static prioritization schemes, the operations research literature has studied

the dynamic management of G&A and CC capacity via admissions and discharge policies. For

example, [BK11] and [MQZ`15] propose capacity management policies for G&A beds using

queueing theory and robust optimization, [CFBE12], [KCO`15] and [OAZ20] develop capacity

management policies for CC beds via queueing theory, DPs and simulation, and [HAVO11] and

[SHDH`19] study hospital-wide capacity management policies using DPs. These approaches
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aim to optimize the often conflicting goals of short-term and long-term patient welfare as well

as hospital costs, subject to constraints on the available resources. In contrast to our work,

these papers focus on individual hospitals, which allows them to model hospital operations

and within-hospital patients’ care pathways at a finer granularity: admissions and discharge

decisions are often taken at an hourly granularity, and some models account for longer-term

implications of decisions such as readmissions.

From a methodological viewpoint, our work contributes to the rich body of research on dy-

namic programming. Dating back to the early work of [Bel52], DPs have become one of the

major paradigms to model, analyze and solve dynamic decision problems a↵ected by uncer-

tainty [Ber95, Put14]. Classical DPs su↵er from the curse of dimensionality since their state

and action spaces tend to grow exponentially with the problem dimension. As a result, several

methodologies have been developed by di↵erent research communities to circumvent the unfa-

vorable scalability of classical DPs through (combinations of) decomposition and approximation

techniques.

Factored Markov decision processes assume that the states of a DP can be described by assign-

ments of values to state variables that evolve and contribute to the system’s rewards largely

independently, and they employ dynamic Bayesian networks to compactly represent the stochas-

tic state evolution. The resulting optimization problems, while still exponential in size, can

often be approximated well through sparse value function approximations that give rise to

polynomial-time solution schemes [BDG95, GKP01, GKP`03]. Translated into our context,

however, the state of a factored Markov decision process would have to record the health and

treatment state of millions of patients, which appears to be beyond the current state of the art

in that domain (which seems to scale to tens or hundreds of state variables). Moreover, factored

Markov decision processes do not o↵er a decomposition in terms of the actions, which is crucial

in our context where the policy maker has to decide upon the treatment of each patient.

The literature on multi-armed and restless bandit problems studies large-scale DPs where inde-

pendent components are coupled through a small number of linking constraints [GGW11]. Since

bandit problems typically assume that only one or a few arms are pulled in every round, which
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amounts to a single or a few patients’ treatment conditions being revised at any time point,

however, their fundamental modeling assumptions appear to be at odds with our intentions.

Approximate dynamic programs o↵er a very general methodology to control large-scale DPs

by approximating the value function through a linear combination of basis functions [BT96,

Pow07]. While this allows to drastically reduce the number of decision variables, the number

of constraints remains exponential and thus necessitates the use of additional approximation

schemes such as constraint sampling [DFVR04]. More importantly, approximate dynamic pro-

grams do not exploit any specific problem structure, which is an essential feature in our problem

where the di↵erent patients evolve largely independently.

More recently, approximate dynamic programs have been adapted by [Haw03] and [AM08] to

weakly coupled DPs, which explicitly account for the decomposability of the overall system into

largely independently evolving constituent DPs that are coupled by a small number of resource

constraints. [AM08] analyze the tightness of two approximation schemes, namely a Lagrangian

relaxation that dualizes the resource constraints and an LP that imposes an additively separable

value function, and they propose solution schemes based on stochastic subgradient descent and

column generation. In our context, the resulting problems would be very large in scale as they

would contain millions of constituent DPs, and it is unlikely that approximation guarantees

similar to ours could be obtained as the constituent DPs are assumed to be pairwise di↵erent

and thus cannot be aggregated to a smaller number of counting DPs.

To the best of our knowledge, the work of [BM16] is the closest to the methodology proposed in

this chapter. The authors develop a fluid approximation for large-scale DPs that decompose into

largely independently evolving constituent DPs. Similar to our approximation, the authors show

that their approximation is a relaxation that o↵ers an upper bound on the optimal objective

value of the original problem. Their formulation, however, scales linearly in the number of

constituent DPs, which in unsuitable for our problem that comprises several million patient

DPs. Moreover, since their approach can model rich dependencies between the constituent

DPs (as opposed to the linear resource constraints that we employ), their action space cannot

describe individual actions for each DP without incurring an exponential growth in problem size.
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Finally, it remains unclear whether the fluid approximation of [BM16] can o↵er performance

guarantees comparable to the ones developed in this chapter.

Notation. For a finite set X “ t1, . . . , Xu, we denote by �pX q the set of all probability

distributions supported on X , that is, all functions p : X Ñ R` satisfying
∞

xPX ppxq “ 1. For

a logical expression E , we let 1rEs “ 1 if E is true and 1rEs “ 0 otherwise.

4.3 Theoretical Contributions

In this section, we introduce the concept of weakly coupled counting dynamic programs and

provide a fluid approximation to allow tractable solution of the otherwise intractable problem

of large-scale weakly coupled dynamic programs.

4.3.1 Weakly Coupled Counting Dynamic Programs

Section 4.3.1.1 shows how multiple DPs, each of which competes for the same set of resources,

can be aggregated to a weakly coupled DP. Subsequently, Section 4.3.1.2 introduces the concept

of a counting DP, which records how many DPs of a similar structure are in a particular state

at any point in time. We will later use DPs to model individual patients and counting DPs

to aggregate patients to patient groups with similar characteristics (arrival time, age group

and disease type), respectively. Finally, we introduce weakly coupled counting DPs, which will

allow us to combine multiple patient groups to represent our model of the entire health system.

4.3.1.1 Weakly Coupled Dynamic Programs

We model individual patients, which form the basis of our healthcare model, as DPs. The states

of the DP record the patient’s health (elective/emergency, recovered or deceased) and treatment

state (waiting for treatment, in G&A or in CC). The action of the DP describe the treatment

options (admit or move to G&A or to CC, deny care or discharge from hospital). Finally, the



176 Chapter 4.

1 2A B

p = 0.5 p = 0.5 p = 1

Figure 4.1: DP with two states and two actions. The rectangular (oval) nodes represent the
states (actions). Each dashed line represents the choice of an action in a period t, whereas the
solid lines represent the state transitions from period t to period t ` 1.

transition probabilities of the DP characterize the stochastic evolution of the patient’s health,

and the rewards amount to the years of life gained, the costs saved, or a combination thereof.

Definition 4.1 (DP) For a finite time horizon T “ t1, . . . , T u, a DP is specified by the tuple

pS,A, q, p, rq, where S “ t1, . . . , Su denotes the finite state space, A “ t1, . . . , Au is the finite

action space with Atpsq Ñ A the admissible actions in state s P S at time t P T , q P �pSq

are the initial state probabilities, p “ tptut with pt : S ˆ A Ñ �pSq, t P T , are the Markovian

transition probabilities, and r “ trtut with rt : S ˆ A Ñ R, t P T , are the expected rewards.

In a DP, a policy ⇡ “ t⇡tut with ⇡t : S Ñ A specifies for each time period t P T and each state

s P S what action ⇡tpsq P A is taken. A feasible policy ⇡ must satisfy ⇡tpsq P Atpsq for all t P T

and s P S. Under the policy ⇡, a DP evolves as follows. The initial state s̃1 is random and

satisfies Prs̃1 “ ss “ qpsq for s P S. For t P T ztT u, the transitions are governed by

P rs̃t`1 “ s1
s “

ÿ

sPS
ptps

1
| s, ⇡tpsqq ¨ P rs̃t “ ss @s1

P S.

The expected total reward of a policy ⇡ is E r
∞

tPT rtps̃t, ⇡tps̃tqqs.

Example 4.2 (DP) Figure 4.1 illustrates a DP with the states 1 and 2 and the actions A

(admissible in both states) and B (admissible in state 2 only). Under action A, the system

transitions to either state with probability 1/2, whereas the system remains in state 2 if action

B is taken. The expected rewards are rtp1,Aq “ 0 and rtp2,Aq “ rtp2,Bq “ 1. As a result, the

unique optimal policy ⇡ takes action A in state 1 and action B in state 2, respectively. If the

initial state probability is q “ r0, 1s
J, the expected total reward of the policy is 1.

Our healthcare model combines all individual patient DPs to a single DP that records the
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state of each patient while also restricting the admissible policies to those that satisfy certain

resource constraints (e.g., the availability of G&A and CC beds, nurses and doctors).

Definition 4.3 (Weakly Coupled DP) For a finite set of DPs pSi,Ai, qi, pi, riq, i P I “

t1, . . . , Iu, over the same time horizon T “ t1, . . . , T u, the weakly coupled DP ptSi,Ai, qi, pi, riuiq

is the DP pS,A, q, p, rq with state space S “
ë

iPI Si, action space A “
ë

iPI Ai with Atpsq “

ë
iPI Aitpsiq, s P S, and

A
C
t psq “

#
a P Atpsq :

ÿ

iPI
ctlipsi, aiq § btl @l P L

+
,

initial state probabilities qpsq “
±

iPI qipsiq for s P S, transition probabilities ptps1
| s, aq “

±
iPI pitps

1

i | si, aiq for s, s1
P S and a P A and expected rewards rtps, aq “

∞
iPI ritpsi, aiq.

Weakly coupled DPs have been studied, among others, by [Haw03] and [AM08]. In a weakly

coupled DP, the admissible actions a P A
C
t psq in state s P S must satisfy the constraints

ai P Aitpsiq of the individual DPs i P I as well as the coupling resource constraints a P A
C
t psq. In

particular, the feasibility of an action ai P Ai for the i-th constituent DP is not just determined

by the state si P Si, but it depends (through the resource constraints) on the states si1 P Si1 ,

i1
P Iztiu, of the other constituent DPs as well. The constraints in A

C
t allow us to model the

resource consumption of individual patients (such as a G&A or CC bed, as well as fractions of

doctor and nurse times – each of which can be modeled as a distinct resource l P L). Note also

that the aggregation of multiple DPs to a weakly coupled DP is lossless in the sense that the

state s P S of a weakly coupled DP records the state si P Si of each constituent DP i P I.

In a weakly coupled DP, a policy ⇡ “ t⇡tut with ⇡t : S Ñ A specifies for each time period

t P T , each DP i P I and each state s P S what action r⇡tpsqsi P Ai is selected. A feasible

policy ⇡ must satisfy ⇡tpsq P A
C
t psq for all t P T and s P S. We emphasize that the policy can

choose the action r⇡tpsqsi P Ai for the i-th DP in view of the states of all other constituent DPs,

rather than just the state si; this is important in view of satisfying the coupling constraints.

Under ⇡, a weakly coupled DP evolves as follows. The initial state s̃1 is random and satisfies
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3 4C D

p = 0.5 p = 0.5 p = 1

Figure 4.2: DP with two states 3 and 4 as well as two actions C (admissible in both states) and D
(admissible in state 4 only). The expected rewards are rtp3,Cq “ 0 and rtp4,Cq “ rtp4,Dq “ 1.

AC

1,3 2,3

1,4 2,4

AD

BC

BD
p = 1

p = 0.25

p = 0.5

p = 0.25

p = 0.5

p = 0.25

p = 0.25 p = 0.5
p = 0.5

Figure 4.3: A weakly coupled DP is itself a DP. The values in the rectangular nodes record the
states of the first and second DP, while the letters in the oval nodes denote the actions applied
to each DP. The action BD violates the resource constraint.

Prs̃1 “ ss “
±

iPI qipsiq “ qpsq for s P S. For t P T ztT u, the transitions are governed by

P rs̃t`1 “ s1
s “

ÿ

sPS

«
π

iPI
pitps

1

i | si, r⇡tpsqsiq

�
¨P rs̃t “ ss “

ÿ

sPS
ptps

1
| s, ⇡tpsqq¨P rs̃t “ ss @s1

P S.

The expected total reward of a policy ⇡ is E r
∞

tPT rtps̃t, ⇡tps̃tqqs.

Example 4.4 (Weakly Coupled DP) Figure 4.3 combines the DP from Example 4.2 with

the DP from Figure 4.2 to a weakly coupled DP that is subjected to the resource constraint

1rs1 “ 2 ^ a1 “ Bs ` 1rs2 “ 4 ^ a2 “ Ds § 1, that is, at most one of the actions B and D can

be selected in any period. As a result, any optimal policy ⇡ selects one of the actions B or D

(but not both) whenever they are admissible.
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4.3.1.2 Weakly Coupled Counting Dynamic Programs

Since it o↵ers a lossless aggregation of its constituent DPs, the state and action spaces of a

weakly coupled DP exhibit an undesirable scaling behavior:

|S| “

π

iPI
|Si| and |A| “

π

iPI
|Ai|

The health system that we intend to model contains approximately 10 million patient DPs

with 15 possible states and 6 possible actions each, thus resulting in a weakly coupled DP

with approximately 1510,000,000 states and 610,000,000 actions. Clearly, such a weakly coupled DP

has to undergo a drastic dimensionality reduction before it is practical from a computational

perspective.

To reduce the computational complexity of weakly coupled DPs, we first show how multiple

DPs with the same state and action spaces and the same time horizon can be aggregated to a

counting DP that records how many DPs are in which state at what point in time. Counting

DPs will allow us to aggregate patients of the same patient group, which is characterized by

the arrival time t P T in our health system as well as the age group and disease type.

Definition 4.5 (Counting DP) For a finite time horizon T “ t1, . . . , T u and n independent

and identically distributed (i.i.d.) copies of a DP pS,A, q, p, rq, a counting DP pS,A, q, p, r;nq

is a DP with state space S “ t� : S Ñ N0u, action space A “ t↵ : S ˆ A Ñ N0u, admissible

actions

Atp�q “

#
↵ P A :

ÿ

aPA
↵ps, aq “ �psq @s P S, ↵ps, aq “ 0 @s P S, @a P AzAtpsq

+
,

initial state probabilities

qp�q “
n!±

sPS �psq!
¨

π

sPS
qpsq

�psq
@� P S :

ÿ

sPS
�psq “ n
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and qp�q “ 0 otherwise, transition probabilities p “ tptut with

ptp�
1
|�,↵q “

ÿ

✓P�p�,↵,�1q

π

sPS

π

aPA

«
↵ps, aq!±

s1PS ✓ps, a, s1q!
¨

π

s1PS
ptps

1
| s, aq

✓ps,a,s1
q

�

with admissible transportation plans from state � P S to state �1
P S under action ↵ P A

�p�,↵, �1
q “

#
✓ : S ˆ A ˆ S Ñ N0 :

ÿ

s1PS
✓ps, a, s1

q “ ↵ps, aq @s P S, @a P A,

ÿ

sPS

ÿ

aPA
✓ps, a, s1

q “ �1
ps1

q @s1
P S

+

and expected rewards r “ trtut with rtp�,↵q “
∞

sPS
∞

aPA rtps, aq ¨ ↵ps, aq.

By construction, a counting DP can only reach states � P S satisfying
∞

sPS �psq “ n. Any

admissible action ↵ P Atp�q thus satisfies
∞

sPS
∞

aPA ↵ps, aq “ n. Note that the state � can be

recovered from any admissible action ↵ through the fact that
∞

aPA ↵ps, aq “ �psq for all s P S.

Thus, the transition probabilities, admissible transportation plans and expected rewards only

depend on ↵ and not on �; to keep the notation consistent, however, we continue to include �.

In a counting DP, a policy ⇡ “ t⇡tut with ⇡t : S Ñ A specifies for each time period t P T and

each counting state � P S what action ⇡tp�q P A is selected. A feasible policy must satisfy

⇡tp�q P Atp�q for all t P T and � P S. Under ⇡, a counting DP evolves exactly like an ordinary

DP. The initial state �̃1 is random and satisfies Pr�̃1 “ �s “ qp�q for � P S. For t P T ztT u,

the transitions are governed by

P r�̃t`1 “ �1
s “

ÿ

�PS

ptp�
1
|�, ⇡tp�qq ¨ P r�̃t “ �s @�1

P S.

The expected total reward of a policy ⇡ is E r
∞

tPT rtp�̃t, ⇡tp�̃tqqs.

To better understand Definition 4.5, consider n i.i.d. copies of a DP pS,A, q, p, rq whose states

and actions at time t P T are recorded by the random variables s̃ti and ãti, i P I “ t1, . . . , nu,

respectively. By construction, the random quantity |ti P I : s̃1i “ su| of DPs in state s P S

at time period 1 follows a multinomial distribution with parameters pn; qq, and its probability
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mass function coincides with q in Definition 4.5. In other words, the initial state �̃1 of the

counting DP records how many of the n DPs are in each state s P S at time t “ 1. Similarly,

for any fixed states �, �1
P S, action ↵ P A, transportation plan ✓ P �p�,↵, �1

q and state-action

pair ps, aq P S ˆ A, the inner expression in the definition of the transition probabilities pt

evaluates to

↵ps, aq!±
s1PS ✓ps, a, s1q!

¨

π

s1PS
ptps

1
| s, aq

✓ps,a,s1
q

“ P
”
|ti P I : ps̃ti, ãti, s̃t`1,iq “ ps, a, s1

qu| “ ✓ps, a, s1
q @s1

P S

ˇ̌
ˇ

|ti P I : ps̃ti, ãtiq “ ps, aqu| “ ↵ps, aq

ı
,

since, given |ti P I : ps̃ti, ãtiq “ ps, aqu|, the quantity |ti P I : ps̃ti, ãti, s̃t`1,iq “ ps, a, s1
qu|

follows a multinomial distribution with parameters p↵ps, aq; ptp¨ | s, aqq. Multiplying these ex-

pressions over all ps, aq P S ˆ A (since the DPs evolve independently) and summing over

all transportation plans ✓ P �p�,↵, �1
q (by the additivity of probabilities of pairwise dis-

joint events) shows that the transition probability ptp�1
|�,↵q records the probability of the

event |ti P I : s̃t`1,i “ su| “ �1
psq, simultaneously for all s P S, conditional on the event

|ti P I : ps̃ti, ãtiq “ ps, aqu| “ ↵ps, aq, simultaneously for all ps, aq P S ˆ A. Thus, for a given

policy ⇡ the counting DP records for each time period t P T how many of the n DPs are in

each of the states s P S under ⇡.

Perhaps surprisingly, despite its aggregation, a feasible policy to a counting DP gives rise to

feasible policies for the constituent DPs that do not incur any loss in the expected total reward.

Proposition 4.6 For a DP pS,A, q, p, rq and n P N, consider the corresponding counting DP

pS,A, q, p, r;nq as well as the weakly coupled DP ptSi,Ai, qi, pi, riuiq with pSi,Ai, qi, pi, riq “

pS,A, q, p, rq, i P I “ t1, . . . , nu, and no resource constraints. Fix any feasible policy ⇡ to the

counting DP. Then any policy ⇡1 to the weakly coupled DP satisfying

|ti P I : si “ s1
^ ⇡1

tipsiq “ a1
u| “ r⇡tp�qsps1, a1

q @t P T , @� P S, @ps1, a1
q P S ˆ A,

@s P S
n : r|ti P I : si “ s2

u| “ �ps2
q @s2

P Ss
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is feasible, and ⇡ and ⇡1 attain the same expected total reward.

Proof of Proposition 4.6. Denote by �̃ “ t�̃tut the random state evolution of the counting

DP under policy ⇡ and by s̃1
“ ts̃1

tut the random state evolution of the weakly coupled DP under

any fixed policy ⇡1 satisfying the conditions in the statement of the proposition, respectively.

We also define the counting state evolution of the weakly coupled DP as �̃1
“ t�̃1

tut with

�̃1

tpsq “ |ti P I : s̃1

ti “ su| @t P T , @s P S.

We prove the statement in two steps. We first argue that the counting state evolutions �̃t and

�̃1

t of the counting DP and the weakly coupled DP share the same distributions for all t P T .

We subsequently use this insight to show that the expected total rewards of ⇡ and ⇡1 in their

respective DPs coincide. Since the weakly coupled DP has no resource constraints, the policy

⇡1 is feasible by construction, and the statement of the proposition thus follows.

As for the first step, we note that the conditions in the statement of the proposition ensure

that whenever the counting states �̃t and �̃1

t of the counting DP and the weakly coupled DP

are both equal to �t P S, then the policies ⇡t and ⇡1

t apply each action a P A to DPs in

state s P S precisely r⇡tp�tqsps, aq many times. Moreover, Definition 4.5 implies that the

transition probabilities p of the counting DP record the aggregate transitions of n i.i.d. DPs

with individual transition probabilities p under policy ⇡, whereas the weakly coupled DP by

construction records the individual transitions of these DPs under policy ⇡1. We thus conclude

that the transition probabilities of the counting states �̃t and �̃1

t are identical under ⇡ and ⇡1.

Moreover, the construction of the initial state distribution q in Definition 4.5 and the definition

of s̃1

1i, i P I, as i.i.d. random variables governed by the distribution q imply that �̃1 and �̃1

1

share the same distribution. A simple induction therefore shows that �̃t and �̃1

t share the same

distributions across all time periods t P T .

In view of the second step, we observe that the expected total reward of the weakly coupled
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DP under policy ⇡1 evaluates to

E
«

ÿ

tPT

nÿ

i“1

rtps̃
1

ti, ⇡
1

tips̃
1

tiqq

�
“ E

«
ÿ

tPT

nÿ

i“1

ÿ

sPS

ÿ

aPA
rtps, aq ¨ 1 rs̃1

ti “ s ^ ⇡1

tips̃
1

tiq “ as

�

“ E
«

ÿ

tPT

ÿ

sPS

ÿ

aPA
rtps, aq ¨ |ti P I : s̃1

ti “ s ^ ⇡1

tips̃
1

tiq “ au|

�

“ E
«

ÿ

tPT

ÿ

sPS

ÿ

aPA
rtps, aq ¨ r⇡tp�̃

1

tqsps, aq

�

“ E
«

ÿ

tPT

ÿ

sPS

ÿ

aPA
rtps, aq ¨ r⇡tp�̃tqsps, aq

�
,

where the first and second identity hold by construction, the third identity uses the properties

of ⇡1 from the statement of the proposition, and the last identity exploits the fact that �̃t and �̃1

t

share the same distribution. The statement now follows from the fact that the last expression

evaluates the expected total reward of the counting DP under the policy ⇡.

The equation in the statement of Proposition 4.6 ensures that for all states s P S
n of the weakly

coupled DP that correspond to a given state � P S of the counting DP, the number of times

we apply an action a1
P A to a DP in state s1

P S also coincide under ⇡ and ⇡1.

Proposition 4.6 states that any policy ⇡ to a counting DP can be converted into individual

policies ⇡1

i to the constituent DPs that generate the same expected total reward. To this end,

we simply need to distribute the action multiplicities r⇡tp�qsps, aq for each state of the counting

DP among the �psq many DPs that are in state s at time t. It is noteworthy that any such

distribution scheme is admissible, and they all result in the same expected total reward.

