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FOREWORD

The work described in this report was performed under , the second follow-

on to Contract NAS8-11257 for the National Aeronautics and Space Admini-

stration, George C. Marshall Space Flight Center. The st-idies and

compilation were performed from January 1967 through December 1967.

First Year Program

The first year's program objectives involved preliminary investigations

of the interface factors which significantly affect the power condition-

ing and control s; ,stems design approach. A comprehensive evaluation

was made of current thruster development programs. The principle power

conditioning requirements were established for these thrusters. The

lithium-Hall arcjet and the cesium electron-bombardment thrusters were

the most promising flight system candidates. Variable I sp operational

constraints were established for the two candidate thrusters. r;oncep-

tual power conditioning and control system block diagrams were delin-

eated for promising thruster and powerplant candidates. This included

the nuclear turboalternator as well as the in-pile nuclear thermionic

powerplant. The power conditioning and control system specific mass

and efficiency for the cesium electron-bombardment thruster was esti-

mated to be 2.3 kg/kW and 91.9 percent with an ac power source and 3.1

kg/kW and 84.9 percent with a do power source at a total power level

of 1 MW. Below the 1 MW level, nuclear shielding was the principal

power conditioning penalty. Above 1 MW, the secondary radiators were

the principal penalty. The interface system for the lithium-Hall arc-

jet thruster was estimated to be 1.9 kg/kW at 95 percent efficiency

with an ac power source and 1.5 kg/kW at 97 percent efficiency with a

do power source. A survey of the principal power conditioning compo-

nents indicated three key power conditioning; technology problem areas:
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a. Insufficient reliability data

b. Low thermal and nuclear radiation tolerances

c. Low power ratings and switching t imes for rectifiers and
active switches

Second Year Program

Tie first year's work provided the foundation +or continued and detailed

analysis of various power conditioning and control system design ap-

proaches and resulting component requirements for promising powerplant

and thruster candidates. The second year program tasks included:

• The establishment of interface requirements necessary for the
fabrication and optimization of power conditioning and control
systLm^o .

• The establishment of a methodology for power conditioning and
control design and analysis techniques.

e Survey and tabulation of key component characteristics.

• The selection of optimum power conditioning and control system
design approaches for promising powerplant and thruster
candidates.

• The analysis of power conditioning systems for a manned Mars
electric propulsion mission.	 $`

• The identification of existing technical problem areas and
future circuit and component development requirements.

The principal program objectives were directed at electric propulsion

system levels greater than 1 MW using the in-pile nuclear thermionic

powerplant.

Third Year Program	 F

The first task of this program was to compile all data pertaining to

electric propulsion into a Design Data Bank. The Studies during the

first and second years formed a strong basis for the data bank. The

main topics delineated in the Design Data Bank were:

e
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s. _AI'_L__

e Power source technology

e Electric thruster technology

e Power conditioning

Trends leading; to future perforrinnce improvrmt-nt:S W rc iden I. Mcd

where possible. A format was selected s ► ► c: ► tit,it atintial upda! ing would

make the most recent data always available to mission pl,annors.

Using the Design Data Bank as a foundation, power conditio,:ing was

studied for:

A 40-50 kW solar electric propulsion system

• 1-5 MW solar electric propulsion system

• 150 kW solar electric propulsion system

A sole- electric propulsion system was designed for an unmanned Mars

spacecraft. Optimization procedures were demonstrated on power condi-

tioning for a 50 kW (1 AU) solar panel operating sixteen 2.5 kW Cesium

Electron Bombardment Thrusters. Electric, magnetic, and thermodynamic

interactions between various subsystems were investigated.

f
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SECTION 1

POWER SOURCE TECHNOLOGY

This section discusses the electrical power systems which are relevant

to electric propulsion. In order to be effective, the power systems

should have the following characteristics:

e Power level ranging from 40 kW to 20 HW .

e Specific weight of 50 lb /kW as a minimum. A desirable goal
will be 20 lb /kW or less.

e Operating time of 5000 hours as a minimum, or preferably
10000 hours and beyond.

e Available in the 1970 - 198`: period.

Because of the lifetime requirement, only the solar and nuclear reactor

k	 systems are capable of supplying this need.

1.1 PERFORMANCE SUMMARY - AN OVERVIEW

Figure 1 represents a summary of the specific freight performance of a

wide variety of space power systems. These systems can be divided

into two categories, i.e.

a. Nuclear electric where a nuclear reactor is used to provide
heat for energy conversion. The conversion efficiency is
limited to a value less than the theoretical Carnot efficiency.

b. Photovoltaic energy conversion where solar energy is converted
directly into electricity. This type of system is not Carnot-
efficiency limited.

The tentative conclusions, drawn within the framework of the previously

described requirements, are the following:
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o Three types of power source, namely, the solar array, the
nuclear ' potassium Rankine, and the nuclear thermionic are the
leading candidates.

• For a 1970 - 75 unmanned electric propulsion mission, the power
source requirement of 40-200 kW can be best served by thou
:.p olar array.

• For a mission in the 1.975-1985 period, the choice is narrowed
down to either a nuclear potassium Rankine or thermionic system.
The nuclear thermionic (in-pile or out-of-pile) certainly has
a clear advantage. It offers a high performance potential at
a large system size and high reliability because it does not

require any moving parts.

In the following subsections, we will give a brief resume of the tech-

nology status, advantageous and disadvantageous features of the solar

an3 nuclear systems. Additional information is contained in the docu-

ments listed in the bibliography, Subsection 1.3.2.

1.1.1 SUMMARY OF SOLAR PHOTOVOLTAIC ARRAY TECHNOLOGY

The specific weight of a flight-proven photovoltaic system at the

present time (1967) is approximately 100 lb/kW. It is a work horse in

the space power field due to its proven performance, long life, and

high reliability. This is evidenced by the successful application in

the Pioneer, Ranger, Mariner, Surveyor, and numerous classified and

unclassified satellite programs. The arrays in the past programs have

been limited to a s' . ze less than 2 W. However, with an increase in

booster capability, the application in the early 1970's for firm missions

such as ATM, SIVB workshop, MOL, and MORL will call for the state-of-

the-art array of a size up to 15 W.

Current development programs throughout the industry have established

a definite feasibility of the array performance of 25 - 50 lb /kW for a

1973-1975 mission. For exar-uple, Boeing is developing a 50 lb /kW system

leading to a 50 kW Mars Mission. Electro-Optical Systems has already
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demonstrated a 42 lb /kW panel and is now working in the Phase II effort

toward a 27 1b 1kW panel. Both the Boeing and EOS concepts employ a

rigid-frame solar panel.

Concurrent with the above efforts, several roll- up array conct,pCs are

being developed by Fa{.r. hild-Hiller, Ryan Aurt-iiaut ical Co., General

Electric, and Hughes with a potential performance of 35 lb/kW. The

development of roll -up arrays is timed for the mid 1970 application.

The advantageous and disadvantageous features of the photovoltaic system

are summarized in Table I. Among the attractive features are its light

weight and early availability, especially for a 40-200 kW size. For

systems larger than 200 kW, it is anticipated that the specific weight

will be increased due to the more complicated mechanisms and structural

supports. Beyond this power range, the picture is not clear; more de-

tailed and realistic conceptual study will be required.

1.1.2 SUMMARY OF NUCLEAR SYSTEM TECHNOLOGY

Since the heat - to-electricity conversion efficiency is limited to a

fraction of the Carnot efficiency, the trend for the performance im-

provement of any nuclear system will be toward higher temperatures.

The temperature ranges for various power conversion schemes are:

Thermoelectric	 500-700O(,'	 I
Hg Rankine	 650-7500C

K Rankine	 9620-1200

Brayton	 6_50-13v) C

Thermionic	 1300-1800`xC

F

The temperature range of major components i.c. the re-rictor; power con- 	 E
version, and heat rejection subsystems is depicted in Fig. 2.
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TABLE I

Summary of Solar Amy Features_

it

Advantage

1. Offers 25-50 lb /kW performance

2. Flight-proven technology

3. Low development cast

4. Early availability. 40-200 kW

will be available in 1913-1915.

Disadvantage

1. Requires a large paci:aging

volume.

2. High production cost,

especially for a large

s s tem.

3. For sizes greater than

200 kW, specific weight

tends to increase due to

nomplicated deployment

mechanisms and structural

supports.
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The specific weight of the nuclear systems shown in Fig. 1 includes an

unmanned shadow shield which has the following typical characteristic,.

o Neutron dose of 1011 -
	

12 nvt

e Gamma dose of 10 6 - 10 1 cads

e Shield angle of 10-15 degrees

As n general rule, the shield accounts for 25-30% of the total system

weight. This percentage will be increased to about 50-60% for the

manned application whose typical dose tolerance is approximately 20

rem/year. This -eneralization does not apply to the 4n shielding

requirement.

