966 research outputs found

    Modularization for the Cell Ontology

    Get PDF
    One of the premises of the OBO Foundry is that development of an orthogonal set of ontologies will increase domain expert contributions and logical interoperability, and decrease maintenance workload. For these reasons, the Cell Ontology (CL) is being re-engineered. This process requires the extraction of sub-modules from existing OBO ontologies, which presents a number of practical engineering challenges. These extracted modules may be intended to cover a narrow or a broad set of species. In addition, applications and resources that make use of the Cell Ontology have particular modularization requirements, such as the ability to extract custom subsets or unions of the Cell Ontology with other OBO ontologies. These extracted modules may be intended to cover a narrow or a broad set of species, which presents unique complications.

We discuss some of these requirements, and present our progress towards a customizable simple-to-use modularization tool that leverages existing OWL-based tools and opens up their use for the CL and other ontologies

    A method to generate a modular ifcOWL ontology

    Get PDF
    Building Information Modeling (BIM) and Semantic Web technologies are becoming more and more popular in the Architecture Engineering Construction (AEC) and Facilities Management (FM) industry to support information management, information exchange and data interoperability. One of the key integration gateways between BIM and Semantic Web is represented by the ifcOWL ontology, i.e. the Web Ontology Language (OWL) version of the IFC standard, being one of reference technical standard for AEC/FM. Previous studies have shown how a recommended ifcOWL ontology can be automatically generated by converting the IFC standard from the official EXPRESS schema. However, the resulting ifcOWL is a large monolithic ontology that presents serious limitations for real industrial applications in terms of usability and performance (i.e. querying and reasoning). Possible enhancements to reduce the complexity and the data size consist in (1) modularization of ifcOWL making it easier to use subsets of the entire ontology, and (2) rethinking the contents and structure of an ontology for AEC/FM to better fit in the semantic web scope and make its usage more efficient. The second approach can be enabled by the first one, since it would make it easier to replace some of the ifcOWL modules with new optimized ontologies for the AEC-FM industry. This paper focuses on the first approach presenting a method to automatically generate a modular ifcOWL ontology. The method aims at minimizing the dependencies between modules to better exploit the modularization. The results are compared with simpler and more straight-forward solutions

    Dividing the Ontology Alignment Task with Semantic Embeddings and Logic-based Modules

    Get PDF
    Large ontologies still pose serious challenges to state-of-the-art ontology alignment systems. In this paper we present an approach that combines a neural embedding model and logic-based modules to accurately divide an input ontology matching task into smaller and more tractable matching (sub)tasks. We have conducted a comprehensive evaluation using the datasets of the Ontology Alignment Evaluation Initiative. The results are encouraging and suggest that the proposed method is adequate in practice and can be integrated within the workflow of systems unable to cope with very large ontologies

    requirements and use cases

    Get PDF
    In this report, we introduce our initial vision of the Corporate Semantic Web as the next step in the broad field of Semantic Web research. We identify requirements of the corporate environment and gaps between current approaches to tackle problems facing ontology engineering, semantic collaboration, and semantic search. Each of these pillars will yield innovative methods and tools during the project runtime until 2013. Corporate ontology engineering will improve the facilitation of agile ontology engineering to lessen the costs of ontology development and, especially, maintenance. Corporate semantic collaboration focuses the human-centered aspects of knowledge management in corporate contexts. Corporate semantic search is settled on the highest application level of the three research areas and at that point it is a representative for applications working on and with the appropriately represented and delivered background knowledge. We propose an initial layout for an integrative architecture of a Corporate Semantic Web provided by these three core pillars
    • …
    corecore