11,101 research outputs found

    Arc-to-glow transition approach for practical use in DC low-power, low-voltage electric grids

    Get PDF
    © 2018 IEEE. This paper presents and discusses results of analysis from investigations of arc-to-glow transformation phenomenon at contact opening, under dc low-energy (≤ 10 J) and low-voltage (≤250 V) inductive loads. Dependence of the duration of arcing and glowing on current magnitude, voltage magnitude, properties of the contact material, gas quenching medium velocity and its pressure, as well as contact opening velocity and contact gap are investigated. The transition phenomenon of arc-to-glow is analyzed by means of fast photography and emission spectroscopy. Also discussed is the theoretical evaluation of conditions of arc instability. From the results, possible procedures are formulated to control the arc-to-glow transformation for practical use in dc low-voltage and low-power electrical grids

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    The Recognition of Fires Originating from Photovoltaic (PV) Solar Systems

    Get PDF
    There has been an observable increase in the fitting of photovoltaic (PV) solar panels on the roofs of buildings in the UK over the last decade. The origin of some fires in domestic and commercial properties has been attributed to PV systems. This thesis examines the ability of fire examiners to recognise and record details of fires believed to have originated from PV systems, as well as investigating the effect of internal heating in direct current (DC) isolators to the point at which they fail. National fire data was examined along with the methods for collecting and collating these data. This clarified that national fire data cannot identify the specifics of electrical fires. Validity of these data was then tested by identifying the confidence and competence in the recognition of the origin of fire, (especially when associated with PV systems), of some fire staff responsible for collecting fire data. This suggests that some fire scenes examiners are not confident in their own ability to recognise fires originating from PV systems. Evidence for fires occurring in PV systems in Kent between 2009 and 2014 was then examined, including a cold case forensic review of the evidence. This provided an indication that a potential common point of failure, which may lead to fire originating from a PV system, was to be found within the DC section of the PV circuits and probably within the DC isolator switch itself. Experimentation revealed that internal heating of a terminal connection can lead to changes of the phase of the insulating material, causing failure of structural integrity and therefore allowing an arc to be established. Observable post fire indicators associated with this mechanism of failure have been identified as well as hydrocarbons evolved from pyrolysis of isolator insulating material. Finally, areas for further experimental research and training of fire staff are suggested as well as the modification of recording mechanisms and building regulations

    Analysis of electric propulsion electrical power conditioning component technology. Volume 1 - Data bank Final report

    Get PDF
    Analysis of electric propulsion electric power conditioning component technology - data revie

    Hydrogen arcjet technology

    Get PDF
    During the 1960's, a substantial research effort was centered on the development of arcjets for space propulsion applications. The majority of the work was at the 30 kW power level with some work at 1-2 kW. At the end of the research effort, the hydrogen arcjet had demonstrated over 700 hours of life in a continuous endurance test at 30 kW, at a specific impulse over 1000 s, and at an efficiency of 0.41. Another high power design demonstrated 500 h life with an efficiency of over 0.50 at the same specific impulse and power levels. At lower power levels, a life of 150 hours was demonstrated at 2 kW with an efficiency of 0.31 and a specific impulse of 935 s. Lack of a space power source hindered arcjet acceptance and research ceased. Over three decades after the first research began, renewed interest exists for hydrogen arcjets. The new approach includes concurrent development of the power processing technology with the arcjet thruster. Performance data were recently obtained over a power range of 0.3-30 kW. The 2 kW performance has been repeated; however, the present high power performance is lower than that obtained in the 1960's at 30 kW, and lifetimes of present thrusters have not yet been demonstrated. Laboratory power processing units have been developed and operated with hydrogen arcjets for the 0.1 kW to 5 kW power range. A 10 kW power processing unit is under development and has been operated at design power into a resistive load

    An inventory of aeronautical ground research facilities. Volume 1: Wind tunnels

    Get PDF
    A survey of wind tunnel research facilities in the United States is presented. The inventory includes all subsonic, transonic, and hypersonic wind tunnels operated by governmental and private organizations. Each wind tunnel is described with respect to size, mechanical operation, construction, testing capabilities, and operating costs. Facility performance data are presented in charts and tables

    NASA Tech Briefs Index, 1977, volume 2, numbers 1-4

    Get PDF
    Announcements of new technology derived from the research and development activities of NASA are presented. Abstracts, and indexes for subject, personal author, originating center, and Tech Brief number are presented for 1977

    A Review of Micro-Contact Physics for Microelectromechanical Systems (MEMS) Metal Contact Switches

    Get PDF
    Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined

    NASA Contributions to Development of Special-Purpose Thermocouples. A Survey

    Get PDF
    The thermocouple has been used for measuring temperatures for more than a century, but new materials, probe designs, and techniques are continually being developed. Numerous contributions have been made by the National Aeronautics and Space Administration and its contractors in the aerospace program. These contributions have been collected by Midwest Research Institute and reported in this publication to enable American industrial engineers to study them and adapt them to their own problem areas. Potential applications are suggested to stimulate ideas on how these contributions can be used

    Investigation of superconducting interactions and amorphous semiconductors

    Get PDF
    Research papers on superconducting interactions and properties and on amorphous materials are presented. The search for new superconductors with improved properties was largely concentrated on the study of properties of thin films. An experimental investigation of interaction mechanisms revealed no new superconductivity mechanism. The properties of high transition temperature, type 2 materials prepared in thin film form were studied. A pulsed field solenoid capable of providing fields in excess of 300 k0e was developed. Preliminary X-ray measurements were made of V3Si to determine the behavior of cell constant deformation versus pressure up to 98 kilobars. The electrical properties of amorphous semiconducting materials and bulk and thin film devices, and of amorphous magnetic materials were investigated for developing radiation hard, inexpensive switches and memory elements
    corecore