
 

To cite this document: LASNIER Gilles, PAUTET Laurent, HUGUES Jérôme. A Model-based 
transformation process to validate and implement high-integrity systems. In: 14th IEEE 
International Symposium on Object/component/service-oriented Real-time distributed computing - 
ISORC 2011, 28-31 March 2011, Newport Beach, USA. 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 4492 

Any correspondence concerning this service should be sent to the repository 
administrator: staff-oatao@inp-toulouse.fr 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12042348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Model-Based Transformation Process
to Validate and Implement High-Integrity Systems

Gilles Lasnier, Laurent Pautet
Institut TELECOM - TELECOM ParisTech - LTCI
46, rue Barrault, F-75634 Paris CEDEX 13, France
Email: {firstname.lastname}@telecom-paristech.fr

Jérôme Hugues
ISAE - Toulouse University

1, place Emile Blouin, 31056 Toulouse, France
Email: jerome.hugues@isae.fr

Abstract—Despite numerous advances, building High-Integrity
Embedded systems remains a complex task. They come with
strong requirements to ensure safety, schedulability or security
properties; one needs to combine multiple analysis to validate
each of them. Model-Based Engineering is an accepted solution
to address such complexity: analytical models are derived from
an abstraction of the system to be built. Yet, ensuring that
all abstractions are semantically consistent, remains an issue,
e.g. when performing model checking for assessing safety, and
then for schedulability using timed automata, and then when
generating code. Complexity stems from the high-level view
of the model compared to the low-level mechanisms used. In
this paper, we present our approach based on AADL and its
behavioral annex to refine iteratively an architecture description.
Both application and runtime components are transformed into
basic AADL constructs which have a strict counterpart in
classical programming languages or patterns for verification. We
detail the benefits of this process to enhance analysis and code
generation. This work has been integrated to the AADL-tool
support OSATE2.

Index Terms—model-to-model; aadl; behavior; transforma-
tion; middleware; distributed systems.

I. INTRODUCTION

High-Integrity (HI) Embedded systems increasingly rely on
software to perform critical functions. These systems are often
both security- and safety-critical in that their failure could
result in the failure of the mission, or great damage. This
particular class of systems comes with strong requirements to
ensure safety, reliability and security properties.

Computation models and architectural profiles such as the
Ravenscar Profile [1] have been developed to ensure safety.
They define several restrictions of concurrency constructs
to allow static analysis (schedulability, model checking, etc)
of the application. It limits the complexity and avoids non
deterministic constructs in HI-DRE system execution support.

Similarly, improved techniques for the production of the
software components for HI-DRE systems have been devel-
oped including Model-Driven Engineering (MDE) and formal
methods. The MDE techniques and tools can be used to
specify, analyze, optimize, synthesize, validate and deploy
application and middleware components [2]. The MDE ap-
proach defines domain-specific modelling languages (DSMLs)
as AADL [3] and generative technologies to provide “correct-
by-construction” components. At the modelling level, the
application of the restrictions defined by profiles such as

the Ravenscar Profile reinforces this notion of component
“correct-by-construction” [4].

Nevertheless, model-based development introduces new
complexities when composing, deploying or analysing DRE
systems [2]. Usually, the same high-level model is often used
by different tools. Each tool performs an abstraction of the
high-level model, mapping constructs to simpler ones prior
to assess one particular aspect of the system. We note that
1) these mappings may share some commonalities, and 2)
consistency between these abstractions is hard to validate.

In this paper, we propose to make visible this expansion
phase at model-level through iterative model-based transfor-
mations (MBT): an AADL architectural description is refined
to make explicit all runtime low-level artifacts as a refined
AADL model; and then to use this view as a common input
for both analysis and code generation.

This approach aims at eliminating high-level abstractions
in components to obtain a model close to the system implan-
tation, while preserving analysis capabilities of the model.
The benefits of this approach allow us to take into account
the whole system (application and middleware) in a common
model so as to reduce semantic gap between analysis and
implementation and to simplify the code generation process.

The reminder of this paper is organized as follows: Sec-
tion II presents the motivations of our approach; Section III
shows a brief overview of AADL and its behavioral annex
through an aerospace case study; Section IV gives the building
blocks required by our MBT process; Section V describes the
different steps of our process; and its integration in the AADL-
tool support OSATE2 using ATL and EMF technologies; and
Section VI presents concluding remarks and our future works.

II. MOTIVATIONS

A. MDE Approach to Implement HI-DRE Systems

Model-based HI-DRE systems development process has
been defined to improve the development of HI applications
in terms of complexity, time and costs. The benefits of this
method are: off-line analysis performed earlier in the system’s
life-cycle, rapid prototyping of the system, automation of
analysis and code generation steps.

Several DSMLs have been developed to design DRE sys-
tems such as AUTOSAR [5], AADL [3], UML/Marte [6].



