1,071 research outputs found

    An Analysis of the Accuracy of Time Domain 3D Image Geology Model Resulted from PSTM and Depth Domain 3D Image Geology Model Resulted from PSDM in Oil and Gas Exploration

    Get PDF
    This study aims to obtain a geological model which is close to the truth and compare accuracy between the time domain 3D image of the PSTM results with the depth domain 3D image of PSDM results. There are 3 parameters to determine the accuracy of an interval velocity model in the production of a geology model: depth gathering that is already flat, semblance that has concurred with zero residual move-out axes, and depth image which conforms to the marker (well seismic tie). The analytical method employed is Horizon Based Tomography, which is a method to correct the seismic wave travel time error along the analyzed horizon. Reducing errors in the travel time of the seismic wave will decrease depth errors. This improvement is expected to provide correct information about subsurface geological conditions. The results showed that the depth domain image generated by the PSDM process represents the actual geological model better than time domain image produced by the PSTM process, evidenced by the sharpening of the reflector continuity, reduction of pull-up effect, and high resolution

    Crosshole seismic processing of physical model and coal measures data

    Get PDF
    Crosshole seismic techniques can be used to gain a large amount of information about the properties of the rock mass between two or more boreholes. The bulk of this thesis is concerned with two crosshole seismic processing techniques and their application to real data. The first part of this thesis describes the application of traveltime and amplitude tomographic processing in the monitoring of a simulated EOR project. Two physical models were made, designed to simulate 'pre-flood' and 'post-flood' stages in an EOR project. The results of the tomography work indicate that it is beneficial to perform amplitude tomographic processing of cross-well data, as a complement to traveltime inversion, because of the different response of velocity and absorption to changes in liquid/gas saturations for real reservoir rocks. The velocity tomograms image the flood zone quite accurately. Amplitude tomography shows the flood zone as an area of higher absorption but does not image its boundaries as precisely, because multi-pathing and diffraction effects are not accounted for by the ray-based techniques used. Part two is concerned with the crosshole seismic reflection technique, using data acquired from a site in northern England. The processing of these data is complex and includes deconvolution, wavefield separation and migration to a depth section. The two surveys fail to pin-point accurately the position of a large fault; the disappointing results, compared to earlier work in Yorkshire, are attributed to poorer generation of compressional body waves in harder Coal Measures strata. The final part of this thesis describes the results from a pilot seismic reflection test over the Tertiary igneous centre on the Isle of Skye, Scotland. The results indicate that the base of a large granite body consists of interlayered granites and basic rocks between 2.1 and 2.4km below mean sea level

    Seismic Ray Impedance Inversion

    Get PDF
    This thesis investigates a prestack seismic inversion scheme implemented in the ray parameter domain. Conventionally, most prestack seismic inversion methods are performed in the incidence angle domain. However, inversion using the concept of ray impedance, as it honours ray path variation following the elastic parameter variation according to Snell’s law, shows the capacity to discriminate different lithologies if compared to conventional elastic impedance inversion. The procedure starts with data transformation into the ray-parameter domain and then implements the ray impedance inversion along constant ray-parameter profiles. With different constant-ray-parameter profiles, mixed-phase wavelets are initially estimated based on the high-order statistics of the data and further refined after a proper well-to-seismic tie. With the estimated wavelets ready, a Cauchy inversion method is used to invert for seismic reflectivity sequences, aiming at recovering seismic reflectivity sequences for blocky impedance inversion. The impedance inversion from reflectivity sequences adopts a standard generalised linear inversion scheme, whose results are utilised to identify rock properties and facilitate quantitative interpretation. It has also been demonstrated that we can further invert elastic parameters from ray impedance values, without eliminating an extra density term or introducing a Gardner’s relation to absorb this term. Ray impedance inversion is extended to P-S converted waves by introducing the definition of converted-wave ray impedance. This quantity shows some advantages in connecting prestack converted wave data with well logs, if compared with the shearwave elastic impedance derived from the Aki and Richards approximation to the Zoeppritz equations. An analysis of P-P and P-S wave data under the framework of ray impedance is conducted through a real multicomponent dataset, which can reduce the uncertainty in lithology identification.Inversion is the key method in generating those examples throughout the entire thesis as we believe it can render robust solutions to geophysical problems. Apart from the reflectivity sequence, ray impedance and elastic parameter inversion mentioned above, inversion methods are also adopted in transforming the prestack data from the offset domain to the ray-parameter domain, mixed-phase wavelet estimation, as well as the registration of P-P and P-S waves for the joint analysis. The ray impedance inversion methods are successfully applied to different types of datasets. In each individual step to achieving the ray impedance inversion, advantages, disadvantages as well as limitations of the algorithms adopted are detailed. As a conclusion, the ray impedance related analyses demonstrated in this thesis are highly competent compared with the classical elastic impedance methods and the author would like to recommend it for a wider application

