448 research outputs found

    Optimization study of high power static inverters and converters Final report

    Get PDF
    Optimization study and basic performance characteristics for conceptual designs for high power static inverter

    DETECTION AND SUPPRESSION OF PARASITIC DC VOLTAGES IN 400 V AC GRIDS

    Get PDF
    Grid connected static power converters inject parasitic DC currents due to the offset in current sensing, control imperfections, assymetries in power switches and other secondary effects. Ever growing number of grid connected converters contributes to an increase of DC bias in AC grids, and this brings the cores of distribution transformers closer to saturation and increases their power losses. This paper provides sensitivity analysis of distribution transformers to the DC bias, and considers solutions for detecting and compensating the parasitic DC components in AC grids. Active compensation methods  can be advantageously used in suppressing the DC bias at grid connection point of the power converter. The sensing approach proposed in this paper makes use of saturable ferromagnetic cores and a low cost DSP for signal analysis and processing. Proposed algorithm uses distortion of the magnetizing current of a parallel connected saturable core due to the bias. Experimental results demonstrate the capability for detecting and compensating the bias voltages far below 1 mV in 0.4 kV grids. The paper describes the principles of DC bias detection and it provides the guidelines for the proper design of magnetic components. High precision of the proposed DC bias sensing is thoroughly verified on the experimental setup connected to a 0.4 kV grid

    Multi-objective optimization of power electronic converters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Design and Control of an Inverter for Photovoltaic Applications

    Get PDF

    Design and Control of Power Converters 2020

    Get PDF
    In this book, nine papers focusing on different fields of power electronics are gathered, all of which are in line with the present trends in research and industry. Given the generality of the Special Issue, the covered topics range from electrothermal models and losses models in semiconductors and magnetics to converters used in high-power applications. In this last case, the papers address specific problems such as the distortion due to zero-current detection or fault investigation using the fast Fourier transform, all being focused on analyzing the topologies of high-power high-density applications, such as the dual active bridge or the H-bridge multilevel inverter. All the papers provide enough insight in the analyzed issues to be used as the starting point of any research. Experimental or simulation results are presented to validate and help with the understanding of the proposed ideas. To summarize, this book will help the reader to solve specific problems in industrial equipment or to increase their knowledge in specific fields

    Current measurement in power electronic and motor drive applications - a comprehensive study

    Get PDF
    Current measurement has many applications in power electronics and motor drives. Current measurement is used for control, protection, monitoring, and power management purposes. Parameters such as low cost, accuracy, high current measurement, isolation needs, broad frequency bandwidth, linearity and stability with temperature variations, high immunity to dv/dt, low realization effort, fast response time, and compatibility with integration process are required to ensure high performance of current sensors. Various current sensing techniques based on different physical effects such as Faraday\u27s induction law, Ohm\u27s law, Lorentz force law, magneto-resistance effect, and magnetic saturation are studied in this thesis. Review and examination of these current measurement methods are presented. The most common current sensing method is to insert a sensing resistor in the path of an unknown current. This method incurs significant power loss in a sense resistor at high output currents. Alternatives for accurate and lossless current measurement are presented in this thesis. Various current sensing techniques with self-tuning and self-calibration for accurate and continuous current measurement are also discussed. Isolation and large bandwidth from dc to several kilo-hertz or mega-hertz are the most difficult, but also most crucial characteristics of current measurement. Electromagnetic-based current sensing techniques, which are used to achieve these characteristics, are analyzed. Many applications require average current information for control purposes. Different average current sensing methods of measuring average current are also reviewed. --Abstract, page iii

    Digital Signal Processing in Power System Protection and Control

    Full text link
    corecore