Not included in the system weight shown in Fig. 1 are the transmission

line and power conditioning equipment. In general, the weights of

these two subsystems are determined from the tradeoff with the power

source weight itself. For a 50 lb/kW power plant, the optimum weight

of the combined transmission line and power conditioning is about 1 to

10 lb/kW. This may be decreased to about 5 lb/kW for a high performance

power plant,such as a large nuclear thermionic which has a specific

weight of 10-15 lb/kW. The transmission and power conditioning effic-

iencies lie in the range of 95-997x.

For the electric propulsion application, the thermoelectric, mercury

Rankine, and Brayton cycle systems will nit meet the specific weight

requirement. Therefore, detailed information for these systems will

not be presented. We will, however, describe hriefly the development

of the zirconium hydride reactor system. The purpose is two-fold:

to complete th ,i nuclear picture for historical intc)cst, and to serve

as a prelude to discussion of the developmc-ntal p7oblems unique to the

Rankine turbo machinery.
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1.1.2.1 Power Systems Utilizing SNAP Reactors

The zirconium hydride (ZrHx) reactor has been developed by Atomics

International under AEC sponsors'riip as a heat source for the SNAP

program. The reactor has a temperature capahility of 13000F,

although an operation at higher temperatures Is possible, but ^• ith a

lifetime less than 1U,000 hours as intended. The temperatures

limitation is due to the problem of fuel swelling and the ability to

retain hydrogen for neutron moderation. Two sizes of the zirconium

hydride reactor have been evolved. The first one which has a thermal

power capability up to 100 kW(t) was developed for the SNAP 10A/2

application. The second size which has a thermal rating of 600 kW(t)

is being developed for the SNAP 8 mercury Rankine power conversion

system.

The SNAP 10A is a thermoelectric system designed to operate at 10000F

to produce 500 watts of power. NaK-78 is used to remove the reactor

heat to the thermoelectric converter which consists of 2880 Si-Ge

thermoelectric elements.  The SNAP 10A has the distinction of being

the first reactor power system in space. Although vast experience

has been gained through an extensive development program culminating

in the successful ground and flight tests, it has become obvious

that the system is too heavy for any operational use. Present

thermoelectric efforts are being directed toward the development of

a 13000F Si -Ge converter which yields a higher efficiency and power

output. Both the direct-radiating and compact converter concepts

appear promising. Efforts are also being expended toward a SiGe/PbTe

cascade system to further improve the system efficiency.

The SNAP 2 program involved the mating of a SNAP 2/10A reactor to a

mercury Rankine engine to be operated at 1200 0F turbine inlet tempera-

ture. The rating for this system is 5 W. The system employs two

liquid-metal loops; Nak - 78 is used to remove the reactor heat to the
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boiler which converts liquid mercury into a super-heated vapor. The

mercury turbine, alternator, mercury lubricated bearings, and mercury

pump are integrated into a combined rotating unit (CRU).

In 1965 the SNAP 2 program was redirected toward providing basic

information for the mercury Rankine engine technology. There is no

question about the SNAP reactor capability but the same can not be

stated about the power conversion equipment. The basic problem

areas requiring solutions are:

• Seals and bearings of the CRU which can withstand high temper-
ature operation and high speed (20,000-50,000 rpm)

s Acceptable startup procedures and restart capability

• Two-phase flow stability in the radiator-condenser in the
zero-g environment - a phenomenon not well understood

• Inconsistent and somewhat unpredictable boiler performance
believed to be caused by non-wetting conditions of mercury.
The causes for non-wetting have been theorized but not con-
firmed conclusively by tests.

Among the problems cited above, the latter two are the most difficult

and still remain to be solved. On the positive side, five CRU's

have accumulated more than 20,000 hours of test time, with one CRU

operated more than 6,600 hours. Because of the difficulties described,

together with the absence in mission requirements, efforts ire. the

program have dwindled down to almost nil.

The SNAP 8 mercury Rankine system has a design objective of producing

35 kW of electrical  power at 1300°F reactor outlet temperature. In

comparison with the SNAP 2, the system is more complicated since it

employs 4 fluid loops. It has a NaK loop for reactor heat removal,

a Hg loop for power conversion, a second NaK loop for heat rejection,

and finally, an organic loop for seal and bearing lubricants.
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The development of the SNAP 8 system is being performed by two

contractors; Atomics International for the zirconium hydride reactor

under AEC and Aerojet General for the power conversion subsystem

under Technical direction of NASA.

The SNAP-8 experimental reactor (S8ER) had accumulated 11,990 hours

of operating time, of which 8,800 hours were at the design tempera-

ture of 13000F and thermal power between 400 and 600 W(t). Test

results were considered satisfactory, although 80 percent of fuel

elements were found to have cladding cracks when the core was dis-

assembled. A critical evaluation of the cause has been completed

and corrective actions are being implemented to the next reactor

which will be put on test in the near future.

The objective of the power conversion system development is to

demonstrate and improve the performance of major subsystem components.

These include the following: Boiler, condenser, turbine-alternator,

NaK pump-motor, Hg pump-motor, and lubricant pump-motor assemblies.

The accumulated test time for these components varied from approxi-

mately 1000 to 8000 hours. However, one of the basic problems to be

solved is the so called deconditioning (non-wetting) of the boiler.

The time table for the SNAP 8 availability is uncertain. This is

partly due to the level of funding, but mostly due to the apparent

system complexities involving various fluid loops and rotating

parts. Recently, there has been an increasing trend toward the

mating of the SNAP-'8 reactor to a thermoelectric converter. By

operating the converter at 13000F inlet temperature, a four-fold

improvement in performance can be achieved. Such a system, however,

will have the maximum capability of about 20 kW(e) for a nominal thermal

rating of 600 W(t).	 For a larger electrical output the reactor must

be operated at about 1.400oF with a significant reduction in lifetime.

An alternative to this solution will require development of an advanced

zirconium hydride reactor with a thermal rating of 800-1200 kW(t) to

extend the electrical output to the 40 kW range.
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1.1.2.2 Brayton Cycle System

The technological advantages of the Brayton cycle are:

• Inherent simplicity of a single loop and a single phase working
fluid.

• Noncorrosive properties of the inert gas working fluids such as
helium, argon, krypton, xenon, or a mixture.

• The use of gaseous working fluid allows flexibility in regard
to the heat source operating temperature. This flexibility is
important because it permits the component improvement with
increasing temperature to be done in a continuous fashion. The
improved performance of the R..nkine system must be done with a
discrete increase in temperature e.g. 300 0C in changing from
mercury to potassium fluid.

• It has potentially high system efficiency, hence making it
attractive in a 1-10 W size where the cost of the isotopic
heat source is at a premium.

The disadvantages of the Brayton cycle are:

• The cycle net performance is extremely sensitive to the perfor-
mance of the major components. In a typical Brayton system,
approximately 2/3 of the turbine mechanical output will be re-
quired to drive the compressor, leaving only 1/3 to do useful
work. Thus, a small change in turbine or compressor work will
result in a relative large change in the useful mechanical work.

• To compensate for the low gas cycle efficiency,  when taring the
power loss to compressor into account, the system must achieve
a high Carnot efficiency by either operating at the high heat

source temperature or low radiator temperature.

A low-radiator temperature approach is usually taken for a reactor

Brayton cycle system. Since the reactor and shield weights are signi-

ficant in the low power range the low radiator temperature will not

introduce appreciable weight penalty. At high power levels, however,

the radiator will dominate the system weight. For this reason, it is

doubtful that a Brayton cycle system will be used beyond a 200 kW range.
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The status of the Brayton cycle system is essentially of the early

component development stage. Work ill Lois area is being carried out

mainly by Airesearch and NASA Lewis in-house efforts. These include:

the rotating components, such as turbomachinery, generator, gas bearing

and packaging; the heat transfer components such as the recuperator,

gas-liquid heat exchanger and the liquid-filled radiator.
a'
i

The heat sources for the Brayton cycle energy conversion system can be

solar, isotopic, or reactor source. For the solar or isotopic system,

the size will be limited to about 10 kW. The constraint on the solar

power system is due to the difficulty in maintaining an accurate

orientation of the solar concentrator. The constraint on the radio-

isotopic system will he the isotope availability, cost, and the developing 

technology of the heat source itself. A program aiming at the develop-

ment of a 2000 0F Pu-238 heat source suitable for the Brayton cycle

application has just been initiated.

A nuclear. Brayton cycle system utilizing the SNAP 8 reactor has been

shown analytically to be competitive to other systems in the 20-30 kW

range. In view of the more ready availability of the SNAP-8 thermo-

electric system of a comparable size and specific weight periormance

it is doubtful if the SNAP-8 Brayton power system will ever be developed.	

I

For a higher operating temperature required

reactor will have to be a fast flux reactor

as indicated in Fig. 2. Several conceptual

indicate the concept attractiveness but the

hence it serious developmental effort are la

for a large system, the

using the UC or UO Z 
f lie l

scudies have been made to

mission requirement,,; and

cking.

7
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1.1.2.3 Potassium Rankine Cycle Systems

The potassium Rankine concept is similar to the SNAP-8 mercury Rankine

system with the exception that potassium is used in place of mercury

as the turbine working fluid. The reactor outlet temperature for this

system will be approximately 22000F. A fast flux reactor suitable for

this temperature has not been developed. The development status of the

power conversion components is not as far advanced as the SNAP-8.