Aggregating individual patient DPs to a counting DP is not a lossless transformation: While a

counting DP faithfully records the stochastic evolution of the population of individual DPs, it

no longer records which state a particular DP is in. In other words, while the state of the i-th

DP remains identifiable when the individual DPs are aggregated to a weakly coupled DP, its

state is no longer identifiable by the state � of the corresponding counting DP. In the context

of our healthcare model, this implies that we have to assign the same (state/action-dependent)
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Figure 4.4: Counting DP for the DP from Example 4.2.

transition probabilities and rewards to all patients in the same patient group. This loss of

flexibility is acceptable for our purpose, which is to inform a nation-wide prioritization policy

(as opposed to an admissions schedule for an individual hospital), and it results in a tremendous

gain in computational tractability: for 5, 000 patients of the same patient group with 15 states

and 6 actions, for example, the 155,000 states and 65,000 actions of the associated weakly coupled

DP reduce to less than 5, 00015 states and 5, 00015¨6 actions for the associated counting DP.

Example 4.7 (Counting DP) Figure 4.4 presents a counting DP for n “ 2 copies of the

DP from Example 4.2. The states of the counting DP are characterized by two values that

record the numbers of the constituent DPs in state 1 and 2, respectively, and the actions of the

counting DP are characterized by the numbers of times that action A or action B is chosen.

State p1, 1q represents that both the constituent DPs are in state 1, state 1, 2 represents that

one DP is in state 1 while the other DP is in states 2, and so on. Notice that counting DPs

do not record which DP is in which state, but rather the number of DPs in each state. Action

pA,Aq represents that action A is applied to both DPs, action pA,Bq represents that action A

is applied to one DP while action B is applied to the other DP. Once again, the actions in

counting DPs only record the number of DPs to which each action is applied.

We now combine the concepts of weakly coupled DPs (cf. Definition 4.3) and counting DPs

(cf. Definition 4.5) to weakly coupled counting DPs, which aggregate the various patient groups

in our health system and restrict the admissible policies in view of the resource constraints.
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Definition 4.8 (Weakly Coupled Counting DP) For a finite set of counting DPs, denoted

as pSj,Aj, qj, pj, rj;njq, j P J “ t1, . . . , Ju, over the same time horizon T “ t1, . . . , T u, the

weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq is the DP pS,A, q, p, rq with state space

S “
ë

jPJ Sj, action space A “
ë

jPJ Aj with Atp�q “
ë

jPJ Ajtp�jq, � P S, and

AC
t p�q “

$
&

%↵ P Atp�q :
ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ↵jps, aq § btl @l P L

,
.

- ,

initial state probabilities qp�q “
±

jPJ qjp�jq for � P S, transition probabilities ptp�1
|�,↵q “

±
jPJ pjtp�1

j |�j,↵jq for �, �1
P S and ↵ P A and expected rewards rtp�,↵q “

∞
jPJ rjtp�j,↵jq.

In a weakly coupled counting DP, a policy ⇡ “ t⇡tut with ⇡t : S Ñ A specifies for each time

period t P T , each counting DP j P J and each state � P S what action r⇡tp�qsj P Aj is

selected. A feasible policy ⇡ must satisfy ⇡tp�q P AC
t p�q for all t P T and � P S. Under ⇡,

a weakly coupled counting DP evolves as follows. The initial state �̃1 is random and satisfies

Pr�̃1 “ �s “
±

jPJ qjp�jq “ qp�q for � P S. For t P T ztT u, the transitions are governed by

P r�̃t`1 “ �1
s “

ÿ

�PS

«
π

jPJ
pjtp�

1

j |�j, r⇡tp�qsjq

�
¨ P r�̃t “ �s

“

ÿ

�PS

ptp�
1
|�, ⇡tp�qq ¨ P r�̃t “ �s @�1

P S.

The expected total reward of a policy ⇡ is E r
∞

tPT rtp�̃t, ⇡tp�̃tqqs.

A straightforward adaptation of Proposition 4.6 allows us to convert any feasible policy to

the weakly coupled counting DP into policies for the constituent DPs that generate the same

expected total reward. We skip the statement and proof since neither requires any new ideas.

For later reference, we define the policy set of a weakly coupled counting DP as ⇧ “
ë

tPT ⇧t

with ⇧t “ tr⇡t : S Ñ As : ⇡tp�q P Atp�q @� P Su and the set of feasible policies as

⇧C
“
ë

tPT ⇧C
t with ⇧C

t “ t⇡t P ⇧t : ⇡tp�q P AC
t p�q @� P Su, respectively. We denote the set

of state trajectories as ⌃ “
ë

tPT S; the random state evolution �̃ “ t�̃ut then takes values in

⌃.
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Figure 4.5: Weakly coupled counting DP from Example 4.9. The values in the rectangular
nodes record how many DPs are in state 1, . . . , 4 (from left to right), while the letters in the
oval nodes represent the actions applied to each counting DP (A and B to the first one; C and
D to the second one). Grey shaded nodes are duplicated for ease of illustration. The actions
ABD, BBC and BBD violate the resource constraint.

Example 4.9 (Weakly Coupled Counting DP) Figure 4.5 combines n1 “ 2 copies of the

DP from Figure 4.1 with n2 “ 1 copy of the DP from Figure 4.2 to a weakly coupled counting

DP that is subjected to the resource constraint ↵1p2,Bq ` ↵2p4, Dq § 1, that is, at most one

of the actions B or D can be selected in any period. As a result, any optimal policy ⇡ selects

either B (once) or D, but never both B and D, whenever they are admissible.

4.3.2 Fluid Approximation

Our healthcare model will comprise approximately 10 million patients spread among 3, 120

patient groups with 15 states and 6 actions each. Assuming, for the sake of the argument, an

even spread of around 3, 200 patients per patient group, the resulting weakly coupled count-

ing DP would contain about p3, 20015q
3,120 states and p3, 20015¨6

q
3,120 actions, which remains

intractable. However, (weakly coupled) counting DPs lend themselves to a continuous approx-

imation which is particularly suitable when the involved numbers of DPs are large, as is the

case in our application.
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To facilitate an e�cient solution of the weakly coupled counting DP that represents our health-

care model, Section 4.3.2.1 introduces the concept of weakly coupled k-counting DPs, which

split each constituent DP into k independently evolving parts. Taking the limit as k Ñ́ 8, we

arrive at the concept of a fluid limit, which treats all patients of our healthcare model as ‘fluid’

that flows between the di↵erent states (controlled by the policy maker’s actions). Section 4.3.2.2

shows that the resulting fluid DP can be solved e�ciently by an LP that scales gracefully in

the dimensions of the original weakly coupled counting DP. Sections 4.3.2.3 and 4.3.2.4, finally,

shows that the LP from Section 4.3.2.2 allows us to recover high-quality solutions to the weakly

coupled counting DP with high probability.

4.3.2.1 Weakly Coupled k-Counting Dynamic Programs and the Fluid Limit

We first consider a counting DP where each constituent DP is split into k parts that evolve

independently of each other and that jointly account for the DP.

Definition 4.10 (k-Counting DP) For a finite time horizon T “ t1, . . . , T u and n i.i.d. copies

of a DP pS,A, q, p, rq formed of k i.i.d. parts each, a k-counting DP pS,A, q, p, r;n, kq is a DP

with state space S “ t� : S Ñ N0{ku, action space A “ t↵ : S ˆ A Ñ N0{ku and admissible

actions

Atp�q “

#
↵ P A :

ÿ

aPA
↵ps, aq “ �psq @s P S, ↵ps, aq “ 0 @s P S, @a P AzAtpsq

+
,

initial state probabilities

qp�q “
rnks!±

sPSrk�psqs!
¨

π

sPS
qpsq

k�psq
@� P S :

ÿ

sPS
�psq “ n

and qp�q “ 0 otherwise, transition probabilities p “ tptut with

ptp�
1
|�,↵q “

ÿ

✓P�p�,↵,�1q

π

sPS

π

aPA

«
rk↵ps, aqs!±

s1PSrk✓ps, a, s1qs!
¨

π

s1PS
ptps

1
| s, aq

k✓ps,a,s1
q

�
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Figure 4.6: Next state distribution for a k-counting DP with k “ 1 (left), k “ 2 (middle) and
k “ 100 (right).

with admissible transportation plans from state � P S to state �1
P S under action ↵ P A

�p�,↵, �1
q “

#
✓ : S ˆ A ˆ S Ñ N0{k :

ÿ

s1PS
✓ps, a, s1

q “ ↵ps, aq @s P S, @a P A,

ÿ

sPS

ÿ

aPA
✓ps, a, s1

q “ �1
ps1

q @s1
P S

+

and expected rewards r “ trtut with rtp�,↵q “
∞

sPS
∞

aPA rtps, aq ¨ ↵ps, aq.

Definition 4.10 uses the notational shorthand N0{k “ t0, 1{k, 2{k, . . .u. Note that each of the

nk parts in a k-counting DP only accounts for a fraction 1{k of a DP, whereas each of the n

parts in a counting DP accounts for an entire DP. Other than that, Definition 4.10 coincides

with Definition 4.5.

A policy ⇡ “ t⇡tut with ⇡t : S Ñ A in a k-counting DP is defined analogously to a policy in

an ordinary counting DP. In particular, ⇡ is feasible if ⇡tp�q P Atp�q for all t P T and � P S.

Under ⇡, the initial state �̃1 of the k-counting DP is random and satisfies Pr�̃1 “ �s “ qp�q for

� P S, and for t P T ztT u the transitions satisfy

P r�̃t`1 “ �1
s “

ÿ

�PS

ptp�
1
|�, ⇡tp�qq ¨ P r�̃t “ �s @�1

P S.

The expected total reward of a policy ⇡ is E r
∞

tPT rtp�̃t, ⇡tp�̃tqqs.

Example 4.11 (k-Counting DP) For the counting DP from Example 4.7, Figure 4.6 illus-

trates the distribution of the next state �̃t`1 if the current state satisfies �̃t “ p2, 0q pointwise
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and we implement the action ↵ characterized by ↵tps,Aq “ �tpsq and ↵tps,Bq “ 0, s P S,

for various values of k. The figure shows that the next state distribution converges to a Dirac

distribution that places all probability mass on the state �t`1 “ p1, 1q.

Definition 4.12 (Weakly Coupled k-Counting DP) For a finite set of k-counting DPs

pSj,Aj, qj, pj, rj;nj, kq, j P J “ t1, . . . , Ju, over the same time horizon T “ t1, . . . , T u, the

weakly coupled k-counting DP ptSj,Aj, qj, pj, rjuj; tnjuj, kq is the DP pS,A, q, p, rq with state

space S “
ë

jPJ Sj, action space A “
ë

jPJ Aj with Atp�q “
ë

jPJ Ajtp�jq, � P S, and

AC
t p�q “

$
&

%↵ P Atp�q :
ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ↵jps, aq § btl @l P L

,
.

- ,

initial state probabilities qp�q “
±

jPJ qjp�jq for � P S, transition probabilities ptp�1
|�,↵q “

±
jPJ pjtp�1

j |�j,↵jq for �, �1
P S and ↵ P A and expected rewards rtp�,↵q “

∞
jPJ rjtp�j,↵jq.

In a weakly coupled k-counting DP, a policy ⇡ “ t⇡tut with ⇡t : S Ñ A specifies for each time

period t P T , each k-counting DP j P J and each state � P S what action r⇡tp�qsj P Aj is

selected. A feasible policy ⇡ must satisfy ⇡tp�q P AC
t p�q for all � P S and t P T . Under ⇡,

the initial state �̃1 of the weakly coupled k-counting DP is random and satisfies Pr�̃1 “ �s “

±
jPJ qjp�jq “ qp�q for � P S. For t P T ztT u, the transitions are governed by

P r�̃t`1 “ �1
s “

ÿ

�PS

«
π

jPJ
pjtp�

1

j |�j, r⇡tp�qsjq

�
¨ P r�̃t “ �s

“

ÿ

�PS

ptp�
1
|�, ⇡tp�qq ¨ P r�̃t “ �s @�1

P S.

The expected total reward of a policy ⇡ is E r
∞

tPT rtp�̃t, ⇡tp�̃tqqs.

Fix a sequence of weakly coupled k-counting DPs ptSk
j ,A

k
j , q

k
j , p

k
j , r

k
j uj; tnk

j uj, kq, k P N, where

each constituent k-counting DP pSk
j ,A

k
j , q

k
j , p

k
j , r

k
j ;n

k
j , kq, j P J , is based on the same DP

pSj,Aj, qj, pj, rjq for all k P N and where nk
j “ nl

j for all k, l P N. Let s̃kt,pj,i,`q be the random

state of the `-th part of the i-th DP in the j-th counting DP of the k-th weakly coupled k-

counting DP at time t. Consistency requires that the random state evolution �̃k
“ t�̃k

t ut of the
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k-th weakly coupled k-counting DP satisfies �̃k
tjpsq “

∞nj

i“1
1
k

∞k
`“1 1rs̃kt,pj,i,`q “ ss pointwise for

all k P N, t P T , j P J and s P Sj. The random initial state �̃k
1 of the k-th weakly coupled

k-counting DP then satisfies

�̃k
1jpsq “

njÿ

i“1

1

k

kÿ

`“1

1rs̃k1,pj,i,`q “ ss Ñ́
k Ñ́8

njÿ

i“1

E
“
1rs̃11,pj,1,1q

“ ss
‰

“

ÿ

iPIpjq

P
“
s̃11,pj,1,1q

“ s
‰

“ nj¨qjpsq

for all j P J and s P Sj, and the convergence takes place almost surely due to the strong law

of large numbers. Similarly, assume that the state of the k-th weakly coupled k-counting DP

at time t P T is �̃k
t “ �k

t , that the action ↵k
t P Ak

t p�k
t q is taken, and that the associated states

of the DP parts are s̃kt,pj,i,`q “ skt,pj,i,`q. Consistency then requires that �k
tjpsq “

∞
aPAj

↵k
tjps, aq

for all k P N, j P J and s P Sj. Assuming that �k
t and ↵k

t converge to �t and ↵t as k Ñ́ 8,

we observe that

�̃k
t`1,jps

1
q “

njÿ

i“1

1

k

kÿ

`“1

1rs̃kt`1,pj,i,`q “ s1
s Ñ́

k Ñ́8

ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ↵tjps, aq

for all j P J and s1
P Sj, and the convergence again takes place almost surely. Indeed, the

strong law of large numbers implies that 1
k

∞k
`“1 1rs̃kt`1,pj,i,`q “ s1

s converges to its expected

value, that is, the probability of s̃kt`1,pj,i,`q being s1. The probability of s̃kt`1,pj,i,`q being s1 if

skt,pj,i,`q “ s and action a P Aj is taken, on the other hand, is pjtps1
| s, aq. As k approaches 8,

↵k
tj converges to ↵tj, and thus the number of DP parts in state s that action a is applied to

converges to ↵tjps, aq ¨ k.

The above observation motivates the fluid limit that we obtain when k Ñ́ 8. In what follows,

we denote by �p¨q the Dirac delta function satisfying �pxq “ 0 for all x ‰ 0 and
≥
�pxq dx “ 1.

Definition 4.13 (Fluid DP) For a weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq,

the fluid DP ptSj,Aj, qj, pj, rjuj; tnjujq is a DP with continuous state space S “
ë

jPJ Sj with

Sj “ t�j : Sj Ñ R`u, continuous action space A “
ë

jPJ Aj with Aj “ t↵j : Sj ˆ Aj Ñ R`u,
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Atp�q “
ë

jPJ Ajtp�jq with

Ajtp�jq “

$
&

%↵j P Aj :
ÿ

aPAj

↵jps, aq “ �jpsq @s P Sj, ↵jps, aq “ 0 @s P Sj, @a P AjzAjtpsq

,
.

-

and

A
C
t p�q “

$
&

%↵ P Atp�q :
ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ↵jps, aq § btl @l P L

,
.

- ,

initial state probabilities

qp�q “

π

jPJ

π

sPSj

� p�jpsq ´ nj ¨ qjpsqq @� P S, (4.1)

transition probabilities p “ tptut with

ptp�
1
|�,↵q “

π

jPJ

π

s1PSj

�

¨

˝�jps
1
q ´

ÿ

sPSj

ÿ

aPAj

ptps
1
|s, aq ¨ ↵ps, aq

˛

‚ @�, �1
P S, @↵ P A, @t P T

(4.2)

and expected rewards r “ trtut with rtp�,↵q “
∞

jPJ rjtp�j,↵jq.

A policy ⇡ “ t⇡tut for the fluid DP with ⇡t : S Ñ A specifies for each time period t P T , each

counting DP j P J and each state � P S what action r⇡tp�qsj P Aj is selected. A feasible policy

⇡ must satisfy ⇡tp�q P A
C
t p�q for all t P T and � P S. Under ⇡, the initial state �̃1 of the fluid

DP satisfies �̃1jpsq “ nj ¨ qjpsq almost surely for all j P J and s P Sj. For t P T ztT u, under the

assumption that �̃t “ �t almost surely, the transitions satisfy

�̃t`1,jps
1
q “

ÿ

sPSj

ÿ

aPAj

ptps
1
|s, aq ¨ r⇡tp�tqsjps, aq @j P J , @s1

P Sj almost surely.

The expected total reward of a policy ⇡ is E r
∞

tPT rtp�̃t, ⇡tp�̃tqqs.

The state and action spaces of a weakly coupled k-counting DP are of the sizeO
´±

jPJ pk ¨ njq
|Sj |

¯

and O

´±
jPJ pk ¨ njq

|Sj |¨|Aj |

¯
, respectively, and they thus scale exponentially in the number of

involved counting DPs as well as the numbers of states and actions of the underlying DPs. In

contrast, the state of the associated fluid DP can almost surely be described by a real vec-
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tor of length
∞

jPJ |Sj|, and an action in the fluid DP is described by a real vector of length
∞

jPJ |Sj| ¨ |Aj|. The next section will exploit this reduction in complexity to formulate the fluid

DP as a linear program that scales gracefully in the parameters of the corresponding weakly

coupled counting DP.

For later reference, we define the policy set of a fluid DP as ⇧ “
ë

tPT ⇧t with ⇧t “ tr⇡t :

S Ñ As : ⇡tp�q P Atp�q @� P Su and the set of feasible policies as ⇧
C

“
ë

tPT ⇧
C
t with

⇧
C
t “ t⇡t P ⇧t : ⇡tp�q P A

C
t p�q @� P Su, respectively. We denote the set of state trajectories

as ⌃ “
ë

tPT S; the random state evolution �̃ “ t�̃ut then takes values in ⌃.

At this point, we make a summary of the major assumptions of our model. The transition prob-

abilities are Markovian, and hence memoryless. For the weakly coupled DP of Definition 4.3,

we assume that there are J ! I groups such that each DP i P I belongs to exactly one of the

groups j P J “ t1, . . . , Ju, and any two DPs of the same group share the same state and action

spaces, initial state and transition probabilities as well as expected rewards.

4.3.2.2 Linear Programming Formulation for the Fluid Limit

We now demonstrate that an optimal policy for a fluid DP can be obtained through a lin-

ear program withO

´
|T | ¨

∞
jPJ |Sj||Aj|

¯
decision variables andO

´
|T | ¨ max

!∞
jPJ |Sj|, |L|

)¯

constraints. Our healthcare model comprises |T | “ 52 time periods (one year in weekly gran-

ularity), |J | “ 3, 120 counting DPs (52 arrival times, 3 age groups and 20 disease groups), as

well as |Sj| “ 15 states and |Aj| “ 6 actions per patient DP. The resulting LP, while nontrivial

in size, can be solved quickly and reliably on standard hardware with o↵-the-shelf software.
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For a weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq, consider the fluid LP defined as

maximize
�, ⇡

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ⇡tjps, aq

subject to �1jpsq “ nj ¨ qjpsq @j P J , @s P Sj

�t`1,jps
1
q “

ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ⇡tjps, aq @j P J , @s1

P Sj, @t P T ztT u

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ⇡tjps, aq § btl @l P L, @t P T

ÿ

aPAj

⇡tjps, aq “ �tjpsq @j P J , @s P Sj, @t P T

⇡tjps, aq “ 0 @j P J , @s P Sj, @a P AjzAjtpsq, @t P T

�tjpsq, ⇡tjps, aq • 0 @j P J , @ps, aq P Sj ˆ Aj, @t P T .

(4.3)

Note that in contrast to the policy set of a fluid DP, which is infinite-dimensional, the feasible

region of the fluid LP (4.3) is finite-dimensional since it assigns a sequence of actions t⇡tut to

a single state trajectory � P ⌃. This turns out to be su�cient since for a fixed policy, the fluid

DP evolves according to a single state trajectory almost surely.

We first verify that the fluid LP (4.3) determines an optimal policy for the fluid DP, together

with its associated (almost sure) state evolution.

Proposition 4.14 Fix a weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq.

(i) If the fluid DP admits a feasible policy ⇡0
P ⇧

C
, then a feasible solution p�LP, ⇡LP

q to the

fluid LP (4.3) with objective value ✓LP gives rise to a feasible policy ⇡ P ⇧
C
to the fluid

DP via

⇡tp�q “

$
’’&

’’%

⇡LP
t if � “ �LP

t ,

⇡0
t p�q otherwise

@t P T , @� P S,

together with its state evolution �̃ “ t�̃tut satisfying �̃ “ �LP almost surely. Moreover,

the expected total reward of ⇡ is ✓LP.

(ii) A feasible policy ⇡ P ⇧
C
to the fluid DP with associated state evolution �̃ “ t�̃tut and

an expected total reward of ✓DP gives rise to a feasible solution p�LP, ⇡LP
q to the fluid
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LP (4.3) with objective value ✓DP via

�LP
tj ps1

q “

$
’’’&

’’’%

nj ¨ qjps1
q if t “ 1,

ÿ

sPSj

ÿ

aPAj

pj,t´1ps
1
| s, aq ¨ ⇡LP

t´1,jps, aq otherwise

for all t P T , j P J and s1
P Sj, as well as ⇡LP

t “ ⇡tp�LP
t q for all t P T .

Proof of Proposition 4.14. In view of statement (i), we first verify that ⇡ P ⇧
C
, that

is, ⇡ is a feasible policy for the fluid DP. To this end, we need to confirm that ⇡tp�q P A
C
t p�q

for all t P T and all � P S. Due to the feasibility of ⇡0, this is the case for all t P T

and all � P Szt�LP
t u. To verify that ⇡tp�LP

t q P A
C
t p�LP

t q for all t P T as well, we observe that

r⇡tp�LP
t qsj P Aj, j P J , by construction, while

∞
jPJ

∞
sPSj

∞
aPAj

ctljps, aq¨r⇡tp�LP
t qsqjps, aq § btl,

∞
aPAj

r⇡tp�LP
t qsjps, aq “ �LP

tj psq and r⇡tp�LP
t qsjps, aq “ 0 hold for all j P J , s P Sj, a P AjzAjtpsq,

l P L and t P T due to the third, fourth and fifth constraint in the fluid LP (4.3), respectively.

