2,720 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    A general mathematical model for LVRT capability assessment of DER-penetrated distribution networks

    Get PDF
    Low voltage ride through (LVRT) is one of the indispensable issues of recent decade in the context of grid codes. LVRT stands for the ability of a generation facility to stay connected during the voltage dip. Despite the numerous discussions in recent works, but they mostly concentrate on the LVRT-based control of distributed energy resources (DERs) integrated into a microgrid and its improvement. However, what has been hidden and not addressed any more yet is an index to measure the LVRT capability of a DER-penetrated distribution network (DPDN) under different voltage sags. This takes precedence when we want to evaluate the LVRT capability of DPDNs with consideration of various LVRT categories of DERs mandated in IEEE 1547 standard. This paper introduces a general framework for LVRT assessment of a DPDN by solving a system of differential algebraic equations (DAEs). Then expected LVRT capability of a DPDN is evaluated by a proposed LVRT index through the implementation of Monte Carlo simulation technique.This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    Full text link

    Sag effects on protection system in distributed generation grids

    Get PDF
    Distributed Generators (DGs) are sensible to voltage sags, so the protection devices must trip fast to disconnect the faulted part of the grid. The DG disconnection will not be desirable in the near future with a large penetration, so it will be necessary to lay down new requirements that should be based on avoiding unnecessary disconnections. Therefore, to prevent unnecessary tripping when inverter-based DGs are connected to the Medium Voltage (MV) grid, reliable and effective protection strategies need to be developed, considering the limited short-circuit current contribution of DG. The initial goal of this study is to employ different possible control strategies for a grid-connected inverter according to the Spanish grid code and to analyze the output voltage behavior during symmetrical and unsymmetrical voltage sags. The analytical development of the proposed strategies shows the impacts of the sag on currents, voltages, active and reactive powers. Another goal of this research is to propose a protection strategy based on Artificial Intelligence for a radial or ring distribution system with high DG penetration. The protection strategy is based on three different algorithms to develop a more secure, redundant, and reliable protection system to ensure supply continuity during disturbances in ring and radial grids without compromising system stability. In order to classify, locate and distinguish between permanent or transient faults, new protection algorithms based on artificial intelligence are proposed in this research, allowing network availability improvement disconnecting only the faulted part of the system. This research introduces the innovative use of directional relay based on a communication system and Artificial Neural Network (ANN). The first algorithm, Centralize algorithm (CE), collects the data from all the PDs in the grid in the centralized controller. This algorithm detects the power flow direction and calculates the positive-sequence current of all the PDs in the grid. Significant benefits of this system are that it consolidates the entire systems security into a single device, which can facilitate system security control. However, the CE will not pinpoint the exact location of the fault if there is any loss of information due to poor communication. Therefore, the systems redundancy can be improved by cooperating with a second algorithm, the Zone algorithm (ZO). ZO algorithm is based on zone control using peer-to-peer connectivity in the same line. The faulty line in that zone may be identified by combining the two PDs data on the same line. The most relevant advantage of this algorithm is its flexibility to adapt to any grid modification or disturbance, even if they are just temporary, unlike the CE, which is fixed to the existing grid configuration. The third protection algorithm, Local algorithm (LO), has been proposed without depending on the communication between the PDs; then, the protection system can work properly in case of a total loss of communication. Each PD should be able to detect if the fault is located in the protected line or another line by using only the local information of the PD. According to the type of fault and based on local measurements at each PD of abc voltages and currents, different algorithms will be applied depending on the calculation of the sequence components. The main advantage of this algorithm is the separate decision of each PD, and avoiding communication problems. In case of radial grids, both mechanical breakers and Solid State Relays (SSRs) are used to verify the protection strategies, and in the case of ring grids, mechanical breakers are used, due to the limitations in required voltage difference of SSR. The proposed protection algorithms are compared with conventional protections (Overcurrent and Differential) protections to validate the contribution of the proposed algorithms, especially in reconfigurable smart grids.El objetivo inicial de este estudio es emplear diferentes estrategias de control posibles para un inversor conectado a la red segun el código de red español y analizar el comportamiento de la tensión de salida durante caídas de tensión simétricas y asimétricas. El desarrollo analítico de las estrategias propuestas muestra los impactos de los huecos de tensión en las corrientes, tensiones, potencias activas y reactivas. Otro objetivo de esta investigación es proponer una estrategia de protecclón basada en lnteligencia Artificial para una red del Sistema de Distribución, radial o en anillo, con elevada penetración de Generación Distribuida. La estrategia de protección se basa en tres algoritmos diferentes para desarrollar un sistema de protección más seguro, redundante, y fiable, que asegure la continuidad de suministro durante perturbaciones en redes radiales o en anillo sin comprometer la estabilidad del sistema. Para clasificar, localizar y distinguir entre faltas permanentes o transitorias, se proponen en este trabajo nuevos algoritmos de protección basados en inteligencia artificial, permitiendo la mejora de la disponibilidad de la red, al desconectar sólo la parte del sistema en falta. Esta investigación introduce la innovación del uso del rele direccional basado en un sistema de comunicación y Redes Neuronales Artificiales (ANN). El primer algoritmo, Algoritmo Central (CE), recibe los datos de todos los PDs de la red en un control central. Este algoritmo detecta la dirección de flujo de cargas y calcula la corriente de secuencia positiva de todos los PDs de la red. El entrenamiento de ANNs incluye variaciones en la corriente de cortocircuito y la dirección del flujo de potencia en cada PD. Los beneficios mas significativos de este sistema son que concentra la seguridad total del sistema en un único dispositivo, lo que puede facilitar el control de la seguridad del sistema. Sin embargo, el CE no determinara con precisión la localización exacta de la falta si hay alguna perdida de información debida a una pobre comunicación. Por lo tanto, la redundancia del sistema se puede mejorar cooperando con un segundo algoritmo, el algoritmo de Zona (ZO). El algoritmo ZO se basa en un control de zona usando la conectividad entre dispositivos de protección de una misma línea. La línea en falta en esa zona puede identificarse combinando los datos de los dos PDs de la misma línea.. La ventaja mas relevante de este algoritmo es su flexibilidad para adaptarse a cualquier modificación de la red o perturbación, incluso si sólo son temporales, a diferencia del CE, que se ha adaptado para la configuración de la red existente. El tercer algoritmo de protección, algoritmo Local (LO), ha sido propuesto sin dependencia de la comunicación entre PDs; por lo tanto, el sistema de protección puede operar correctamente en el caso de una pérdida total de comunicación. Cada PD debe poder detectar si la falta esta ubicada en la línea protegida o en otra línea, utilizando sóIo la información local del PD. Según el tipo de falta, y en base a medidas locales en cada PD, de tensiones y corrientes abc, se aplican diferentes algoritmos en función del cálculo de las componentes simétricas. La principal ventaja de este algoritmo es la actuación por separado de cada PD, evitando los problemas de comunicación. En el caso de las redes radiales, se utilizan tanto interruptores mecánicos como réles de estado sóIido (SSR) para verificar las estrategias de protección, y en el caso de las redes en anillo se utilizan interruptores mecánicos, debido a las limitaciones de tensión para su conexión. Los algoritmos de protección propuestos se comparan con protecciones convencionales (Sobrecorriente y Diferencial) para validar la contribución de los algoritmos propuestos, especialmente en redes inteligentes reconfigurables.Postprint (published version