Aside from the 4-loop complexities of Lhe concept, the problems assoc-

iated with a higher temperature operation are:

• Use of refractory meals whose long-term engineering data are
not abundant.

• Long-term material corrosion associated with the use of liquid
metals.

• Long-term creep.

• Oxygen contamination of the liquid metal containment material.

In view of its high development risk, as weighed against the potential

payoff in performance, it is doubtful that a potassium Rankine system

will be developed for the electric propulsion application.

1.1.2.4 Nuclear Thermionic Systems

Among the various space power systems considered, the nuclear thermi-

onic powerplant offers the most promise. Its specific weight varies

from approximately 40 lb/kW for a small (50-100 kW) plant to 10-20 lb/kW

for the megawatt size. In addition, the modestly concentrated develop-

ment effort, if continued, will make this type of system available within

approximately 10 years.
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The present efforts have been concentrated primarily on the in-pile

concept where the nuclear fuel and thermionic converter are integrated

into a single reactor vessel. Three concepts, as shown in Fig. 3, have

been proposed. The works in the flashlight, pancake, and externally

fueled concepts are being carried out by General Electric, General

Atomic and Westinghouse/Republic teams respectively. Much of these

works is classified.	 The information reported in this document is

based on the Pratt & Whitney and Douglas conceptual studies of the in-

pile, flashlight concepts. The performance characteristics are shown

in Table II and Fig. 4. They are, to a first approximation, representa-

tive of the in-pile powerplant.

For an out - of-pile concept, shown in Fib;. 5, t ite reactor and thermi-

onic converters are separated. Heat pipes are used to remove the

reactor heat to the converters. Another set of heat pipes is used to

remove the waste heat from the converter assembly to the vapor-fin

radiator. The whole system is static rPqui(.ring no moving parts. Since

the concept is relatively new, the effort has not received as much

attention as the in-pile concept. The out-of-pile performance charac-

teristic shown in Fig. 4 is based on the EOS preliminary system con-

ceotual study.

e>

-
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Figure 3. In-Pile Thermionic Reactor Designs
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1.2 SOLAR VOLTAIC POWER SOURCES

1.2.1 SOLAR PHOTOVOLTAIC CELLS

1.2.1.1 Historical Background

Over one hundred years have passed since Becquerel, in 1839, first

discovered that a voltage was developed when one electrode in an elec-

trolyte solution was illuminated. l-1	 Forty years later, Adams and

Day 
1-2 

observed the effect in selenium. Investigation proceeded slowly

into the 20th century with early solid state workers including Lange

and Schottky doing work on selenium and cuprous oxide photovoltaic

cells which eventually resulted in the photo-electric exposure meter.

It was not until 1954 that a group of investigators at Radio Corporation

of America demonstrated that practical efficiencies could be achieved

in converting beta radiation into electrical energy using a silicon

P/N junction photovoltaic cell. 1 - 3 	Efficiencies up to 6% were obtained

during this period using similar methods to produce electrical energy

from sunlight.	 Also in 1954, 6% solar conversion efficiencies in cad-

mium sulphide P/N junctions were obtained. 1-4 	Thus, practical conver-

sion of electromagnetic radiation ( light and beta rays) into electrical

energy utilizing semiconductor junction materials has only been accom-

plished since 1954.	 Great strides have been made during the past 13

years in improving the efficiency and practicality of the conversion

materials.	 Until now practically all spacecraft with mission durations

greater than several days utilize photovoltaic power sources.

s

The great emphasis on the development of silicon for use in semicon-

ductor electronic circuits has also aided the development of the photo-

voltaic energy conversion program. 	 Figure 6, which shows the maximum

*References for Section 1 are located in Subsection 1.3.1.
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theoretica .^ conversion efficiency as a function of semiconductor band

gap, illustrates that silicon has a maximum attainable efficiency of

19%. 1-5 	Although other materials, such as indium phosphide, gallium

arsenide, and cadmium telluride, have higher maximum theoretical effi-

ciencies, only silicon has received the effort necessary to produce

practical quantities of high efficiency solar photovoltaic cells.

Experimental quantities of gallium arsenide solar cells have been

obtained in silicon solar cells, but the results have not been repro-

ducible. Therefore, the history of the development of solar photo-

voltaic converters can actually be described in the development of

silicon photovoltaic cells from 1954 to the present time. It is

expected, however, that in the future, materials such as gallium ar-

senide and cadmium sulfide will receive the effort given to silicon

previously and great advances should be made in improving the effi-

ciency and economic feasibility of these compound type solar cells.

1.2.1.2 Developmental Trends — Silicon Solar Cells

The development of solar cells led first to a silicon wafer with a

very thin surface layer (approximately 0.3 micron) doped with boson

giving a P type semiconductor. The bulk of the wafer consisted of

N type silicon which gave a P/N junction at the interface of the sur-

face layer and base material. These early silicon solar cells had

efficiencies of approximately 6% (at air mass = zero) and electrical

characteristic curves similar to that shown in Fig. 7 for the non-

grided solar cell . 1-6 	Efforts to improve solar cell performance

dealt with the factors limiting photovoltaic solar energy converter

efficiency, which are:

a. Reflection losses on the surface

b. Incomplete absorption

C. Utilization of only a part of the photon energy for the
creation of electron hole pairs
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d. Incomplete collection of the electron hule pairs by diffu-
sion to the P/N ,junction

e. A voltage factor given by the ratio of open circuit voltage

to energy gap potential difference

f. A curve factor given by the ratio of maximum power point
voltage times maximum power point current to open circuit
voltage times short circuit current for an ideal P/N
junction

g. Additional degradatiin of the curve due to internal series
resistance

All of the above factors reduce the ma::'.mum efficiency for silicon as

shown on Fig. 6 (approximately 19%) down to 6% in the 1954-1960 time

period. Items a, e, and f deal with the silicon cell as a macroscopic

device while Items b, c, d, and g deal with the solar cell as a semi-

conductor material.

Various methods were attempted to minimize the factors limiting photo-

voltaic efficiency. Reflection losses were decreased by oxidizing the

surface to form interference films or by coating the surface with spe-

cial antireflection coatings. The curve factors were dealt with by

optimizing the geometrical design of the solar cell in order to opti-

mize the voltage and current outputs.
	 r

Various methods, utilizing known semiconductor properties, were at-

tempted to increase the absorption of photons in the silicon solar

cell.	 The concentration gradient cell 
1-7 

and ion implantation cell

were two attempts either to vary the energy gap in the solar cell or

to create a potential gradient in the cell to accelerate the carriers

to the junction, thus effectively increasing their diffusion length.

This increase in diffusion length reduced the carrier recombination

before reaching the P/N junction and thus added to the output of the

cell.	 The absorption of photons was also increased by making more

perfect crystals and thus eliminating defects such as localized

stresses in the silicon single crystals.	
t
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The collection efficiency, which is the ratio of electron hole pairs

separated by the electric field of the P/N junction to the total num-

ber of electron hole pairs generated, as a function of the location of

the pairs generated, the diffusion, and recombination by mobility and

minority lifetimes. The optimum collection efficiency will be obtained

if the layer between the light exposed surface and the P/N junction is

as thin as possible and if at the same time the minority carrier dif-

fusion length in the layer of opposite impurity type is as .large as

possible. Attempts were made to minimize the P layer thickness by

controlling the doping temperature/time operation. The major diffi-

culty in decreasing the thickness of the P layer is that the impurity

concentration of the diffused P layer .;nnnot be made sufficiently high

in order to keep the series resistance of the F layer negligibly small

for P layer thicknesses as thin as thin as desirable for obtaining

highest collection efficiency. In an effort to reduce the series re-

sistance of solar cells with very thin P layers, the application of

metallic grids, in 1962, over the P layer surface reduced the resis-

tar.^e of the P layer by lowering the length of the current path through

the layer to the next connecting metallic line having low resistance.

The effect of lowering the series resistance is so great that as much

as a 20% increase in power was obtained from gridded cells as shown in

Fig. 7. 1-6 The series resistance of cells with metallic grids has been

lowered from values of many ohms to about 0.4 ohm.

The development of the NIP silicon solar cells by Mandelkorn at the

USAERDL was a major accomplishment in the 1960 time period. 1-8 These

solar cells were found to have superior radiation resistance compared

to silicon P/N cells. Efficiencies obtained with these NIP converters

were comparable to those obtained with the best P/N solar cells.

Figure 8 shows electrical characteristics for equivalent efficiency

P/N and NIP silicon solar cells. These are typical of production quan-

tities of their particular type for the early 1960's and indicate that
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N/P silicon solar cell technology is equal to that of the P/N silicon

solar cell technology. Because of the advantages of the N/F silicon

Lolar celi, the industry converted completely to the production of

high efficiency, high radiation resistaace N/P silicon solar cells

and discontinued production of P/N cells. The cost of N/P silicon

solar cells, being only 10% higher than that for equivalent P/N cells,

was not deemed sufficient cause for keeping P/N cells in production.

