1,475 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    An Overview of SBIR Phase 2 Communications Technology and Development

    Get PDF
    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    ΠœΠ΅Ρ‚ΠΎΠ΄ динамичСского Π²Ρ‹Π±ΠΎΡ€Π° спутниковой Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ систСмы Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ позиционирования

    Get PDF
    Today, the list of applications that require accurate operational positioning is constantly growing. These tasks include: tasks of managing groups of Autonomous mobile robots, geodetic tasks of high-precision positioning, navigation and monitoring tasks in intelligent transport systems. Satellite navigation systems are a data source for operational positioning in such tasks. Today, global and local satellite navigation systems are actively used: GPS, GLONASS, BeiDou, Galileo. They are characterized by different completeness of satellite constellation deployment, which determines the accuracy of operational positioning in a particular geographical point, which depends on number of satellites available for observation, as well as the characteristics of the receiver, landscape features, weather conditions and the possibility of using differential corrections. The widespread use of differential corrections at the moment is not possible due to the fact that number of stable operating reference stations is limited - the Earth is covered by them unevenly; reliable data networks necessary for the transmission of differential corrections are also not deployed everywhere; budget versions of single-channel receivers of the navigation signal are widely used, which do not allow the use of differential corrections. In this case, there is a problem of operational choice of the system or a combination of satellite positioning systems, providing the most accurate navigation data. This paper presents a comparison of static and dynamic methods for selecting a system or a combination of satellite positioning systems that provide the most accurate definition of the object's own coordinates when using a single-channel receiver of navigation signals in offline mode. The choice is made on the basis of statistical analysis of data obtained from satellite positioning systems. During the analysis, the results of post-processing of data obtained from satellite navigation systems and refined with the use of differential corrections of navigation data were compared.На сСгодняшний дСнь ΠΏΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ позиционирования, постоянно растёт. К Ρ‚Π°ΠΊΠΈΠΌ Π·Π°Π΄Π°Ρ‡Π°ΠΌ относятся: Π·Π°Π΄Π°Ρ‡ΠΈ управлСния Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΠ², гСодСзичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ высокоточного позиционирования, Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π² ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… транспортных систСмах. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΎΠΌ Π΄Π°Π½Π½Ρ‹Ρ… для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ позиционирования Π² Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡Π°Ρ… ΡΠ²Π»ΡΡŽΡ‚ΡΡ спутниковыС Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ систСмы. На сСгодняшний дСнь Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ спутниковыС Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ систСмы: GPS, GLONASS, BeiDou, Galileo. Π˜Ρ… Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ разная ΠΏΠΎΠ»Π½ΠΎΡ‚Π° развёртывания спутниковой Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠΈ, Ρ‡Ρ‚ΠΎ опрСдСляСт Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ позиционирования Π² ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ гСографичСской Ρ‚ΠΎΡ‡ΠΊΠ΅, которая зависит числа доступных для наблюдСния спутников, Π° Ρ‚Π°ΠΊΠΆΠ΅ характСристик ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠ°, особСнностСй Π»Π°Π½Π΄ΡˆΠ°Ρ„Ρ‚Π°, ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… условий ΠΈ возмоТности использования Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ. ΠŸΠΎΠ²ΡΠ΅ΠΌΠ΅ΡΡ‚Π½ΠΎΠ΅ использованиС Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π²Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎ количСство ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… станций ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΎ - ЗСмля ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Π° ΠΈΠΌΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ; Π½Π°Π΄Ρ‘ΠΆΠ½Ρ‹Π΅ сСти ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π²Ρ‘Ρ€Π½ΡƒΡ‚Ρ‹ Π½Π΅ повсСмСстно; ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нашли Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½Ρ‹Π΅ вСрсии ΠΎΠ΄Π½ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠΎΠ² Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ сигнала, Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΏΡ€Π°Π²ΠΊΠΈ. Π’ этом случаС Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Π° ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Ρ‹Π±ΠΎΡ€Π° систСмы ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ систСм спутникового позиционирования, ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС статичСского ΠΈ динамичСского ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²Ρ‹Π±ΠΎΡ€Π° систСмы ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ систСм спутникового позиционирования, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ собствСнных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΏΡ€ΠΈ использовании одноканального ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠ° Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… сигналов Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ (Π±Π΅Π· использования сторонних ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ). Π’Ρ‹Π±ΠΎΡ€ осущСствляСтся Π½Π° основС статистичСского Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΎΡ‚ систСм спутникового позиционирования. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², сформированных ΠΏΡ€ΠΈ постобработкС Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ спутниковых Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСм ΠΈ ΡƒΡ‚ΠΎΡ‡Π½Ρ‘Π½Π½Ρ‹Ρ… с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…