We next show via induction over t P T that the random state evolution �̃ “ t�̃tut of the fluid

DP under the policy ⇡ satisfies �̃ “ �LP almost surely. For �̃1, this immediately follows from

the initial state probabilities in the definition of the fluid DP as well as the first constraint of

the fluid LP. Assume now that �̃t “ �LP
t almost surely for some t P T ztT u. We then have

⇡tp�̃tq “ ⇡LP
t almost surely, and the transition probabilities in the definition of the fluid DP

as well as the second constraint of the fluid LP imply that �̃t`1 “ �LP
t`1 almost surely as well.

Since �̃ “ �LP almost surely and ⇡tp�LP
t q “ ⇡LP

t for all t P T , the expected total reward of the

policy ⇡ is indeed ✓LP as claimed. This proves the first statement.

Consider now statement (ii). A similar induction argument as in the previous paragraph shows

that the random state evolution �̃ “ t�̃tut of the fluid DP satisfies �̃ “ �LP and the policy ⇡ of

the fluid DP satisfies ⇡tp�̃tq “ ⇡LP
t for all t P T almost surely. The feasibility of p�LP, ⇡LP

q in

the fluid LP (4.3) then follows from the initial state and transition probabilities in the definition

of the fluid DP as well as the fact that ⇡ is a feasible policy for the fluid DP. Moreover, since

⇡LP
t “ ⇡tp�̃tq almost surely for all t P T , the objective value of p�LP, ⇡LP

q in (4.3) is indeed ✓DP

as claimed.
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Proposition 4.14 immediately implies that optimal solutions to the fluid LP (4.3) give rise to

optimal policies to the fluid DP and vice versa. The existence of a feasible policy ⇡0 in part (i)

is necessary since we require a fluid DP policy to be feasible pointwise in every state, rather

than almost surely.

We now show that the fluid LP (4.3) constitutes a relaxation of the weakly coupled counting

DP from Definition 4.8. While the result is intuitive, given that the associated fluid DP can be

interpreted as a continuous relaxation of the weakly coupled counting DP, its proof is nontrivial

since the fluid DP visits ‘fractional’ states that are not present in the weakly coupled counting

DP.

Theorem 4.15 The optimal value of the fluid LP (4.3) is greater than or equal to the optimal

expected total reward of its associated weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq.

Proof of Theorem 4.15. Denote by F p⌧, �⌧ q the truncated fluid LP that starts in period

⌧ P T with the state �⌧ P S:

maximize
�, ⇡

Tÿ

t“⌧

fpt, ⇡tq

subject to �t`1,jps
1
q “

ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ⇡tjps, aq @j P J , @s1

P Sj, @t “ ⌧, . . . , T ´ 1

⇡t P ⇧
1C
t p�tq @t “ ⌧, . . . , T

�tjpsq • 0 @j P J , @s P Sj, @t “ ⌧, . . . , T

Here, the objective function satisfies

fpt, ⇡tq “

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ⇡tjps, aq,
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and the constraints satisfy

⇡t P ⇧
1C
t p�tq ñ

$
’’’’’’’’’’&

’’’’’’’’’’%

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ⇡tjps, aq § btl @l P L

ÿ

aPAj

⇡tjps, aq “ �tjpsq @j P J , @s P Sj

⇡tjps, aq “ 0 @j P J , @s P Sj, @a P AjzAjtpsq

⇡tjps, aq • 0 @j P J , @ps, aq P Sj ˆ Aj.

Setting F pT ` 1, �T`1q “ 0 for all �T`1 P S, one readily verifies that the truncated fluid LP

satisfies

F pt, �tq “ max
⇡tP⇧

1C
t p�tq

$
&

%fpt, ⇡tq ` F

¨

˝t ` 1,
ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ⇡tjps, aq

˛

‚

,
.

- .

We show via induction that F pt, ¨q is concave for all t P T Y tT ` 1u. This is trivially the case

for t “ T ` 1. Assume now that F pt ` 1, ¨q is concave and represent F pt, ¨q as

F pt, �tq “ max
⇡tPA

$
&

%fpt, ⇡tq ` F

¨

˝t ` 1,
ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ⇡tjps, aq

˛

‚´ Ip�t, ⇡tq

,
.

- ,

where Ip�t, ⇡tq “ 0 if ⇡t P ⇧
1C
t p�tq and Ip�t, ⇡tq “ 8 otherwise. Since Ip�t, ⇡tq is convex, F pt, ¨q

is concave as it represents a sup-projection of a concave function [RW97, Proposition 2.22]. We

thus conclude that F pt, ¨q is concave for all t P T Y tT ` 1u.

Denote now by Gpt, �tq the optimal value of the weakly coupled counting DP, which satisfies

Gpt, �tq “ max
⇡tP⇧1C

t p�tq

tfpt, ⇡tq ` E rGpt ` 1, �̃t`1q | �̃t`1 „ pp¨ |�t, ⇡tqsu

for t P T and �t P S with ⇧1C
t p�tq “ ⇧

1C
t p�tq X A as well as GpT ` 1, �tq “ 0 for all �t P S.

We show via induction that F pt, �tq • Gpt, �tq for all t P T Y tT ` 1u and all �t P S. The

statement trivially holds for t “ T ` 1. Assume now that F pt ` 1, �t`1q • Gpt ` 1, �t`1q for
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some t P T and all �t`1 P S. We then have

F pt, �tq “ max
⇡tP⇧

1C
t p�tq

$
&

%fpt, ⇡tq ` F

¨

˝t ` 1,
ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ⇡tjps, aq

˛

‚

,
.

-

• max
⇡tP⇧1C

t p�tq

$
&

%fpt, ⇡tq ` F

¨

˝t ` 1,
ÿ

sPSj

ÿ

aPAj

pjtps
1
| s, aq ¨ ⇡tjps, aq

˛

‚

,
.

-

“ max
⇡tP⇧1C

t p�tq

tfpt, ⇡tq ` F pt ` 1, E r�̃t`1 | �̃t`1 „ pp¨ |�t, ⇡tqsqu

• max
⇡tP⇧1C

t p�tq

tfpt, ⇡tq ` E rF pt ` 1, �̃t`1q | �̃t`1 „ pp¨ |�t, ⇡tqsu

• max
⇡tP⇧1C

t p�tq

tfpt, ⇡tq ` E rG pt ` 1, �̃t`1q | �̃t`1 „ pp¨ |�t, ⇡tqsu

“ Gpt, �tq

for all �t P S, where the first and last identities hold by definition of F and G, respectively. The

first inequality follows from ⇧1C
t p�tq “ ⇧

1C
t p�tq X A Ñ ⇧

1C
t p�tq, the second equality holds since

the expected number of DPs in the j-th counting DP that are in state s1 at time t`1 is the sum

of all DPs in that counting DP that are in any state s at time t and whose associated action a

transitions them into state s1, the individual probability of which is given by pjtps1
| s, aq. The

second inequality is due to Jensen’s inequality, which is applicable since F has been shown to

be concave, and the last inequality follows from the induction hypothesis.

Denote now by ✓LP the optimal objective value of the fluid LP (4.3) and by ✓DP the expected

total reward of the weakly coupled counting DP under an optimal policy, respectively. We have

✓LP “ F p1, �1q “ F p1, E r�̃1 | �̃1 „ qsq

• E rF p1, �̃1q | �̃1 „ qs • E rG p1, �̃1q | �̃1 „ qs “ ✓DP,

where �1j “ nj ¨ qj, j P J , and the two inequalities follow from Jensen’s inequality and our

induction argument from the previous paragraph, respectively. The claim of the theorem thus

follows.
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Proposition 4.14 and Theorem 4.15 immediately imply that the fluid DP is a relaxation of the

associated weakly coupled counting DP in the following sense.

Corollary 4.16 The optimal expected total reward of a fluid DP is greater than or equal to the

optimal expected total reward of its associated weakly coupled counting DP.

An optimal solution p�LP, ⇡LP
q to the fluid LP (4.3) does not only give rise to an optimal

policy for the fluid DP, but it also allows us to construct near-optimal policies for the weakly

coupled counting DP. In this section, we study two such constructions: one that is based on

a deterministic rounding scheme (Section 4.3.2.3) and one that is based on a randomization

approach (Section 4.3.2.4).

4.3.2.3 Approximation Guarantees: Deterministic Rounded Policies

Fix a weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq as well as an optimal solution

p�LP, ⇡LP
q P ⌃ ˆ A

T
to its associated fluid LP (4.3). We consider the policy

⇡‹
“ Pr

“
Lp�LP, ⇡LP

q
‰
,

where the lifting operator L maps p�LP, ⇡LP
q to a policy ⇡ “ Lp�LP, ⇡LP

q for the fluid DP via

r⇡tp�qsjps, aq “
⇡LP
tj ps, aq

�LP
tj psq

¨ �tjpsq @t P T , @� P S, @j P J , @ps, aq P Sj ˆ Aj,

where we adopt the convention that 0{0 “ 0, and the projection operator Pr maps ⇡ to a policy

⇡‹ for the weakly coupled counting DP according to

rPrp⇡qstp�q P argmin
↵PAtp�q

}⇡tp�q ´ ↵}1 @t P T , @� P S,

where }⇡tp�q ´ ↵}1 “
∞

jPJ
∞

sPSj

∞
aPAj

|r⇡tp�qsjps, aq ´ ↵jps, aq|. We will see below that the

minimum in the above equation is indeed attained. Intuitively speaking, the lifted policy ⇡
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employs the actions in each counting state � with the same frequency as ⇡LP does in the almost

sure trajectory �LP from the fluid LP in the same time period, and the projected policy ⇡‹

rounds this policy to the nearest discrete policy that obeys the constraints of ⇧. We note that

neither p�LP, ⇡LP
q nor ⇡‹ is unique in general. In the remainder, all statements apply to any

policy ⇡‹ emerging from the above construction.

Recall from Proposition 4.14 (i) that feasible solutions to the fluid LP (4.3) give rise to feasible

policies to the fluid DP, provided that ⇧
C
is non-empty. Since we did not assume non-emptiness

of ⇧
C
here, the lifted policy ⇡ may violate the resource constraints of the fluid DP.

Observation 4.17 The lifted policy ⇡ satisfies ⇡ P ⇧, but it may not be contained in ⇧
C
.

Proof of Observation 4.17. To see that ⇡ P ⇧, we need to show that ⇡t P ⇧t for all

t P T , that is, ⇡tp�q P Atp�q for all t P T and � P S, which in turn amounts to showing that

r⇡tp�qsj P Aj,
∞

aPAj
r⇡tp�qsjps, aq “ �jpsq and r⇡tp�qsjps, aq “ 0 for all t P T , � P S, j P J ,

s P Sj and all a P AjzAjtpsq. Out of these constraints, r⇡tp�qsj P Aj holds by construction,

while
ÿ

aPAj

r⇡tp�qsjps, aq “

ÿ

aPAj

⇡LP
tj ps, aq

�LP
tj psq

¨ �jpsq “ �jpsq

holds due to the fourth constraint in the fluid LP (4.3), and r⇡tp�qsjps, aq “ 0 is ensured by

the fifth constraint of the fluid LP. We thus have ⇡ P ⇧ as claimed.

We complete the proof by constructing a weakly coupled counting DP for which the fluid DP

policy ⇡ constructed from any optimal solution p�LP, ⇡LP
q to the fluid LP (4.3) satisfies ⇡ R ⇧

C
.

To this end, set T “ J “ t1u, S1 “ t1, 2u, A1 “ t1u, n1 “ 2 and qp1q “ qp2q “ 1{2, while the

resource constraint requires that r⇡p�qs1p1, 1q § 1. One readily verifies that p�LP, ⇡LP
q defined

by �LP
1 p1q “ �LP

1 p2q “ 1 and ⇡LP
1 p1, 1q “ ⇡LP

1 p2, 1q “ 1 is the unique feasible solution to the

fluid LP (4.3). The corresponding fluid DP policy ⇡, however, necessarily violates the resource

constraint in the state �1 P S defined via �1p1q “ 2 and �1p2q “ 0. (Recall that a feasible

policy to the fluid DP must be feasible in every state of the fluid DP, not just the almost sure

state.)
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The proof of Observation 4.17 implies that the projected policy ⇡‹ may violate the resource

constraints of the weakly coupled counting DP as well. We next show, however, that ⇡‹ is

contained in the policy set ⇧ of the weakly coupled counting DP, and that it is close to the

lifted policy ⇡.

Proposition 4.18 We have ⇡‹
P ⇧ as well as }⇡‹

t p�q ´ ⇡tp�q}
8

† 1 for all t P T and � P S.

Proof of Proposition 4.18. First note that ⇡ P ⇧ according to Observation 4.17, which

implies that Atp�q ‰ H for all t P T and � P S. From the construction of Atp�q and Atp�q

in the Definitions 4.8 and 4.13, respectively, one then readily verifies that Atp�q ‰ H for all

t P T and � P S as well. We thus conclude that a policy ⇡‹
“ Prp⇡q indeed exists and satisfies

⇡‹
P ⇧.

To see that }⇡‹

t p�q ´ ⇡tp�q}
8

† 1 for all t P T and all � P S, recall that

⇡‹

t p�q P argmin
↵PAtp�q

}⇡tp�q ´ ↵}1

by definition, where }⇡tp�q ´ ↵}1 “
∞

jPJ
∞

sPSj

∞
aPAj

|r⇡tp�qsjps, aq ´ ↵jps, aq|. Since both the

objective function and the constraints of this optimization problem are separable in j P J and

s P Sj, the component rPrp⇡qtp�qsj ps, ¨q is any solution of the following minimization problem:

minimize
↵

}r⇡tp�qsjps, ¨q ´ ↵}1

subject to
ÿ

aPAj

↵paq “

ÿ

aPAj

r⇡tp�qsjps, aq

↵paq “ 0 @a P AjzAjtpsq

↵ : Aj Ñ N0

We show that any solution ↵‹ to this optimization problem satisfies }⇡tp�qsjps, ¨q ´ ↵‹
}

8
† 1.

Assume to the contrary that there is a P Aj such that ↵‹
paq • r⇡tp�qsjps, aq ` 1; the proof for

↵‹
paq § r⇡tp�qsjps, aq ´ 1 is symmetric. Since

∞
aPAj

↵‹
paq “

∞
aPAj

r⇡tp�qsjps, aq, this implies

that there is another action a1
P Ajtpsq such that ↵‹

pa1
q † r⇡tp�qsjps, a1

q. Consider now the
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alternative solution ↵1 defined via ↵1
paq “ ↵‹

paq ´ 1, ↵1
pa1

q “ ↵‹
pa1

q ` 1 and ↵1
p¨q “ ↵‹

p¨q

elsewhere. One readily verifies that ↵1 is also feasible, and basic algebraic manipulations show

that

}↵1
´ r⇡tp�qsjps, ¨q}1 ´ }↵‹

´ r⇡tp�qsjps, ¨q}1

“ |↵1
paq ´ r⇡tp�qsjps, aq| ´ |↵‹

paq ´ r⇡tp�qsjps, aq|

` |↵1
pa1

q ´ r⇡tp�qsjps, a
1
q| ´ |↵‹

pa1
q ´ r⇡tp�qsjps, a

1
q|

“
`
↵‹

paq ´ 1 ´ r⇡tp�qsjps, aq
˘

´
`
↵‹

paq ´ r⇡tp�qsjps, aq
˘

`

ˇ̌
↵‹

pa1
q ` 1 ´ r⇡tp�qsjps, a

1
q
˘ˇ̌

´
`
r⇡tp�qsjps, a

1
q ´ ↵‹

pa1
q
˘

“ ´ 1 `

ˇ̌
↵‹

pa1
q ` 1 ´ r⇡tp�qsjps, a

1
q

ˇ̌
´

`
r⇡tp�qsjps, a

1
q ´ ↵‹

pa1
q
˘

“ ´ 2min
 

r⇡tp�qsjps, a
1
q ´ ↵‹

pa1
q, 1

(
† 0,

where the last equality holds since the expression in the penultimate line evaluates to

´1 `
`
r⇡tp�qsjps, a

1
q ´ ↵‹

pa1
q ´ 1

˘
´

`
r⇡tp�qsjps, a

1
q ´ ↵‹

pa1
q
˘

“ ´2

if ↵‹
pa1

q ` 1 ´ r⇡tp�qsjps, a1
q § 0 and to

´1 `
`
↵‹

pa1
q ` 1 ´ r⇡tp�qsjps, a

1
q
˘

´
`
r⇡tp�qsjps, a

1
q ´ ↵‹

pa1
q
˘

“ ´2
`
r⇡tp�qsjps, a

1
q ´ ↵‹

pa1
q
˘

if ↵‹
pa1

q ` 1 ´ r⇡tp�qsjps, a1
q ° 0. This contradicts the assumed optimality of ↵‹, and we thus

have }⇡tp�qsjps, ¨q ´ ↵‹
}

8
† 1 for all j P J , s P Sj. Since our arguments do not depend on the

choice of t P T , � P S, we conclude that }⇡‹

t p�q ´ ⇡tp�q}
8

† 1 for all t P T , � P S as claimed.

Despite potentially violating the resource constraints of ⇧C, we now show that under suitable

assumptions, the projected policy ⇡‹ is close to ⇧C with high probability. The proximity of ⇡‹
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to ⇧C will crucially depend on the two quantities

ptj ´ 1

pj ´ 1
, where pj “ max

$
&

%
ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq : t P T , s1

P Sj

,
.

- , j P J ,

as well as

✏ “ max

#d
log nj

2nj
: j P J

+
.

Note that pj P r0, |Sj| ¨ |Aj|s by construction, and thus

ptj ´ 1

pj ´ 1
P

„
1,

r|Sj| ¨ |Aj|s
t

´ 1

|Sj| ¨ |Aj| ´ 1

⇢
«

“
1, r|Sj| ¨ |Aj|s

t´1
‰
.

We emphasize that pptj ´1q { ppj ´1q does not grow with the numbers nj of DPs in each counting

DP. The quantity ✏, on the other hand, vanishes quickly when nj Ñ 8 for all j P J .

We are now ready to analyze the performance of ⇡‹ in the weakly coupled counting DP.

Theorem 4.19 (Rounded Policy; Expected Total Reward) Denote by ✓‹ and ✓DP the

expected total reward of the rounded policy ⇡‹ and an optimal policy for the weakly coupled

counting DP ptSj,Aj, qj, pj, rjuj; tnjujq, respectively. We then have

✓‹
• ✓DP

´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨
ptj ´ 1

pj ´ 1

as well as, with probability at least 1´2|T | ¨
∞

jPJ |Sj|{nj for all t P T and l P L simultaneously,

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ r⇡‹

t p�̃‹

t qsjps, aq § btl `

ÿ

jPJ
p1 ` ✏njq

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨
ptj ´ 1

pj ´ 1
,

where �̃‹
“ t�̃‹

t ut is the random state evolution of the weakly coupled counting DP under ⇡‹.

Proof of Theorem 4.19. In view of the bound on the expected total reward, we observe
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that

✓‹
“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ E rr⇡‹

t p�̃‹

t qsjps, aqs

•

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨

ˆ
⇡LP
tj ps, aq ´

ptj ´ 1

pj ´ 1

˙

“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ⇡LP
tj ps, aq ´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨
ptj ´ 1

pj ´ 1

“ ✓LP ´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨
ptj ´ 1

pj ´ 1

• ✓DP
´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨
ptj ´ 1

pj ´ 1
,

where the first identity holds by definition of ✓‹, the first inequality follows from Lemma 4.24

in the appendix of this chapter, the third identity holds by definition of ✓LP, and the second

inequality is due to Theorem 4.15.

As for the resource violation, we have with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj|{nj that

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ r⇡‹

t p�̃‹

t qsjps, aq

§

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨

ˆ
⇡LP
tj ps, aq ` p1 ` ✏njq ¨

ptj ´ 1

pj ´ 1

˙

“

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ⇡LP
tj ps, aq `

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

p1 ` ✏njq ¨
ptj ´ 1

pj ´ 1
¨ ctljps, aq

§ btl `

ÿ

jPJ
p1 ` ✏njq ¨

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨
ptj ´ 1

pj ´ 1
,

where the first inequality is due to Lemma 4.25 in the appendix of this chapter, and the second

inequality holds since ⇡LP is a feasible solution to the fluid LP (4.3) and hence satisfies the

third constraint of the LP.

Theorem 4.20 (Rounded Policy; Worst-Case Total Reward) Denote by ✓̃‹ the random

total reward of the rounded policy ⇡‹ and by ✓DP the expected total reward of an optimal policy
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for the weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq, respectively. We then have

✓̃‹
• ✓DP

´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ p1 ` ✏njq ¨
ptj ´ 1

pj ´ 1

as well as, for all t P T and l P L simultaneously,

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ r⇡‹

t p�̃‹

t qsjps, aq § btl `

ÿ

jPJ
p1 ` ✏njq

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨
ptj ´ 1

pj ´ 1
,

both with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj|{nj, where �̃‹
“ t�̃‹

t ut is the random state

evolution of the weakly coupled counting DP under ⇡‹.

Proof of Theorem 4.20. The bound on the resource violation is the same as in Theorem 4.19,

and we refer to its proof for the justification of the bound. In view of the bound on the total

reward, we observe that with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj|{nj, we have

✓̃‹
“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ r⇡‹

t p�̃‹

t qsjps, aq

•

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨

ˆ
⇡LP
tj ps, aq ´ p1 ` ✏njq ¨

ptj ´ 1

pj ´ 1

˙

“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ⇡LP
tj ps, aq ´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ p1 ` ✏njq ¨
ptj ´ 1

pj ´ 1

“ ✓LP ´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ p1 ` ✏njq ¨
ptj ´ 1

pj ´ 1

• ✓DP
´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ p1 ` ✏njq ¨
ptj ´ 1

pj ´ 1
,

where the first identity holds pointwise by definition of ✓̃‹, the first inequality is due to

Lemma 4.25 in the appendix of this chapter, the third identity holds by definition of ✓LP,

and the second inequality is due to Theorem 4.15.