Other developmental trends in the early 1960's were the attempts to

increase the size of the basic silicon solar cell converter in order

to minimize handling and cost and maximize power per unit area. The

original solar cells produced in the 1954-1960 time period were gen?r-

ally 1 x 2 cm with the P strip accounting for 5 to 10% of the total

cell area. Larger solar cells of either 2 x 2 or 3 x 3 cm would re-

duce the area utilized for the top contact to a maximum of 5%. Al-

though most: solar power supplies utilized on the early spacecraft

were fabricated from 1 x 2 cm solar cells, the 2 x 2 cm cell is coming

into general use for application on solar photovoltaic power supplies.

Larger area cells are u:',der development but breakage losses have tended

to make these cells uneconomical at this time.

The concern of spacecraft designers over system weight led solar cell

manufacturers to examine the possibility of decreasing the overall

thickness of the silicon cell with the possibility of maximizing power

to weight ratios. Original solar cells were from 18 to 30 mils in

thickness. Progress was made in the development of a 12 mil, high

efficiency silicon solar cell of either P/N or N/P type. However, it

was found, under sul)sCcluent' investigation, that decreasing the solar

cell thic*,cness	 12 mils led to a severe deUradation in the cell

efficiency. 1?xccnt for special instances, the 12 mil silicon solar

cell is the optiniani cell for use on spaceborne solar photovoltaic

power supplies. k,scarch is continuing, however, into the improvement

of efficiency of thin solar cells.
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1.2.1.3 Current Technology — Silicon Solar Cells

Long-life satellites and probes have been almost exclusively dependent

upon the solar cell for power. Even if no improvements are made in

the presently available silicon solar cell, it will probably dominate

the space power field for at least five more years. Appioximately two

million solar cells are being delivered per year to various users under

NASA and Air Force contracts. Before 1963 most cells wer ,^ of the boron

diffused P/N variety, but the phosphorous diffused N/P cells are pres-

ently the only cells being used except in specific instances requiring

the higher voltages of the P/N cell. The discussion in this section

will therefore be limited to the present state of the art of silicon

N/P solar cells.

The silicon solar cell Presently available in production quantities is

12 mils thick, 1 x 2 or 2 x 2 cm, with a soldered sintered silver-

titanium ohmic contact (Fig. 9).	 The specific weight of the cell

is approxi..mately 0.12 gram/cm 2 , and the average space efficiency is

10.5%. The typical cost for solar cells ranges from $10 per cell for

2 x 2 cm, 11.3% efficient, to $4 per cell for the same size at 10.5%

efficiency. (All efficiencies stated in this report will be at air

mass zero, 280C and 140 mW/cm 2 unless otherwibo stated.)

General Properties of Silicon N/P Solar Cells

A typical N/P solar cell operated between 0.37 micron and 1.1 microns.

The spectrum outside this range is either reflected from the surface,

transmitted through the cell without creating electron hole pairs, or

reradiated from the cell as heat.	 Figure 10 shows the spectral re-

sponse of a typical N/P silicon solar cell in relation to the spectrum

of incident sunlight.
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The electrical characteristic curve of a typical N/P silicon solar

cell under simulated air mass zero conditions is shown in Fig. 11.

The curves show the typical limits at various temperatures encountered

in the operation cf solar cells in space.

It can be seen that the open circuit voltage per cell ranges from ap-

proximately 0.55 volt at 25 0C to 0.39 volt at 100 0C. The efficiency

of the solar cell will affect the curve by increasing the current at

the maximum power point and slightly changing the voltage at the maxi-

mum power point. The voltage of a solar cell can be assumed to be in-

dependent of the efficiency of the cells and the impinging solar in-

tensity but is very dependent upon the cell temperature and internal

series resistance. The cell current is a direct function of the solar

intensity and cell efficiency and is relatively independent of the cell

temperature and internal series resistance.

The degradation due to particulate radiation bombardment within the

Van Allen belt can be severe in silicon solar cells. The original P/N

silicon solar cell was severely degraded by the space radiation envi-

ronment and the development of the N / P solar cell has brought about the

advantage of the N/P cell in this respect.

The N/P solar cell is less affected by radiation bombardment due to the

difference in the minority carrier in the bulk of material which for

N/P material is electrons. The degradation due to particulate radia-

tion is a function of the protection given the solar cells by glass

coverslides and the critical flux. The critical flux is defined as the

integrated particle flux necessary to cause a 25% decrease in the ini-

tial poutput power of a solar cell.. The critical flux as a function of

proton energy is shown in Fig. 12, and a value of 1 x 10 11 P/cm2 for

protons between 4 and `0 meV is typically used in calculations to deter-

mine percent power degradation. The power degradation (Q) due to
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Figure 11. Typical I-V Curve Limits for N/P Silicon Solar Cells
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particulate radiation is determined by using the following equationl,

which was derived using empirical analysis 1-9 of experimentally obtained

radiation damage. The equation for percent power remaining versus inte-

grated flux is

\, 1 /2	 ... -1/2
Q	 7/9 	 + 1

C

where Q	 percent power remalninp

integrated flux

mc = critical flux to reduce cell. power output 25%

the radiation resistance of N/P solar cells can he improved by incor-

porating a potential field within the bulk of the cell which acceler-

ates electron hole pairs Lo the P/N junction, thus neutralizing the

effec t_ of radiation bombardment which decreases the lifetime, -, or

diffusion legnth. Drift field and ion implantation cells which incur-

porate potential fields in the cell are presently under investigation,

but results to present do not indicate startling improvements in radi-

ation resistance. 
1-10	

Improvements of up to 20% in radiation resist-

ance have been made, but this does not presently warrant the selection

of these cells for use on space power supplies, since the efficiencies

are not yet as good as the standard N/P solar cols.

1.2.1.4 Protected Technology — Silicon Solar (.ells

Table 1II shows the predicted silicon solar call characteristics from

the present to the 1985 time period. It is readily apparent that no

major advances are expected in silicon solar cell efficiencies beyund

that which is presently available in 1967. The relative improvement in

efficiency for thin solar cells (less than 1.2 mils thick) will exceed

that obtained during the next 20 !cars  for the thicker cells but not

to an extent that could he classified as an out5ta nding improvement.l-11

t.
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The efficiency of the 4 mil cells should be expected to be improved

from 7.5% available at the present time to approximately 9.5% in 1985

or about a 25% increase in efficiency 
1-11, 

Other expected improvements

in silicon solar cell technology during the next 20 years will be the

enlargement of the basic cell size to a maximum of approximately 3 cm

to 30 cm (90-100 cm 2) and a projected lowering of bare cell costs from

$2/cm2 at present to approximately $1.50/cm 2 in the 1985 time period.

It is also expected that some improvements will be made in increasing

the radiation resistance of N/P silicon solar cells by changing the

dopant material used to obtain the P material, improving the drift

field cells presently in development, or by changing the material used

in the contacts to the solar cell.

In summary, it is expected that the N/P silicon solar cell producing

approximately 11 watts/ft 2 over long durations in the moderately se-

vere areas of the Van Allen belt. This power will be produced at a

cell cost of approximately $100 per watt. The silicon solar cell will

continue to be the prime source of electrical power in space for mis-

sions requiring power up to approximately 50 kW, since the solar cell

is a proven piece of space hardware capable of supplying reliable

power at reasonable cost and specific weights.



1
1.2.2 SOLAR PHOTOVOLTAIC PANELS

1.2.2.1 Historical Background

The specific power capability of solar array systems has continued to

grow over the years since 1958 when it was first employed as a power

source for a spacecraft. This spacecraft (Vanguard) is still in orbit,

the solar panel are still providing power, in this case, unfortunately,

to operate its milliwatt beacon transmitter. Since that time, the

power requirements for spacecraft have increased and in most cases the

specific power capability of solar arrays has managed to keep in step.

The development of the larger power arrays primarily has been the re-

sult of development in the manufacturing techniques associated with

lightweight structure fabrication and the development of engineering

technology associated with handling and working with the cells. To

date only silicon solar cells have been utilized in a solar cell array.

It should be noted that since the advent of gridded solar cells in 1960,

the actual air mass zero conversion efficiency has improved little;

however, the specific power capability of the array itself (watt / lb) has

continued to show improvement,

The early solar photovoltaic systems were either body-mounted on the skin

of the satellite or extended on booms on non-oriented or semioriented

paddles. Only in a few instances were the solar panels oriented toward

the sun. The power requirements in the beginning of the space program

were limited as was the area and weight allotm r.nts for the solar array.

The basic structures used on early spacecraft Eor mounting the solar cells

were heavy (approx. 2 lbs / sq ft) but great afforts were being made to

develop extremely lightweight structures for the expected larger power

photovoltaic systems.

5400-Final
	

1-36

Volume I

r
p ;r

e
t.

71
k

r

7
d^ae

to r .,,: ^ ^+'
r	 ,t•



The first lightweight structures were generally of aluminum honeycomb

with either aluminum or fiberglass facing sheets which led to a specific

weight of the total array of approximately 1.2 lbs/sq ft, without criti-

cally affecting structural rigidity.

