1,446 research outputs found

    GIS-based Earthquake Disaster Management A case study for Solapur city (Maharashtra, India)

    Get PDF
    This paper aims to demonstrate a Geographic Information System (GIS)-based study on development of City Disaster Management System for earthquake for Solapur city (India).An approach has been designed to explore the scope for the combination of Disaster Management and GIS. The disaster-prone areas have been identified and their positions are marked using ArcView 9.1. GIS has been exploited to obtain the spatial information for the effective disaster management for earthquake-affected areas. ArcView 9.1 has been used as a tool for storing all types of relevant data for analysis and decision making. The various thematic maps include road network map, drinking water sources map, land use map, population density map, ward boundaries and location of slums. The paper proposes development of a GIS-based early response system, and an emergency preparedness plan for the Solapur city and also analysis of the impact of earthquake disasters in the region and its relationship to infrastructure development with a view to identifying how local governing bodies could be helped in addressing these issues. The proposed GIS-based flood mitigation and management program would improve the current practices of disaster management process. If implemented properly, it would result in proper and quick decisions for the rescue and safetyof the general public, which in turn would help in minimizing loss of life and propert

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Technology Resources for Earthquake Monitoring and Response (TREMOR)

    Get PDF
    Earthquakes represent a major hazard for populations around the world, causing frequent loss of life, human suffering, and enormous damage to homes, other buildings, and infrastructure. The Technology Resources for Earthquake Monitoring and Response (TREMOR) proposal is designed to address this problem. This proposal recommends two prototype systems integrating space-based and ground technology. The suggested pilot implementation is over a 10-year period in three focus countries – China, Japan, and Peru – that are among the areas in the world most afflicted by earthquakes. The first proposed system is an Earthquake Early Warning Prototype System that addresses the potential of earthquake precursors, the science of which is incomplete and considered controversial within the scientific community. We recommend the development and launch of two small satellites to study ionospheric and electromagnetic precursors. In combination with ground-based precursor research, the data gathered will improve existing knowledge of earthquake-related phenomena. The second proposed system is an Earthquake Simulation and Response Prototype. An earthquake simulator will combine any available precursor data with detailed knowledge of the affected areas using a Geographic Information System (GIS) to identify those areas that are most likely to experience the greatest level of damage. Mobile satellite communication hubs will provide telephone and data links between response teams, while satellite navigation systems will locate and track emergency vehicles. We recommend a virtual response satellite constellation composed of existing and future high resolution satellites. We also recommend education and training for response teams on the use of these technologies. The two prototypes will be developed and implemented by a proposed non-profit nongovernmental organization (NGO) called the TREMOR Foundation, which will obtain funding from government disaster management agencies and NGOs. A for-profit subsidiary will market any spin-off technologies and provide an additional source of funding. Assuming positive results from the prototype systems, Team TREMOR recommends their eventual and permanent implementation in all countries affected by earthquakes.Postprint (published version

    Elements at risk

    Get PDF

    Geo Spatial Analysis for Tsunami Risk Mapping

    Get PDF
    Tsunami risk is a combination of the danger posed by tsunami hazard, the vulnerability of people to an event, and the probability of destructive tsunami. The spatial multicriteria approach made a possibility for integrating the vulnerability and risk parameters to assess the potential area that will be affected by the tsunami. The study applied the parameters of physical and social vulnerability and combined element at risk to assess tsunami risk in the coastal area of East Java Indonesia. All parameters in both tsunami vulnerability and tsunami risk assessment were analyzed through cell-based analysis in geographical information system. The weight of each parameter was calculated through the analytical hierarchy process. The results were provided as maps of tsunami vulnerability and tsunami risk. Tsunami risk map described five classes of risk. It described that coastal area with a low elevation and almost flat identified as high risk to the tsunami. The coastal area with a high density of vegetation (mangrove) was defined as the area with low level of tsunami risk. The existence of river and other water canals in coastal area was also analyzed for generating tsunami risk map. Risk map highlights the coastal areas with a strong need for tsunami mitigation plan

    Remote sensing-based proxies for urban disaster risk management and resilience: A review

    Full text link
    © 2018 by the authors. Rapid increase in population and growing concentration of capital in urban areas has escalated both the severity and longer-term impact of natural disasters. As a result, Disaster Risk Management (DRM) and reduction have been gaining increasing importance for urban areas. Remote sensing plays a key role in providing information for urban DRM analysis due to its agile data acquisition, synoptic perspective, growing range of data types, and instrument sophistication, as well as low cost. As a consequence numerous methods have been developed to extract information for various phases of DRM analysis. However, given the diverse information needs, only few of the parameters of interest are extracted directly, while the majority have to be elicited indirectly using proxies. This paper provides a comprehensive review of the proxies developed for two risk elements typically associated with pre-disaster situations (vulnerability and resilience), and two post-disaster elements (damage and recovery), while focusing on urban DRM. The proxies were reviewed in the context of four main environments and their corresponding sub-categories: built-up (buildings, transport, and others), economic (macro, regional and urban economics, and logistics), social (services and infrastructures, and socio-economic status), and natural. All environments and the corresponding proxies are discussed and analyzed in terms of their reliability and sufficiency in comprehensively addressing the selected DRM assessments. We highlight strength and identify gaps and limitations in current proxies, including inconsistencies in terminology for indirect measurements. We present a systematic overview for each group of the reviewed proxies that could simplify cross-fertilization across different DRM domains and may assist the further development of methods. While systemizing examples from the wider remote sensing domain and insights from social and economic sciences, we suggest a direction for developing new proxies, also potentially suitable for capturing functional recovery