To interpret the above performance guarantees in light of our healthcare model, we consider an

asymptotic setting where nj Ñ 8 for all j P J , and where the available resources btl 9
∞

jPJ nj
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scale in the number of patients to be treated. One can verify that in this case, the expected

total reward ✓DP
9

∞
jPJ nj of the weakly coupled counting DP under the optimal policy scales

with the number of patients as well. In contrast, we assume that the number |T | of time

periods, the number |J | of patient groups as well as the number of states |Sj| and actions |Aj|

per patient group remain constant. In that setting, Theorem 4.19 shows that the expected

total reward ✓‹ of the rounded policy ⇡‹ equals the optimal expected total reward ✓DP minus

a constant term, since the expression subtracted on the right-hand side of the objective bound

does not grow with nj, j P J . In contrast, Theorems 4.19 and 4.20 show that the worst-case

total reward as well as the resource consumptions deviate from the optimal expected total

reward ✓DP and the resource availabilities btl, respectively, by constants multiplied with ✏nj,

where ✏nj 9
a
nj log nj. While these expressions are no longer constants, they are sublinear and

thus imply that the worst-case suboptimality as well as the resource violations, on a percentage

basis, vanish as well when the number of patients grows. The results also reveal the price to be

paid when moving from a guarantee in expectation (cf. Theorem 4.19) to a guarantee in terms

of the worst case (cf. Theorem 4.20): The suboptimality increases from an additive constant

to a sublinear expression.

A question of practical concern is how the policy ⇡‹ to the weakly coupled counting DP can be

computed from a solution p�LP, ⇡LP
q to the fluid LP (4.3). This appears di�cult as the lifted

policy Lp�LP, ⇡LP
q lives in an infinite-dimensional space and the projection operator Pr seems

to require the solution of a combinatorial optimization problem. Fortunately, given p�LP, ⇡LP
q,

the policy ⇡‹ a↵ords a simple characterization in closed form.

Proposition 4.21 For all t P T , � P S, j P J and ps, aq P Sj ˆ Aj, the policy ⇡‹ satisfies

r⇡‹

t p�qsj ps, aq “ tr⇡tp�qsjps, aqu ` 1rps, aq P Itjp�qs,

where Itjp�q Ñ SjˆAj contains the pairs ps, aq P SjˆAj corresponding to the }fracpr⇡tp�qsjps, ¨qq}1

largest components of fracpr⇡tp�qsjps, ¨qq.

Proof of Proposition 4.21. Fix any t P T , � P S, j P J and s P Sj. By construction,
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r⇡‹

t p�qsj ps, ¨q is any solution to the problem

minimize
↵

}r⇡tp�qsjps, ¨q ´ ↵}1

subject to
ÿ

aPAj

↵paq “

ÿ

aPAj

r⇡tp�qsjps, aq

↵paq “ 0 @a P AjzAjtpsq

↵ : Aj Ñ N0.

By Proposition 4.18, we have }⇡‹

t p�q ´ ⇡tp�q}
8

† 1, which implies that

tr⇡tp�qsjps, aqu § r⇡‹

t p�qsj ps, aq § tr⇡tp�qsjps, aqu ` 1 @a P Aj.

The substitutions � – fracpr⇡tp�qsjps, ¨qq and ↵ – ↵´tr⇡tp�qsjps, ¨qu thus imply that r⇡‹

t p�qsj ps, ¨q´

tr⇡tp�qsjps, ¨qu is any solution to the problem

minimize
↵

}� ´ ↵}1

subject to
ÿ

aPAj

↵paq “

ÿ

aPAj

�p↵q

↵paq “ 0 @a P AjzAjtpsq

↵ : Aj Ñ t0, 1u.

Define the set Ajps,↵q “ ta P Aj : ↵paq “ 1u and observe that |Ajps,↵q| “
∞

aPAj
↵paq “

∞
aPAj

�paq “ }�}1. Moreover, the objective function in the above problem evaluates to

}� ´ ↵}1 “

ÿ

aPAjps,↵q

p1 ´ �paqq `

ÿ

aRAjps,↵q

�paq

“ |Ajps,↵q| ´ 2
ÿ

aPAjps,↵q

�paq `

ÿ

aPAj

�paq “ 2 }�}1 ´ 2
ÿ

aPAjps,↵q

�paq.

Since |Ajps,↵q| “ }�}1 does not depend on the choice of ↵ (as long as ↵ is feasible), the optimal

choice of Ajps,↵q consists of the }�}1 largest entries of �. Moreover, any optimal policy ⇡‹

must satisfy r⇡‹

t p�qsj ps, aq “ tr⇡tp�qsjps, aqu ` 1ra P Ajps,↵qs, a P Aj. The statement then

follows from the fact that Itjp�q “ tps, aq P Sj ˆ Aj : a P Ajps,↵qu.
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Proposition 4.21 denotes by fracpxq “ x´txu the fractional part of a number x P R, which we ap-

ply to functions component-wise. Note that }fracpr⇡tp�qsjps, ¨qq}1 P N0 since
∞

aPAj
r⇡tp�qsjps, aq “

�jpsq P N0 for all � P S and all s P Sj. We emphasize that the set Itjp�q is not necessarily

unique.

4.3.2.4 Approximation Guarantees: Randomized Policies

We now utilize an optimal solution p�LP, ⇡LP
q to the fluid LP (4.3) to construct a random-

ized policy for our health system. Our analysis will crucially rely on the actions applied to

each constituent DP being independent. We therefore cannot operate on the weakly coupled

counting DP, which abstracts away from the dependence structure between the constituent

DPs. Instead, we transform the weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq rep-

resenting our healthcare model to a weakly coupled DP ptSi,Ai, qi, pi, riuiq as follows. We use

the same time horizon T , we set I “
î

jPJ tpj, iq : i “ 1, . . . , nju, Spj,iq “ Sj, Apj,iq “ Aj,

At,pj,iqpsq “ Atjpsq, s P Sj, qpj,iq “ qj and pt,pj,iq “ ptj for all t P T and pj, iq P I. The weakly

coupled DP thus records the state and action of the i-th DP in the j-th counting DP, pj, iq P I,

in the pj, iq-th DP explicitly, whereas the weakly coupled counting DP aggregates the DPs

pj, 1q, . . . , pj, njq to the j-th counting DP, j P J .

Recall that a deterministic policy ⇡ “ t⇡tut, ⇡t : S Ñ A, for the weakly coupled DP assigns an

action a P A to each possible state s P S for each time period t P T . We now consider ran-

domized policies ⇡ “ t⇡tut, ⇡t : S Ñ �pAq, for the weakly coupled DP that assign probability

distributions over all actions a P A to each possible state s P S for each time period t P T .

Fix a weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq as well as an optimal solution

p�LP, ⇡LP
q to its associated fluid LP (4.3). We consider the following randomized policy ⇡‹

“

t⇡‹

t ut:

r⇡‹

t psqspaq “

π

jPJ

njπ

i“1

⇡LP
tj pspj,iq, apj,iqq

�LP
tj pspj,iqq

@t P T , @ps, aq P S ˆ A

Again, we adopt the convention that 0{0 “ 0. Intuitively speaking, the randomized policy ⇡‹
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considers each constituent DP pj, iq P I independently, and it employs each action apj,iq P Apj,iq

with a probability that equals the fraction of times this action has been selected in the fluid

LP (4.3) under the almost sure trajectory in the same time period.

We now study the performance of ⇡‹ in the weakly coupled DP. Our results use the random

states s̃t,pj,iq of the pj, iq-th DP and the random actions ãt,pj,iq applied to this DP in time period

t.

Theorem 4.22 (Randomized Policy; Expected Total Reward) Denote by ✓‹ and ✓DP

the expected total reward of the randomized policy ⇡‹ and an optimal policy for the weakly

coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq, respectively. We then have

✓‹
• ✓DP

as well as, with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj| ¨ |Aj| {nj,

ÿ

jPJ

njÿ

i“1

ctljps̃t,pj,iq, ãt,pj,iqq § btl ` ✏ ¨

ÿ

jPJ
nj

ÿ

sPSj

ÿ

aPAj

ctljps, aq @t P T , @l P L.

Proof of Theorem 4.22. In view of the bound on the expected total reward, we have

✓‹
“ E

«
ÿ

tPT

ÿ

jPJ

njÿ

i“1

rjtps̃t,pj,iq, ãt,pj,iqq

�

“ E

»

–
ÿ

tPT

ÿ

jPJ

njÿ

i“1

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ 1
“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰
fi

fl

“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ E
“
↵̃‹

tjps, aq
‰

“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ⇡LP
tj ps, aq

“ ✓LP • ✓DP,

where the first identity holds by definition of ✓‹, the third identity follows from the definition

of ↵‹

tjps, aq in Lemma 4.27, the fourth identity is due to Lemma 4.27, the last identity holds by
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definition of ✓LP, and the inequality follows from Theorem 4.15.

As for the resource violation, with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj| ¨ |Aj| {nj we have

ÿ

jPJ

njÿ

i“1

ctljps̃t,pj,iq, ãt,pj,iqq “

ÿ

jPJ

njÿ

i“1

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ 1
“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰

“

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨ ↵̃‹

tjps, aq

§

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

ctljps, aq ¨
`
⇡LP
tj ps, aq ` ✏nj

˘

§ btl ` ✏
ÿ

jPJ
nj ¨

ÿ

sPSj

ÿ

aPAj

ctljps, aq

for all l P L and t P T , where the second identity follows from the definition of ↵̃‹

tjps, aq

in Lemma 4.27, the first inequality is due to the statement of Lemma 4.27, and the second

inequality is implied by the third constraint of the fluid LP (4.3).

Theorem 4.23 (Randomized Policy; Worst-Case Total Reward) Denote by ✓̃‹ the ran-

dom total reward of the randomized policy ⇡‹ and by ✓DP the expected total reward of an optimal

policy for the weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq, respectively. We then have

✓̃‹
• ✓DP

´ ✏ ¨

ÿ

tPT

ÿ

jPJ
nj

ÿ

sPSj

ÿ

aPAj

rjtps, aq

as well as

ÿ

jPJ

njÿ

i“1

ctljps̃t,pj,iq, ãt,pj,iqq § btl ` ✏ ¨

ÿ

jPJ
nj

ÿ

sPSj

ÿ

aPAj

ctljps, aq @t P T , @l P L,

both with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj| ¨ |Aj| {nj.

Proof of Theorem 4.23. The bound on the resource violation is the same as in Theorem 4.22,

and we refer to its proof for the justification of the bound. In view of the bound on the expected
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total reward, we observe that with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj| ¨ |Aj| {nj, we have

✓̃‹
“

ÿ

tPT

ÿ

jPJ

njÿ

i“1

rjtps̃t,pj,iq, ãt,pj,iqq

“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ↵̃‹

tjps, aq

•

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨
`
⇡LP
tj ps, aq ´ ✏nj

˘

“

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ⇡LP
tj ps, aq ´

ÿ

tPT

ÿ

jPJ

ÿ

sPSj

ÿ

aPAj

rjtps, aq ¨ ✏nj

“ ✓LP ´ ✏ ¨

ÿ

tPT

ÿ

jPJ
nj

ÿ

sPSj

ÿ

aPAj

rjtps, aq

• ✓DP
´ ✏ ¨

ÿ

tPT

ÿ

jPJ
nj

ÿ

sPSj

ÿ

aPAj

rjtps, aq,

where the first identity is due to the definition of ✓̃‹, the second identity follows from the defini-

tion of ↵̃‹

tjps, aq in Lemma 4.27, the first inequality is due to the statement of Lemma 4.27, the

last identity follows from the definition of ✓LP, and the second inequality is due to Theorem 4.15.

The bounds of Theorems 4.22 and 4.23 are stronger than those of Theorems 4.19 and 4.20 in

the sense that the expected total reward bound does not contain any additive constants and the

worst-case total reward and the resource violation bounds contain smaller additive expressions

(which nevertheless exhibit the same asymptotic behavior). On the flip side, the rounded policy

from the previous section o↵ers more implementational leeway since it can be converted into

many di↵erent policies for the constituent DPs that all generate the same expected total reward

(cf. Proposition 4.6), whereas the randomized policy requires an i.i.d. application of the actions

across the constituent DPs.
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4.3.2.5 Synthetic Experiments

To obtain further insights into our randomized policy from Section 4.3.2.4, we compare our

policy with some standard weakly coupled DP policies from the literature on a stylized problem.

To this end, consider a multi-armed bandit problem with a finite time horizon T P t5, 25, 50u

where N P t1,000, 100,000, 1,000,000u bandits are spread equally across J “ 10 di↵erent

groups. Across all groups j P J , each bandit has the same number of states |Sj| P t2, 3, 4, 5u

and actions |Aj| “ 2 (‘pull arm’ and ‘do nothing’). For each group j, we sample the initial

state probabilities qj as well as the (non-stationary) transition probabilities pjt under the ‘pull

arm’ action uniformly at random, whereas each bandit deterministically resides in its current

state under the ‘do nothing’ action. Likewise, the rewards rjt are state-dependent and drawn

uniformly at random from the interval r0, 1s under the ‘pull arm’ action, whereas they are zero

under the ‘do nothing’ action. We have a single resource constraint which requires that in each

time period at most b P t1% ¨ N, 5% ¨ N, 10% ¨ N, 25% ¨ Nu arms can be pulled. The goal

is to find a policy that decides which arms to pull in each time period so as to maximize the

expected total reward. Note that our bandit problem is characterized by a large number of

bandits, each equipped with a small number of states and actions, that are spread across a

relatively small number of groups and subjected to a fairly tight resource constraint. These

properties are reminiscent of the healthcare case study introduced in Section 4.4.

We compare our randomized policy from Section 4.3.2.4 against the Lagrangian relaxation pro-

posed by [Haw03] and later studied by [AM08] as well as the LP-based relaxation proposed by

[AM08]. In the LP-based relaxation, we follow the constraint sampling approach of [DFVR04]

and randomly sample 10,000 constraints. In all three approaches, we exploit the group struc-

ture inherent in the bandit problem, which implies that the associated LP formulations scale

in the number of groups (as opposed to the number of bandits) and can thus be solved within

seconds with standard solvers. Without further modification, all three policies can violate the

resource constraint. We thus update each policy by replacing the ‘pull arm’ action with the

‘do nothing’ action in bandits in order of ascending regret, as predicted by the value function

approximation of each method, until the resource constraint is satisfied. We report the perfor-
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mance of all three approaches as relative improvements over a naive uniform sampling strategy

that randomly selects b arms to be pulled in each time stage.

We compare the performance of the three policies, and reports the average relative infeasibility

of each policy prior to applying the ‘do nothing’ actions. The results are presented in Table D.1

and Table D.2 in Appendix D, respectively. All results are reported as averages over 100

randomly constructed test instances. Note that by construction, the policies derived from the

Lagrangian and the LP-based relaxations take the same action for any two bandits of the same

group that reside in the same state. For bandits with few states that are operated under

tight resource constraints, this increases the likelihood of pulling either too few or too many

arms. Indeed, the two tables indicate that the policy derived from the Lagrangian relaxation

tends to pull too few arms and thus sacrifices optimality, whereas the LP-based policy pulls

too many arms, implying that many ‘pull arm’ actions need to be subsequently replaced with

‘do nothing’ actions. Further investigations revealed that this behavior is caused by the fact

that an unrealistically large number of constraints would have to be sampled for the LP-based

relaxation to provide reasonably accurate approximations of the true reward to-go functions.

In contrast, our randomized policy can take di↵erent actions for bandits of the same group even

if they reside in the same state. Because of this, the infeasible variant of our randomized policy

tends to result in small violations of the resource constraint that decrease quickly when either

the number of bandits or the slack in the resource constraint increases. Since little adaptation

is required to make our randomized policy resource feasible, it comes at no surprise that it

performs best overall.

4.4 Numerical Results

In this section, we describe our case study of the NHS in England. In particular, we discuss

the overall setup of our case study (Section 4.4.1), the employed data sources (Section 4.4.2)

as well as the DPs that model the patients of our healthcare model (Section 4.4.3).
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4.4.1 Experimental Setup

We apply our framework to the NHS in England during the COVID pandemic. We aim to

optimally schedule elective procedures over a 56-week planning horizon (52 reported weeks plus

an additional 4 weeks to avoid end-of-time-horizon e↵ects), starting from March 2, 2020, with

the objective of minimizing YLL. We consider a total of 10.45 million non-COVID patients

that are subdivided into (i) electives (3.9 millions) and emergencies (6.55 millions), (ii) 20

disease groups and (iii) 3 age groups (under 25 years, 25–64 years, over 64 years). We also

consider 349,279 COVID patients, all of whom are emergencies. Note that even though we use

minimization of YLL as our objective, other metrics could also be used such as minimizing

mortality, Quality-Adjusted Life Years (QALYs), costs, or a combination thereof. However,

quantifying and gathering data for QALYs may not be straightforward.

Our model has a weekly granularity. At the beginning of each week, a new inflow of patients

in need of elective and emergency care (hereafter denoted as elective and emergency patients,

respectively) enters the system. Strictly speaking, our model distinguishes between di↵erent

medical procedures, and thus one and the same patient in need of several procedures is included

as multiple di↵erent patients in our model. For ease of exposition, however, we continue to talk

about patients in the following. Patients are then admitted to hospital, and they evolve over the

duration of the week. Emergencies are always admitted to hospital upon arrival (if capacity

permits). Elective patients who are not immediately admitted to hospital wait in a queue.

While in the queue, an elective patient’s condition might worsen and hence require emergency

admission. Based on the severity of their conditions and resource availability, patients are first

admitted to G&A or to CC and can transition between G&A and CC in the following weeks

of hospitalization until they are eventually discharged from hospital (recovered or deceased).

Transitions between G&A and CC are decided upon at the beginning of each week, and they are

based on transition probabilities that are specific to the di↵erent patient groups and admission

types (elective or emergency).
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4.4.2 Data Sources

We combine a large set of modeling and administrative data to create a comprehensive open-

source dataset for the NHS in England that includes elective and emergency patient inflows,

transition probabilities, availability and requirement of resources and cost of care. To this

end, we leverage several data sources. Non-COVID patient inflows are forecasted with local

linear trend models with trigonometric seasonality time series methods using individual level

patient records across all hospitals in England from the Hospital Episode Statistics (HES),

see [NHS20e]. HES contain patient level data with diagnoses, individual characteristics, care

received, date of admission and time and mode of discharge from hospital.

Weekly inflows of COVID patients are generated by a susceptible-exposed-infected-recovered

dynamic transmission model of SARS-CoV-2. Epidemic projections are made using the inte-

grated epidemic/economic model Daedalus [HCF`20], in which the population consists of four

age groups: pre-schoolers, school-age children, working-age adults and retired. The working-

age population is further divided into 63 economic sectors plus non-working adults. Each of

these groups is further divided into eight subgroups with respect to the disease status: the

susceptible, the exposed, the asymptomatic infectious, the infected with mild symptoms, the

infected with influenza-like symptoms, the hospitalized, the recovered and the dead. The model

fits four parameters to English hospital occupancy data [NHS20b] from March 20, 2020 to June

30, 2020: epidemic onset, basic reproductive number, lockdown onset, and reduction in trans-

mission during lockdown due to pandemic mitigation strategies. In our numerical studies, we

consider an epidemiological scenario defined by a lockdown enforced on January 1, 2021 and

the maximum value of the reproductive number Rmax “ 1.2 attained during the post-lockdown

period.

The evolution of hospitalized non-COVID and COVID patients is modeled with Kaplan-Meier

estimators using, respectively, HES data and individual clinical data from patients who re-

ceived care at the Imperial College Healthcare NHS Trust [PDM`20]. Sta↵ resources are

calculated from the 2020 NHS Electronic Sta↵ Records dataset, and G&A and CC bed avail-

abilities are obtained from the February 2020 KH03-Quarterly Bed Availability and Occu-
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pancy Dataset and from the February 2020 Critical Care Monthly Situation Reports datasets

[NHS20a, NHS20c]. Sta↵-to-bed ratios are calculated using the Royal College of Physicians

guidance [RCP20, Roy20]. Our model always considers properly sta↵ed beds (accounting for

the applicable sta↵-to-bed ratios); indeed, sta↵ has emerged as a key resource bottleneck during

the pandemic. Years of life lost (YLL) are calculated using standard life tables data provided

by the O�ce for National Statistics [O↵19]. For the purpose of calculating YLL, the population

of England was divided into 3 age groups: 0-24, 25-64, and 65+ years, and the YLL per death

factor is obtained by averaging the age specific life expectancy across all ages within each age

group. Finally, the YLL per death factor is multiplied by the number of deaths (obtained from

the optimization model) per age group to obtain the total YLL. Patients are individually costed

using the National Cost Collection dataset from 2015 to 2019 [NHS20f] matched to HES data

at Health Resource Group level (HRGs equivalent to Diagnosis Related Groups international

coding system).

Table 4.1 and Figure 4.7 summarize the main input data for our case study. Table 4.1 reports

the availability of beds and sta↵ in G&A and CC across the NHS in England, together with

the corresponding sta↵-to-bed ratios. Figure 4.7 shows the weekly inflows of elective and

emergency patients from March 2020 to February 2021, categorized by disease type according

to the International Classification of Diseases (ICD) standard. The figure only displays the five

largest patient groups individually, whereas the smaller remaining groups are collective referred

to as “Others”. We observe a seasonal trend in patient inflows as well as dips in January,

March/April, May/June and September that are associated with winter/weather, school and

long bank holiday e↵ects.

All data are made available open-source;2 for additional information on the data sources as well

as the data treatment methodology, we refer the interested reader to [DGG`21b].

2Source code and data available at: https://github.com/ImperialCollegeLondon/dp2lp
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Table 4.1: Availability of resources and sta↵-to-bed ratios.

Capacity Sta↵-to-bed Ratio
Beds Senior Doctors Junior Doctors Nurses Senior Doctors Junior Doctors Nurses

G&A 102,186 10,764 8,539 43,214 15 15 5
CC 4,122 1,013 963 18,856 15 8 1
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Figure 4.7: Weekly inflows of elective (top) and emergency (bottom) patients categorized by dis-
ease group (ICD02: neoplasms; ICD07: diseases of the eye and adnexa; ICD09: diseases of the
circulatory system; ICD10: diseases of the respiratory system; ICD11: diseases of the digestive
system; ICD13: diseases of the musculoskeletal system and connective tissue; ICD14: diseases
of the genitourinary system; ICD18: symptoms, signs and abnormal clinical and laboratory
findings, not elsewhere classified; ICD19: injury, poisoning and certain other consequences of
external causes).

4.4.3 Dynamic Programming Model of an Individual Patient

Recall that the patients in our healthcare model are partitioned into 3,120 groups, each of which

is characterized by an arrival time in the system (52 weeks), one out of 20 disease types and

one out of 3 age groups. We associate a DP with each of these patient groups. All DPs share

the same state and action sets, but the DPs of di↵erent patient groups di↵er in their admissible

actions per time period and state, their transition probabilities as well their expected rewards.