They define concepts and patterns to describe the architecture
components involved in the application, and their behavior.

These modelling languages introduce high-level abstrac-
tions: components, interfaces, interaction protocol and non-
functional properties to configure them. These elements are
then used to perform numerous analysis such as schedulability,
memory, flow analysis to ensure security, etc.

From this architectural description, it is possible to generate
architectural skeletons, like the glue code to integrate user
components, some middleware components [7], or even the
functional code itself from its behavioral description. The
information extracted from the system properties specified in
the model is used to configure and deploy these components.

B. MDE Implied Complexity
MDE aims at reducing some steps in the design and imple-

mentation process, but we note it adds new levels of complex-
ity associated to the analysis, configuration and deployment of
components performed by different tools. Each tool performs
some refactoring of the model prior to extract relevant features,
e.g. to resolve refinements or link model elements. Such
refactoring may result in contradictory abstractions, reducing
the value of the analysis.

The figure 1 illustrates the analysis made in the HI-DRE
development process. Off-line analysis are performed on the
system model, e.g. to enforce modeling patterns. Static analy-
sis are performed on an analytical model corresponding to the
system implementation.

Fig. 1: Analysis on HI-DRE System Development Process

Usually, one assumes all intermediate models used for
analysis faithfully reflect both initial models and generated
code. However, it is difficult to relate them since they are based
on different notations, semantics and levels of abstraction.

The first model describes components with strong semantics
and introduce high-level abstractions of components behavior.
These high-level abstractions require several transformations
to produce a representation in a programming language. These
successive transformations are explained by the impossibility
to map directly high-level components to programming lan-
guage structures. Similar concerns arise when one maps the
initial model into a representation suitable to perform model
checking or simulation.

The second (analytical) model describes the architecture and
the behavior of the whole system (application + middleware).
The execution support (middleware) is integrated later, at the
implementation level, and is therefore not taken into account
at the modelling level. Thus, the middleware is considered as a

“black box” in several off-line analysis. Yet, it greatly impacts
schedulability or resource dimensioning analysis.

C. Discussion
In previous subsections we have pointed out issues intro-

duced by the MDE approach to design HI-DRE systems. The
differences between the system model, analysis models, and
the generated code introduce a semantic gap, reducing the
confidence in the whole process. Differences are due to :

1) the different levels of abstraction between the initial
model, intermediate analysis models, and the generated
code (final model of the process), and

2) the resources of the execution support (middleware) not
taken into account in relevant analysis stage.

To resolve these issues we propose a new approach (see
figure 2) to analyze and then generate HI-DRE systems. To
reduce the semantic gaps between the system model and the
generated code our solution is to refine the system model iter-
atively with model-based transformations (MBT). We can find
such a refinement process in approaches like COMPCERT [8].

Fig. 2: Approach to implement HI-DRE System

These successive refinements allow us to assess equivalence
between the intermediate models and to make explicit trans-
formations often hidden in the model-transformation toolchain.
The integration of the middleware components is performed
during these refinements and thus allows to consider the whole
system (application + middleware) in off-line analysis.

We chose to develop our approach using the DSML AADL
and its behavioral annex AADL-BA [9]. The major advantages
of AADL is to avoid the introduction of additional languages
to specify the intermediate models, while enabling precise
specification of components’ behavior.

III. OVERVIEW OF AADL AND AADL-BA
AADL [3] is an architecture description language standard

managed by the Society of Automotive Engineers (SAE). We
have already showed the new features of the AADLv2 [7]. We
give a short introduction of AADL using the MPC case-study
and an overview of the AADL behavior annex.

A. The MPC Case-study Architecture
The figure 3 shows the AADL graphical representation of

the Multi-Platform Cooperation (MPC) platform. The system
holds three spacecrafts (nodes) with different roles. SC1 is a
leader spacecraft that contains a periodic thread which sends
its position to SC2 and SC3 which are follower spacecrafts.
They receive the position sent by SC1 with a sporadic thread
(Receiver_Thread), update their own position and store it in
a local protected object (AADL shared data). A second thread



Fig. 3: Architecture view of the MPC case study

in these two spacecrafts periodically reads the position value
from the local protected object, and “watches and reports” all
elements at that position (e.g. earth observation, etc).

This model gathers typical elements from HI-DRE systems,
with a set of periodic tasks devoted to the processing of
incoming orders (Watcher_Thread), buffers to store these
orders (Protected Object) and sporadic threads to exchange
data (Receiver_Thread). These entities work at different
rates specified by AADL properties, and should all respect
their deadlines so that the Watcher_Thread can process all
observation orders in due time.
Deployment and configuration are described through the

specification of hardware components and the binding of
software components to hardware in the same view. In MPC,
each node is bound to a specific CPU and communication
between nodes are bound to different buses.