    Understanding the implementation challenges of urban resilience policies : investigating the influence of urban geological risk in Thessaloniki, Greece

    Get PDF
    Urban Resilience has recently emerged as a systematic approach to urban sustainability. The malleable definition of resilience has rendered its operationalisation an intriguing task for contemporary cities trying to address their organisational problems and confront uncertainty in a holistic manner. In this article we investigate the implementation challenges emerging for Resilient Strategies by the inattention paid to urban geological risk. We conceptualise urban geological risk as the combination of urban geohazards, geological vulnerability and exposure of the built environment and focus on the case study of Thessaloniki, Greece, a city that joined the 100 Resilient Cities initiative in 2014 and published its “Resilience Strategy 2030” (RS) in 2017. After a review of the RS, historical records of natural hazard events and with evidence gathered through interviews with city officials, we emphasize on earthquakes and surface flooding as the most relevant geohazards for Thessaloniki to tackle in its journey towards urban resilience. First, we examine geological vulnerability to earthquakes in conjunction with exposure of the built environment, as an outcome of ageing building stock, high building densities and the urban configuration, in Acheiropoietos neighbourhood, within the historic centre of the city. Then, we explore geological risk to surface flooding in Perea, in Thermaikos Municipality, with a particular focus on flash floods, by demonstrating how limited consideration of local geomorphology as well as semi-regulated urban expansion and its limited connection with emergency planning increase exposure of the built environment to surface flooding. Finally, we come up with the major implementation challenges Thessaloniki’s RS faces with regard to urban geohazards

    Urban disaster management : a case study of earthquake risk assessment in Cartago, Costa Rica

    Get PDF
    Natural hazards pose a threat to population, its goods and the environment. Urban areas are particularly vulnerable not only because of the concentration of population but due to the interplay that exists between people, buildings, and technological systems. Disasters have the potential to destroy decades of investment and effort, and cause the deviation of resources intended for primary tasks such as education, health and infrastructure. Disaster management is therefore an important component of urban planning and management as disasters pose a serious threat to sustainable development. There are basically three very important weaknesses in the way disaster management is currently being carried out. The first relates to the reliance upon hazard zonations alone rather than using risk as input for the selection and prioritisation of mitigation strategies. This is unfortunately in part due to the lack of empirical-historical data on damage and due to the high costs of generating and updating building inventories. The second relates to the reliance upon response rather than a concerted effort in both the pre-disaster and the postdisaster phases. The last relates to the lack of disaster information networks which coordinate efforts amongst the many institutions involved. The case of the Costa Rican city of Cartago was chosen as an example of the challenges that lie ahead in terms of geo-information for urban disaster management. The city provides an interesting case study; it represents a typical example of a medium-sized Costa Rican city that is located in a highly hazard-prone area. Cartago is also representative of a financially constrained local government authority with very basic baseline information where plans are elaborated without proper disaster-related information inputs. The research addresses building and population risk by integrating a hazard intensity map, damage curves derived from historical damage records and a building inventory

    Science for Disaster Risk Reduction

    Get PDF
    This thematic report describes JRC's activities in support to disaster management. The JRC develops tools and methodologies to help in all phases of disaster management, from preparedness and risk assessment to recovery and reconstruction through to forecasting and early warning.JRC.A.6-Communicatio

    MULTI-HAZARD RISK ASSESSMENT OF QURUMBAR VALLEY, GHIZER, GILGIT BALTISTAN, PAKISTAN

    Get PDF
    Being located in a seismically active zone, these mountain valleys are exposed to different hydro-meteorological hazards like rockfall, debris flow, landslide, ice avalanches, and glacial lake outburst flood (GLOFs).  The present study is to investigate different multi-hazards and their prevailing risk in the particular area of Qurumbar valley Ishkoman. In the mid-nineteen and twenty centuries at least six devastating glacial lake outburst floods (GLOFs) has been recorded, initially, only the Qurumbar glacier was considered as the main cause of this outburst flood, later field investigation and interview from local inhabitant revealed that nine more tributary glacier are existing in the area. The recent outburst of flood in the Badswat area of Qurumbar Ishkoman is also considerable, submerging 12 houses and a stretch of roads. Apart from it, the physical vulnerability of the area is increasing, as new areas are being used for housing with the increase in population. The study area is exposed to several other natural hazards like rock fall, debris flows, ice avalanches, and bank erosion. The present study is based on quantitative and qualitative approaches in assistance with GIS/RS an emergent application. The following methodologies were adapted to gather the primary and secondary data for GIS/RS processing. The primary data comprises GIS data and procurement and development and field data. The field data contain ground-truthing /validation. The community-based Hazard Vulnerability Risk Assessment (HVRA) was also carried out to know about human perception. Secondary data has been collected from different literature. Both the data were put into GIS for the processing which gives us our final developmental tools in the form of maps. The hazard and risk map of the Qurumbar Ishkoman depict that flash floods, debris flow, bank erosion, and GLOFs account for major hazards in Qurumbar valley. It is concluded based on our outcomes i.e., hazard and risk maps that earthquake is the main hazard of the area while flash floods, GLOFs, debris flow, bank erosion and the bank collapsed are the main hazards of the area. It is very important to systematically integrate map information into the planning and management process which contributes to a safer environment
    corecore