Figure 4.8 o↵ers a schematic representation of a patient DP. Apart from the patients that enter

our healthcare model in the first week, each patient is Dormant until the beginning of week
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Figure 4.8: Schematic representation of a patient DP, from admission to hospital (a) to dis-
charge (c). Rectangular (oval) nodes correspond to states (actions), and grey shaded nodes
are exploded in the subsequent subfigure. Dotted lines correspond to immediate actions and
instantaneous transitions, and full lines represent weekly transitions.
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t “ T0, at which point she enters the system either as to be admitted for a planned procedure

(Elective) or as emergency (Emergency). Emergency patients are admitted to hospital imme-

diately if capacity permits; we assume that emergency patients who are denied admission die,

which is represented by the Dead state. Elective patients that are not immediately admitted

to hospital, on the other hand, remain waiting and run a risk of requiring emergency care in

subsequent weeks.

Upon admission to hospital as elective or emergency, a patient requires either G&A (Initially

requires G&A state) or CC (Initially requires CC state). A patient in need of G&A is admitted

to G&A (G&A state), whereas a patient requiring CC can be assigned to either CC (CC state)

or, in case of capacity shortages, to G&A. In the latter case, the transition into a designated

G˚ state implies that the patient subsequently evolves according to a di↵erent set of transition

probabilities that account for an increased mortality risk associated with the denial of CC.

In the following weeks, depending on her response to the treatment, the patient can either

require the same care regime or be moved to another one (cf. the Requires G&A and Requires

CC states). Depending on resource availability, the patient then transitions between the three

states G&A, CC or G˚ until she eventually reaches the corresponding Last Week state, after

which she is discharged from hospital (Recovered or Dead). We assume that a patient in a Last

Week state only consumes half of the hospital resources, which mimics a half-week stay at the

hospital. The inclusion of designated Last Week states allows us to account for the empirical

fact that for some disease types, a large fraction of the patients require hospitalization for a

few days only.

We next present the numerical results of our NHS England case study and compare our op-

timized schedule (hereafter OS) against a COVID prioritization policy (hereafter CP) that

resembles the one implemented in England during the pandemic (Section 4.4.5). All experi-

ments were run on a 2.7GHz quad-core Intel i7 processor with 16GB RAM using IBM ILOG

CPLEX Optimization Studio 20.1. The runtimes of the fluid LP (4.3) ranged between 1.5 and

2 minutes.
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Figure 4.9: Weekly elective admissions (top) and admission denials (bottom) under the OS,
categorized by disease group (ICD01: certain infectious and parasitic diseases; ICD02: neo-
plasms; ICD05: mental and behavioural disorders; ICD09: diseases of the circulatory system;
ICD12: diseases of the skin and subcutaneous tissue; ICD18: symptoms, signs and abnormal
clinical and laboratory findings, not elsewhere classified; ICD19: injury, poisoning and certain
other consequences of external causes).

4.4.4 Optimized Schedule

Figure 4.9 shows the weekly elective admissions and emergency denials of the OS. Over the

52-week planning horizon, the OS admits to hospital 6,939,573 emergency patients (not shown),

while 654,308 elective patients are admitted to hospital from week 1 to week 43 (upper part

of Figure 4.9). Among the admitted elective patients, the most numerous groups are cancer

patients (230,928), patients a↵ected by diseases of the circulatory system (107,048) and diseases

of the skin and subcutaneous tissue (101,790). In the last weeks of the planning horizon, due

to the high inflow of COVID patients during the second wave of the pandemic, the available

resources are insu�cient to cope with the surge in demand. As a result, admission to hospital

is denied to 125,346 emergency patients during weeks 38-52 (lower part of Figure 4.9). All of

these patients are above 65 years of age, and most of them are COVID (40,962), cancer (30,069)

and injury & poisoning (24,870) patients. The OS denies admission to hospital to these elderly

patients as they have the lowest chances of benefiting from care.
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Figure 4.10: Weekly bed occupancy in CC by disease group (ICD02: neoplasms; ICD09: dis-
eases of the circulatory system; ICD10: diseases of the respiratory system; ICD11: diseases
of the digestive system; ICD19: injury, poisoning and certain other consequences of external
causes). Patients who are denied CC, and have hence been moved to the G‹ state, are shown
above the CC capacity line.
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Figure 4.11: Weekly bed occupancy in G&A by disease group (ICD02: neoplasms; ICD09:
diseases of the circulatory system; ICD10: diseases of the respiratory system; ICD11: diseases
of the digestive system; ICD13: diseases of the musculoskeletal system and connective tissue;
ICD18: symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified;
ICD19: injury, poisoning and certain other consequences of external causes; ICD21: factors
influencing health status and contact with health services).

Figures 4.10 and 4.11 show the bed occupancy in CC and G&A, respectively. A large share of

CC beds is occupied by COVID patients (40.2% average occupancy over the planning horizon),

while 9.4% of the available CC beds are assigned (on average) to elective patients. During both
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Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

LP
G&A 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
CC 63% 93% 100% 100% 100% 100% 100% 100% 100% 76% 91% 99% 100%

DR
G&A 100% 101% 100% 100% 100% 100% 100% 100% 100% 100% 99% 101% 100%
CC 63% 94% 99% 100% 100% 100% 100% 98% 99% 78% 93% 101% 101%

R
G&A 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 100% 100%
CC 66% 95% 107% 108% 101% 104% 97% 96% 100% 76% 90% 100% 101%

Table 4.2: Average monthly G&A and CC bed occupancy for the fluid LP (LP), the deter-
ministic rounded policy (DR) and the randomized policy (R). All numbers are rounded to the
closest integer. The first 10 months (last 3 months) fall into the year 2020 (2021).

the first and the second wave of the pandemic, capacity is insu�cient, and CC is denied to

some patients. The a↵ected patients are almost exclusively COVID patients above 65 years

of age, who are transferred to G‹ due to their longer hospital stays as well as their lower

capacity to benefit from treatment. G&A resources are fully utilized over the entire planning

horizon, and the share of elective patients in G&A is on average 6.6%. The largest group of

emergency patients in G&A are patients a↵ected by diseases of the respiratory system, while

cancer patients are the largest elective patient group. Overall, the OS results in 8,233,216 YLL

over the 52 weeks planning horizon, with COVID patients contributing to 64% of the YLL.

We now investigate the performance of the deterministic rounded and the randomized policy

from Sections 4.3.2.3 and 4.3.2.4. Recall that both of these approximation schemes generate

policies ⇡ P ⇧ for the weakly coupled counting DP whose objective values are close to the

objective value of the fluid LP (which itself overestimates the optimal value of the weakly

coupled counting DP) and whose resource violations are small, with high probability. For our

case study, the deterministic rounded policy results in a YLL increase of 0.02% (from 8,233,216

to 8,235,198) as well as a 0.04% higher G&A and a 0.31% higher CC occupancy (across the

entire time horizon). Likewise, the randomized policy results in a YLL decrease of 0.01% (from

8,233,216 to 8,232,570) as well as a 0.05% higher G&A and a 1.56% higher CC occupancy.

Table 4.2 compares the monthly bed occupancy of the fluid LP (4.3) with the bed occupancy

of our two approximation schemes in further detail. We conclude that both policies o↵er

approximations of high quality.

Figure 4.12 visualizes the trade-o↵ between the competing objectives of minimizing YLL and

costs. To this end, we define the rewards of the individual DPs as convex combinations of the
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Figure 4.12: Pareto analysis: YLL vs. total cost of care.

patient’s contributions to the overall YLL and cost of care. When the OS solely minimizes YLL,

the total healthcare costs amount to £20,659 million. If we were to (hypothetically) not treat

any patients, on the other hand, the YLL would increase from 8,233,216 to 216,255,399. As

expected, significant reductions of YLL (or total cost of care) can be achieved when optimizing

convex combinations of both objectives, rather than one of them in isolation. Recall that our

model focuses on the variable costs of treatments, which are directly proportional to the number

of hospital admissions. Thus, treating no patients results in zero costs in Figure 4.12 since we

disregard the fixed costs associated with the running and maintenance of the hospitals, sta↵,

prevention activities and primary care.

4.4.5 Comparison with COVID Prioritization Policies

The results from the previous section suggest that denying hospital or CC admission to COVID

patients might be beneficial in case of capacity shortages. This contrasts with current practice,

where many countries prioritize COVID patients to the detriment of other patients. In the

following, we thus compare our OS against a CP policy that always admits COVID patients

and that strongly penalizes CC denial to COVID patients in the objective. Other than that,

the CP policy coincides with the OS; in particular, within the aforementioned restrictions, the

CP policy optimally schedules care across all patients groups.
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admission denials

Figure 4.13: Weekly elective admissions (top) and admission denials (bottom) under the CP
policy, categorized by disease group (ICD01: certain infectious and parasitic diseases; ICD02:
neoplasms; ICD05: mental and behavioural disorders; ICD10: diseases of the respiratory sys-
tem; ICD11: diseases of the digestive system; ICD12: diseases of the skin and subcutaneous
tissue; ICD18: symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified; ICD19: injury, poisoning and certain other consequences of external causes).

Figure 4.13 shows that, while the total number of elective admissions is similar to the OS

(655,415), emergency admission denials are significantly higher under the CP policy (153,092,

+22.1% compared to the OS). Specifically, while all COVID patients are admitted to hospital,

emergency admission is denied to patients above 65 years of age a↵ected by injury & poisoning

(55,130), cancer (35,663) and diseases of the respiratory system (26,784). The higher numbers

of emergency admission denials are due to the longer treatment of COVID patients, relative to

patients a↵ected by other diseases. Under the CP policy, an average 71.6% of the CC beds are

occupied by COVID patients (+75.6% compared to the OS), and the CC occupancy reaches

100% during the second wave of the pandemic (weeks 42-52). The share of electives in CC and

G&A is reduced to 4.4% (-53.2% compared to the OS) and 6.5% (-1.5% compared to the OS),

respectively.

Overall, the prioritization of COVID patients in admission to hospital and CC leads to an 8.7%

increase in the total YLL under the CP policy compared to the OS. Figure 4.14 shows a break-

down of this total 719,868 YLL across the di↵erent disease groups. Significant losses in years
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Figure 4.14: Years of Life Gained (i.e., YLL avoided) by the OS relative to the CP policy,
categorized by disease group (ICD01: certain infectious and parasitic diseases; ICD02: neo-
plasms; ICD04: endocrine, nutritional and metabolic diseases; ICD05: mental and behavioural
disorders; ICD06: diseases of the nervous system; ICD09: diseases of the circulatory system;
ICD10: diseases of the respiratory system; ICD11: diseases of the digestive system; ICD13: dis-
eases of the musculoskeletal system and connective tissue; ICD14: diseases of the genitourinary
system; ICD18: symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified; ICD19: injury, poisoning and certain other consequences of external causes).

of life are seen for patients a↵ected by injury & poisoning (318,955), diseases of the respiratory

system (259,012), diseases of the circulatory system (108,085), diseases of the digestive system

(85,134) and cancer (78,464), to the benefit of elderly COVID patients (275,691).

We emphasize that the CP policy constitutes an overly optimistic representation of the current

practice in England, where not only COVID patients are prioritized but also the other patient

groups are scheduled suboptimally based on static prioritization schemes. Thus, we expect

our results to underestimate the benefits of the OS over the current practice. We refer the

interested reader to the associated paper [DGG`21b] for a comparison of the OS against a set

of government admission policies across a range of scenarios.

4.5 Conclusion
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4.5.1 Managerial Insights

The COVID prioritization policies described in Section 4.4.5 represents an optimistic view of

the actual policy that was implemented by NHS England during the initial waves of COVID-

19. The discussion in Section 4.4.5 clearly shows the benefits of using an optimized policy

for scheduling patients versus using blanket prioritization policies that were implemented in

practice.

We recognize that the optimal policies suggested in the previous section, even though beneficial

to the public in the long run, may be hard to implement owing to its requirement to turn away

some of the frailest patients. However, the optimized policies developed in this chapter should

be used as a guiding framework to ensure that the resources are allocated in a way that patients

who stand to benefit the most from treatment can get it in time. This also implies lower costs

for NHS England over the longer term since it costs more to treat patients who are sicker

because they did not receive appropriate treatment on time. Moreover, more e↵orts need to

be made to educate the public on the benefits of using the approach suggested in this chapter,

to sway public opinion in favor of implementing policies driven by optimization models in the

future.

4.5.2 Additional Considerations

Our approach of modeling the health system via a weakly coupled counting DP and subse-

quently determining a near-optimal solution via the fluid LP (4.3) is very versatile. In this

section, we highlight some extensions of our method that can help to obtain better informed,

fairer and more resilient decisions as well as further insights into the characteristics of the

optimal solution.

Relaxation of Model Assumptions. Our healthcare model makes a number of strong

assumptions that can be relaxed. Firstly, with the exception of the patients that have been

denied CC (and that have thus transferred to the state G‹), the transitions in our model—

such as the weekly probability of an elective patient turning into an emergency or the weekly
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probability of a hospitalized patient recovering or dying—are Markovian and hence memoryless.

In reality, disease progression may exhibit a more complicated dependence on waiting time, and

this time dependency di↵ers across the di↵erent patient groups. We can readily model non-

Markovian transitions by adding memory to the states of the patient DPs (e.g., how many weeks

has a patient been waiting for her surgery, and how many weeks has a patient spent in hospital).

An interesting problem that arises in this context is how to best approximate non-Markovian

transitions via a small number of additional states. Secondly, our model assumes that the timing

and the magnitude of the patient inflows as well as the availability of sta↵ is independent of

the hospital occupancy rates. Since COVID is highly infectious, however, both non-COVID

patients and hospital sta↵ get exposed to the virus and—in absence of protective behavior—may

spread it to the community. It would therefore be instructive to study the impact of hospital

occupancy rates, which are immediate consequences of the admissions decisions in our model,

on hospital acquired infections, changes in care seeking behavior as well as workload-dependent

sta↵ absenteeism [GSS13]. Thirdly, our model assumes that capacity can be re-assigned between

COVID and non-COVID cases on short notice. Since COVID patients require isolation and

dedicated sta↵ to reduce the risk of infections, this is not the case in practice, and our model

may therefore overestimate the available capacity. We believe that this issue is attenuated by

the fact that we are modeling the health system of an entire nation, as opposed to an individual

hospital. Finally, our model disregards geographical di↵erences in patient numbers, hospital

resources and treatment e�ciency. While this appears to be an acceptable approximation in

our case study, a more elaborate model could subdivide the country into di↵erent regions and

impose that patients can only be treated in hospitals that are su�ciently close.

Alternative Objectives, Constraints and Decisions. While YLL and costs are natural

objectives to minimize, one could also consider the incorporation of inequity aversion in the

population distribution of healthcare utilization and/or health outcomes. . This would enable

the policy maker to sacrifice some e�ciency in favor of providing people of di↵erent age, gender,

ethnicity and medical history equal chances of survival. Further refinements of our model

could include additional policy restrictions, such as prioritizing CC access for patients that

are already hospitalized or ensuring that patients of every disease and age group are admitted
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to hospital within a certain maximum time interval. While some of these restrictions can be

readily included as linear constraints, others may require the imposition of logical constraints

and thus result in mixed-integer linear programs. Finally, additional tactical and strategic

decisions, such as the construction of temporary field hospitals, the enlistment of retired sta↵

and medical students, changes to the employed sta↵-to-bed ratios as well as alterations in the

design of the hospitals (e.g., the erection of isolation wards for COVID patients), can be readily

incorporated into our model through the inclusion of additional continuous or discrete decision

variables.

Regularization against Data Uncertainty. Our healthcare model can be safeguarded

against the impact of uncertainty in the patient inflows, transition probabilities and resource

availabilities. To this end, we can replace the weakly coupled counting DP with a robust

counterpart that determines the optimal policy in view of the worst rewards and transition

probabilities from within a pre-specified uncertainty set, which can itself be selected so as

to o↵er rigorous statistical guarantees. Robust policies have attracted significant interest in

the context of Markov decision processes [Iye05, NG05, WKR13], and similar concepts can

be readily applied to our weakly coupled counting DP. Assuming that the uncertainty set

is polyhedral, the resulting robust version of our fluid LP (4.3) is amenable to the ‘robust

optimization trick’ [BTEN09, BBC11a] and thus reduces to a linear program of moderately

larger size than the nominal fluid LP (4.3).

Sensitivity Analysis. An important advantage of our LP-based approach is that the optimal

solution to our healthcare model is amenable to sensitivity analysis. The shadow prices of the

patient inflow constraints, for example, allow us to evaluate the impact of additional elective

and emergency patients of a particular age group and disease type at di↵erent times during the

pandemic. The shadow prices of the resource constraints inform about the value of di↵erent

resources over time, and they allow to investigate the impact of changes to the required sta↵-

to-bed ratios. The sensitivity of the optimal objective value with respect to the transition

probabilities, finally, allows us to quantify the impact of improvements to certain treatments

(e.g., the administration of medicines to shorten the hospitalization of COVID patients) on the

overall health outcome.
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4.6 Appendix

The proofs of Theorems 4.19 and 4.20 rely on the following auxiliary results. In the following

statements, we fix the weakly coupled counting DP ptSj,Aj, qj, pj, rjuj; tnjujq, a rounded policy

⇡‹ satisfying the conditions of Section 4.3.2.3 and its associated random state evolution �̃‹
“

t�̃‹

t ut, as well as the quantities ✓‹ and ✓DP from the statements of Theorems 4.19 and 4.20.

Lemma 4.24 The following inequalities hold for all t P T , j P J and ps, aq P Sj ˆ Aj:

ˇ̌
E

“
�̃‹

tjpsq
‰

´ �LP
tj psq

ˇ̌
§

ptj ´ 1

pj ´ 1
´ 1,

ˇ̌
E rr⇡‹

t p�̃‹

t qsjps, aqs ´ ⇡LP
tj ps, aq

ˇ̌
§

ptj ´ 1

pj ´ 1
.

Proof of Lemma 4.24. We prove the statement via induction over t P T . For t “ 1,

Definition 4.8 of a weakly coupled counting DP states that

E
“
�̃‹

1jpsq
‰

“ nj ¨ qjpsq “ �LP
1j psq @j P J , @s P Sj, (4.4)

and Proposition 4.18 implies that

|E rr⇡‹

1p�̃‹

1qsjps, aqs ´ E rr⇡1p�̃‹

1qsjps, aqs| § 1 @j P J , @ps, aq P Sj ˆ Aj.

Moreover, we have

E rr⇡1p�̃
‹

1qsjps, aqs “
⇡LP
1j ps, aq

�LP
1j psq

¨ E
“
�̃‹

1jpsq
‰

“ ⇡LP
1j psq @j P J , @s P Sj,

where the first identity follows from the definition of ⇡, while the second identity is due to (4.4).

This proves the statement for t “ 1.

Assume now that the statement holds for some t P T ztT u. We then have

E
“
�̃‹

t`1,jps
1
q |⇡‹

t p�̃‹

t q
‰

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ r⇡‹

t p�̃‹

t qsjps, aq @j P J , @s1
P Sj.
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Taking expectation on both sides, we see that for all j P J and all s1
P Sj, we have that

E
“
�̃‹

t`1,jps
1
q
‰

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ E rr⇡‹

t p�̃‹

t qsjps, aqs

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨

`
⇡LP
tj ps, aq ` E rr⇡‹

t p�̃‹

t qsjps, aqs ´ ⇡LP
tj ps, aq

˘

“ �LP
t`1,jps

1
q `

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq

`
E rr⇡‹

t p�̃‹

t qsjps, aqs ´ ⇡LP
tj ps, aq

˘
,

where the last identity follows from the second constraint of the fluid LP (4.3), which implies

that �LP
t`1,jps

1
q “

∞
sPSj

∞
aPAj

pjtps1
|s, aq ¨ ⇡LP

tj ps, aq for all t P T ztT u, j P J and s1
P Sj.

Subtracting �LP
t`1,jps

1
q on both sides and taking absolute values, we see that

ˇ̌
E

“
�̃‹

t`1,jps
1
q
‰

´ �LP
t`1,jps

1
q

ˇ̌
“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq

ˇ̌
E rr⇡‹

t p�̃‹

t qsjps, aqs ´ ⇡LP
tj ps, aq

ˇ̌

§

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨

ptj ´ 1

pj ´ 1

§ pj ¨
ptj ´ 1

pj ´ 1
“

pt`1
j ´ 1

pj ´ 1
´ 1,

where the two inequalities follow from the induction hypothesis and the definition of pj, respec-

tively. Similarly, the definition of ⇡ implies that

ˇ̌
E

“
r⇡t`1p�̃

‹

t`1qsjps, aq
‰

´ ⇡LP
t`1,jps, aq

ˇ̌
“

ˇ̌
ˇ̌
ˇ
⇡LP
t`1,jps, aq

�LP
t`1,jpsq

¨ E
“
�̃‹

t`1,jpsq
‰

´ ⇡LP
t`1,jps, aq

ˇ̌
ˇ̌
ˇ

“
⇡LP
t`1,jps, aq

�LP
t`1,jpsq

¨

ˇ̌
E

“
�̃‹

t`1,jpsq
‰

´ �LP
t`1,jpsq

ˇ̌

§

ˇ̌
E

“
�̃‹

t`1,jpsq
‰

´ �LP
t`1,jpsq

ˇ̌

§
pt`1
j ´ 1

pj ´ 1
´ 1,

(4.5)

where the first identity holds by definition of ⇡t`1, the first inequality follows from the fact that

⇡LP
t`1,jps, aq § �LP

t`1,jpsq, which is implied by the fourth constraint of the fluid LP (4.3), and the

second inequality is due to the induction hypothesis. Proposition 4.18 implies that

ˇ̌
E

“
r⇡‹

t`1p�̃‹

t`1qsjps, aq
‰

´ E
“
r⇡t`1p�̃

‹

t`1qsjps, aq
‰ˇ̌

§ 1 @j P J , @ps, aq P Sj ˆ Aj,
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which in turn implies through the triangle inequality that

ˇ̌
E

“
r⇡‹

t`1p�̃
‹

t`1qsjps, aq
‰

´ ⇡LP
t`1,jps, aq

ˇ̌
§ 1 `

ˇ̌
E

“
r⇡t`1p�̃‹

t`1qsjps, aq
‰

´ ⇡LP
t`1,jps, aq

ˇ̌

for all j P J and all ps, aq P Sj ˆ Aj, and equation (4.5) implies that the right-hand side

expression is less than or equal to ppt`1
j ´ 1q{ppj ´ 1q as desired. This completes the proof.

Lemma 4.25 With probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj|{nj, we have

ˇ̌
r⇡‹

t p�̃‹

t qsjps, aq ´ ⇡LP
tj ps, aq

ˇ̌
§ p1 ` ✏njq ¨

ptj ´ 1

pj ´ 1
@t P T , @j P J , @ps, aq P Sj ˆ Aj.