B. Overview of the AADL Behavior Annex
The AADL Behavior Annex is an extension to specify the

behavior attached to AADL components. It intends to refine
the implicit behavior specified in the core of the language and
replaces property-based interpretation by concrete behavior.
Thus, it is possible to attach a behavioral specification to each
AADL component using AADL annex subclauses.
1) The Behavior Specification: A behavior specification is

a state transition automaton with guards and actions. Guards
and actions use variables to manipulate data. Local variables
(non-persistent) are used to save intermediate results. State
variables can reference an AADL data component.

A behavior automaton starts from an initial state and
terminates in a final state. Complete state represents a sus-
pend/resume state out of which threads and devices are dis-
patched [9]. Execution states represent intermediate states of
the automaton.

A transition represents a change from the current source
state to a destination state. A transition is activated when
its dispatch or execute condition is evaluated to true. A
dispatch condition affects the execution of a thread based on
external triggers. An execution condition models the behavior
within an execution sequence of a thread, subprogram or other
components. They are based on input values from ports, shared
data, parameters, and behavior variable value.

When a dispatch condition is evaluated to true, the thread
dispatches and transition (outgoing of a complete state) is
taken. Actions associated to the transition are executed sequen-
tially. Periodic dispatches are time-driven. Sporadic dispatches
can be triggered by the arrival of event or data on ports or the
call to provide subprogram access.
2) Component Interaction Behavior Specifications: AADL

threads interact through shared data, connected ports and sub-
program calls. AADL-BA provides mechanisms to model the
behavior of event data, data or event ports. Thus, behaviors
and policies governing data and event data ports queues (e.g
dequeue protocol) can be specified. Send and receive outputs
through ports can also be specified.
The standard defines three ways to explicitly model critical

section to access shared data. ’{’ and ’}’ characters defines
a smaller action block which encapsulates the shared data.
Provides subprogram access of the corresponding shared data
component can be called in actions blocks. Get Resource and
Release Resource runtime services specified in the runtime
support of the AADLv2 standard [3] can be inserted in action
blocks. The user can also provide specific implementations of
these runtime services at execution platform level.
An AADL-BA behavior specification improves an AADL

architecture description by refining the actions (subprogram
call sequences, outputs. . . ) executed within a component.
Thus, we can specify both the architecture and the behavior of
the DRE system in a same model. Finally, several approaches
for defining the semantics or for interpreting the behavior
annex of AADL have already been proposed [10], [11], [12].

C. The MPC Case-study Behavior
The figure 4 describes the behavior automaton attached

to the Sender_Thread periodic thread. At every dispatch of
the thread, the transition is fired and the subprogram Send
specified in the action block is executed.

annex b e h a v i o r s p e c i f i c a t i o n ∗∗{
s t a t e s

s t E x e c : i n i t i a l complete f i n a l s t a t e ;
t r a n s i t i o n s

t Ex ec Ex ec : s t E x e c −[on di spa tch ]−> s t E x e c
{ Send ! ( Dat a So u rce ) ; } −− a c t i o n b l o c k

∗∗} ;

Fig. 4: Sender_Thread periodic thread behavior automaton

The figure 5 shows the behavior automaton of the
Receiver_Thread sporadic thread. At the reception of the
Data_Sink data the thread dispatches. The transition is fired
and the Update subprogram which updates the position of
the spacecraft and stores it in the local protected object
Protected_Local is executed. As we access to a shared data
the Get_resource and Release_resource AADL runtime
services are used to model the critical section.

IV. BUILDING BLOCKS OF THE MBT PROCESS
In section II) we have exposed the rationale for a MBT

process to support the validation and implementation of HI
systems based on an iterative refinement of architectural



annex b e h a v i o r s p e c i f i c a t i o n ∗∗{
s t a t e s
s t Ex ec : i n i t i a l complete f i n a l s t a t e ;

t r a n s i t i o n s
tExec Exec : s t Ex ec −[on di spa tch Dat a S ink]−> s t Ex ec

{ Get Resou rce ! ( P r o t e c t ed Lo ca l ) ;
Update ! ( Dat a S ink ) ;
R e l e a s e R e s o u r c e ! ( P r o t e c t ed Lo ca l ) ; } −− a c t i o n b l o c k

∗∗} ;

Fig. 5: Receiver_Thread sporadic thread behavior automaton

descriptions. In previous sections, we introduced the AADLv2
and its behavioral annex.

AADL is a complete architecture description language,
supporting modeling through abstractions thanks to common
concepts (component categories and properties; inheritance
and refinement mechanism) for static modeling. The behavior
annex completes this description to allow for dynamic mod-
eling, with a formal semantics.

To support our process, we define a minimal set of ab-
stractions out of the full AADL language: AADL-light. The
objective is to keep relevant features to maintain some level of
abstraction; while rewriting the ones that induce interpretation
(see next section). Then, we introduce the building blocks of
our runtime as a library of AADL models: POLYORB-HI-
AADL.