    ΠœΠ΅Ρ‚ΠΎΠ΄ динамичСского Π²Ρ‹Π±ΠΎΡ€Π° спутниковой Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ систСмы Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ позиционирования

    Get PDF
    На сСгодняшний дСнь ΠΏΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡, Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ позиционирования, постоянно растёт. К Ρ‚Π°ΠΊΠΈΠΌ Π·Π°Π΄Π°Ρ‡Π°ΠΌ относятся: Π·Π°Π΄Π°Ρ‡ΠΈ управлСния Π³Ρ€ΡƒΠΏΠΏΠ°ΠΌΠΈ Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½Ρ‹Ρ… ΠΌΠΎΠ±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… Ρ€ΠΎΠ±ΠΎΡ‚ΠΎΠ², гСодСзичСскиС Π·Π°Π΄Π°Ρ‡ΠΈ высокоточного позиционирования, Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ ΠΈ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π² ΠΈΠ½Ρ‚Π΅Π»Π»Π΅ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹Ρ… транспортных систСмах. Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊΠΎΠΌ Π΄Π°Π½Π½Ρ‹Ρ… для ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ позиционирования Π² Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡Π°Ρ… ΡΠ²Π»ΡΡŽΡ‚ΡΡ спутниковыС Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ систСмы. На сСгодняшний дСнь Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ Π³Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ спутниковыС Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ систСмы: GPS, GLONASS, BeiDou, Galileo. Π˜Ρ… Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΠ΅Ρ‚ разная ΠΏΠΎΠ»Π½ΠΎΡ‚Π° развёртывания спутниковой Π³Ρ€ΡƒΠΏΠΏΠΈΡ€ΠΎΠ²ΠΊΠΈ, Ρ‡Ρ‚ΠΎ опрСдСляСт Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ позиционирования Π² ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ гСографичСской Ρ‚ΠΎΡ‡ΠΊΠ΅, которая зависит числа доступных для наблюдСния спутников, Π° Ρ‚Π°ΠΊΠΆΠ΅ характСристик ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠ°, особСнностСй Π»Π°Π½Π΄ΡˆΠ°Ρ„Ρ‚Π°, ΠΏΠΎΠ³ΠΎΠ΄Π½Ρ‹Ρ… условий ΠΈ возмоТности использования Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ. ΠŸΠΎΠ²ΡΠ΅ΠΌΠ΅ΡΡ‚Π½ΠΎΠ΅ использованиС Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ Π½Π° Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π²Π²ΠΈΠ΄Ρƒ Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎ количСство ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΎΠΏΠΎΡ€Π½Ρ‹Ρ… станций ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΎ - ЗСмля ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Π° ΠΈΠΌΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ; Π½Π°Π΄Ρ‘ΠΆΠ½Ρ‹Π΅ сСти ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π²Ρ‘Ρ€Π½ΡƒΡ‚Ρ‹ Π½Π΅ повсСмСстно; ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ нашли Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π½Ρ‹Π΅ вСрсии ΠΎΠ΄Π½ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠΎΠ² Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ сигнала, Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΏΡ€Π°Π²ΠΊΠΈ. Π’ этом случаС Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Π° ΠΎΠΏΠ΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π²Ρ‹Π±ΠΎΡ€Π° систСмы ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ систСм спутникового позиционирования, ΠΏΡ€Π΅Π΄ΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅ΠΉ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС статичСского ΠΈ динамичСского ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²Ρ‹Π±ΠΎΡ€Π° систСмы ΠΈΠ»ΠΈ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ систСм спутникового позиционирования, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΡ… Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ собствСнных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π° ΠΏΡ€ΠΈ использовании одноканального ΠΏΡ€ΠΈΡ‘ΠΌΠ½ΠΈΠΊΠ° Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… сигналов Π² Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ (Π±Π΅Π· использования сторонних ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ). Π’Ρ‹Π±ΠΎΡ€ осущСствляСтся Π½Π° основС статистичСского Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌΡ‹Ρ… ΠΎΡ‚ систСм спутникового позиционирования. ΠŸΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΎΡΡŒ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ², сформированных ΠΏΡ€ΠΈ постобработкС Π΄Π°Π½Π½Ρ‹Ρ…, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΡ‚ спутниковых Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… систСм ΠΈ ΡƒΡ‚ΠΎΡ‡Π½Ρ‘Π½Π½Ρ‹Ρ… с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠΎΠΏΡ€Π°Π²ΠΎΠΊ Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ…

