757 research outputs found

    Cortical thickness analysis in early diagnostics of Alzheimer's disease

    Get PDF

    Texture‐based morphometry in relation to apolipoprotein Δ4 genotype, ageing and sex in a midlife population

    Get PDF
    Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle‐aged apolipoprotein Δ4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non‐carriers of the Δ4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross‐sectional study, we investigated textural properties of T1‐weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT‐Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel‐based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non‐carriers. Textural maps were generated and were subsequently harmonised using voxel‐wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non‐carriers at midlife and have established associations of textural features with ageing and sex

    The thalamus as a putative biomarker in neurodegenerative disorders

    Get PDF
    Objective: This review provides a brief account of the clinically relevant functional neuroanatomy of the thalamus, before considering the utility of various modalities utilised to image the thalamus and technical challenges therein, and going on to provide an overview of studies utilising structural imaging techniques to map thalamic morphology in the spectrum of neurodegenerative disorders. Methods: A systematic search was conducted for peer-reviewed studies involving structural neuroimaging modalities investigating the morphology (shape and/ or size) of the thalamus in the spectrum of neurodegenerative disorders. Results: Whilst the precise role of the thalamus in the healthy brain remains unclear, there is a large body of knowledge accumulating which defines more precisely its functional connectivity within the connectome, and a burgeoning literature implicating its involvement in neurodegenerative disorders. It is proposed that correlation of clinical features with thalamic morphology (as a component of a quantifiable subcortical connectome) will provide a better understanding of neuropsychiatric dysfunction in various neurodegenerative disorders, potentially yielding clinically useful endophenotypes and disease biomarkers. Conclusions: Thalamic biomarkers in the neurodegenerative disorders have great potential to provide clinically meaningful knowledge regarding not only disease onset and progression, but may yield targets of and perhaps a way of gauging response to future disease-modifying modalities

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Surface Feature-Guided Mapping of Cerebral Metabolic Changes in Cognitively Normal and Mildly Impaired Elderly

    Get PDF
    Purpose: The aim of this study was to investigate the longitudinal positron emission tomography (PET) metabolic changes in the elderly. Procedures: Nineteen nondemented subjects (mean Mini-Mental Status Examination 29.4±0.7 SD) underwent two detailed neuropsychological evaluations and resting 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-PET scan (interval 21.7±3.7 months), baseline structural 3T magnetic resonance (MR) imaging, and apolipoprotein E4 genotyping. Cortical PET metabolic changes were analyzed in 3-D using the cortical pattern matching technique. Results: Baseline vs. follow-up whole-group comparison revealed significant metabolic decline bilaterally in the posterior temporal, parietal, and occipital lobes and the left lateral frontal cortex. The declining group demonstrated 10–15 % decline in bilateral posterior cingulate/precuneus, posterior temporal, parietal, and occipital cortices. The cognitively stable group showed 2.5–5% similarly distributed decline. ApoE4-positive individuals underwent 5–15 % metabolic decline in the posterior association cortices. Conclusions: Using 3-D surface-based MR-guided FDG-PET mapping, significant metaboli

    Doctor of Philosophy

    Get PDF
    dissertationNeurodegenerative diseases are an increasing health care problem in the United States. Quantitative neuroimaging provides a noninvasive method to illuminate individual variations in brain structure to better understand and diagnose these disorders. The overall objective of this research is to develop novel clinical tools that summarize and quantify changes in brain shape to not only help better understand age-appropriate changes but also, in the future, to dissociate structural changes associated with aging from those caused by dementing neurodegenerative disorders. Because the tools we will develop can be applied for individual assessment, achieving our goals could have a significant clinical impact. An accurate, practical objective summary measure of the brain pathology would augment current subjective visual interpretation of structural magnetic resonance images. Fractal dimension is a novel approach to image analysis that provides a quantitative measure of shape complexity describing the multiscale folding of the human cerebral cortex. Cerebral cortical folding reflects the complex underlying architectural features that evolve during brain development and degeneration including neuronal density, synaptic proliferation and loss, and gliosis. Building upon existing technology, we have developed innovative tools to compute global and local (voxel-wise and regional) cerebral cortical fractal dimensions and voxel-wise cortico-fractal surfaces from high-contrast MR images. Our previous research has shown that fractal dimension correlates with cognitive function and changes during the course of normal aging. We will now apply unbiased diffeomorphic atlasing methodology to dramatically improve the alignment of complex cortical surfaces. Our novel methods will create more accurate, detailed geometrically averaged images to take into account the intragroup differences and make statistical inferences about spatiotemporal changes in shape of the cerebral cortex across the adult human lifespan

    Neuroimaging biomarkers associated with clinical dysfunction in Parkinson disease

    Get PDF
    Parkinson disease (PD) is the second most common neurodegenerative disorder in the world, directly affecting 2-3% of the population over the age of 65. People diagnosed with the disorder can experience motor, autonomic, cognitive, sensory and neuropsychiatric symptoms that can significantly impact quality of life. Uncertainty still exists about the pathophysiological mechanisms that underlie a range of clinical features of the disorder, linked to structural as well as functional brain changes. This thesis thus aimed to uncover neuroimaging biomarkers associated with clinical dysfunction in PD. A 'hubs-and-spokes' neural circuit-based approach can contribute to this aim, by analysing the component elements and also the interconnections of important brain networks. This thesis focusses on structures within basal ganglia-thalamocortical neuronal circuits that are linked to a range functions impacted in the disorder, and that are vulnerable to the consequences of PD pathology. This thesis investigated neuronal 'hubs' by studying the morphology of the caudate nucleus, putamen, thalamus and neocortex. The caudate nucleus, putamen and thalamus are all vital subcortical 'hubs' that play important roles in a number of functional domains that are compromised in PD. The neocortex, on the other hand, has a range of 'hubs' spread across it, regions of the brain that are crucial for neuronal signalling and communication. The interconnections, or 'spokes', between these hubs and other brain regions were investigated using seed-based resting-state functional connectivity analyses. Finally, a morphological analysis was used to investigate possible structural changes to the corpus callosum, the major inter-hemispheric white matter tract of the brain, crucial to effective higher-order brain processes. This thesis demonstrates that the caudate nucleus, putamen, thalamus, corpus callosum and neocortex are all atrophied in PD participants with dementia. PD participants also demonstrated a significant correlation between volumes of the caudate nuclei and general cognitive functioning and speed, while putamina volumes were correlated with general motor function. Cognitively unimpaired PD participants demonstrated minimal morphological alterations compared to control participants, however they demonstrated significant increases in functional connectivity of the caudate nucleus, putamen and thalamus with areas across the frontal lobe, and decreases in functional connectivity with parietal and cerebellar regions. PD participants with mild cognitive impairment and dementia show decreased functional connectivity of the thalamus with paracingulate and posterior cingulate cortices, respectively. This thesis contributes a deeper understanding of the relationship between structures of basal ganglia-thalamocortical neuronal circuits, corpus callosal and neocortical morphology, and the clinical dysfunction associated with PD. This thesis suggests that functional connectivity changes are more common in early stages of the disorder, while morphological alterations are more pronounced in advanced disease stages
    • 

    corecore