A. AADL-light: an AADL profile

1) Rationale: The rationale for defining AADL-light is to
define a subset of AADL, without any convoluted features.
This is permitted per the AADLv2 standard, in the “Profile
and Extensions” section. By convoluted, we mean any concept
that requires interpretation through syntactic mechanisms such
as inheritance (e.g. of properties), refinement (of features
or components). These interpretations are performed in any
analysis tool to extract relevant information from a model,
like we did in the AADL toolchain OCARINA [7].

By defining such profile, we define the target language of
our MBT process: every AADLv2 input model would have a
semantically equivalent model in AADL-light by rewriting.

In the following, we review the limitations we put on
AADLv2 to define our profile.

2) Abstract, Prototypes and Refinement Restrictions:
AADLv2 defines the concept of abstract entities such as
features, component type and implementation.

Abstract components are used in early steps of the mod-
elling process to model components without knowing the
precise component category of the element (tasks, shared
object, etc). It is refined later in a concrete component cat-
egories (i.e. hardware, software). Abstract features have the
same characteristics and are used for modelling component
interfaces (i.e. port, subprogram, etc). This is equivalent to a
Java or Ada interface.

A concrete component obtained from an abstract component
inherits these architectural specifications (properties, compo-
sition) and behavioral specification (automaton) through an
extension/refinement mechanism. Besides, in the final model

of a system, the root node of the model can only have concrete
component types in its transitive closure, as subcomponents.

Thus, we can rewrite these concrete components with all in-
formation extracted from the inherited abstract component and
eliminate the latter from the current model. This suppresses an
indirection between components that is relevant for modeling
at large, but is irrelevant when considering the final system.
The same strategy can be applied on concrete components that
extends other concrete components.

Prototypes represent parameterization of component. Pro-
totypes binding allows parameterization via prototype to be
propagated down the system hierarchy (as Ada generics). This
concept is useful to reuse components and reduce the size
of the model. As for abstract components, prototypes cannot
be subcomponents of the root node of the model, but only
components that contain prototypes/prototype bindings. These
are rewritten with the expected component types or component
implementation.

3) Data Component Restrictions: The AADL language
allows to describe data component in different forms and not
fully specified. It can be later refined and completed. The
“Data Modelling” annex document lists possible patterns and
associated properties.

To avoid the use of multiple modelling patterns as inputs in
our analyzers and code generator we restricted the different
forms of AADL data component specification to one. In
addition, we impose the use of typed and bounded arrays
accord to the HI-DRE systems restrictions.

This restriction serves two objectives: providing a uniform
view of modeling patterns to ease model processing; and
bounding memory consumption.

4) Port and Port Connection: AADL ports defines inter-
actions between components. They are used to transfer event,
data or both between threads, processors or devices. A port
according to its properties could be equivalent of a signal,
a FIFO or a buffer and associated runtime elements such as
mutexes, semaphores, etc.

AADL defines low-level mechanisms to lock a resource
using data components, define arrays and dispatch triggers.
We take advantage of these features to rewrite ports and port
connections to make all runtime elements implicit at model-
level. All queues and port variables are made visible. We keep
only the event port “Dispatch” mandated by the standard. All
other ports are associated to a state variable used by the thread
automaton (see next section).

By doing so, we allow for finer analysis by making visible
all shared objects. Such visibility is mandatory for precise
schedulability analysis, or to perform model or code optimi-
sations based on buffer usage like in [13].

5) AADL Behavior Annex Restrictions: The restrictions
defined for the AADL core language also have an impact on
the behavioral specification. All entities defined to map ports
onto queues and port variables require control mechanism that
can be defined using the behavioral annex. Yet, it is permissive
and define several structures to model critical section [14].



Again, to ensure uniqueness of modeling patterns per con-
cept and ease analysis, we mandate the use of Get Resource
and Release Resource services and force the specification of
the Release Resource after every Get Resource. Such restric-
tion is usually mandated by coding practices for HI systems.

B. The POLYORB-HI-AADL Middleware
1) Rationale: In the previous section, we illustrate how to

map individual AADL components onto simpler ones. Yet,
one needs additional runtime support to interconnect them.

We introduced the POLYORB-HI family of AADL run-
times [4] for C/RT-POSIX, C/ARIN653 and Ada/Ravenscar.
They rely on similar coding patterns to support AADL runtime
services. We propose to move these patterns at model-level
to complete the AADL-light patterns with explicit runtime
elements, so as to define a “POLYORB-HI-AADL” variant of
the POLYORB-HI family. Hence, the combination of AADL-
light and POLYORB-HI-AADL provides visibility over all
components that may induce resource consumption (memory,
time) and their interleaving.