The advancement of knowledge concerning the radiation environment en-

countered in earth orbital missions led to the optimization of the

cover glass design for solar cells in order to minimize system weights.

Early satellites generally utilized extremely thick (60-70 mils of

quartz) cover glasses in order to limit the degradation due to Van Allen

particle bombardment. The reduction in coverglass thickness due to the

improved radiation resistance offered by the N/P silicon solar cells.

1.2.2.2 Critical Subsystem

The complete solar array consists of many subsystems integrated into a

reliable lightweight package. The most critical of the array subsystems

are discussed in the following sections.

Silicon Cells

The choice of the type of solar cell obviously seriously affects the over-

all photovoltaic array with respect to weight, area, power reliability

and cost.

The choice of the thickness of solar cells can vary from 18 mils as used

on the Ranger and Mariner spacecraft t:) 12 mils presently being used on

Surveyor, DIP, etc, to thinner solar cells ( 8 mils, 4 mils, etc.) which

are being projected for use on future spacecraft. The density of the

silicon cell is 2.66 grams /cm3 and the specific weight for the present

12-mil soldered solar cells is 0.12 grams per cm 2 .	 Figure 13 shows

cell weight versus cell thickness for the types of cell contacts (i.e.

solder and solderless). The specific weight for a typical solar cells
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of present design is 0.22 lbs / sq ft (or approximately 20 percent of

the total array weight depending on the overall array size).

The toal array area is inversely proportional to the

ciency and present designs indicate a value of appro

per sq ft in space at 1 A . U. which for a 50-kilowatt

gives a total area of approximately 5000 sq ft. The

oriented array gives as much as 4 to 5 times greater

array area,

solar cell effi-

Kimately 10 watts

oriented array

area for non-

than the oriented

In the same :Wanner that cell efficiency affects array area, power out-

put is also affected by the cell efficiency. The specific power output

is watts per sq ft and watts/lb are a function of both the cell effi-

ciency, and cell thickness. Since the efficiency of solar cells is

directly related to the thickness of the cell, a trade-off must be made

in the design of solar arrays to optimize array weight as a function of

array area in order to meet the requirements of maximum specific powers.

The reliability of solar cell operation in the space environment has be-

come a proven tact and with proper design, reliabilities of 0.9999 can

be achieved. The reliability of the solar array is dependent upon many

factors that affect the use of the solar cells. The incorporation of

the cell into an electrical submodule affects reliability as does the

incorporation of the submodule into the entire electrical circuits.

The degradation effects of meteoroid bombardment on solar cells is

generally very small as shown in Fig. 14. 	 This figure relates solar

cell losses as a function of bombardment time, assuming one cell is lost

pwer impact. This is generally assumed to be a worst case since micro-

meteoroid impacting a surface will only damage a small area of the

impacted surface. In the case of an impact on a solar cell, a small

segment of the active area will be lost but the cell should still be
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capable of producing usable power. The impact of a large micrometeoroid

or meteoroid will cause catastrophic failure in a cell or in the entire

array, but the probability of this occurrence is so small as to be

assumed to be zero.	 As shown in Fig. 14, it would require over ten

years in orbit to lose one percent of the total cells on the array (i.e.,

assuming, pessimistically that one cell is lost per impact). This loss

is readily accounted for in the 10 percent over-sizing allowed for in

the array design. It can therefore be assumed that power degradation,

during the ticne period of the mission, due to meteoroid bombardment is

negligible.

Figure 14 is derived using a near-Earth micrometeoroid model of;

log NE • - 13.8 - log M

where NE = number of particles/m 2 sec. of mars M grams and greater at

a distance of 1 AU from the sun (i.e., near -earth-space).

This model was obtained from the Jet Propulsion Laboratory as part of

the Voyager program environmental predictions.

The cost of the silicon solar cell is the most important factor affect-

ing the total cost of the overall photovoltaic array. The cell costs

range from $2.00 per cm  for presently available silicon cells, to a

future predicted cost of $1.50 per cm  in 1985. This gives a cost of

approximately $ 1800 per square foot which for large areas such as a 50

kilowatt oriented array would mean a total cell cost of approximately

$9 000 ,000. It can be seen that in the case of non-oriented arrays, this

cell cost could go up to as much as 50 million dollars.

Y
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S lar . Ce, 11 Filters

The primary purposes of putting a transpar

are to reduce the temperature of the solar

tive a/c ratio and to reduce the effect of

solar cell. Each of these parameters will

ing paragrap^ -.

ent coverslide on a solar cell

cell by increasing the effec-

particulate radiation on the u

be discussed in the follow-
.

Table IV summarizes the results when different coatings are used on

the coverglass. All systems calculations assume the use of a coverglass

with 415 millimicron blue and anti-reflective (AR) coatings. The im-

portant effect obtained when using the coverglass as a thermal control

surf&ce is to lower overall cell temperature which effectively in-

creases the solar cell output.

The density of the quartz coverslide is 2.66 grams/cm 3 . Thus a 6-mil

quartz coverslide weighs 0.071 lbs/sq ft, any other thickness quartz

cuvv.rslide can be scaled up or down from this number.

The other use of coverslides on solar cells is the protection of the

solar cell from particulate radiation bombardment. In very intense

radiation fields, the only way to obtain long life from a solar cell

is to protect it with a transparent coverslide material. Of the three

coverslide materials in general use, the best for protection against

particulate radiation is saphire, however, this material is quite ex-

pensive and is not generally in use in current solar array designs.

The next best material is quartz or fused silica which offers very good

radiation protection compared to glass or mic. •rosheet which discolors

under heavy radiation flux. The discoloring of glass is due to the

formation of "F" centers or color centers in the bulk glass material

which is generally due to the existence of impurities in the Mass such

as sodium atoms. The ability of auartz coverslide to protect a solarq	 P



TABLE IV

POUNrS PER kW AS A FUNCTION OF COVERGLASS THICKNESS

100.0 sq ft/kW for 10.3 percent solar cell, 8 mils thick for 0 degrada-
tion at 50JC

Coverglass Thickness (mils) 	 Pound /Kil owatt

	6 	 43

	

12	 50

	

20	 61

	

30	 73

	

45	 92

	

60	 111

89 sq ft/kW for 11.5 percent solar cell, 12 mils thick for 0 percent
degradation at 500C

	

b	 42.7

	

12	 49

	

20	 59

	

30	 69

	

45	 86

	

60	 113

121 sq tr/k.W for 8.5 percent silicon solar cell, ror 0 percent def;rada-
tion at SO°C

6 46.6

12 55

20 (,8

30 P3

45 106

60 129
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1
cell is typically shown in the range -energy curve for quartz. This

curve shows the minimum energy that will penetrate a quartz coverslide.

Figure 15 gives the range -energy for protons and electrons in quartz.

As can be seen, the 6-mil quartz coverslide will stop all protons with

energies less than 4.5 meV and all electrons with energies less than

200 keV.	 Curves in Fig. 15 can be summarized in the following equa-

tion:

Electron shielding level	 E	 =	 1.5 x r0.698

Proton shielding level	 E	 a	 28.6 x r0.558

o	 u	 oThe present state -of-the-art c verglass u sed to protect a cell from

radiation is bonded to the cell with approximately 2 mils of adhesive

(see Fig. 16).	 In the case of a spacecraft operating outside the

earth's to protect the cell from low energy proton damage. 	 It is felt

that cover glass can be reduced safely to 3 mils or perhaps slightly

less to guard the cells against low energy protons, but have been

maintained at 6 mils to minimize coverglass attrition during panel

fabrication.	 Promising programs are presently being conducted in the

solar cell industry which will permit deposition of glass directly on

the surface of solar cells thereby eliminatin ,3 the requirements for

cells-glass adhesives.	 Available test data indicates that up to 2 mils

of glass can be deposited directly on the cell with only a 3 percent 1

decrease in the power producing capability of the cell.	 Twenty mils pf^

of glass have been deposited on a solar cell with a 9 percent decrease

in the power producing capability.	 Work accomplished at Lockheed Mis-

siles and Space Division on an - organic -metallic coating has indicated

that 2 mils of this coating is equivalent in radiation protection to

20 mils of quartz but further development is necessary before these

resul ^.-s are firmly established. 	 The use of integrated coverglass for

low altitude earth -orbiting missions will greatly reduce the weight,

complexity, and cost in fabricating a solar photovoltaic array. 	 With

proper designs, the integrated coverglass thickness can be minimized to

a point where it no longer becomes a major portion of the total array

weight.
1-44

5400-Final
Volume I

tt	 i	 ^`1;... t	
1717 N n	 ^ct ' ..	 r

ttTj
	

j

ni F. _.. .... i. st... ...	 x.	 .at	 -y`$^	
• f	 •^.	 •61I	 . f .3	 Sa	

•^^:•^/,	 w. .^ .',X	 . i ,^	 d^^.	 ,	 ! 11ad^':e1i^.1'Z.dnl `..

NOW-



MILS
6 12	 20	 +0	 45	 60

rl

E

oc
W
Z
W

LLI
..^ 1.0
V
F--
o^

943.

