345 research outputs found

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    Model transformation for multi-objective architecture optimisation for dependable systems

    Get PDF
    Model-based engineering (MBE) promises a number of advantages for the development of embedded systems. Model-based engineering depends on a common model of the system, which is refined as the system is developed. The use of a common model promises a consistent and systematic analysis of dependability, correctness, timing and performance properties. These benefits are potentially available early and throughout the development life cycle. An important part of model-based engineering is the use of analysis and design languages. The Architecture Analysis and Design Language (AADL) is a new modelling language which is increasingly being used for high dependability embedded systems development. AADL is ideally suited to model-based engineering but the use of new language threatens to isolate existing tools which use different languages. This is a particular problem when these tools provide an important development or analysis function, for example system optimisation. System designers seek an optimal trade-off between high dependability and low cost. For large systems, the design space of alternatives with respect to both dependability and cost is enormous and too large to investigate manually. For this reason automation is required to produce optimal or near optimal designs.There is, however, a lack of analysis techniques and tools that can perform a dependability analysis and optimisation of AADL models. Some analysis tools are available in the literature but they are not able to accept AADL models since they use a different modelling language. A cost effective way of adding system dependability analysis and optimisation to models expressed in AADL is to exploit the capabilities of existing tools. Model transformation is a useful technique to maximise the utility of model-based engineering approaches because it provides a route for the exploitation of mature and tested tools in a new model-based engineering context. By using model transformation techniques, one can automatically translate between AADL models and other models. The advantage of this model transformation approach is that it opens a path by which AADL models may exploit existing non-AADL tools.There is little published work which gives a comprehensive description of a method for transforming AADL models. Although transformations from AADL into other models have been reported only one comprehensive description has been published, a transformation of AADL to petri net models. There is a lack of detailed guidance for the transformation of AADL models.This thesis investigates the transformation of AADL models into the HiP-HOPS modelling language, in order to provide dependability analysis and optimisation. HiP-HOPS is a mature, state of the art, dependability analysis and optimisation tool but it has its own model. A model transformation is defined from the AADL model to the HiP-HOPS model. In addition to the model-to-model transformation, it is necessary to extend the AADL modelling attributes. For cost and dependability optimisation, a new AADL property set is developed for modelling component and system variability. This solves the problem of describing, within an AADL model, the design space of alternative designs. The transformation (with transformation rules written in ATLAS Transformation Language (ATL)) has been implemented as a plug-in for the AADL model development tool OSATE (Open-source AADL Tool Environment). To illustrate the method, the plug-in is used to transform some AADL model case-studies

    A synthesis of logic and biology in the design of dependable systems

    Get PDF
    The technologies of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, have advanced in recent years. Much of this development can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that combines effectively and throughout the design lifecycle these two techniques which are schematically founded on the two pillars of formal logic and biology. Such a design paradigm would apply these techniques synergistically and systematically from the early stages of design to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems that brings these technologies together to realise their combined potential benefits

    Analysis as first-class citizens – an application to Architecture Description Languages

    Get PDF
    Architecture Description Languages (ADLs) support modeling and analysis of systems through models transformation and exploration. Various contributions made proposals to bring verification capabilities to designers through model-based frame- works and illustrated benefits to the overall system quality. Model-level analyses are usually performed as an exogenous, unidirectional and semantically weak transformation towards a third-party model. We claim such process can be incomplete and/or inefficient because gathered results lead to evolution of the primary model. This is particularly problematic for the design of Distributed Real-Time Embedded (DRE) systems that has to tackle many concerns like time, security or safety. In this paper, we argue why analysis should no longer be considered as a side step in the design process but, rather, should be embedded as a first-class citizen in the model itself. We review several standardized architecture description languages, which consider analysis as a goal. As an element of solution, we introduce current work on the definition of a language dedicated to the analysis of models within the scope of one particular ADL, namely the Architecture Analysis and Design Language (AADL)

    Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets

    Get PDF
    Architecture Analysis and Design Language (AADL), which is used to design and analyze software and hardware architectures of embedded and real-time systems, has proven to be a very efficient way of expressing the non-functional properties of safety-critical systems and architectural modeling. Petri nets are the graphical and mathematical modeling tools used to describe and study information processing systems characterized as concurrent and distributed. As AADL lacks the formal semantics needed to show the functional properties of such systems, the objective of this research was to extend AADL to enable other Petri nets to be incorporated into Petri Net Markup Language (PNML), an interchange language for Petri nets. PNML makes it possible to incorporate different types of analysis using different types of Petri net. To this end, the interchange format Extensible Markup Language (XML) was selected and AADL converted to AADL-XML (the XML format of AADL) and Petri nets to PNML, the XML-format of Petri nets, via XSLT script. PNML was chosen as the transfer format for Petri nets due to its universality, which enables designers to easily map PNML to many different types of Petri nets. Manual conversion of AADL to PNML is error-prone and tedious and thus requires automation, so XSLT script was utilized for the conversion of the two languages in their XML format. Mapping rules were defined for the conversion from AADL to PNML and the translation to XSLT automated. Finally, a PNML plug-in was designed and incorporated into the Open Source AADL Tool Environment (OSATE)

    SOFTWARE TESTABILITY MEASURE FOR SAE ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE (AADL)SOFTWARE TESTABILITY MEASURE FOR SAE ARCHITECTURE ANALYSIS AND DESIGN LANGUAGE (AADL)

    Get PDF
    Testability is an important quality attribute of software, especially for critical systems such as avionics, medical, and automotive. Improvement in the early testability of software architecture, the first artifact of the software system, will help reduce issues and costs later in the development process. AADL, an architecture analysis description language suitable for critical embedded, real-time systems, can be used for design documentation, analysis and code generation. Because the capability of AADL can be extended, it is possible to add new analyses to its core language. Tools such as the Open Source AADL Tool Environment (OSATE) provide plugins for processing AADL models. Although adding new plugins in OSATE extends AADL, there currently exists no AADL extension for testability measurement. The purpose of this thesis is to propose such a method to measure the testability of AADL models as well as to develop a testability plugin in OSATE. Much research has been conducted on testability of hardware, software and embedded systems, resulting in several approaches for measuring this quality attribute. Among them, the approach measuring testability as a product of controllability and observability using information transfer graph (ITG) is the most applicable for measuring the testability of AADL models. This thesis proposes a method applying this approach to AADL models. A complete testability measure plugin for OSATE was developed based on this approach and detailed examples are given in this thesis to demonstrate its applicability

    Characterizing the Identity of Model-based Safety Assessment: A Systematic Analysis

    Full text link
    Model-based safety assessment has been one of the leading research thrusts of the System Safety Engineering community for over two decades. However, there is still a lack of consensus on what MBSA is. The ambiguity in the identity of MBSA impedes the advancement of MBSA as an active research area. For this reason, this paper aims to investigate the identity of MBSA to help achieve a consensus across the community. Towards this end, we first reason about the core activities that an MBSA approach must conduct. Second, we characterize the core patterns in which the core activities must be conducted for an approach to be considered MBSA. Finally, a recently published MBSA paper is reviewed to test the effectiveness of our characterization of MBSA
    corecore