Proof of Lemma 4.25. We prove the statement via induction over t P T . For t “ 1,

Proposition 4.18 implies that

|r⇡‹

1p�̃‹

1qsjps, aq ´ r⇡1p�̃‹

1qsjps, aq| § 1 @j P J , @ps, aq P Sj ˆ Aj

pointwise. Moreover, we have

r⇡1p�̃
‹

1qsjps, aq “
⇡LP
1j ps, aq

�LP
1j psq

¨ �̃‹

1jpsq “ ⇡LP
1j ps, aq ` ⇡LP

1j ps, aq ¨
�̃‹

1jpsq ´ �LP
1j psq

�LP
1j psq

for all j P J and ps, aq P Sj ˆ Aj pointwise, where the first identity follows from the definition

of ⇡. This in turn implies that

ˇ̌
r⇡1p�̃‹

1qsjps, aq ´ ⇡LP
1j ps, aq

ˇ̌
“

ˇ̌
ˇ̌
ˇ⇡

LP
1j ps, aq ¨

�̃‹

1jpsq ´ �LP
1j psq

�LP
1j psq

ˇ̌
ˇ̌
ˇ §

ˇ̌
�̃‹

1jpsq ´ �LP
1j psq

ˇ̌

for all j P J and ps, aq P Sj ˆ Aj pointwise, where the inequality follows from the fact that

⇡LP
1j ps, aq {�LP

1j psq § 1 due to the fourth constraint in the fluid LP (4.3) (also for �LP
1j psq “ 0,

in which case our earlier convention implies that the fraction vanishes). The statement for

t “ 1 now follows from the triangle inequality if we can show that
ˇ̌
�̃‹

1jpsq ´ �LP
1j psq

ˇ̌
§ 1 ` ✏nj

simultaneously for all j P J and s P Sj with probability at least 1´ 2|T | ¨
∞

jPJ |Sj|{nj. To see
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this, we note that

P
“ˇ̌
�̃‹

1jpsq ´ nj ¨ qjpsq

ˇ̌
§ ✏nj

‰
• 1 ´

2

nj
@j P J , @s P Sj

according to Hoe↵ding’s inequality, and �LP
1j psq “ nj ¨ qjpsq according to the first constraint in

the fluid LP (4.3). The result then follows from the union bound.

Assume now that the statement holds for t P T ztT u. The same argument as before shows that

ˇ̌
r⇡‹

t`1p�̃
‹

t`1qsjps, aq ´ r⇡t`1p�̃
‹

t`1qsjps, aq

ˇ̌
§ 1 (4.6)

as well as
ˇ̌
r⇡t`1p�̃‹

t`1qsjps, aq ´ ⇡LP
t`1,jps, aq

ˇ̌
§

ˇ̌
�̃‹

t`1,jpsq ´ �LP
t`1,jpsq

ˇ̌

for all j P J and ps, aq P Sj ˆAj pointwise. The result again follows from the triangle inequality

if we can show that

ˇ̌
�̃‹

t`1,jpsq ´ �LP
t`1,jpsq

ˇ̌
§ p1 ` ✏njq ¨

pt`1
j ´ 1

pj ´ 1
´ 1 (4.7)

simultaneously for all j P J and s P Sj with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj|{nj. The

remainder of the proof is thus dedicated to proving the bound (4.7).

Note first that

E
“
�̃‹

t`1,jps
1
q |⇡‹

t p�̃‹

t q
‰

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ r⇡‹

t p�̃‹

t qsjps, aq @j P J , @s1
P Sj.

Hoe↵ding’s inequality, which applies since the random variables �̃‹

t`1,jps
1
q are conditionally

independent given ⇡‹

t p�̃‹

t q, then implies that

P

»

–

ˇ̌
ˇ̌
ˇ̌�̃

‹

t`1,jps
1
q ´

ÿ

sPSj

ÿ

aPAj

pjtps|s, aq ¨ ⇡0
tjps, aq

ˇ̌
ˇ̌
ˇ̌ § ✏nj

ˇ̌
ˇ̌
ˇ ⇡

‹

t p�̃‹

t q “ ⇡0
t

fi

fl • 1´2e´2✏2nj • 1´
2

nj
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for all j P J and s1
P Sj, and an application of the union bound shows that

P

»

–

ˇ̌
ˇ̌
ˇ̌�̃

‹

t`1,jps
1
q ´

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ ⇡0

tjps, aq

ˇ̌
ˇ̌
ˇ̌ § ✏nj @j P J , @s1

P Sj

ˇ̌
ˇ̌
ˇ ⇡

‹

t p�̃‹

t q “ ⇡0
t

fi

fl • 1´

ÿ

jPJ

2|Sj|

nj
.

(4.8)

Note next that for any ⇡0
t P A, we have

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ ⇡0

tjps, aq

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨

`
⇡0
tjps, aq ´ ⇡LP

tj ps, aq
˘

`

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ ⇡LP

tj ps, aq

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨

`
⇡0
tjps, aq ´ ⇡LP

tj ps, aq
˘

` �LP
t`1,jps

1
q

(4.9)

for all s1
P Sj, where the last identity follows from the second constraint of the fluid LP (4.3).

Consider next the set

� “

"
⇡t P A :

ˇ̌
⇡tjps, aq ´ ⇡LP

tj ps, aq

ˇ̌
§ p1 ` ✏njq ¨

ptj ´ 1

pj ´ 1
@j P J , @ps, aq P Sj ˆ Aj

*

of partial policies ⇡t that are su�ciently close to ⇡LP
t . For any ⇡0

t P �, we have

P
«

ˇ̌
�̃‹

t`1,jps
1
q ´ �LP

t`1,jps
1
q

ˇ̌
§ p1 ` ✏njq ¨

pt`1
j ´ 1

pj ´ 1
´ 1 @j P J , @s1

P Sj

ˇ̌
ˇ̌
ˇ ⇡

‹

t p�̃‹

t q “ ⇡0
t

�
• 1´

ÿ

jPJ

2|Sj|

nj

(4.10)

since

ˇ̌
�̃‹

t`1,jps
1
q ´ �LP

t`1,jps
1
q

ˇ̌

§

ˇ̌
ˇ̌
ˇ̌�̃

‹

t`1,jps
1
q ´

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ ⇡0

tjps, aq

ˇ̌
ˇ̌
ˇ̌ `

ˇ̌
ˇ̌
ˇ̌
ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ ⇡0

tjps, aq ´ �LP
t`1,jps

1
q

ˇ̌
ˇ̌
ˇ̌

§ ✏nj `

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ p1 ` ✏njq ¨

ptj ´ 1

pj ´ 1

§ ✏nj ` p1 ` ✏njq ¨
pt`1
j ´ pj
pj ´ 1

“ p1 ` ✏njq ¨
pt`1
j ´ 1

pj ´ 1
´ 1,

where the first inequality holds pointwise due to the triangle inequality, the second inequality
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holds conditionally with probability at least 1 ´ 2
∞

jPJ |Sj|{nj due to (4.8), (4.9) and the fact

that ⇡0
t P �, and the third inequality holds by definition of pj.

Going over to unconditional probabilities, we finally obtain

P
«

ˇ̌
�̃‹

t`1,jps
1
q ´ �LP

t`1,jps
1
q

ˇ̌
§ p1 ` ✏njq ¨

pt`1
j ´ 1

pj ´ 1
´ 1 @j P J , @s1

P Sj

�

“

ÿ

⇡0
t

P
«

ˇ̌
�̃‹

t`1,jps
1
q ´ �LP

t`1,jps
1
q

ˇ̌
§ p1 ` ✏njq ¨

pt`1
j ´ 1

pj ´ 1
´ 1 @j P J , @s1

P Sj

ˇ̌
ˇ ⇡‹

t p�̃‹

t q “ ⇡0
t

�

¨ P
“
⇡‹

t p�̃‹

t q “ ⇡0
t

‰

•

ÿ

⇡0
t P�

P
«

ˇ̌
�̃‹

t`1,jps
1
q ´ �LP

t`1,jps
1
q

ˇ̌
§ p1 ` ✏njq ¨

pt`1
j ´ 1

pj ´ 1
´ 1 @j P J , @s1

P Sj

ˇ̌
ˇ ⇡‹

t p�̃‹

t q “ ⇡0
t

�

¨ P
“
⇡‹

t p�̃‹

t q “ ⇡0
t

‰

•

ÿ

⇡0
t P�

˜
1 ´

ÿ

jPJ

2|Sj|

nj

¸
¨ P

“
⇡‹

t p�̃‹

t q “ ⇡0
t

‰

•

˜
1 ´

ÿ

jPJ

2|Sj|

nj

¸
¨

˜
1 ´ t ¨

ÿ

jPJ

2|Sj|

nj

¸
• 1 ´ pt ` 1q ¨

ÿ

jPJ

2|Sj|

nj
,

where the identity is due to the law of total probability, the first inequality holds because we

restrict ourselves to ⇡0
t P �, the second inequality follows from (4.10), the third inequality is

due to the definition of � as well as the induction hypothesis, and the last inequality holds since

p1 ´ xqp1 ´ txq “ 1 ´ pt ` 1qx ` tx2
• 1 ´ pt ` 1qx for all x P R. This shows the bound (4.7)

and thereby completes the proof.

Next, we provide the auxiliary results required for the proofs of Theorems 4.22 and 4.23.

Lemma 4.26 The following equations hold for all t P T , pj, iq P J ˆ t1, . . . , nju and ps, aq P

Sj ˆ Aj:

P
“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰
“

⇡LP
tj ps, aq

nj
.

Proof of Lemma 4.26. According to our definition of the randomized policy ⇡‹, we have

P
“
ãt,pj,iq “ a | s̃t,pj,iq “ s

‰
“

⇡LP
tj ps, aq

�LP
tj psq

@ps, aq P Sj ˆ Aj
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for each t P T and pj, iq P J ˆ t1, . . . , nju, which in turn implies that

P
“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰
“ P

“
ãt,pj,iq “ a | s̃t,pj,iq “ s

‰
¨P

“
s̃t,pj,iq “ s

‰
“
⇡LP
tj ps, aq

�LP
tj psq

¨P
“
s̃t,pj,iq “ s

‰
.

(4.11)

In the remainder of the proof, we show via induction on t P T that P
“
s̃t,pj,iq “ s

‰
“ �LP

tj psq {nj

for all t P T , pj, iq P J ˆ t1, . . . , nju and s P Sj, which concludes the proof.

For t “ 1, the definition of the weakly coupled DP implies that P
“
s̃t,pj,iq “ s

‰
“ qjpsq, and

the first constraint of the fluid LP (4.3) ensures that �LP
1j psq “ nj ¨ qjpsq. Assume now that

P
“
s̃t,pj,iq “ s

‰
“ �LP

tj psq {nj for some t P T ztT u. We then have

P
“
s̃t`1,pj,iq “ s1

‰
“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨ P

“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨

⇡LP
tj ps, aq

�LP
tj psq

¨ P
“
s̃t,pj,iq “ s

‰

“

ÿ

sPSj

ÿ

aPAj

pjtps
1
|s, aq ¨

⇡LP
tj ps, aq

nj
“

�LP
t`1,jps

1
q

nj
,

where the first identity follows from the definition of the weakly coupled DP, the second identity

is due to (4.11), the third identity follows from the induction hypothesis, and the last identity

is due to the second constraint of the fluid LP (4.3).

Lemma 4.27 Let ↵̃‹

tjps, aq “
∞nj

i“1 1
“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰
record the number of DPs in the

j-th counting DP that are in state s and to which action a is applied at time t. Then

E
“
↵̃‹

tjps, aq
‰

“ ⇡LP
tj ps, aq @t P T , @j P J , @ps, aq P Sj ˆ Aj.

Furthermore, with probability at least 1 ´ 2|T | ¨
∞

jPJ |Sj| ¨ |Aj| {nj, we have

ˇ̌
↵̃‹

tjps, aq ´ ⇡LP
tj ps, aq

ˇ̌
§ ✏nj @t P T , @j P J , @ps, aq P Sj ˆ Aj.
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Proof of Lemma 4.27. In view of the first statement, we note that

E
“
↵̃‹

tjps, aq
‰

“

njÿ

i“1

P
“
s̃t,pj,iq “ s ^ ãt,pj,iq “ a

‰
“

njÿ

i“1

⇡LP
tj ps, aq

nj
“ ⇡LP

tj ps, aq,

where the first and second identity follow from the definition of ↵̃‹

tjps, aq and Lemma 4.26,

respectively.

As for the second statement, note that ↵̃‹

tjps, aq is a sum of i.i.d. random variables. Hoe↵ding’s

inequality then implies that

P
“ˇ̌
↵̃‹

tjps, aq ´ ⇡LP
tj ps, aq

ˇ̌
§ ✏nj

‰
• 1 ´ 2e2✏

2nj • 1 ´
2

nj

for all t P T , j P J and ps, aq P Sj ˆAj, and the statement thus follows from the union bound.
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Conclusion

5.1 Summary of the Thesis

Large organizations face numerous problems that involve decision making based on uncertain

or incomplete information. These could either be single-stage or multi-stage decision making

problems. This thesis has aimed to study problems in both areas, and propose models and

develop solutions that improve upon the literature.

This thesis focused on two key problem areas: one is the problem of vehicle routing in logistics

operations, and the other is that of optimizing the scheduling of elective patients in order to

improve healthcare operations. In Chapters 2 and 3, we studied the problem of vehicle routing

under demand uncertainty, while Chapter 4 studied the problem of optimal prioritization of

elective patients during a pandemic.

In the wide domain of vehicle routing, we restricted our attention to the problem of the single-

stage capacitated vehicle routing problem (CVRP) under distributional ambiguity of the cus-

tomer demands. In Chapter 2, we studied the chance-constrained vehicle routing problem under

this setting. The chance-constrained CVRP is a notoriously hard problem to solve. However,

we showed that under a wide consideration of moment ambiguity sets, the distributionally

robust chance constrained CVRP enjoys a similar computational complexity as the classical,

236
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deterministic CVRP. This is the first study that attempted the application of the distribution-

ally robust optimization paradigm to the CVRP, and has opened up possibilities of addressing

uncertainty using existing algorithms, without undue overhead over deterministic models. The

distributionally robust optimization approach allowed for relaxing the assumptions of indepen-

dence of customer demands and the knowledge of the governing probability distribution, which

although restrictive were common in the vehicle routing literature.

Chapter 3 extended on the findings of Chapter 2 by considering various risk measures in con-

junction with di↵erent characterizations of the ambiguity sets that allows us to solve di↵erent

variants of the CVRP. The consideration of a very general ambiguous set allows us to bridge

the paradigms of stochastic optimization, robust optimization and distributionally robust opti-

mization. To our best knowledge, this chapter is the first attempt at proposing a framework for

the stochastic and distributionally robust CVRP that combines multiple ambiguity sets with

di↵erent risk measures and disutility functions. Moreover, our proposed method based on the

branch-and-cut algorithm allows the solution of a wide class of problems with only minimal

adaptation. Even more generally, we developed a framework that identifies the necessary con-

ditions that a problem must satisfy to be amenable to our treatment. This allows extensions

of our method to variants of the VRP other than the CVRP.

Chapter 4 studied the problem of multi-stage decision making using the dynamic programming

approach. More specifically, it looked at large-scale weakly coupled dynamic programs. These

problems are intractable and are solved using approximation solution schemes. This chapter

introduced the concept of k-counting dynamic programs that allow to approximately solve

intractable large weakly coupled dynamic program by a tractable fluid linear program. The

fluid LP scales gracefully with the problem data. Moreover, the fluid relaxation allows us to

recover high quality solutions to the weakly coupled counting DP.

The method developed in Chapter 4 is applied to the problem of optimal prioritization of elective

patients in NHS England during the COVID-19 pandemic that caused an unprecedented surge

in the number of emergency patients seeking care over a prolonged period of time. To the best

of our knowledge, this case study is the largest and most detailed application of weakly coupled
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dynamic programs to date. The case study provided compelling evidence that prioritizing

COVID patients over patients from other disease groups led to worsened outcomes in terms of

mortality as well as costs in treating patients who did not receive timely care. Our decision

making tool can hopefully be utilized during future demand surges for hospital care to achieve

better healthcare outcomes than was witnessed during COVID-19, through improved allocation

of limited hospital resources to patients.

5.2 Future Work

Chapter 2 develops a method that solves the distributional robust chance-constrained CVRP

wherein the customer demands belong to the class of moment ambiguity sets. We show that the

developed method cannot be extended to other ambiguity sets. Chapter 3 alleviates this short-

coming by considering a more general ambiguity set for the distributional robust CVRP under

a variety of risk measures and disutility functions. The consideration of a general ambiguity set

allows us to encompass the KL-divergence ambiguity set, type-8 Wasserstein ambiguity set,

and the total variation ambiguity sets. Even more general cases of the ambiguity sets have been

considered in the paper [GHW21] that was produced from this chapter. This leaves a gap for

the study and comparison of alternative model-based ambiguity sets for the uncertainty-a↵ected

CVRP that o↵er realistic descriptions of the uncertain customer demands while avoiding the

curse of dimensionality that plagues direct characterizations of high-dimensional probability

distributions.

Secondly, even though Chapter 3 considers a very general formulation of the VRP, the developed

framework can only be applied to the CVRP and some of its variants such as CVRP with

compartments. This leaves avenue for future research to develop similar frameworks for other

variants of the VRP that allow solution of a wide class of problems with minimal adaptations

to a general solution method.

Finally, it remains of interest to further improve the computational scalability of our approach

described in Chapter 2 and Chapter 3 using algorithms like branch-cut-and-price which have
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proven to be attractive in solving the deterministic CVRP.

Chapter 4 studies a large weakly-coupled dynamic program and develops a fluid relaxation that

allows solution via a linear program that is tractable and scales economically in the size of the

problem. However, the model requires the problem parameters to be known exactly. As has

been motivated in the thesis, this is rarely the case. This creates a gap for the study of the

robust version of our model which considers the problem parameters as uncertain. Moreover,

the transition probabilities of the dynamic program are considered to be Markovian and hence

memoryless. In the future, non-Markovian transitions could be modeled by adding memory to

the states of the dynamic programs.

The model developed in Chapter 4 is applied to the problem of elective patients scheduling

in NHS England during COVID-19. However, the model makes many simplifying assump-

tions, such as allocation of hospital beds between COVID and non-COVID patients without

separation, and homogeneity of patients within a disease group. This leaves space for further

improvement of the model specific to this healthcare application. Moreover, the model devel-

oped in this chapter can also be extended to solve large-scale problems in other application

areas such as B2C marketing, assortment optimization and inventory control problems.
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Appendix A

Detailed Numerical Results for

Chapter 2

Table C.1 summarizes the best determined solution as well as the runtime of our branch-and-

cut scheme for the deterministic CVRP (‘Deterministic’) as well as the distributionally robust

CVRP over a first order ambiguity set (‘First Order’), a second order ambiguity set (‘Second

Order’) as well as a second order ambiguity set with diagonal covariance bounds (‘Diagonal’).

Instances that have been solved to certified optimality (within the runtime limit of 12 hours)

are marked with an asterisk: in this case, the ‘Opt’ column denotes the optimal objective value,

and the ‘t (sec)’ column provides the runtime. For all other instances, the ‘Opt’ column denotes

the objective value of the best route set found, and the ‘[LB]’ column presents the lower bound

at termination.

We also provide detailed numerical results for each branch-and-cut scheme in turn. To this

end, Tables A.2–A.5 provide the percentage gap at the root node (measured relative to the

best route set found at termination), the time to process the root node, the number of RCI

cuts introduced throughout the execution of our branch-and-cut scheme, the amount of time

spent on identifying RCI cuts as well as the number of branch-and-bound nodes created.