0	 005	 0.1	 0.15	 0.2	 0.25	 0.3	 C

RANGE (grams/cm 2 )
Figure 15. Rank-Ener y for Proton-, and Llec trons in Quat tz

5400-Final
Volume 1

1?3b29241

y



TYPES OF SUBSTRATE USED IN 1966

HONEYCOMB

CORRUGATED
SHEETMETAL

i
Figure 16, Illustration of Current Technology
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Adhesives

Two types of adhesives are used on a solar photovoltaic array; one

for securing the cover p lids to the solar cell (except in the case of

integrated coverglass) and another to bond the cell assembly to the

substrate (see Fig. 16). The critical adhesiv e in mo-, t earth-orbiting

missions is the coverslide adhesive which must be capable of withstanding

the space environment, f..e., vac-um, temperature, particulate radiation

and ultra-violet radiation, without degrading the performance of the

solar cell.	 Coverglass adhesives fall into two general classes;

1) silicone adhesives, and 2) clear epoxies. In both cases, the

adhesives are sensitive to uv radiation and will discolor if not

protecte d by a uv reflecting coating on the coverglass. It is expected

that the coverglass adhesive will assume a role of minor importance when

the integrated coverglass becomes an established production technique.

As in the case of the coverglass adhesives, the adhesives used to bond

the solar cell assembly to the substrate fall into two classes;

1) silicone adhesives and 2) epoxy adhesives.

The silicone adhesives are generally room temperature vulcanizing

(RTV) which gives some degree of flexibility under extreme temperature

variations encountered as the satellite enters and leaves occulation.

The epoxy adhesives are more rigid and are generally applicable to solar

arrays that encounter minimum temperature variations during the mission

lifetime. In all canes, adhesives used on solar cell assemblies have

been proven by actual use in space and a wide variety are available

depending on the particular mission and its requirements.

Interconnections - Bus Bars

Interconnection design involves parallel and series connection between

solar cells. A wide variety of configuration for interconnections

have been used in flight solar panels. In general, the interconnections

used to date have involved assembly steps in which hand-soldering

^ry

,.
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was performed close to or on cell:. Techniques are being developed to

automate soiar cell submodule fabrication and this procedure should

be available industry wide by 1970.

Many materials have been used for interconnections on various flight

spacecraft; some of which were titanium, silver, copper, molybdenum

and kovar. Each of these materials has advantages and disadvantages.

The materials are usually gold or silver plated to decrease resistivity

and increase solderability. The factors to be considered in interconnoctor

design include;

1. Thermal expansion compatibility

2. Thermal conduction

3. Solderability

4. Electrical resistance
5. Applicability of automated assembly techniques

6. Mechanical springback interaction with cells
7. Weight

8. Reliability (see Section on Solar Cell Reliability)

9. Compatibility for use with different thickness solar cells

Typical bus bar weight including solder, is approximately 0.03 lbs/sq ft

which is a small part of the total array weight.

Insulation
The solar cell assemblies must be adequately insulated from the substrate

in order to prevent electrical short circuits which could degrade the

performance of the solar array. Typical insulations that have been

used on flight spacecraft have included fiberglass or mylar sheeting

between the substrate core and solar cell adhesive and organic or

inorganic dielectrics sprayed or hand painted on the substrate skin.

In many cases, the insulation is also used as a thermal control

surface; therefore it should not degrade in the space environment. It

has been found experimentally that inorganic paints or dielectrics are

much more resistant to uv degradation that organic coatings and thus

v
L
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for missions where critical thermal control is required, inorganic

coatings should be used.

Array Substrate and Framework_.

It has been questioned whether present technology can support the design

of rigidized lightweight solar cell substrates larger than those of

AAO and NIMBUS (236 sq ft and 48 sq fL, rempectively). Yet 	 the

requirement for larger, more powerful arrays is continuing, such as

for the electric propulsion missions. There are studies presently

programmed to evaluate the feasibility of fabricating solar arrays

capable of producing many kilowatts of electrical power with a specific

weight of 50 lbs/kW(e) or less. These solar arrays, if developed, would

require several thousand square feet of area. Orientation to normal

incidence sunlight is a requirement to minimize weight.

The structural, thermal, guidance, and communications problems

associated with integration of such large arrays into a spacecraft

would require a design that can employ fabrication techniques and

materials not previously used in array fabrication. Structures being

investigated presently incLde: flat, rigid panels hinged together by

various methods; semi-rigid structures and completely flexible structures.

The following paragraphs discuss lightweight, rigid structures suitable

for use as substrates for large area photovoltaic systems.

The lightweight rigid substrate must support the solar cells, wiring

and other equipment and be strong enough to support its own weight

during launch and possible orbital maneuvers. The substrate and

substrate frame are designed to provide a definite separation of the

fundamental frequencies from the natural frequencies of the attitude

control system. A typical substrate and frame structure that has been

proven in space use is the one used for the Mariner vehicle. This

structure allowed a low temperature operation through good thermal
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1
design which improved the cell efficiency and increased the power

level. This type of structure has proven to be very light and has a

high mti:fness/weight ratio.

The flat rigid substrates which are presently being used generally

consist of an aluminum honeycomb structure with an aluminum, titanium,

or fiberglass facing sheet.	 Figure 17 illustrates two types of sub-

strates in present use. They are the honey comb structure, typical of

770 program and corrugated sheetmetal, typical of Mariner and Ranger.

Solar Photovoltaic Array Configuration

In considering various solar array configurations, several baoic

patterns and designs may be chosen. These include;

a. Sun-oriented solar array

b. Semisun-oriented array

C,	 Nonoriented, body-mounted solar array

d.	 Non-oriented paddles

The sun-oriented, flat panel, has size and weight advantages; however,

some critical areas exist in its integration with the vehicle.

Since the vehicle attitude control system may be used to aim the antenna

system, a separate positioning system would be required for the solar

array. Thus, bearings would be needed to allow rotation of the array,

and slip rings, for a rotary transformer would be required for power

transfer.

The semioriented and nonoriented paddles, have been used on many

spacecraft such as IMF, OAO, Explorer XII, etc., and have proven quite

feasible. A major problem area with the use of paddles is shodowing

of portions of the solar array by other paddles or the spacecraft

itself. Two electrical means are available to minimize these losses. 	 I
l
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The cells may be arranged to insure that only small sections are lost to

shadowing, or switching mechanisms can be used to take shadowed sections

out of the electrical circuit.

The nonoriented, body-mounted array has been successful in the Syncom

series and Early Bird satellites. The msjor problem with this array

is low utilization of the total solar cell active area and possible

temperature variations across the array. However, for low power outputs,

this array is the simplest to incorporate into a space vehicle.

Assuming 10 watts per aq ft for an oriented array, a nonoriented, body-

mounted structure requires approximately five times the total area of

the oriented array, or equivalently the specific power is 2 watts per

sq ft. For a 200 watt system, 100 sq ft of surface area is required.

Table V summarizes the area required to supply 200 watts using j sun-

oriented, a nonoriented paddle array, and a nonoriented body-mounted

array.

TABLE V
	 z

ARRAY AREA FOR 200-WATT SYSTEM

Sun-Oriented	 Nonoriented	 Nonoriented,
Panel	 Paddle	 Body-Mounted

Array

Area	 20 aq ft	 65 sq ft	 100 sq ft

1.2.2.3	 Current Technology

The silicon solar cell power system is the only long-term power source

which has , :eon actually demonstrated in space. In this section, the

development&' status and design characteristics of present solar power

systems are discussed. Advanced developments which will offer weight

and cost advantages will be discussed in the next section.

I'`
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The technology of photovoltaic system design and fabrication has

been continuously improved since the launching of the first spacecrafts.

Appreciable weight reductions have been accomplished and much more is

expected in the future. At present, only the 1 x 1 cm, and 2 x 2 cm

silicon cell are in use on solar photovoltaic arrays. The 2 x 2 cm

cell is becoming .tore common and most photovoltaic systems to be used

in the late 1960's will incorporate the 2 x 2 cm cell.

The most advanced oriented solar cell panels that have been built

up to the present time are those for the Mariner, Ranger, and Surveyor

vehicles. The Ranger and Mariner panels are rectangles, approximately

2.5 ft x 5.5 ft with 6-mil coverslides and the panel weighs 1.5 lbs

per sq ft (21 lbs total) including substructure, adhesives, cello,

coverslides, wiring and attachment brackets. The Surveyor panel is

approximately 9 ft  with 6-mil coverslides and the panel weighs about

8.5 The or a specific weight of 0.94 lb/ft 2 . During the next

aeveral years, solar panel specific weights will be reduced appreciably,

even for much larger panels. A weight figure of 1.0 lbs/ft 2 is a reasonable

estimate of the obtainable state-of-the-art in the next five years for

the larger panels which will be used in multi-kilowatt systems. For

long duration missions operating in the Van Allen belt, the weight of

thicker coverslides must be included which would therefore increase

the specific weight of the photovoltaic array. The state-of-the-art

1967 for solar photovoltaic arrays, both panelc, paddle and body-

mounted arrays for a large number of flight spacecraft indicates an

array of specific weight from 0.7 lbs (Fxplorer XII 15.3 ft 2 ) at a

minimum to 1.6 lbs/ft 2 (four NIMBUS B, 48 ft 2 ). These values are typical

of the practical state-of-the-art obtainable in the 1960-1970 time period.