    Security, protection, and control of power systems with large-scale wind power penetration

    Get PDF
    As the number of wind generation facilities in the utility system is fast increasing, many issues associated with their integration into the power system are beginning to emerge. Of the various issues, this dissertation deals with the development of new concepts and computational methods to handle the transmission issues and voltage issues caused by large-scale integration of wind turbines. This dissertation also formulates a probabilistic framework for the steady-state security assessment of wind power incorporating the forecast uncertainty and correlation. Transmission issues are mainly related to the overloading of transmission lines, when all the wind power generated cannot be delivered in full due to prior outage conditions. To deal with this problem, a method to curtail the wind turbine outputs through Energy Management System facilities in the on-line operational environment is proposed. The proposed method, which is based on linear optimization, sends the calculated control signals via the Supervisory Control and Data Acquisition system to wind farm controllers. The necessary ramping of the wind farm outputs is implemented either by the appropriate blade pitch angle control at the turbine level or by switching a certain number of turbines. The curtailment strategy is tested with an equivalent system model of MidAmerican Energy Company. The results show that the line overload in high wind areas can be alleviated by controlling the outputs of the wind farms step-by-step over an allowable period of time. A low voltage event during a system fault can cause a large number of wind turbines to trip, depending on voltages at the wind turbine terminals during the fault and the under-voltage protection setting of wind turbines. As a result, an N-1 contingency may evolve into an N-(K+1) contingency, where K is the number of wind farms tripped due to low voltage conditions. Losing a large amount of wind power following a line contingency might lead to system instabilities. It is important for the system operator to be aware of such limiting events during system operation and be prepared to take proper control actions. This can be achieved by incorporating the wind farm tripping status for each contingency as part of the static security assessment. A methodology to calculate voltages at the wind farm buses during a worst case line fault is proposed, which, along with the protection settings of wind turbines, can be used to determine the tripping of wind farms. The proposed algorithm is implemented in MATLAB and tested with MidAmerican Energy reduced network. The result shows that a large amount of wind capacity can be tripped due to a fault in the lines. A probabilistic framework to handle the uncertainty in day-ahead forecast error in order to correctly assess the steady-state security of the power system is presented. Stochastic simulations are conducted by means of Latin Hypercube sampling along with the consideration of correlations. The correlation is calculated from the historical distribution of wind power forecast errors. The results from the deterministic simulation based on point forecast and the stochastic simulation show that security assessment based solely on deterministic simulations can lead to incorrect assessment of system security. With stochastic simulations, each outcome can be assigned a probability and the decision regarding control actions can be made based on the associated probability