The initial definition of POLYORB-HI relies on canonical
middleware services to support event and data exchange in HI
systems in both monolithic and distributed case: representa-
tion, transport, protocol, execution, naming and activation. We
already shown that these services are specified by a set of cus-
tomizable or generated components (i.e library). Customizable
components are used to configure service which the implemen-
tation is independent of the application. Generated components
are used to generate service which implementation must be
generated from system properties. We propose to apply the
same design philosophy using AADL-light combined with its
behavioral annex as a meta-programming language.

In the following subsections we give a brief description of
the AADL-light customized or generated components used by
the POLYORB-HI-AADL services. Then we illustrate how
these services are integrated in an AADL application model.

2) Middleware service components: Deployment (resp.
configuration) information extracted from the AADL appli-
cation model are generated in a package (resp. property set).
They represent constant, node types, entities and enumerations
used by execution, naming and activation services to identify
nodes reachable by the local node.

Data types and routines required to manage thread’s ac-
tivity are part of the Activation service. It also specifies
thread interface, and high-level routines as Send_Output,
Receive_Input and Await_Dispatch. The Ravenscar Profile
restrictions required a single queue for messages received by a
thread. Thus, for each thread we generate a global queue (GQ)
entity as a shared data component with subprograms to manage
it ( Wait_Event, Dequeue, etc). These global queues are
part of the Execution service. Both Execution and Activation
services are in charge of processing a request.

The Naming service defines data components used to
let a node reach another node. For each node we specify
a Naming_Table deduced from the distributed application
connection topology. This structure contains all port/location

information required to establish a connection with the nodes
connected to the local node.

The base type marshallers package models all mar-
shaller/unmarshaller subprograms for AADL basic types. For
user data components we generate marshaller/unmarshaller
subprograms according to the distributed application proper-
ties. Analyzing connection deep memory copy in buffer (for
homogeneous system) or standard protocols as CDR, XDR (for
heterogeneous system) are selected to ensure interoperability.
These subprograms define the Representation service.

The Protocol service defines among other things the Send
subprogram used by a node to send a message to another
node. This subprogram called the Send (resp. Deliver) sub-
programs of the transport service used in remote (resp. local)
communication.

In the case of remote communication it calls the Send sub-
program provided by the low-level transport layer (in our case
the TCP IP Protocol package). This instance of the Protocol
service models a TCP/IP based protocol layer, routines and
thread to be integrated with the middleware network interface.

data Naming Entry
p ro p er t i e s Data Model : : D a t a R ep r e s en t a t i o n => S t r u c t ;
end Naming Entry ;

data impl ementa t i on Naming Entry . SC1 K −− SC1 s p a c e c r a f t
subcomponents

Node Port : data Node Port {Data Model : : I n i t i a l V a l u e => ”1 2 0 0 2 ” ; } ;
Node Addr : data Node Addr {Data Model : : I n i t i a l V a l u e => ” 1 9 6 . 1 2 4 . 9 7 . 6 5 ” ; } ;

end Naming Entry . SC1 K ;

data impl ementa t i on Naming Entry . SC2 K −− SC2 s p a c e c r a f t
subcomponents

Node Port : data Node Port {Data Model : : I n i t i a l V a l u e => ” 0 ” ; } ;
Node Addr : data Node Addr {Data Model : : I n i t i a l V a l u e => ” 1 2 7 . 0 . 0 . 1 ” ; } ;

end Naming Entry . SC2 K ;

data Naming Table end Naming Table ; −− Naming t a b l e
data impl ementa t i on Naming Table . imp l
subcomponents
SC1 K : data Naming Entry . SC1 K ;
SC2 K : data Naming Entry . SC2 K ;

p ro p er t i e s
Data Model : : D a t a R ep r e s en t a t i o n => Array ;
Data Model : : Dimension => ( Po lyORB HI Genera t ed SC 2 Conf i gu ra t i on : : PO HI NB NODES ) ;

end Naming Table . imp l ;

Fig. 6: Naming service for SC2 spacecraft: naming table

3) Integration of the POLYORB-HI-AADL middleware:
Figure 6 illustrates the naming table component generated
for SC2. Each entry is deduced from the DRE application
connection topology. For each node connected to the local
node SC2 we generate a data component with its port and its
location (i.e IP).

Figure 7 shows the integration of the POLYORB-
HI-AADL middleware services for SC1 in the case
of the message emission. The Sender_Thread calls the
Activity.Send_Output routine (execution service). This
routine uses the representation service to marshall the
data to be sent, and stores it in the generated global
queue by calling the GQ.Send_Output routine. Then, the
Network_Sc1_Thread retrieves the data stored in the global
queue and calls the Send routine of the transport service.