The specific weight of both the entire solar array and its components

is decreasing and the expected trends are shown in Fig. 18. The lower

curve shows the specific weight of the substrate/frame and it can be

seen that in 1962 the state of the art was approximately 1.2 lb/ft 2 (Ranger).

r
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Specific weights have been decreasing until at the present time a

specific weight of 0.5 lb/ft ` is obtainable (Voyager). The specific

weight of the substrate / frame is also expected to decrease as newer

substrate designs are introduced. A step-decrease in weight is

predicted in the early 70's when beryllium substrates and beryllium

structures are expected to be used extensively. The specific weight

of the substrate/frame should then level out to a minimum value of

approximately 0.18 lb/ft2.

The second curve shows the expected decrease in solar cell specific

weight as increased efficiency thin cells are developed. The probable

minimum practical thickness for silicon solar cells is 4-mils which

gives a specific weight of 0.045 lb/ft2.

The third curve shows the expected decrease in coverglass weight after

1970 when integrated coverglasses become items of standard use. Before

1970, the minimum coverglass thickness is 6-mils of S102 which gives

minimum radiation protection but practical thermal control. The thin

(2-mils or less) integrated coverglass will give the same thermal control

and indications from Lockheed (see Sec. 3.2 . 2.2) are that radiation

prot-ction using organic-metallic filters is superior to that of much

thicker coverglass. The expected minimum specific weight for coverglass

will be approximately 0.02 ib/ft2.

The top curve shows the expected trend in total array specific weight

including such items as adhesives, bus bar, solder, paints, hardware,

cabling, etc. The specific weight of these miscellaneous items, taken

as a group, is shown to decrease uniformly from a maximum value of 0.32

lb/ft 2 in 1962 to approximately 0.13 lb/ft 2 obtainable at present. The

specific weight is then expected to remain fairly constant until the

use of integrated cover-glasses eliminates the need for coverglass

adhesives, Improvements are also expected in decreasing hardware

requirements and minimizing cabling weights by improved designs. The
	 i

expected minimum total array specific weight after 1980 is 0.25 lb/ft2.

5400-Final
	

1-55

Volume I

rw	 r .

,.4'_`i':'^



1
1.2.2.4 Projected Technology

The development of lightweight rigid structures incorporated into large

area, lightweight photovoltaic systems will continue inLO the 1970-

1985 time period with improvements in decreasing structural weight

and improving cell performance over that which has been obtained in

the 1960-1970 time period.

The development of new, lightweight, rigid structures such as the

follow-core electroformed beryllium substrates, lightweight honeycomb

made of titanium, or beryllium, etc., would aid appreciably in
s

decreasing array weight without detracting from array reliability.

The -c pecific weight of the new, structures will decrease from approximately

.3 -	 .5 lbs/ft 2 to 0 . 15 - 0.30 lb/ft 2 .	 Yet, the panels will demonstrate

the same structurei rigidity and strength as that obtainable from the

heavier substrates used at present. 	 Table VI A, B, and C illus-

trates a projected solar array weight breakdown as a function of

coverglass thickness for	 4-mil, 8-mil and 12 -mil solar cells in

the 1970-1985 time period.	 It can be seen, depending on the coverglass

thickness, which is a function of orbital attitude and inclinatio'l

(location within the Van Allen belt), the total array apec.ific weight

without attachments or deployment mechanisms, ranges from a minimum

of	 0.385 lbs / ft 2 utilizing 4-mil solar cells and a standard 6-mil 'P

coverglass to 1.16 lbs / ft 2 for a 12-mil solar cell utilizing a 60-mil
coverglass.	 Table VI A l B, and C shows the lb/kW as a function of

coverglass thickness utilizing 4, 8 or 12-mil solar cells with the

efficiencies shown in the Tables. 	 The minimum specific power that can

be practically obtained utilizing conventional fabrication techniques

presently in use, is 43 lbs/kW.	 However, the continued advancement

of developments now in the experimental	 stage such as integrated ;

coverglasses, and large area or thin cells will lead to specific weights -

nauch less than that obtainable utilizing conventional fabrication 7
techniques.	 The curves sham in Fig. 19 illustrate the performance -
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TABLE VI-A SOLAR ARRAY WEIGHT BREAKD OVN AS A FUNCTION OF
COVERGLASS THICKNESS FOR 8 -MIL SOLAR CELLS

Coverglass Thickness (mils) 6 12 20 30 45 60

Coverglass Weight (lb/ft2) 0.07 0.14 0.24 0.35 0.53 0.70

Solar Cell Weight of 0.20

Adhesives Weight of

Bus Bar and Solder Weight of

Cabling and Hardware Weight to

Dielectric and Paint Weight " 0.03

Substrate Weight " 0.14 0.14 0.15 0.16 0.17 0.19

TOTAL 0.43 0.50 0.61 0.73 0.92 1.11

TABLE VI-B SOLAR ARRAY WEIGHT BREAKDOWN AS A FUNCTION OF COVERGLASS
THICKNESS FOR 12-MIL SOLAR CELLS

Coverglass Thickness 	 (mils) 6 12 20 30 45 60

Coverglass Weight-	 (lb/ft2) 0.07 0.14 0.24 0.35 0.53 0.70

Solar Cell Weight to 0.14

Adhesives Weight. it 0.02

Bus Bar and Solder Weight it 0.03

Cabling and Hardware Weight of 0.05

Dielectric and Paint Wright of 0.03

Substrate Weight to 0.14 0.14 0.15 0.16 0.17 0.19

TOTAL 0.48 0.55 0.66 0.78 0.97 0.16

TABLE VI-C	 SOLAR ARRAY WEIGHT BREAKDOWN AS A FUNCTION OF
COVERGLASS THICKNESS FOR 4-MIL SOLAR CELLS

Coverglass Thickness (mils) 6 12 30 45 60

Coverglass Weight	 (lb/ft2) 0.07 0.14 0.24 0.35 0.53 0.70

Solar Cell Weight of 0.045

Adhesives Weight of 0.02

Bus Bar and Solder Weight to 0.03

Cabling and Hardware Weight of

Dielectric and Paint Weight 01

Substrate Weight to 0 . 14 0.15 0 . 16 0.17 0.19

TOTAL 0.385 0.455 0.565 0.685 0.875 1.065
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to be expected using various combinations of cells and coverglasses.

These curves ty ke into consideration the type of coverglass, efficiency

of solar cell, assembly and filter loss, and changes in packing factor.

The parameters for each curve are summarized in Table VII. The 4-mil

and 8-mil cells will require improvement even greater than that expected

in order to successfully compete with the 12-mil solar cells in terms

of watts/sq ft output power.

Although 12-mil solar cells have a higher power output per square foot,

it can be seen from Table VIII that the 3 x 3 cm 4-mil cell with wrap-

around contacts and integrated coverglass will provide the lightest

weight per kW of any of the configurations considered. However, it is

questionable at this time whether 4-mil cells will be available even

in the 1970-1985 time period in the 3 x 3 cm size due to their extremely

delicate nature. Assuming that 4-mil cells will not be available in

the 3 x 3 cm size, during any period of this study, examination of

Fig. 19 and Table VIII indicates the optimum cell/coverglass configura-

tion to be a 3 x 3 cm 8-mil wrap-around bwlar cell with one-mil inte-

grated coverglass. This configuration will give 28.7 lb/kW and pro-

duce 9.7 watts/sq ft in the 1970-1985 time period.

