5,084 research outputs found

    Development of a laser-induced heat flux technique for measurement of convective heat transfer coefficients in a supersonic flowfield

    Get PDF
    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields

    Convective response of a wall-mounted hot-film sensor in a shock tube

    Get PDF
    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation

    New devices for flow measurements: Hot film and burial wire sensors, infrared imagery, liquid crystal, and piezo-electric model

    Get PDF
    An experimental program aimed at identifying areas in low speed aerodynamic research where infrared imaging systems can make significant contributions is discussed. Implementing a new technique, a long electrically heated wire was placed across a laminar flow. By measuring the temperature distribution along the wire with the IR imaging camera, the flow behavior was identified

    Development of a control strategy to compensate transient behaviour due to atmospheric disturbances in solar thermal energy generation systems using short-time prediction data

    Get PDF
    La energía solar térmica concentrada (CSP) es una forma prometedora de energía renovable que puede aprovechar la energía del sol y ayudar a sustituir el uso de combustibles fósiles para la generación de electricidad. Sin embargo, enfrenta retos para aumentar su despliegue a nivel mundial. Las torres solares, un tipo de tecnología CSP, se componen principalmente de un campo solar y una torre en la que un receptor funciona como intercambiador de calor para alimentar un bloque de potencia. El campo solar está formado por miles de heliostatos, que son espejos capaces de seguir el sol y proyectar la luz solar concentrada sobre el receptor. Las torres solares con almacenamiento térmico funcionan continuamente, pero están sujetas a perturbaciones causadas por la interacción de la luz solar con la atmósfera. Este comportamiento puede afectar la integridad del receptor. Para determinar la posición de cada helióstato se utilizan complejos métodos de optimización. Sin embargo, estos métodos están sujetos a incertidumbre en los parámetros y no pueden compensar perturbaciones en tiempo real, como las nubes, debido a su costo computacional. Esta tesis aborda esta cuestión como un problema de control, reduciendo el número de variables. En lugar de encontrar el ángulo de elevación y azimutal para miles de helióstatos, se utilizan dos variables dentro de grupos de helióstatos. A continuación, se implementa una estrategia de control por retroalimentación, aprovechando esta reducción dimensional. Además, la metodología desarrollada en esta tesis utiliza información de un sistema de predicción de radiación solar a corto plazo de última generación, dentro de una novedosa estrategia de control adaptativo para el campo solar.DoctoradoDoctor en Ingeniería Mecánic

    Twenty-five years of aerodynamic research with IR imaging: A survey

    Get PDF
    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure

    Feasibility Study of a Satellite Solar Power Station

    Get PDF
    A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established

    Energy and entropy flows in living systems

    Get PDF
    The main purpose of this research is to strengthen and exploit the link between engineering thermodynamics and both experimental and theoretical biology. Historically, biothermodynamics studies have often resulted in misrepresentation of thermodynamic quantities and in discrepancies between experimental results and restrictions imposed by the first and second laws of thermodynamics. Analyses performed in this research reevaluate experimental results and measured physiological parameters which are then translated into proper thermodynamic quantities and definitions;This approach begins with the development of comprehensive forms of material and energy balances for open, periodically supplied, growing systems operating far from equilibrium. The re-definition of efficiency and efficacy and the classification of physical work forms is shown to be conducive to the re-interpretation of apparently anomalous experimental results;Generalized material and energy balances are successfully implemented in the analysis of energy flows of growth and development in avian egg and microbial culture systems. The direct relationship between oxygen consumption and heat loss of the egg and microbe systems facilitates the understanding of changing energy flows, energy storage, and energy conversion efficiencies during periods of growth and development;The physiological interpretation of the thermodynamic terms of the energy balance leads to the evolvement of an entropy account which facilitates the rigorous calculation of the entropy production rate and minimal system entropy of living systems. The minimal entropy production rate is determined by comparing heat loss and metabolic energy conversion rates. The calculated rate of specific system entropy production is positive but decreasing during periods of growth and development. The estimated minimal system entropy is increasingly positive during this period. The results of these estimations agree with Prigogine\u27s hypothesis;Additional analyses in muscle physiology result in a cyclic representation of muscle contraction both at microscopic and macroscopic system levels. These representations are used as a guide to the design of muscle experiments and muscle-testing apparatus. Oxygen uptake requirements of muscle are written as a state function dependent upon muscle length, muscle tension, and the work performed. This model produces direct physiological interpretation of nonequilibrium phenomenological expressions for muscle contraction

    Nuclear Thermal Rocket Engine with a Toroidal Aerospike Nozzle

    Get PDF
    This thesis describes the coupling of a nuclear thermal rocket engine with a toroidal aerospike nozzle. The coupling of the two systems consists of two phases. The first of these phases begin with top-level systems and subsystems analysis and design of the new engine. The second phase is the analysis and characterization of the major engine systems through the use of computational fluid dynamics analysis. With the coupling of the nuclear thermal rocket engine with the aerospike nozzle, the new system will be known as the Nuclear Thermal Propulsion System. Due to the uniqueness of coupling a nuclear thermal rocket engine with a toroidal aerospike nozzle, the traditional nuclear thermal rocket engine design of a cylindrical nuclear reactor had to be abandoned. This change stems from the need for cooling of the aerospike nozzle and the inherent difficulty that the nozzle support structure would cause for such a system. The redesigned nuclear reactor is known as the annulus reactor system because the nuclear core is fashioned into a hoop shape to allow for the integration with an aerospike nozzle specially configured for use with the hoop core. This innovative design represents a significant improvement over conventional chemical rockets in both the areas of providing energy for thrust generation as well as the expansion and expulsion of the exhausting propellant

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    INFLUENCE OF THERMOPHYSICAL PROPERTIES ON TRANSFER OF HEAT IN MULTI-LAYER DUCTS AND TEMPERATURE CONTROL USING ELECTRIC HEATING

    Get PDF
    Ensuring oil production flow in offshore systems is a critical aspect of oil exploration operations. Any interruption in the production process, whether partial or complete, can result in significant financial losses and cause solid deposition in the production line. Such deposition is due to the crystallization of paraffin and hydrates, a common problem caused by low temperatures in deep waters. Among various mitigation strategies, the Pipe-in-Pipe (PIP) system with active heating is a technological solution to address this issue. This work aimed to perform a numerical simulation of the PIP system using the Finite Volume Method with an implicit formulation, considering the effect of temperature on fluid properties and the system's dynamic response. A control loop using a PI velocity algorithm was developed to maintain the temperature above the critical point. Such simulation studies were performed using the Python programming language in the Anaconda suite. The results showed that the fluid properties greatly influence the dynamic response. The PI control maintained the temperature in the desired condition, demonstrating its operational effectiveness in preventing solid deposition and delivering stable and low-oscillatory behavior. This research emphasizes the significance of taking temperature's impact on fluid properties into account when simulating offshore oil production systems and demonstrates the effectiveness of implementing feedback control
    corecore