    Navigation Algorithm-Agnostic Integrity Monitoring based on Solution Separation with Constrained Computation Time and Sensor Noise Overbounding

    Get PDF
    Integrity monitoring (IM) in autonomous navigation has been extensively researched, but currently available solutions are mainly applicable to specific algorithms and sensors, or limited by linearity or 'Gaussianity' assumptions. This study investigates a Solution Separation (SS) based framework for universal IM, scalable to multi-sensor fusion as each hypothesis assumes a whole sensor measurement set as faulty. Architecturally we consider that: 1) multi sensor systems must account for various sensor noise models which lead to inconsistent estimates of uncertainties, 2) a module must be able to detect sensor failure or sensor noise mismodeling and suggest better bounds for the error, without being constantly conservative, 3) some algorithms are computationally heavy to monitor in the SS setting or the provided covariances cannot be interpreted in IM. A hybrid SS architecture can be practical, where some solutions are evaluated with a navigation algorithm with known characteristics, although the all-sensor-in solution is evaluated with the monitored algorithm. Experiments are run on filter and smoothing-based navigation algorithms. In addition, we experiment with hybrid SS monitoring and time-correlated noise to evaluate the appropriability of our framework in the context of the above-mentioned requirements. This is a novel framework in the IM domain, directly integrable in existing navigation solutions and, in our opinion, it will facilitate the quantification of the effect of different sensors in navigation safety.publishedVersio

    Kernel-based fault diagnosis of inertial sensors using analytical redundancy

    Get PDF
    Kernel methods are able to exploit high-dimensional spaces for representational advantage, while only operating implicitly in such spaces, thus incurring none of the computational cost of doing so. They appear to have the potential to advance the state of the art in control and signal processing applications and are increasingly seeing adoption across these domains. Applications of kernel methods to fault detection and isolation (FDI) have been reported, but few in aerospace research, though they offer a promising way to perform or enhance fault detection. It is mostly in process monitoring, in the chemical processing industry for example, that these techniques have found broader application. This research work explores the use of kernel-based solutions in model-based fault diagnosis for aerospace systems. Specifically, it investigates the application of these techniques to the detection and isolation of IMU/INS sensor faults – a canonical open problem in the aerospace field. Kernel PCA, a kernelised non-linear extension of the well-known principal component analysis (PCA) algorithm, is implemented to tackle IMU fault monitoring. An isolation scheme is extrapolated based on the strong duality known to exist between probably the most widely practiced method of FDI in the aerospace domain – the parity space technique – and linear principal component analysis. The algorithm, termed partial kernel PCA, benefits from the isolation properties of the parity space method as well as the non-linear approximation ability of kernel PCA. Further, a number of unscented non-linear filters for FDI are implemented, equipped with data-driven transition models based on Gaussian processes - a non-parametric Bayesian kernel method. A distributed estimation architecture is proposed, which besides fault diagnosis can contemporaneously perform sensor fusion. It also allows for decoupling faulty sensors from the navigation solution

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    • …
    corecore