700 research outputs found

    Adaptive Parallel Iterative Deepening Search

    Full text link
    Many of the artificial intelligence techniques developed to date rely on heuristic search through large spaces. Unfortunately, the size of these spaces and the corresponding computational effort reduce the applicability of otherwise novel and effective algorithms. A number of parallel and distributed approaches to search have considerably improved the performance of the search process. Our goal is to develop an architecture that automatically selects parallel search strategies for optimal performance on a variety of search problems. In this paper we describe one such architecture realized in the Eureka system, which combines the benefits of many different approaches to parallel heuristic search. Through empirical and theoretical analyses we observe that features of the problem space directly affect the choice of optimal parallel search strategy. We then employ machine learning techniques to select the optimal parallel search strategy for a given problem space. When a new search task is input to the system, Eureka uses features describing the search space and the chosen architecture to automatically select the appropriate search strategy. Eureka has been tested on a MIMD parallel processor, a distributed network of workstations, and a single workstation using multithreading. Results generated from fifteen puzzle problems, robot arm motion problems, artificial search spaces, and planning problems indicate that Eureka outperforms any of the tested strategies used exclusively for all problem instances and is able to greatly reduce the search time for these applications

    Roq: Robust Query Optimization Based on a Risk-aware Learned Cost Model

    Full text link
    Query optimizers in relational database management systems (RDBMSs) search for execution plans expected to be optimal for a given queries. They use parameter estimates, often inaccurate, and make assumptions that may not hold in practice. Consequently, they may select execution plans that are suboptimal at runtime, when these estimates and assumptions are not valid, which may result in poor query performance. Therefore, query optimizers do not sufficiently support robust query optimization. Recent years have seen a surge of interest in using machine learning (ML) to improve efficiency of data systems and reduce their maintenance overheads, with promising results obtained in the area of query optimization in particular. In this paper, inspired by these advancements, and based on several years of experience of IBM Db2 in this journey, we propose Robust Optimization of Queries, (Roq), a holistic framework that enables robust query optimization based on a risk-aware learning approach. Roq includes a novel formalization of the notion of robustness in the context of query optimization and a principled approach for its quantification and measurement based on approximate probabilistic ML. It also includes novel strategies and algorithms for query plan evaluation and selection. Roq also includes a novel learned cost model that is designed to predict query execution cost and the associated risks and performs query optimization accordingly. We demonstrate experimentally that Roq provides significant improvements to robust query optimization compared to the state-of-the-art.Comment: 13 pages, 9 figures, submitted to SIGMOD 202

    Exploiting commutativity to reduce the cost of updates to shared data in cache-coherent systems

    Get PDF
    We present Coup, a technique to lower the cost of updates to shared data in cache-coherent systems. Coup exploits the insight that many update operations, such as additions and bitwise logical operations, are commutative: they produce the same final result regardless of the order they are performed in. Coup allows multiple private caches to simultaneously hold update-only permission to the same cache line. Caches with update-only permission can locally buffer and coalesce updates to the line, but cannot satisfy read requests. Upon a read request, Coup reduces the partial updates buffered in private caches to produce the final value. Coup integrates seamlessly into existing coherence protocols, requires inexpensive hardware, and does not affect the memory consistency model. We apply Coup to speed up single-word updates to shared data. On a simulated 128-core, 8-socket system, Coup accelerates state-of-the-art implementations of update-heavy algorithms by up to 2.4×.Center for Future Architectures ResearchNational Science Foundation (U.S.) (CAREER-1452994)Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science (Grier Presidential Fellowship)Microelectronics Advanced Research CorporationUnited States. Defense Advanced Research Projects Agenc

    Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation

    Get PDF
    Although computer networks are inherently parallel systems, the parallel execution of network simulations on interconnected processors frequently yields only limited benefits. In this thesis, methods are proposed to estimate and understand the parallelization potential of network simulations. Further, mechanisms and architectures for exploiting the massively parallel processing resources of modern graphics cards to accelerate network simulations are proposed and evaluated

    Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs

    Get PDF
    Hybrid parallel programming models that combine message passing (MP) and shared- memory multithreading (MT) are becoming more popular, especially with applications requiring higher degrees of parallelism and scalability. Consequently, coupled parallel programs, those built via the integration of independently developed and optimized software libraries linked into a single application, increasingly comprise message-passing libraries with differing preferred degrees of threading, resulting in thread-level heterogeneity. Retroactively matching threading levels between independently developed and maintained libraries is difficult, and the challenge is exacerbated because contemporary middleware services provide only static scheduling policies over entire program executions, necessitating suboptimal, over-subscribed or under-subscribed, configurations. In coupled applications, a poorly configured component can lead to overall poor application performance, suboptimal resource utilization, and increased time-to-solution. So it is critical that each library executes in a manner consistent with its design and tuning for a particular system architecture and workload. Therefore, there is a need for techniques that address dynamic, conflicting configurations in coupled multithreaded message-passing (MT-MP) programs. Our thesis is that we can achieve significant performance improvements over static under-subscribed approaches through reconfigurable execution environments that consider compute phase parallelization strategies along with both hardware and software characteristics. In this work, we present new ways to structure, execute, and analyze coupled MT- MP programs. Our study begins with an examination of contemporary approaches used to accommodate thread-level heterogeneity in coupled MT-MP programs. Here we identify potential inefficiencies in how these programs are structured and executed in the high-performance computing domain. We then present and evaluate a novel approach for accommodating thread-level heterogeneity. Our approach enables full utilization of all available compute resources throughout an application’s execution by providing programmable facilities with modest overheads to dynamically reconfigure runtime environments for compute phases with differing threading factors and affinities. Our performance results show that for a majority of the tested scientific workloads our approach and corresponding open-source reference implementation render speedups greater than 50 % over the static under-subscribed baseline. Motivated by our examination of reconfigurable execution environments and their memory overhead, we also study the memory attribution problem: the inability to predict or evaluate during runtime where the available memory is used across the software stack comprising the application, reusable software libraries, and supporting runtime infrastructure. Specifically, dynamic adaptation requires runtime intervention, which by its nature introduces additional runtime and memory overhead. To better understand the latter, we propose and evaluate a new way to quantify component-level memory usage from unmodified binaries dynamically linked to a message-passing communication library. Our experimental results show that our approach and corresponding implementation accurately measure memory resource usage as a function of time, scale, communication workload, and software or hardware system architecture, clearly distinguishing between application and communication library usage at a per-process level

    Identifying and Harnessing Concurrency for Parallel and Distributed Network Simulation

    Get PDF
    Although computer networks are inherently parallel systems, the parallel execution of network simulations on interconnected processors frequently yields only limited benefits. In this thesis, methods are proposed to estimate and understand the parallelization potential of network simulations. Further, mechanisms and architectures for exploiting the massively parallel processing resources of modern graphics cards to accelerate network simulations are proposed and evaluated
    • …
    corecore