Similarly, the figure 8 shows the integration of the mid-
dleware for SC2 in the case of a message reception. The
thread network stores the received data in the global queue



Fig. 7: Middleware integration in SC1: send output

and wakes up the Receiver_Thread by sending an event on
the Dispatch port (activation service).

Fig. 8: Middleware integration in SC2: receive input

V. MBT PROCESS TO VALIDATE AND IMPLEMENT
HI-DRE SYSTEMS

In the previous sections, we have introduced the need
to perform an iterative refinement of a high-level model
describing a HI system to ease validation and code generation:
each refinement makes visible all underlying runtime elements,
allowing for a more precise validation of the entire system.
We introduced a subset of AADL combined with the AADL
behavioral annex that is sufficient to express the whole runtime
environment. In this section we detail the different refinement
steps of this process.

A. Model-based Transformations (MBT) Process
The figure 9 describes the MBT process. We define 4 steps

to refine the initial AADL architectural description. STEP 1 is
the expansion of the AADL behavior specification of thread
components (periodic and sporadic). STEP 2 is the rewriting of
high level components and a normalization of data components
to AADL-light. STEP 3 is the transformation of ports and port
connections into a single global queue and the integration
of the POLYORB-HI-AADL runtime to make visible all
shared components. Finally, STEP 4 is an expansion stage
for the Representation service (i.e marshallers) and for shared
data patterns whose implementations are specific to the target
programming language for code generation.
1) Step 1 - Integrate Software Component Behavior: The

STEP 1 makes explicit the behavior of each active thread
using the corresponding behavioral automaton, thus to make
explicit all dispatch points. Thus, we expand the specification
of threads using our AADL-BA behavior thread patterns
described in the section III-C (see figures 4 and 5) .
The figure 10 describes the architecture specification of the

Receiver_Thread. AADL properties and subprogram call se-
quences are used to produce the behavioral automaton showed

threa d R ecei v er Th read
f e a t u r e s

P r o t e c t e d Lo ca l : r e q u i r e s data a c c e s s P r o t e c t e d T y p e . Impl ;
Dat a S i n k : i n ev ent data po rt Record Type . Impl ;

end R eei v er Th read ;

threa d i m pl em enta t i on R ecei v er Th read . Impl
c a l l s

c a l l s e q : { Update : subprogram P r o t e c t e d Typ e . Update ; } ;
c o n n e c t i o n s

data a c c e s s P r o t e c t e d Lo ca l −> Update . Th i s ;
parameter Dat a S i n k −> Update . Updat e Val u e ;

p r o p e r t i e s
I n i t i a l i z e E n t r y p o i n t S o u r c e T e x t => ” I n i t i a l i z e S u b p r o g a m ” ;
C o mp u t e En t ry p o i n t C al l Seq u en ce => r e f e r e n c e ( c a l l s e q ) ;
D i s p a t c h P r o t o c o l => S p o r a d i c ;
P e r i o d => 300 Ms;
P r i o r i t y => 2 ;

end R ecei v er Th read . Impl ;

Fig. 10: Receiver Thread architectural specification

in figure 11. Specific subprogram (executed at initialization
time, dispatch, etc.) linked by AADL properties are made
visible in the automaton. Some other properties remain like
priority or WCET as these have no equivalent notation.

Fig. 11: Receiver Thread behavioral specification

To enrich the description, we also encapsulate the sub-
program used to access/modify the Protected Type shared
data with calls to Get_Resource and Release_Resource
routines. Explicitly providing critical sections allows us to
define threads dependencies and to properly evaluate blocking
time.
2) Step 2 - Simplification and Normalization: In this

step, we rewrite components to remove all AADL model-
ing constructs that rely on inheritance or refinements. By
flattening this hierarchy, we make visible the actual defini-
tion of each model element. Then, we normalize all data
components to rely on a uniform set of modeling pat-
terns. The figure 12 shows how we rewrite data compo-
nents. Integer_32_RW data component is generated from the
Integer_32 data type that extends Base_Types::Integer.
Rewritten types have the same properties as the initial ones.
Similarly, Data_Simple_Type.Impl_RW is generated from
Data_Simple_Type.Impl and Data_Simple_Type.P_Impl
by resolving all types referenced by prototypes.