    Power Quality

    Get PDF
    Electrical power is becoming one of the most dominant factors in our society. Power generation, transmission, distribution and usage are undergoing signifi cant changes that will aff ect the electrical quality and performance needs of our 21st century industry. One major aspect of electrical power is its quality and stability – or so called Power Quality. The view on Power Quality did change over the past few years. It seems that Power Quality is becoming a more important term in the academic world dealing with electrical power, and it is becoming more visible in all areas of commerce and industry, because of the ever increasing industry automation using sensitive electrical equipment on one hand and due to the dramatic change of our global electrical infrastructure on the other. For the past century, grid stability was maintained with a limited amount of major generators that have a large amount of rotational inertia. And the rate of change of phase angle is slow. Unfortunately, this does not work anymore with renewable energy sources adding their share to the grid like wind turbines or PV modules. Although the basic idea to use renewable energies is great and will be our path into the next century, it comes with a curse for the power grid as power fl ow stability will suff er. It is not only the source side that is about to change. We have also seen signifi cant changes on the load side as well. Industry is using machines and electrical products such as AC drives or PLCs that are sensitive to the slightest change of power quality, and we at home use more and more electrical products with switching power supplies or starting to plug in our electric cars to charge batt eries. In addition, many of us have begun installing our own distributed generation systems on our rooft ops using the latest solar panels. So we did look for a way to address this severe impact on our distribution network. To match supply and demand, we are about to create a new, intelligent and self-healing electric power infrastructure. The Smart Grid. The basic idea is to maintain the necessary balance between generators and loads on a grid. In other words, to make sure we have a good grid balance at all times. But the key question that you should ask yourself is: Does it also improve Power Quality? Probably not! Further on, the way how Power Quality is measured is going to be changed. Traditionally, each country had its own Power Quality standards and defi ned its own power quality instrument requirements. But more and more international harmonization efforts can be seen. Such as IEC 61000-4-30, which is an excellent standard that ensures that all compliant power quality instruments, regardless of manufacturer, will produce of measurement instruments so that they can also be used in volume applications and even directly embedded into sensitive loads. But work still has to be done. We still use Power Quality standards that have been writt en decades ago and don’t match today’s technology any more, such as fl icker standards that use parameters that have been defi ned by the behavior of 60-watt incandescent light bulbs, which are becoming extinct. Almost all experts are in agreement - although we will see an improvement in metering and control of the power fl ow, Power Quality will suff er. This book will give an overview of how power quality might impact our lives today and tomorrow, introduce new ways to monitor power quality and inform us about interesting possibilities to mitigate power quality problems. Regardless of any enhancements of the power grid, “Power Quality is just compatibility” like my good old friend and teacher Alex McEachern used to say. Power Quality will always remain an economic compromise between supply and load. The power available on the grid must be suffi ciently clean for the loads to operate correctly, and the loads must be suffi ciently strong to tolerate normal disturbances on the grid

    Numerical Investigations of the Thermal State of Overhead Lines and Underground Cables in Distribution Networks

    Get PDF
    As part of extensive activities on the reduction of CO2 emissions, a rapid expansion of power generation using new more fuel efficient technologies (large, medium and embedded scale with combined heat and power (CHP) projects) and renewable energy (wind, biomass, solar PV) is currently taking place in numerous European countries, including the UK. The research presented in this thesis is a part of a UK government funded project, which aims to find answers to how to accommodate increased renewable energy into the distribution network. Current ratings, which are limited by the temperature of the conductors used in the distribution network, are based on worst case scenario conditions and are conservative. The temperature limits can be lifted if one takes into consideration the dynamic changes in the surrounding environmental conditions of the conductors. Implementation of real-time thermal rating of existing power systems could result in greater installed capacities of distributed generation (DG). This research aims to provide new insights into the thermal state of overhead line conductors (OHL) and underground cables (UGC) by using Computational Fluid Dynamic methods. An algorithm consists of building the geometry of the calculation domain, meshing, choosing a model, inputting initial conditions, initiation of the calculation, and analysing results. A part of the UK power system was chosen by Scottish Power Energy Networks for monitoring essential data of OHL conductors in order to validate results of the temperatures of the conductors

    Design of resource to backbone transmission for a high wind penetration future

    Get PDF
    In a high wind penetration future, transmission must be designed to integrate groups of new wind farms with a high capacity inter-regional ``backbone transmission system. A design process is described which begins by identifying feasible sites for future wind farms, identifies an optimal set of those wind farms for a specified future, and designs a reliable low-cost ``resource to backbone collector transmission network to connect each individual wind farm to the backbone transmission network. A model of the transmission and generation system in the state of Iowa is used to test these methods, and to make observations about the nature of these resource to backbone networks
    corecore