257



258 Appendix A.

Problem

Deterministic First Order Second Order Diagonal———————– ———————– ———————– ———————–
Opt

t (sec)
Opt

t (sec)
Opt

t (sec)
Opt

t (sec)
[LB] [LB] [LB] [LB]

A-n32-k5 784.0‹ 0.17 753.0‹ 0.18 756.0‹ 0.24 753.0‹ 0.19

A-n33-k5 661.0‹ 0.4 639.0‹ 0.31 652.0‹ 3.61 639.0‹ 0.62

A-n33-k6 742.0‹ 0.68 716.0‹ 0.91 731.0‹ 34.02 716.0‹ 1.28

A-n34-k5 778.0‹ 0.78 702.0‹ 0.27 724.0‹ 34.21 702.0‹ 0.26

A-n36-k5 799.0‹ 1.82 762.0‹ 5.39 770.0‹ 14.79 762.0‹ 10.57

A-n37-k5 669.0‹ 0.2 656.0‹ 0.62 663.0‹ 1.5 656.0‹ 0.28

A-n37-k6 949.0‹ 35.67 884.0‹ 6.98 902.0‹ 95.44 884.0‹ 12.33

A-n38-k5 730.0‹ 1.67 684.0‹ 2.83 704.0‹ 10.76 684.0‹ 1.22

A-n39-k5 822.0‹ 10.09 767.0‹ 13.11 792.0‹ 409.91 767.0‹ 8.49

A-n39-k6 831.0‹ 2.47 791.0‹ 3.02 800.0‹ 56.15 791.0‹ 2.17

A-n44-k6 937.0‹ 43.99 903.0‹ 241.45 917.0‹ 2088.51 903.0‹ 160.27

A-n45-k6 944.0‹ 25.07 873.0‹ 1.94 903.0‹ 70.57 873.0‹ 2.36

A-n45-k7 1146.0‹ 484.95 1077.0‹ 4510.15 1119.0 [1095.0] 1077.0‹ 2614.56

A-n46-k7 917.0‹ 2.67 887.0‹ 7.28 892.0‹ 11.99 887.0‹ 20.46

A-n48-k7 1073.0‹ 28.28 1027.0‹ 6439.49 1036.0‹ 11257.9 1027.0‹ 27366.7

A-n53-k7 1010.0‹ 27.12 968.0‹ 30.43 980.0‹ 192.44 968.0‹ 19.55

A-n54-k7 1167.0‹ 528.51 1087.0‹ 4709.69 1138.0 [1090.83] 1087.0‹ 12903.8

A-n55-k9 1073.0‹ 18.31 1023.0‹ 57.89 1047.0‹ 1396.58 1023.0‹ 88.19

A-n60-k9 1371.0 [1342.33] 1320.0 [1225.95] 1362.0 [1234.71] 1265.0 [1233.0]

A-n61-k9 1044.0 [1021.4] 958.0‹ 1829.01 998.0 [969.727] 958.0‹ 5888.66

A-n62-k8 1288.0‹ 8480.34 1237.0 [1160.15] 1245.0 [1185.42] 1228.0 [1162.67]

A-n63-k9 1682.0 [1588.17] 1605.0 [1444.61] 1588.0 [1465.27] 1551.0 [1442.24]

A-n63-k10 1326.0 [1293.44] 1231.0 [1212.3] 1254.0 [1219.17] 1233.0 [1203.94]

A-n64-k9 1457.0 [1360.81] 1380.0 [1267.45] no-feas — 1421.0 [1271.71]

A-n65-k9 1174.0‹ 1080.06 1098.0‹ 994.57 1193.0 [1100.48] 1098.0‹ 2119.66

A-n69-k9 1159.0 [1143.28] 1094.0 [1091.54] 1143.0 [1085.97] 1094.0‹ 16385.9

A-n80-k10 no-feas — 1744.0 [1588.17] 1778.0 [1596.94] 1863.0 [1582.24]

B-n31-k5 672.0‹ 0.25 651.0‹ 0.63 652.0‹ 1.35 651.0‹ 0.26

B-n34-k5 788.0‹ 1.32 764.0 [757.8] 769.0‹ 29.69 768.0 [755.5]

B-n35-k5 955.0‹ 0.28 867.0‹ 0.05 888.0‹ 5.74 867.0‹ 0.07

B-n38-k6 805.0‹ 0.3 732.0‹ 0.29 732.0‹ 0.62 732.0‹ 0.25

B-n39-k5 549.0‹ 0.27 521.0‹ 0.19 532.0‹ 0.38 521.0‹ 0.15

B-n41-k6 829.0‹ 1.02 791.0‹ 1.6 797.0‹ 8.05 791.0‹ 0.68

B-n43-k6 742.0‹ 14.58 680.0‹ 4.69 683.0‹ 4.49 680.0‹ 2.88

B-n44-k7 909.0‹ 1.74 841.0‹ 1.78 847.0‹ 21.92 841.0‹ 2.02

B-n45-k5 751.0‹ 3.78 677.0‹ 2.36 702.0‹ 3.33 677.0‹ 2.47

B-n45-k6 678.0‹ 13.82 626.0‹ 2.36 660.0‹ 59.67 626.0‹ 4.19

Table A.1: Optimally solved instances are highlighted with an asterisk, and the adjacent entries
report the solution times t. For all other instances, we present the best solution found within
12 hours and the lower bound at termination.
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Problem

Deterministic First Order Second Order Diagonal———————– ———————– ———————– ———————–
Opt

t (sec)
Opt

t (sec)
Opt

t (sec)
Opt

t (sec)
[LB] [LB] [LB] [LB]

B-n50-k7 741.0‹ 0.52 679.0‹ 0.1 724.0‹ 2.99 679.0‹ 0.13

B-n50-k8 1312.0‹ 1487.59 1233.0 [1209.0] 1231.0‹ 12567.6 1230.0 [1214.84]

B-n51-k7 1032.0‹ 6.63 929.0‹ 3.63 964.0‹ 17285.8 929.0‹ 1.66

B-n52-k7 747.0‹ 0.44 676.0‹ 0.96 679.0‹ 2.33 676.0‹ 0.45

B-n56-k7 707.0‹ 0.73 623.0‹ 7.43 624.0‹ 60.66 623.0‹ 2.02

B-n57-k9 1598.0‹ 94.52 1541.0‹ 15505.3 1580.0 [1547.24] 1541.0‹ 1788.11

B-n63-k10 1496.0‹ 3488.23 1434.0 [1368.87] 1587.0 [1379.17] 1419.0 [1362.11]

B-n64-k9 861.0‹ 141.12 803.0‹ 6.67 803.0‹ 3.21 803.0‹ 2.87

B-n66-k9 1316.0‹ 6490.27 1212.0‹ 14206.8 1361.0 [1208.0] 1212.0‹ 4563.34

B-n67-k10 1032.0‹ 65.55 980.0‹ 340.58 1014.0‹ 2416.87 980.0‹ 690.97

B-n68-k9 1275.0 [1266.71] 1315.0 [1154.56] 1354.0 [1176.14] 1207.0 [1153.67]

B-n78-k10 1221.0‹ 3359.2 1132.0 [1105.92] 1148.0 [1129.2] 1123.0 [1104.28]

E-n101-k8 820.0 [806.437] 793.0 [784.607] 806.0 [785.587] 799.0 [783.205]

E-n101-k14 1206.0 [1024.4] 1034.0 [991.635] no-feas — 1240.0 [989.23]

E-n22-k4 375.0‹ 0.03 373.0‹ 0.02 373.0‹ 0.02 373.0‹ 0.02

E-n23-k3 569.0‹ 0.01 564.0‹ 0.0 569.0‹ 0.04 564.0‹ 0.0

E-n30-k3 534.0‹ 2.25 492.0‹ 0.05 495.0‹ 0.11 492.0‹ 0.04

E-n33-k4 835.0‹ 0.41 814.0‹ 0.45 814.0‹ 2.17 814.0‹ 0.53

E-n51-k5 521.0‹ 0.88 516.0‹ 36.0 516.0‹ 15.45 516.0‹ 34.72

E-n76-k7 682.0‹ 13066.8 661.0‹ 1909.01 667.0 [665.143] 661.0‹ 6614.39

E-n76-k8 737.0 [725.244] 706.0 [700.631] 716.0 [700.12] 706.0 [699.462]

E-n76-k10 851.0 [801.247] 792.0 [765.87] 799.0 [767.762] 790.0 [765.091]

E-n76-k14 no-feas — 973.0 [912.894] 1004.0 [915.242] 968.0 [911.564]

F-n135-k7 1162.0‹ 106.59 1086.0‹ 13961.3 1209.0 [1094.58] 1086.0‹ 26643.3

F-n45-k4 724.0‹ 0.18 715.0‹ 0.59 720.0‹ 0.76 715.0‹ 0.5

F-n72-k4 237.0‹ 11.59 232.0‹ 0.43 232.0‹ 1.53 232.0‹ 0.33

M-n101-k10 820.0‹ 5.58 804.0‹ 52.45 809.0‹ 102.53 804.0‹ 36.29

M-n121-k7 1041.0 [1017.04] 1065.0 [945.488] no-feas — 997.0 [949.634]

M-n151-k12 1120.0 [968.683] no-feas — no-feas — 1182.0 [935.127]

P-n19-k2 212.0‹ 0.03 195.0‹ 0.0 195.0‹ 0.0 195.0‹ 0.0

P-n20-k2 216.0‹ 0.05 208.0‹ 0.01 209.0‹ 0.02 208.0‹ 0.01

P-n21-k2 211.0‹ 0.03 208.0‹ 0.01 211.0‹ 0.02 208.0‹ 0.01

P-n22-k2 216.0‹ 0.03 213.0‹ 0.03 215.0‹ 0.03 213.0‹ 0.03

P-n22-k8 604.0‹ 0.3 559.0‹ 0.04 593.0‹ 0.55 559.0‹ 0.07

P-n23-k8 529.0‹ 5.62 504.0‹ 0.92 524.0‹ 43.7 504.0‹ 1.25

P-n40-k5 458.0‹ 0.39 449.0‹ 0.26 454.0‹ 4.02 449.0‹ 0.39

P-n45-k5 510.0‹ 2.17 500.0‹ 2.13 501.0‹ 16.21 500.0‹ 2.37

P-n50-k7 554.0‹ 32.13 543.0‹ 24.85 545.0‹ 114.94 543.0‹ 31.51

P-n50-k8 644.0 [620.417] 588.0‹ 130.92 592.0‹ 390.6 588.0‹ 77.8

P-n50-k10 696.0‹ 7635.86 662.0‹ 208.73 670.0‹ 1013.43 662.0‹ 208.7

P-n51-k10 741.0‹ 7841.63 695.0‹ 134.74 714.0‹ 7168.28 695.0‹ 84.04

Table A.1: (Continued from previous page.)
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Problem

Deterministic First Order Second Order Diagonal———————– ———————– ———————– ———————–
Opt

t (sec)
Opt

t (sec)
Opt

t (sec)
Opt

t (sec)
[LB] [LB] [LB] [LB]

P-n55-k10 696.0 [694.0] 665.0‹ 237.22 680.0‹ 23861.2 665.0‹ 171.93

P-n55-k7 568.0‹ 339.01 551.0‹ 50.72 554.0‹ 152.11 551.0‹ 55.96

P-n55-k8 594.0‹ 97.82 575.0‹ 21.8 584.0‹ 386.29 575.0‹ 5.53

P-n55-k15 no-feas — 886.0‹ 4922.87 933.0 [885.795] 886.0‹ 3433.36

P-n60-k10 744.0‹ 30258.2 712.0‹ 2678.99 716.0‹ 9448.37 712.0‹ 5553.23

P-n60-k15 973.0 [948.558] 926.0‹ 17824.9 949.0 [920.5] 926.0‹ 17177.0

P-n65-k10 799.0 [782.652] 761.0‹ 23003.3 770.0 [761.0] 761.0‹ 25022.8

P-n70-k10 830.0 [803.776] 789.0 [768.618] 801.0 [768.222] 796.0 [768.104]

P-n76-k4 593.0‹ 16.13 588.0‹ 4.89 589.0‹ 103.87 588.0‹ 4.14

P-n76-k5 627.0‹ 570.43 614.0‹ 1457.71 615.0‹ 873.37 614.0‹ 595.71

P-n101-k4 681.0‹ 9.27 673.0‹ 3.34 673.0‹ 8.93 673.0‹ 3.98

att-n48-k4 40002.0‹ 3.25 38637.0‹ 1.73 38966.0‹ 6.58 38637.0‹ 1.21

Table A.1: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
A-n32-k5 8.80% 0.03 223 0.04 45

A-n33-k5 2.53% 0.15 274 0.12 59

A-n33-k6 1.61% 0.42 307 0.16 59

A-n34-k5 2.83% 0.35 358 0.21 74

A-n36-k5 2.07% 0.32 522 0.79 330

A-n37-k5 0.00% 0.18 103 0.02 0

A-n37-k6 4.97% 0.75 2,758 10.79 2,940

A-n38-k5 12.88% 0.05 697 0.62 255

A-n39-k5 17.86% 0.04 1,604 2.41 774

A-n39-k6 4.75% 0.29 665 1.04 351

A-n44-k6 4.12% 0.75 2,898 12.30 2,689

A-n45-k6 5.15% 0.65 2,017 6.91 1,602

A-n45-k7 4.78% 2.40 6,351 63.29 13,686

A-n46-k7 1.06% 0.60 854 0.93 136

A-n48-k7 3.77% 1.57 2,303 8.25 1,245

A-n53-k7 10.80% 0.12 1,822 8.50 1,485

A-n54-k7 5.01% 3.41 5,213 68.83 12,059

A-n55-k9 2.70% 1.49 1,121 8.24 1,774

A-n60-k9 13.68% 1.74 24,243 2,253.15 296,214

A-n61-k9 5.79% 3.24 50,713 647.81 106,151

A-n62-k8 13.52% 1.53 11,191 483.35 76,017

A-n63-k9 17.42% 4.65 37,127 1,391.02 199,160

A-n63-k10 22.40% 0.08 27,591 1,794.41 227,390

A-n64-k9 15.95% 2.74 45,515 972.17 131,772

A-n65-k9 6.08% 3.07 4,982 178.73 18,669

A-n69-k9 6.34% 4.14 23,146 1,712.53 170,185

A-n80-k10 1,611.78% 4.97 55,387 813.87 59,793

B-n31-k5 4.61% 0.10 276 0.04 43

B-n34-k5 6.21% 0.20 513 0.46 295

B-n35-k5 7.51% 0.13 318 0.03 67

B-n38-k6 0.24% 0.23 186 0.05 14

B-n39-k5 3.28% 0.10 202 0.08 32

B-n41-k6 4.34% 0.41 407 0.29 144

B-n43-k6 20.65% 0.09 2,081 4.38 1,167

B-n44-k7 9.35% 0.73 885 0.22 22

B-n45-k5 0.90% 0.63 912 1.27 473

B-n45-k6 3.05% 0.52 1,586 5.29 1,505

Table A.2: Detailed numerical results for our deterministic branch-and-cut scheme. Shown is
the gap at the root node, the time required to process the root node, the number of RCI cuts
introduced throughout the search, the time spent on identifying RCI cuts and the size of the
overall branch-and-bound tree (in order of appearance).
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
B-n50-k7 4.12% 0.09 423 0.14 73

B-n50-k8 11.90% 2.62 10,186 137.43 20,986

B-n51-k7 6.36% 0.33 1,068 2.41 798

B-n52-k7 4.21% 0.15 287 0.09 33

B-n56-k7 3.49% 0.08 387 0.23 43

B-n57-k9 9.89% 0.10 3,446 29.59 3,903

B-n63-k10 11.43% 5.37 23,103 161.14 16,698

B-n64-k9 6.11% 0.32 5,842 27.82 3,169

B-n66-k9 17.28% 5.51 22,026 268.89 30,531

B-n67-k10 5.97% 1.71 2,692 17.61 2,455

B-n68-k9 11.66% 2.82 25,156 1,488.26 255,735

B-n78-k10 16.79% 2.84 16,680 178.24 15,615

E-n101-k8 4.50% 3.60 30,712 1,108.90 109,437

E-n101-k14 20.17% 0.72 58,691 1,389.14 65,811

E-n22-k4 0.80% 0.03 41 0.00 3

E-n23-k3 0.00% 0.01 12 0.00 0

E-n30-k3 9.59% 0.04 663 0.72 1,319

E-n33-k4 1.22% 0.33 221 0.05 10

E-n51-k5 2.00% 0.38 373 0.25 23

E-n76-k7 4.01% 3.05 13,073 609.01 111,864

E-n76-k8 5.61% 5.77 23,396 1,304.07 169,627

E-n76-k10 9.97% 7.59 46,341 899.08 68,335

E-n76-k14 1,004.04% 2.61 73,328 1,157.97 58,012

F-n135-k7 7.20% 4.28 2,875 9.45 559

F-n45-k4 2.07% 0.05 173 0.04 27

F-n72-k4 1.69% 0.77 1,431 2.89 1,533

M-n101-k10 0.77% 4.90 609 0.51 13

M-n121-k7 9.19% 31.06 15,294 1,171.71 94,427

M-n151-k12 17.09% 20.39 38,922 1,129.98 43,820

P-n19-k2 0.00% 0.03 25 0.00 0

P-n20-k2 1.70% 0.03 64 0.01 33

P-n21-k2 0.24% 0.03 30 0.00 2

P-n22-k2 0.00% 0.03 30 0.00 0

P-n22-k8 4.33% 0.02 355 0.14 67

P-n23-k8 10.42% 0.03 1,747 2.48 471

P-n40-k5 1.52% 0.18 203 0.13 28

P-n45-k5 4.31% 0.04 789 0.93 257

P-n50-k7 3.17% 0.66 2,346 11.15 1,841

P-n50-k8 10.07% 0.71 45,881 771.23 140,653

P-n50-k10 6.24% 1.11 15,289 625.22 76,105

P-n51-k10 6.59% 0.92 20,397 376.89 44,558

Table A.2: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
P-n55-k10 5.74% 1.35 18,663 2,761.96 439,225

P-n55-k7 4.24% 0.53 4,957 67.23 13,381

P-n55-k8 3.99% 0.77 3,306 27.15 4,988

P-n55-k15 986.58% 3.89 85,026 779.67 60,092

P-n60-k10 6.26% 2.89 18,509 1,817.38 220,933

P-n60-k15 11.18% 0.16 29,304 2,736.74 217,385

P-n65-k10 6.44% 3.13 26,086 1,869.01 220,693

P-n70-k10 7.81% 4.15 38,508 1,277.46 100,265

P-n76-k4 1.32% 1.48 1,637 3.30 694

P-n76-k5 3.55% 1.94 5,427 54.18 11,008

P-n101-k4 0.77% 1.87 961 2.65 404

att-n48-k4 2.62% 0.51 547 1.19 951

Table A.2: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
A-n32-k5 0.64% 0.16 87 0.02 6

A-n33-k5 7.08% 0.04 224 0.12 81

A-n33-k6 2.65% 0.17 334 0.36 205

A-n34-k5 2.14% 0.12 185 0.06 44

A-n36-k5 8.19% 0.07 749 1.90 1,613

A-n37-k5 3.66% 0.13 259 0.21 125

A-n37-k6 9.07% 0.17 1,044 2.76 1,288

A-n38-k5 4.24% 0.22 636 1.03 493

A-n39-k5 6.26% 0.64 1,412 3.19 1,460

A-n39-k6 4.63% 0.19 537 1.30 747

A-n44-k6 5.83% 0.64 4,040 35.06 13,726

A-n45-k6 3.79% 0.48 334 0.71 219

A-n45-k7 14.90% 0.20 13,254 304.42 91,182

A-n46-k7 5.88% 0.13 1,026 3.08 940

A-n48-k7 8.81% 0.72 9,168 350.46 133,682

A-n53-k7 8.32% 0.25 1,284 11.10 2,504

A-n54-k7 7.28% 3.11 6,864 395.41 114,838

A-n55-k9 7.54% 0.44 2,129 24.05 4,667

A-n60-k9 19.03% 0.69 41,073 1,200.80 235,201

A-n61-k9 10.10% 0.67 8,835 207.29 29,502

A-n62-k8 18.19% 0.90 33,033 921.39 140,083

A-n63-k9 21.80% 0.66 45,214 1,189.42 230,934

A-n63-k10 13.15% 0.47 19,973 2,248.64 388,767

A-n64-k9 12.52% 10.18 41,546 944.52 133,645

A-n65-k9 8.01% 0.70 5,914 140.58 28,429

A-n69-k9 7.52% 1.13 14,681 2,457.60 407,054

A-n80-k10 19.59% 0.59 38,716 1,037.21 102,557

B-n31-k5 1.96% 0.11 421 0.18 154

B-n34-k5 3.80% 0.15 22,506 830.25 1,006,939

B-n35-k5 0.17% 0.05 36 0.00 5

B-n38-k6 4.17% 0.03 314 0.09 78

B-n39-k5 2.98% 0.06 203 0.03 68

B-n41-k6 1.69% 0.10 634 0.64 309

B-n43-k6 7.79% 0.09 1,007 1.74 595

B-n44-k7 18.61% 0.08 612 0.62 100

B-n45-k5 2.73% 0.27 526 0.97 365

B-n45-k6 2.39% 0.32 660 0.87 383

Table A.3: Detailed numerical results for our distributionally robust branch-and-cut scheme
over first order ambiguity sets. The columns are the same as in Table A.2.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
B-n50-k7 1.18% 0.08 87 0.01 19

B-n50-k8 11.92% 0.81 31,056 1,375.71 393,742

B-n51-k7 1.27% 0.12 695 2.08 667

B-n52-k7 4.73% 0.16 400 0.32 122

B-n56-k7 3.37% 0.41 960 3.14 1,034

B-n57-k9 6.77% 0.33 19,596 1,422.81 242,756

B-n63-k10 17.19% 0.23 36,888 1,991.49 372,514

B-n64-k9 3.13% 0.34 734 3.80 437

B-n66-k9 14.29% 0.74 24,773 515.11 75,099

B-n67-k10 7.92% 0.18 3,435 102.70 14,767

B-n68-k9 22.59% 1.10 37,064 1,503.80 221,916

B-n78-k10 18.37% 1.00 22,453 2,512.12 332,470

E-n101-k8 3.70% 1.10 23,580 1,699.66 120,921

E-n101-k14 8.13% 0.92 34,050 2,525.48 112,334

E-n22-k4 0.00% 0.02 17 0.00 0

E-n23-k3 0.00% 0.00 6 0.00 0

E-n30-k3 0.24% 0.04 39 0.01 2

E-n33-k4 2.18% 0.14 372 0.08 102

E-n51-k5 3.69% 0.42 1,709 9.45 3,565

E-n76-k7 4.39% 0.67 7,776 187.81 28,781

E-n76-k8 5.69% 1.80 14,279 2,435.24 304,396

E-n76-k10 9.18% 0.44 29,876 1,787.28 221,637

E-n76-k14 10.95% 1.42 37,663 2,619.79 195,994

F-n135-k7 9.28% 4.90 11,290 743.93 79,677

F-n45-k4 3.87% 0.05 380 0.10 105

F-n72-k4 0.00% 0.41 69 0.02 0

M-n101-k10 4.73% 2.07 1,319 24.62 2,003

M-n121-k7 21.29% 2.17 25,715 889.68 100,398

M-n151-k12 1,007.57% 17.79 33,566 1,780.50 52,380

P-n19-k2 0.00% 0.00 2 0.00 0

P-n20-k2 0.00% 0.01 8 0.00 0

P-n21-k2 0.00% 0.01 10 0.00 0

P-n22-k2 0.35% 0.03 19 0.00 4

P-n22-k8 0.00% 0.04 34 0.00 0

P-n23-k8 5.65% 0.02 429 0.50 282

P-n40-k5 0.98% 0.15 117 0.07 18

P-n45-k5 3.20% 0.11 493 1.06 397

P-n50-k7 4.71% 0.33 1,427 10.26 3,145

P-n50-k8 4.96% 0.64 2,405 38.69 10,523

P-n50-k10 5.72% 0.44 3,556 64.73 12,038

Table A.3: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
P-n51-k10 5.07% 0.34 2,574 48.55 8,253

P-n55-k10 5.00% 0.63 3,233 75.73 13,805

P-n55-k7 3.31% 0.41 1,936 17.92 4,612

P-n55-k8 3.22% 0.28 1,372 10.28 1,821

P-n55-k15 5.76% 0.59 11,686 820.36 84,568

P-n60-k10 5.80% 1.25 5,997 478.57 77,248

P-n60-k15 5.89% 0.66 9,642 3,647.42 397,186

P-n65-k10 6.92% 0.36 11,478 2,064.94 290,779

P-n70-k10 8.20% 0.78 19,677 3,024.37 400,755

P-n76-k4 2.64% 0.41 669 2.07 422

P-n76-k5 3.89% 0.62 7,598 108.29 25,154

P-n101-k4 0.78% 0.62 312 1.10 123

att-n48-k4 1.54% 0.36 379 0.54 394

Table A.3: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
A-n32-k5 0.88% 0.17 100 0.07 3