Fig. 9: Model-based Transformation (MBT) DRE System Development Process

data I n t e g e r 32 ex tends Base Types : : I n t e g e r
p r o p e r t i e s

Data Model : : Number R ep r esen t a t i o n => Si g n ed ;
So u rce Dat a S i ze => 4 By t es ;

end I n t e g e r 32 ;

data Data Simple Type end Data Simple Type ;

data Data Simple Type . P Impl
pro to ty pes

Dt : data ;
subcomponents

F i e l d 1 : data Dt ;
end Data Simple Type . P Impl ;

data Data Simple Type . Impl ex t ends Data Simple Type . P Impl
( Dt => I n t e g e r 32 )

end Data Simple Type . Impl ;

(a) AADL data component with prototypes
data Integer 32 RW
p r o p e r t i e s

Data Model : : D a t a R e p r e s e n t a t i o n => I n t e g e r ;
Data Model : : Number R ep r esen t a t i o n => Si g n ed ;
So u rce Dat a S i ze => 4 By t es ;

end Integer 32 RW ;

data Data Simple Type end Data Simple Type ;

data Data Simple Type . Impl RW
subcomponents

F i e l d 1 : Integer 32 RW ;
end Data Simple Type . Iml RW ;

(b) AADL data component simplified

Fig. 12: AADL data component simplification

3) Step 3 - Thread Interface and Middleware Components:
In this step, we apply two major transformations:
The first transformation aims at refining thread inter-

faces (i.e. ports) according to restrictions defined in IV-A4
and IV-B2. All the input ports of a given thread are replaced
by an unique queue for this thread: the global queue (GQ).
This queue models the queue of events/data being received
by the thread. This GQ component is shared with other
threads that produce messages; or network-related threads.
This queue is made of several consecutive circular arrays, each
one representing a specific port queue of the thread. Addi-
tional timestamps ensure causality between messages. Thus it
ensures we reproduce the behavior from the original AADL
ports. The expansion of ports impacts the thread architecture
and the behavior automaton generated in the STEP 1. To stay

compliant with AADL and its behavioral annex we let an
unique port available called: Dispatch. It allows to wake up
the thread after the reception of a message in the GQ. Upon
reception, the thread automaton will walk through the GQ and
process messages.

The second transformation is the integration of the PO-
LYORB-HI-AADL middleware components (AADL-light li-
brary). This transformation makes visible all low-level drivers
and attached resources: we select and configure some mid-
dleware services (i.e AADL-light packages). In the case of
communication between remote nodes we select the network
protocol required and configure the network interface. Then,
we generate the AADL middleware components missing from
the analyze of deployment and configuration attributes coming
from user AADL models. At the end of these two expansions
we obtain one single model with the whole application and
configured middleware.
4) Step 4 - Programming Language Expansion: During this

last step, these entities are mapped to regular structures of
programming languages such as C or Ada; or other model-
ing notation for further analysis. Since the resulting model
defines all resources (threads, locks, queues, etc), we can
define a reduced one-to-one mapping between the model and
corresponding artifacts at programming language level. For
instance, a synchronizing operation such as a shared data
access is not implemented the same way in Ada and in C.
Ada 2005 mapping takes advantage of protected objects when
C has to deal with POSIX conditional variables and mutexes.
The same holds for mapping thread definition, automata as
sequential code, or data types definition.

B. Integration into OSATE2
OSATE2 [15] is an extensible open source platform devel-

oped by the Software Engineering Institute (SEI) to assist
the development of HI-DRE systems with AADL. It is based
on Eclipse and the Eclipse Modeling Framework (EMF).
It includes an AADL meta-model, an AADL front-end and



architecture analysis capabilities as Eclipse-based plug-ins.
After syntactic and semantic analysis the front-end produces
an instance of AADL metamodel that can be processed.

We have implemented two Eclipse-based plug-ins that ex-
ploits models built by OSATE2. The AADL model trans-
formations (AADL-MT) plug-in implements the four steps
outlined in our approach using EMF and the ATL model
transformation technology [16]. ATL allows to specify a set
of transformation rules with OCL [17] expression to produce
or refine several target models from input models.

−− ATL Helper
helper co n t ex t AADL2! ProcessSubcomponen t def : h a s Lo ca t i o n ( ) : Boolean =

s e l f . o w n ed P r o p e r t y A s s o c i a t i on−>s e l e c t ( e | e . p r o p e r t y . name = ’ Locat i on ’ )
−>notEmpty ( ) ;

−− ATL Matching r u l e
ru l e Genera t eNamingEn t ry {
from cmp : AADL2! ProcessSubcomponen t ( cmp . h a s Lo ca t i o n ( ) and cmp . h a s P o r t ( ) )
to t a r g e t : AADL2! D a t a I mp l emen t a t i on (

name <− ” Naming Entry ”+cmp . name+” K”
ownedDataSubcomponent <− Sequence{ t h i sModu l e . g en e r a t eN o d eP o r t ( cmp ) ,

t h i sModu l e . genera t eNodeAddr ( cmp ) } ) }

Fig. 13: Naming Entry ATL transformation rule

The figure 13 shows the ATL matching rule used to generate
a Naming_Entry data component described in figure 6. The
from part defines the rule source pattern, a process sub-
component, and ATL helpers to describe conditions on the
source element (hasLocation...). The to part defines the
target pattern of the rule. It contains the generated elements
and the bindings to initialized their attributes and references.