    Southern continuation of the Siilinjärvi Carbonatite Complex at the Siilinjärvi Phospahte Mine in Finland, Based on Geophysical Data

    Get PDF
    Phosphate is reported to be subject to “high supply risk” by the EU Commission (European Commission 2017). At present, the Siilinjärvi mine in Finland is the only mine in the EU producing phosphate. Optimising the productivity of the Siilinjärvi mine is crucial to address the demand for phosphate within the EU. The current production prognosis of the mine is to the end of 2035. To improve the prognosis of the mine, an exploration program is being undertaken to investigate the extent of the deposit and possible locations for new pits. The main area of interest is the area south of the current Särkijärvi pit. Exploration drilling is limited in this area due to obstacles created by infrastructure of the mine, including the factory area and gypsum pile. To address this, 3D passive source seismic, 2D active-source reflection seismic, Ground Penetrating Radar (GPR) and magnetic surveys were conducted at the Siilinjärvi mine site as part of the H2020 Smart Exploration project. This study focuses on two of the acquired active-source seismic reflection profiles, SM2 and SM3. The aim of the study is to determine the depth and lateral extent southern continuation of the deposit in the area south of the Särkijärvi pit, next to the gypsum pile, and create a 3D model of the Siilinjärvi deposit based on the obtained results. In addition, obtaining information on waste rocks and zones of weakness, such as shear and fracture zones, is also of interest as this information is critical for mine planning. The main focus for seismic data processing was to improve the signal-to-noise ratio. Strong amplitude S-waves and unclear first-breaks were limitations found in the data. As a consequence, in addition to bandpass filtering, seismic line SM2 required a combination of attenuation and muting to supress the impact of S- waves. Seismic line SM3 had a lower data quality in comparison to that of SM2. The suppression of S- waves had a negative impact on the near-surface reflections along SM3 and therefore was not carried out. The GPR and magnetic data were processed using standard workflows. The active-source seismic survey was successful in determining the depth and the lateral extent of the southern continuation of the Siilinjärvi deposit. A 3D model of the deposit was created based on the obtained seismic images. This model expands on the previous model and indicates that the carbonatite- glimmerite deposit expands towards the W, beneath the gypsum pile. This information can be used as a guide for future drilling in the area. In addition, information was obtained on zones of weakness and the waste-rock dike network. Sub-horizontal to gently dipping reflections observed in the seismic data were interpreted as diabase dikes. On a smaller scale, GPR measurements detected shallower near-surface features which are also interpreted to possibly be dikes. For some features, a correlation could be made between the various geophysical measurements. The carbonatite-glimmerite deposit was found to be associated with elevated magnetic total field (nT) values

    Chapter 3 • Seismic tomography

    Get PDF
    In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields

    Full-Waveform Inversion with Scaled-Sobolev Preconditioning Applied to Vibroseis Field Data

    Get PDF
    I present an application of a high-resolution subsurface imaging technique known as “full-waveform inversion” (FWI) to a vibroseis seismic dataset from eastern Ohio, USA. The data were collected over a crooked line with rough topography, 3.5 km maximum offsets, and no significant frequency content below 12 Hz. These parameters present challenges to obtaining quality images from FWI. The use of a preconditioner–the ‘scaled-Sobolev preconditioner’ (SSP - Zuberi and Pratt, 2017)–on the gradient of the misfit functional was key to obtaining low wavenumbers without discarding high wavenumbers. The results represent the first successful application of FWI with the SSP to a field dataset, with a high-resolution image that generally matches the trends of the Big Injun sand and Berea sandstone layers at the survey location. The novel FWI results confirm the absence of small scale structure (including the lack of visible faults) in the first 0.66 km