A-n33-k5 9.27% 0.05 366 2.96 472

A-n33-k6 5.24% 0.22 968 26.66 4,342

A-n34-k5 4.76% 0.23 1,232 25.71 4,234

A-n36-k5 6.30% 0.21 659 11.97 1,472

A-n37-k5 4.90% 0.10 243 1.15 70

A-n37-k6 9.13% 0.25 1,963 67.19 7,016

A-n38-k5 4.81% 0.28 657 8.75 933

A-n39-k5 10.41% 0.31 3,884 167.48 22,474

A-n39-k6 5.32% 0.24 1,725 43.72 3,427

A-n44-k6 7.94% 0.47 6,821 907.55 58,357

A-n45-k6 9.52% 0.11 1,465 55.35 3,617

A-n45-k7 14.54% 0.29 30,388 7,769.22 454,813

A-n46-k7 4.61% 0.41 565 10.32 403

A-n48-k7 11.31% 0.50 9,292 3,841.96 148,705

A-n53-k7 7.41% 0.45 1,530 160.80 5,100

A-n54-k7 15.64% 0.50 32,890 8,621.02 273,935

A-n55-k9 7.56% 1.30 5,775 890.82 30,153

A-n60-k9 24.01% 0.14 31,016 11,954.02 228,278

A-n61-k9 12.84% 0.66 19,059 13,276.38 304,638

A-n62-k8 19.74% 1.05 30,499 6,682.17 196,778

A-n63-k9 21.39% 0.92 36,943 9,421.22 226,004

A-n63-k10 20.45% 0.07 30,239 10,365.47 216,149

A-n64-k9 1,236.57% 0.34 51,599 5,620.44 130,836

A-n65-k9 16.33% 0.91 32,861 11,697.69 316,333

A-n69-k9 11.88% 2.03 26,141 12,435.64 244,488

A-n80-k10 19.83% 1.71 42,743 10,253.69 134,555

B-n31-k5 1.76% 0.13 437 0.88 250

B-n34-k5 8.19% 0.13 1,200 23.28 3,333

B-n35-k5 1.34% 0.09 870 4.16 783

B-n38-k6 4.17% 0.02 317 0.41 80

B-n39-k5 3.99% 0.07 275 0.14 84

B-n41-k6 2.22% 0.19 662 6.36 1,024

B-n43-k6 8.20% 0.06 806 3.12 376

B-n44-k7 19.19% 0.07 1,149 17.78 1,121

B-n45-k5 7.95% 0.09 308 2.74 247

B-n45-k6 2.70% 0.13 1,273 47.87 4,590

Table A.4: Detailed numerical results for our distributionally robust branch-and-cut scheme
over second order ambiguity sets. The columns are the same as in Table A.2.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
B-n50-k7 1.75% 0.09 593 2.16 241

B-n50-k8 13.48% 0.13 16,809 3,840.93 116,174

B-n51-k7 3.30% 0.32 14,994 4,899.57 404,450

B-n52-k7 2.36% 0.24 400 1.69 128

B-n56-k7 3.89% 0.42 1,629 51.74 1,720

B-n57-k9 7.31% 0.40 27,203 13,061.37 459,242

B-n63-k10 23.09% 0.60 43,961 10,941.47 272,627

B-n64-k9 3.55% 0.52 266 2.48 24

B-n66-k9 24.98% 0.63 56,503 6,127.27 158,376

B-n67-k10 10.89% 0.18 7,345 1,655.82 31,546

B-n68-k9 22.17% 0.69 37,478 14,580.46 293,702

B-n78-k10 17.13% 2.99 30,486 14,825.17 139,882

E-n101-k8 5.06% 1.54 29,045 14,248.27 121,826

E-n101-k14 1,054.00% 0.91 36,531 19,669.39 73,112

E-n22-k4 0.00% 0.02 18 0.00 0

E-n23-k3 0.00% 0.02 10 0.02 0

E-n30-k3 0.13% 0.08 47 0.03 3

E-n33-k4 2.58% 0.16 534 1.43 235

E-n51-k5 3.91% 0.29 814 12.59 942

E-n76-k7 5.10% 0.57 14,438 15,433.94 284,828

E-n76-k8 8.00% 0.34 16,598 19,485.62 271,932

E-n76-k10 9.48% 1.28 30,125 14,273.25 136,172

E-n76-k14 15.29% 0.44 47,456 15,796.83 118,497

F-n135-k7 16.10% 9.14 28,690 14,498.58 55,654

F-n45-k4 4.54% 0.05 204 0.51 69

F-n72-k4 0.86% 0.39 140 1.11 24

M-n101-k10 4.46% 1.57 958 94.88 478

M-n121-k7 950.33% 3.42 20,421 14,041.34 69,004

M-n151-k12 998.08% 3.98 19,697 26,267.34 40,896

P-n19-k2 0.00% 0.00 2 0.00 0

P-n20-k2 0.00% 0.02 10 0.00 0

P-n21-k2 0.95% 0.01 21 0.01 5

P-n22-k2 1.55% 0.02 31 0.01 9

P-n22-k8 2.56% 0.03 277 0.43 95

P-n23-k8 9.26% 0.02 1,956 33.25 5,106

P-n40-k5 1.55% 0.24 355 3.40 297

P-n45-k5 2.59% 0.04 660 14.21 1,292

P-n50-k7 5.31% 0.45 1,853 93.86 3,666

P-n50-k8 7.70% 0.19 2,732 306.98 9,854

P-n50-k10 7.91% 0.28 3,907 785.45 18,990

Table A.4: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
P-n51-k10 7.63% 0.36 6,623 4,141.96 132,791

P-n55-k10 7.76% 0.40 12,911 10,772.11 261,138

P-n55-k7 3.92% 0.44 1,937 124.32 4,649

P-n55-k8 5.06% 0.32 2,768 297.57 9,981

P-n55-k15 10.68% 0.40 36,951 18,004.99 232,056

P-n60-k10 7.61% 0.44 5,653 6,506.57 123,579

P-n60-k15 7.73% 1.07 16,838 28,090.32 214,042

P-n65-k10 7.86% 0.67 10,710 24,639.16 294,987

P-n70-k10 9.64% 1.35 20,694 18,413.52 245,107

P-n76-k4 2.80% 0.36 1,549 80.69 2,438

P-n76-k5 3.60% 0.68 4,342 567.82 12,544

P-n101-k4 0.79% 0.80 206 7.50 107

att-n48-k4 1.65% 0.45 476 4.72 560

Table A.4: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
A-n32-k5 0.59% 0.18 59 0.01 4

A-n33-k5 7.08% 0.05 298 0.29 220

A-n33-k6 3.14% 0.19 403 0.51 391

A-n34-k5 3.15% 0.18 130 0.04 13

A-n36-k5 8.14% 0.06 1,189 3.45 2,421

A-n37-k5 3.09% 0.14 94 0.08 38

A-n37-k6 8.19% 0.16 1,201 4.77 2,657

A-n38-k5 2.34% 0.35 388 0.39 204

A-n39-k5 6.52% 0.33 1,057 2.28 1,218

A-n39-k6 4.96% 0.14 478 0.99 736

A-n44-k6 5.98% 0.55 3,590 27.83 11,279

A-n45-k6 4.19% 0.33 588 0.89 259

A-n45-k7 12.33% 0.40 8,480 253.71 74,868

A-n46-k7 5.88% 0.16 1,968 6.61 1,723

A-n48-k7 11.19% 0.25 13,612 1,005.50 412,658

A-n53-k7 7.15% 0.45 1,070 8.35 2,040

A-n54-k7 11.98% 0.46 10,251 831.14 233,414

A-n55-k9 7.93% 0.35 2,052 40.24 7,419

A-n60-k9 15.69% 0.55 24,807 2,156.01 308,711

A-n61-k9 10.65% 0.34 11,494 651.52 100,321

A-n62-k8 17.26% 0.35 35,582 1,151.97 282,771

A-n63-k9 16.00% 4.32 45,954 1,204.07 196,922

A-n63-k10 12.26% 0.65 21,539 2,570.20 368,590

A-n64-k9 19.04% 0.42 47,264 1,287.94 218,242

A-n65-k9 8.25% 1.61 9,073 229.99 41,152

A-n69-k9 7.80% 0.78 12,260 1,445.01 189,889

A-n80-k10 22.56% 4.63 45,429 1,287.34 147,232

B-n31-k5 1.91% 0.10 227 0.05 68

B-n34-k5 8.79% 0.08 18,094 1,625.71 1,711,050

B-n35-k5 0.00% 0.07 37 0.00 2

B-n38-k6 4.17% 0.04 195 0.09 55

B-n39-k5 2.98% 0.07 139 0.02 31

B-n41-k6 0.54% 0.40 181 0.17 68

B-n43-k6 7.79% 0.08 576 1.10 504

B-n44-k7 18.61% 0.08 644 0.67 154

B-n45-k5 4.13% 0.23 468 1.14 495

B-n45-k6 2.65% 0.34 965 1.49 634

Table A.5: Detailed numerical results for our distributionally robust branch-and-cut scheme
over second order ambiguity sets with diagonal covariance bounds. The columns have the same
interpretation as in Table A.2.
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
B-n50-k7 1.18% 0.08 102 0.02 24

B-n50-k8 11.13% 0.81 25,668 1,574.21 368,764

B-n51-k7 1.27% 0.12 430 0.91 263

B-n52-k7 4.73% 0.13 307 0.09 78

B-n56-k7 3.49% 0.46 465 0.73 260

B-n57-k9 6.55% 0.71 9,297 288.68 39,564

B-n63-k10 16.31% 0.24 32,541 3,134.08 518,803

B-n64-k9 2.88% 0.45 730 0.97 180

B-n66-k9 14.60% 0.63 12,257 330.91 60,197

B-n67-k10 7.92% 0.21 4,569 164.72 24,308

B-n68-k9 15.63% 0.67 39,837 2,391.10 407,652

B-n78-k10 17.12% 1.12 17,842 3,132.44 323,583

E-n101-k8 4.06% 2.07 22,403 2,245.80 168,540

E-n101-k14 23.35% 1.27 33,049 3,777.12 194,335

E-n22-k4 0.00% 0.02 18 0.00 0

E-n23-k3 0.00% 0.00 6 0.00 0

E-n30-k3 1.07% 0.04 44 0.00 2

E-n33-k4 2.21% 0.13 294 0.12 127

E-n51-k5 3.49% 0.46 1,749 9.24 4,370

E-n76-k7 4.53% 0.63 11,179 580.14 78,018

E-n76-k8 5.92% 1.37 11,679 3,486.02 243,887

E-n76-k10 8.92% 0.49 23,723 2,574.44 252,486

E-n76-k14 11.90% 0.58 31,041 3,238.67 199,176

F-n135-k7 9.53% 4.29 16,108 1,917.77 123,567

F-n45-k4 3.87% 0.04 313 0.12 134

F-n72-k4 0.81% 0.31 92 0.02 2

M-n101-k10 5.76% 0.73 1,257 18.00 1,501

M-n121-k7 15.67% 2.86 26,325 993.00 67,071

M-n151-k12 23.35% 20.86 30,041 3,050.43 88,252

P-n19-k2 0.00% 0.00 2 0.00 0

P-n20-k2 0.00% 0.01 8 0.00 0

P-n21-k2 0.00% 0.01 11 0.00 0

P-n22-k2 0.63% 0.03 26 0.00 7

P-n22-k8 0.00% 0.07 36 0.00 0

P-n23-k8 5.65% 0.02 657 0.63 458

P-n40-k5 1.11% 0.14 162 0.15 66

P-n45-k5 3.20% 0.11 471 1.18 582

P-n50-k7 4.10% 0.55 1,380 13.13 4,200

P-n50-k8 4.74% 0.56 2,438 27.12 5,894

P-n50-k10 6.06% 0.28 2,890 68.16 14,987

Table A.5: (Continued from previous page.)
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Problem Root gap Root time (sec) # of Cuts Cuts time (sec) # of B&B nodes
P-n51-k10 5.47% 0.21 2,745 33.21 6,673

P-n55-k10 5.40% 0.43 3,688 55.22 11,508

P-n55-k7 4.13% 0.24 1,732 21.91 5,742

P-n55-k8 3.31% 0.28 743 3.08 781

P-n55-k15 5.59% 0.37 8,309 955.02 95,393

P-n60-k10 6.48% 0.63 7,364 828.66 136,069

P-n60-k15 6.74% 0.33 9,798 4,132.93 462,037

P-n65-k10 5.80% 0.61 11,542 2,407.29 360,166

P-n70-k10 9.17% 0.44 22,465 3,135.99 345,192

P-n76-k4 2.64% 0.40 618 1.62 341

P-n76-k5 3.21% 0.65 4,857 74.25 23,370

P-n101-k4 0.82% 0.96 368 1.36 180

att-n48-k4 1.83% 0.33 320 0.33 234

Table A.5: (Continued from previous page.)
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Worst-Case Distribution for

Scenario-Wise First-Order Ambiguity

Set with Fixed Scenario Probabilities

For the scenario-wise first-order ambiguity set P described in (3.6), the worst-case expected

value of a supermodular function can be evaluated using Proposition B.1. We describe this

proposition here to keep our paper self-contained. Following from the rectangularity of P , for

each w P W we define

P
w

“

!
Pw P P0pRn

q : Pwrqw
§ eq § qw

s “ 1, EPwreqs “ µw, EPwr|eq ´ µw
|s § ⌫w

)
.

Proposition B.1 ( [LQZ20]) If gpx, zq is supermodular in z for any x, we have supPPPw EPrgpx, ezqs “

∞
iPr2n`1s

pwi gpx, zw
i q for any x, where pw, zw are output by Algorithm 2 when the input is P

w.
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Algorithm 2: Algorithm for finding worst-case distribution

Input: µw, ⌫w, qw, qw for each w P W for ambiguity set Pw described in (3.6).
for w P W do

For each i P rns, initialize Pw‹
peqi “ qw

i
q “

⌫̂wi
2pµw

i ´qw
i

q
,

Pw‹
peqi “ µw

i q “ 1 ´
⌫̂wi pqwi ´qw

i
q

2pqwi ´µw
i qpµw

i ´qw
i

q
and Pw‹

peqi “ qwi q “
⌫̂wi

2pqwi ´µw
i q

where

⌫̂wi “ min
!
⌫wi ,

2pqwi ´µw
i qpµw

i ´qw
i

q

qwi ´qw
i

)

zw
1 “ qw, m1

“ pPw‹
peq1 “ qw

1
q,Pw‹

peq2 “ qw
2

q, . . . ,Pw‹
peqn “ qw

n
qq,

pw1 “ mintm1
1, . . . ,m

1
nu and j “ 1

while j § 2n do
choose rj as the minimal index in rns such that mj

rj “ p‹

wj

zw
j`1 “ zw

j , m
j`1

“ mj
´ p‹

wj1
update zwrj ,j`1 “ µw

rj if its existing value is qw
rj

and zwrj ,j`1 “ qwrj if its existing

value is µw
rj

update mj`1
rj “ Pw‹

peqrj “ zwrj ,j`1q

pj`1 “ mintmj`1
1 , . . . ,mj`1

n u

update j “ j ` 1
end
return zw

1 , z
w
2 , . . . , z

w
2n`1 and pw “ ppw1 , p

w
2 , . . . , p

w
2n`1q

end



Appendix C

Detailed Numerical Results for

Chapter 3

Table C.1 reports the best feasible solution (‘Opt’; accompanied by an asterisk if it is confirmed

to be optimal) and the best lower bound (‘LB’; value in brackets unless solved to optimality)

identified by, as well as the runtime (‘t’; unless not solved to optimality, in which case the run-

time is 12h) incurred by our branch-and-cut scheme for the deterministic CVRP (‘Determinis-

tic’) and the distributionally robust CVRP with known scenario probabilities (‘Stochastic’).

Problem

Deterministic Stochastic

———————– ———————–
Opt

t (sec)
Opt

t (sec)
[LB] [LB]

A-n32-k5 745.0‹ 0.1 745.0‹ 0.32
A-n33-k5 617.0‹ 0.09 639.0‹ 5.14
A-n33-k6 703.0‹ 0.4 707.0‹ 31.94
A-n34-k5 701.0‹ 0.1 701.0‹ 1.26
A-n36-k5 732.0‹ 0.15 743.0‹ 13.35
A-n37-k5 651.0‹ 0.16 653.0‹ 3.6
A-n37-k6 861.0‹ 1.8 877.0‹ 232.77
A-n38-k5 648.0‹ 0.07 654.0‹ 1.08
A-n39-k5 735.0‹ 0.42 758.0‹ 47.12
A-n39-k6 774.0‹ 0.6 774.0‹ 11.65

Table C.1: Runtimes and optimality gaps for the benchmark instances of [D0́6]. Optimally
solved instances are highlighted with an asterisk and accompanied by the runtime t. For all
other instances, we report the upper and lower bound after 12 hours.

275



276 Appendix C.

Problem

Deterministic Stochastic

———————– ———————–
Opt

t (sec)
Opt

t (sec)
[LB] [LB]

A-n44-k6 891.0‹ 29.07 892.0‹ 692.84
A-n45-k6 869.0‹ 1.93 872.0‹ 87.95
A-n45-k7 1034.0‹ 5.42 1051.0‹ 514.83
A-n46-k7 851.0‹ 0.52 871.0‹ 43.66
A-n48-k7 967.0‹ 0.91 967.0‹ 10.91
A-n53-k7 954.0‹ 2.22 959.0‹ 159.08
A-n54-k7 1051.0‹ 65.48 1068.0‹ 3821.02
A-n55-k9 985.0‹ 1.2 992.0‹ 21.01
A-n60-k9 1202.0‹ 24.35 1214.0‹ 4693.07
A-n61-k9 939.0‹ 5.48 942.0‹ 257.96
A-n62-k8 1132.0‹ 9.2 1153.0‹ 1283.46
A-n63-k9 1446.0‹ 1975.6 1476 [1444.05]
A-n63-k10 1176.0‹ 34.68 1178.0‹ 234.11
A-n64-k9 1290 [1277.83] 1333 [1267.2]
A-n65-k9 1082.0‹ 56.79 1085.0‹ 1150
A-n69-k9 1076.0‹ 190.54 1082.0‹ 10061.2
A-n80-k10 1612 [1587.4] 1641 [1587.1]
B-n31-k5 645.0‹ 0.08 651.0‹ 0.82
B-n34-k5 703.0‹ 0.18 737.0‹ 0.62
B-n35-k5 866.0‹ 0.04 866.0‹ 0.11
B-n38-k6 726.0‹ 0.09 730.0‹ 18.46
B-n39-k5 517.0‹ 0.14 521.0‹ 0.17
B-n41-k6 786.0‹ 0.08 786.0‹ 4.26
B-n43-k6 655.0‹ 0.87 662.0‹ 717.52
B-n44-k7 819.0‹ 4.5 835.0‹ 1598.4
B-n45-k5 630.0‹ 0.11 666.0‹ 3.61
B-n45-k6 616.0‹ 0.42 626.0‹ 6.2
B-n50-k7 657.0‹ 0.13 661.0‹ 0.83
B-n50-k8 1145.0‹ 2.62 1202 [1158.33]
B-n51-k7 913.0‹ 0.06 917.0‹ 0.32
B-n52-k7 673.0‹ 0.14 673.0‹ 0.53
B-n56-k7 621.0‹ 0.43 622.0‹ 14.44
B-n57-k9 1511.0‹ 9.16 1535.0‹ 5829.33
B-n63-k10 1347.0‹ 137.91 1361.0‹ 8751.78
B-n64-k9 790.0‹ 1.06 796.0‹ 10.3
B-n66-k9 1170.0‹ 573.06 1202.0‹ 32405.8
B-n67-k10 946.0‹ 3.01 974.0‹ 1499.96
B-n68-k9 1114.0‹ 20.66 1117.0‹ 394.49
B-n78-k10 1079.0‹ 28.7 1101 [1089.5]
E-n101-k8 780.0‹ 159.12 787 [783.05]
E-n101-k14 1012 [991.132] 1048 [984.161]
E-n22-k4 370.0‹ 0.01 370.0‹ 0.25
E-n23-k3 564.0‹ 0 564.0‹ 0
E-n30-k3 475.0‹ 0.02 475.0‹ 0.02
E-n33-k4 791.0‹ 0.15 791.0‹ 0.36
E-n51-k5 510.0‹ 4.77 514.0‹ 364.7
E-n76-k7 656.0‹ 97.12 660.0‹ 10538.1
E-n76-k8 699.0‹ 6245.56 703 [694.866]
E-n76-k10 772 [769.85] 784 [759.652]
E-n76-k14 939 [912.383] 960 [900.633]
F-n135-k7 1069.0‹ 348.29 1076.0‹ 4619.5
F-n45-k4 706.0‹ 0.16 710.0‹ 1.11
F-n72-k4 232.0‹ 0.28 232.0‹ 0.43
M-n101-k10 795.0‹ 4.71 798.0‹ 108.72
M-n121-k7 962 [949.444] 981 [949.303]
M-n151-k12 no-feas [935.76] no-feas [932.814]

Table C.1: (Continued from previous page.)
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Problem

Deterministic Stochastic

———————– ———————–
Opt

t (sec)
Opt

t (sec)
[LB] [LB]

P-n19-k2 195.0‹ 0 195.0‹ 0
P-n20-k2 208.0‹ 0 208.0‹ 0.01
P-n21-k2 208.0‹ 0 208.0‹ 0.01
P-n22-k2 213.0‹ 0.01 213.0‹ 0.02
P-n22-k8 549.0‹ 0.01 549.0‹ 0.02
P-n23-k8 486.0‹ 0.19 491.0‹ 15.09
P-n40-k5 448.0‹ 0.23 449.0‹ 1.52
P-n45-k5 496.0‹ 0.52 496.0‹ 15.73
P-n50-k7 531.0‹ 3.56 539.0‹ 480.6
P-n50-k8 580.0‹ 19.7 584.0‹ 748.81
P-n50-k10 649.0‹ 25.32 652.0‹ 1221.82
P-n51-k10 686.0‹ 19.01 688.0‹ 1116.65
P-n55-k10 656.0‹ 43.25 658.0‹ 1719.87
P-n55-k7 539.0‹ 0.71 543.0‹ 120.47
P-n55-k8 571.0‹ 3.01 572.0‹ 276.58
P-n55-k15 868.0‹ 176.34 871.0‹ 6372.02
P-n60-k10 703.0‹ 434.76 704.0‹ 14903.3
P-n60-k15 904.0‹ 275.71 911.0‹ 34400.8
P-n65-k10 750.0‹ 449.65 757 [748.853]
P-n70-k10 773 [769.264] 781 [760.688]
P-n76-k4 588.0‹ 1.61 588.0‹ 21.87
P-n76-k5 608.0‹ 8.49 612.0‹ 4477.6
P-n101-k4 673.0‹ 0.99 673.0‹ 25.56
att-n48-k4 38634.0‹ 0.59 38637.0‹ 7.58

Table C.1: (Continued from previous page.)



Appendix D

Detailed Numerical Results for

Chapter 4

Table D.1 presents the performance of the randomized policy, Lagrangian relaxation and LP-

based relaxation on the multi-armed bandit instances described in 4.3.2.5. Table D.2 reports

the average relative infeasibility of each policy prior to applying the ‘do nothing’ actions for

the same instances.
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