The AADL code generator (AADL-GEN) plug-in imple-
ments our code generator targeting C/POSIX and Ada/Raven-
scar languages. We use EMF to produce the C and the Ada
meta-models with respect to their BNF. Then, we use ATL
to transform AAXL2 models refined by our MBT process to
target programming language component. Finally, we produce
the textual output files.

VI. CONCLUSION AND FUTURE WORKS

In this paper we have exposed a Model-Based Tranfor-
mation (MBT) process to implement HI-DRE systems. This
approach solves complexities introduced by the MDE ap-
proach by removing through successive refinements the high
level abstractions of components to obtain a model close to
the system implementation and integrating execution support
(middleware) components.

To reduce the number of intermediate representations, we
introduced the AADL-light subset of AADL to express all in-
termediate models, and the underlying runtime. The definition
of this subset allows us to make visible every single entities
used in the application, allowing for finer-grained analysis and
simpler code generation.

Analysis is made more accurate since one has a faithful view
of all resources used, in their context. Deriving an analytical
or simulation model no longer requires interpretation of some
constructs (e.g. how to read events from a queue).

This approach also eases code generation: the final model
makes visible all internal data types and algorithm required to

exchange information among model elements (threads, queues,
etc). Besides, the integration of middleware components en-
ables optimization at model-level.

Future work will focus on strengthening equivalence of
our intermediate models by taking advantage of traceability
information and semantics information of all constructs; and
extend the coverage of AADL constructs we support as inputs,
like modes or properties. Finally, we will work jointly with the
SEI on finishing the integration of this work in OSATE2.

REFERENCES

[1] A. Burns, B. Dobbing, and T. Vardanega, “Guide for the use of the Ada
Ravenscar Profile in High Integrity Systems,” Ada Lett., vol. XXIV,
no. 2, pp. 1–74, 2004.

[2] K. B. Arvind, A. S. Krishna, E. Turkay, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt, “Applying model-driven development
to distributed real-time and embedded avionics systems.”

[3] SAE, Architecture Analysis & Design Language v2.0 (AS5506), Sept.
2008.

[4] J. Hugues, B. Zalila, L. Pautet, and F. Kordon, “From the Prototype to
the Final Embedded System Using the Ocarina AADL Tool Suite,” ACM
Transactions in Embedded Computing Systems (TECS), vol. 7, no. 4, pp.
1–25, Jul. 2008.

[5] D. Schreiner and K. M. Goschka, “A Component Model for the
AUTOSAR Virtual Function Bus,” in COMPSAC’07: Proceedings of
the 31st Annual International Computer Software and Applications
Conference - Vol. 2- (COMPSAC 2007). Washington, DC, USA: IEEE
Computer Society, 2007, pp. 635–641.

[6] S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Terrier, “First
experiments using the uml profile for marte,” in ISORC’08: Proceedings
of the 2008 11th IEEE Symposium on Object Oriented Real-Time
Distributed Computing. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 50–57.

[7] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “OCARINA: An Envi-
ronment for AADL Models Analysis and Automatic Code Generation
for High Integrity Applications,” in Reliable Software Technologies’09
- Ada Europe, Brest, France, Jun. 2009.

[8] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009. [Online]. Available:
http://gallium.inria.fr/#xleroy/publi/compcert-CACM.pdf

[9] SAE, Annex X Behavior Annex (AS5506-X draft-2.13), Aug. 2010.
[10] Y. Ma, J.-P. Talpin, and T. Gautier, “Interpretation of aadl behavior annex

into synchronous formalism using ssa,” Computer and Information
Technology, International Conference on, vol. 0, pp. 2361–2366, 2010.

[11] Z. Yang, K. Hu, D. Ma, and L. Pi, “Towards a formal semantics for the
aadl behavior annex,” in Design, Automation Test in Europe Conference
Exhibition, 2009. DATE ’09., 2009, pp. 1166 –1171.

[12] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis, “Models in
software engineering,” M. R. Chaudron, Ed. Berlin, Heidelberg:
Springer-Verlag, 2009, ch. Translating AADL into BIP - Application to
the Verification of Real-Time Systems, pp. 5–19. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-01648-6 2

[13] P. H. Feiler, “Efficient embedded runtime systems through port commu-
nication optimization,” in ICECCS. IEEE Computer Society, 2008, pp.
294–300.

[14] G. Lasnier, T. Robert, L. Pautet, and F. Kordon, “Architectural and
behavioral modeling with aadl for fault tolerant embedded systems,”
in ISORC, Parador of Carmona, Spain, May 2010, pp. 87–91.

[15] SAE AADL, “Osate2,” http://www.aadl.info, 2010.
[16] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model

transformation tool,” Sci. Comput. Program., vol. 72, pp. 31–39,
June 2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1385689.1385713

[17] OMG, “Object Constraint Language (OCL),” http://www.omg.org/spec/
OCL, 2010.