    Seismic imaging: a practical approach

    Get PDF
    In the geophysics of oil exploration and reservoir studies, the surface seismic method is the most commonly used method to obtain a subsurface model in 2 or 3 dimensions. This method plays an increasingly important role in soil investigations for geotechnical, hydrogeological and site characterization studies regarding seismic hazard issues. The goal of this book is to provide a practical guide, using examples from the field, to the application of seismic methods to surface imaging. After reviewing the current state of knowledge in seismic wave propagation, refraction and reflection seismic methods, the book aims to describe how seismic tomography and fullwave form inversion methods can be used to obtain seismic images of the subsurface. Through various synthetic and field examples, the book highlights the benefit of combining different sets of data: refracted waves with reflected waves, and body waves with surface waves. With field data targeting shallow structures, it shows how more accurate geophysical models can be obtained by using the proposed hybrid methods. Finally, it shows how the integration of seismic data (3D survey and VSP), logging data (acoustic logging) and core measurements, combined with a succession of specific and advanced processing techniques, enables the development of a 3D high resolution geological model in depth. In addition to these examples, the authors provide readers with guidelines to carry out these operations, in terms of acquisition, as well as processing and interpretation. In each chapter, the reader will find theoretical concepts, practical rules and, above all, actual application examples. For this reason, the book can be used as a text to accompany course lectures or continuing education seminars. This book aims to promote the exchange of information among geologists, geophysicists, and engineers in geotechnical fields

    Methods for high-precision subsurface imaging using spatially dense seismic data

    Get PDF
    Current state-of-the-art depth migration techniques are regularly applied in marine seismic exploration, where they deliver accurate and reliable pictures of Earth’s interior. The question is how these algorithms will perform in different environments, not related to oil and gas exploration. For example, how to utilise those techniques in an elusive environment of hard rocks? The main challenge there is to image highly complex, subvertical piece-wise geology, represented by often low reflectivity, in a noisy environment

    Automatic events extraction in pre-stack seismic data based on edge detection in slant-stacked peak amplitude profiles

    Get PDF
    Events picking is one of the fundamental tasks in interpreting seismic data. To extract the correct travel-time of reflected waves, picking events in a wide range of source-receiver offsets is needed. Compared to post-stack seismic data, pre-stack seismic data has an accurate horizon and abundant travel-time, amplitude, and frequency while the waveform of post-stack data is damaged by normal move-out (NMO) applications. In this paper, we focus on automatic event extraction from pre-stack reflection seismic data. With the deep development of oil-gas exploration, the difficulty of petroleum exploration is being increased. Auto recognition and picking of seismic horizon is presented as the basis for oil-gas detection. There is a correspondence between the real geology horizon and events of seismic profiles. As a result, firstly, recognizing and tracing continuous events from real seismic records are needed to acquire significant horizon locations. Picking events is in this context the recognition and tracing of waves reflected from the same interfaces according to kinematics and dynamic characteristics of seismic waves. Current extraction algorithms are well able to trace these events of the seismic profile and are undergoing great development and utilization. In this paper, a method is proposed to pick travel-time and local continuous events based on edges obtained by slant-stacked peak amplitude section (SSPA). How to calculate the SSPA section is discussed in detail. The new method can improve the efficiency and accuracy without windowing and manual picking of seed points. The event curves obtained from both the synthetic layered model and field record have validated the high accuracy and efficiency of the proposed methodology

    Full waveform inversion of narrow-azimuth towed-streamer seismic data

    Get PDF
    Full waveform inversion (FWI) is a computational scheme that produces high-fidelity, high-resolution models of the Earth's subsurface from surface seismic data. FWI has become a standard tool in velocity-model building and performs well on full-azimuth long-offset ocean-bottom seismic datasets. However, the majority of marine seismic datasets use narrow-azimuth towed streamers (NATS) which often lack long-offset refracted energy. Here I explore the capability of conventional FWI when it is applied to marine deep-water reflection-dominated NATS field data. I applied FWI to three datasets: the first used a deep-towed 10-km cable and was specifically acquired for 2D FWI; the other two datasets were both 3D reflection-dominated surveys to which FWI had been previously applied with limited success - these datasets were from Gabon and Brazil, and were chosen specifically because FWI had been previously tried and had failed. Applying FWI to these datasets, I reached the following conclusions: 1) When the input data have adequate turning energy and adequate low-frequency energy, acoustic anisotropic FWI can generate accurate high-resolution velocity models of increasing complexity and resolution up to about 40 Hz. 2) Extending FWI to the full bandwidth of the field data produces minimal further change in the macro-velocity model, but nonetheless continues to improve resolution up to and perhaps beyond that which can be recovered by conventional Kirchhoff-based pre-stack depth migration. 3) Applying 2D and full-3D FWI to a single 2D sail line produces similar outcomes. 4) The Gabon dataset proved almost entirely resistant to FWI; the available evidence suggests that the nominally-raw field data were corrupt in some unknown way. 5) The Brazilian dataset was inverted using a third-party FWI code that assumed constant density; this assumption is detrimental to FWI.Open Acces
    corecore