In conclusion, it is projected that the state-of-the-art of photovoltaic

power systems utilizing high efficiency silicon solar cells and light-

weight rigid structures will be capable of 25 lbs/kW and 10 watts/sq ft,

This means that for a multi-kilowatt array producing, for example 10 kW

electrical power, the photovoltaic array will weigh 250 The and have

an area of 1,000 sq ft. These weights and areas will be well within

the boost and envelope capabilities of the launch	 vehicles expected

to be used in the 1970-1985 time period. It can also be expected

that solar photovoltaic arrays supplying up to 50 kW electrical power

will be capable of being placed in orbit without undue restrictions on

other components of the spacecraft.
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% Power % Power
of Power Gain from

a e / e T* at 280C  Bare Cell	 •

0.70 1.00 0.70 28°C 100 -

0.935 0.368 2.54 85°C 777 -

0.874 0.642 1.36 63°C 86% 4.3%

0.813 0.835] 0.974 46°C 92% 15.8%	 i

1

e

TABLE VII

COVERGLASS CHARACTERISTICS

Cells and Modifications

Ideal cell

Bare cell

Cell with ;;^, 1.11 ` SiO
coating

Cell with 0.006 inch
glass and A-R coating

Cell with 0.006 inch
glass, 415 m-, blue and
A-R coatings

Cell with 0.006 inch
glass, 415 m# i blue,

1.151l red and A-R
coatings

0.81	 0.835	 0.97	 46°C	 92%	 8.5%

0.70	 0.835	 0.84	 35°C
	

96%	 11.2°

*Assuming a rear surface emissivity of 0.9 radiating to space.

i
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ìi O //1 N ^0 10 w1 N O O ^ O ^+ .1 .+ .-. V1 N •o ,7 -• n ./'t

~ ^ ^v wr ..• ^ ^a1 1f+) 1r 	P'1 ^T'1	 Al M PN'1 f^11r1 P1 1r '1 P'1 1Y N ^1 N N

^',. `p ^O	 H
^nQ

N Al M1 N n O•	 •	 • Al O ^1. P1 0• fq N ^ n N ^. W
•̂ i1 •Ai 1'"1 1p • gyp

•
'w1•

•	 • • . f^•
.I •I P'1 (•1 (r1 P1 M fq l^'1 1'1 P^1 1i1 Al P1 N •

u

V V
^A
rj u M A ^O

`..y0

.I O. O^ O^ .Vi

a	 ^' vw

^iN
^
^ r̂ 1"'1 O N•r N..r N a

"Yr •+ In
N

^D p • 8 p•gG7\ N N c	 s
40)

y	 .^

is

.G a
pp
A

oo
O•

pp
O•

pp
OI

pp p po
OI O^ O	 w

g O O O O O O
^'

O u•	 a V
H >	 O v
H 1+ M	 /^

u N ^
a	 u t!

.D
A O^

IO •p •^+ C	
M

N
P a OI a P

N

^,,^ w O O O O O O Ip O w
V1 a .r	 M

w
3

pw

1.7
H ^

^ .^ u	 ^ u

^I F .p1 di

A a	 A ••^

O
V	

u d
•d ^ HV w b	 l	 '•

Id

V 60 ^)
'0 ^ '^ ^ y .^

V
1 Ln

c " tou
w ca w V

P4
► 	 IMO ri m 

.4 '^'	 °:z w

u .r
u

C "•
C
w

.r u QVy G
V R w

V C N
! c M

M
w 

•ai U •OL 1 w 37 d	 CI
> a > ^'.. A

C
^o b

U V Z v ulroe9 _

.^ .;.	 C.	 ••^.X	 Y)
u c r. o v

CN Go •Nr QO1
r4 OD N GO W N 00.2 N 00

,d
^..^

V ^ v '~
V	 C

N	 C:N
.^	 ., N V

N N N M M M M [^ G ''. ca l	 u

UV y
N N N M M M M -^ G 	 Off'

^'^	 N M ^?^ v vvv

1 ^ W
v E^

P+ N 1+1 ^ 1/^ •p n C
F:



1
1.2.3 !;OLAR PHOTOVOLTAIC ARRAY WNCEPTS

This section discusses the photovoltaic cower sources which are appli-

cable to solar electric propulsion. The discussion will be limited to

the power systems which have a specific weight of 50 lb/kW or less.

Power systems, which do not presently meet thc- above criterion but are

potentially capable of yielding the 50 lb/kW performance will also be
Y

discussed.

1.2.3.1 Status of Development

1.2.3.1.1 Array Concept

There are two array concepts which are suitable for the electric pro-

pulsion application. The first consists of rigid-frame solar panels

which are folded together to form a launch package. Once in orbit the

panels are deployed in an accordion fashion. The advantageous features

of this concept are: ( 1) demonstrated experience from a design, fabrica-

tion, and flight -proven hardware standpoint; ( 2) superior structural

characteristics in terms of withstanding retromaneuver and/or artifi-

cial g loads. The main disadvantage is the large packaging volume re- 	 4

quired. For this reason the array size will be limited to approximately

50 kW for the Centaur class of launch vehicle. 	 i

I
The second approach is to employ a rollup solar array. For this concept:

x

the solar cells are mounted on a flexible substrate. In a stowed posi-

tion the array is rolled in layers forming a cylindrical body. Deploy-

ment is effected Ly extending mechanisms which may be extending booms,

scissors mechanism, or the substrate itself. The main advantage of the

concept is its extremely compact volume. It is thus conceivable to

speak about a megawatt size solar array. The problems of this concept

lie in the areas of insufficient operating experience and the structural

dynamic characteristics.
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1.2.3.1.2 Power System Size

The development status of the solar array may be categorized according

to the power system size as follows:

• Flight proven hardware - up to approximately 1 kW

e Detail conceptual design - 20 to 50 kW

• Paper study - 1 to 5 MW

A rigid frame array which is flight-proven up to approximately 1 kW size

has been studied conceptually up to 50 W. Several arrays of approxi-

mately 50 square feet have been fabricated for demonstration purposes.

(A demonstration panel normally consists of mock-up cells mounted on

substrate with deployment mechanism. 	 The primary purpose is to demon-

strate feasibility in deployment and structural integrity of the con-

cept.) The rollup array has been studied conceptually up to 20 W.

1.2.3.1.3 Areas Requiring Further Development

Based on the above discussion it is clear that a detailed conceptual

design should be performed for the megawatt size array, with particular

emphasis on the rollup concept. The primary objective will be to obtain

the performance characteristics and parametric data. 	 The conceptual

study should include the following:

• Detailed system layout

• Study of deployment and retraction techniques

• Packaging study

• Structural analysis with particular emphasis on dynamic
characteristics associated with launch, retromaneuver and
artificial g load requirements.

• Manufacturing techniques to reduce array cost to manageable
level.
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1
1.2.3.2 Rigid Frame Solar Arrays

Two rigid array concepts are capable of meeting the 50 lb/kW (or less)

requirement. These are the biconvex, electroformed concept developed

by EOS and the box-frame approach being developed by Boeing (see Table

IX.

1.2.3.2.1 EOS Biconvex Array (Ref. 1-12)

42 lb/kW Solar Panel

Approximately a year ago EOS initiv:ed, under NASA sponsorship, a light-

weight solar panel development program. Under this program a demonstra-

tion panel was produced which has a specific weight of 42 lb/kW. The

demonstration solar panel confirmed the soundness cf the EOS curved-

shell, electroformed structure concept. The concept has a performance

potential of 27 lb/kW. A second year follow-on effort is being directed

toward that goal.

The basic structure of the panel consists of an electroformed nickel

hollow-core substrate held in a biconvex position by an aluminum frame.

Covering the hollow-core structure is a sheet of fiber glass upon which

the solar cells are placed. Figure 20 shows a typical panel construc-

tion. Figure 21 is a photograph showing the demonstration panel with 	
"R

partial mounting of solar cells and anodized aluminum blanks to simu-

late the active cells.

c

10 kW Power System Conceptual Design

to
A

6

A conceptual design of a 10 kW power system was made to evaluate the

effects of system component interaction. Such interaction affects the

optimum size of the solar panel module, deployment mechanisms and
	 ,d

01
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Figure 21. Five-Foot-Square Biconvex Demonstration Panel
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method of array deployment and the array packaging problem. The 10 kW

array is capable of tolerating the environment of an Atlas/Centaur

vehicle and can be stowed within a shroud similar to the OAO. This

conceptual study has resulted in the selection of a 5-foot-square panel

as the optimum size. The array overall specific weight is determined

to be 42 lb/kW, including the electrical cabling and deployment mechan-

isms. The configuration of this power system (suitable for Jupiter

flyby mission) is shown in Fig. 22.

27 lb/kW Solar Panel

The weight of the solar array which was described previously can be

further reduced to 27 lb/kW level if the following design modifications

aad technology advances are made:

•	 Use of electroformed aluminum hollow-core as the substrate
structure.

•	 Use of beryllium as the panel frame material.

•	 Development of 4-mil solar cells with 1-mil integrated cover
glass capable of producing 10 W/ft 2 at standard conditions.

o	 Incorporation of major electrical cables into the frame design
so that this material serves the dual purpose of conducting
current and adding to the structural strength.

•	 Incorporation of thermal control surfaces into the metallic
substrate by anodizing.

•	 Use of better production techniques to decrease the adhesive
weight.

In summary, the technology developed for the 42 lb/kW panel can be

'	 1

further improved to yield a 27 lb/kW system. 	 The required development

effort will be relatively modest.	 The estimate of the advanced solar

incorporating all the improvement outlined	 is	 inarrays	 above	 shown

comparison with the current solar arrays in Table X.
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TABLE X

PROJECTED WEIGHT AND POWER CHARACTERISTICS, 10.4 kW ARRAY

Item Description

Demonstration
Panel Design

Array Design

lb/ft2 lb lb/ft lb

Cover glass
3-mil microsheet 2 x 2 cm 0.0394 41.0
1-mil integral cover glass
2 x 2 cm 0.0131 13.7 

Filter adhesive
2-mil RTV-602 0.0096 10.0
None _	 _	 -

Solar cell

-mil conventional contact
2 x 2 cm

0.0530 55.1

4-mil wraparound contact
2 x 2 cm

0.0530 55.1

Interconnector
Bus bar and solder 0.0200 20.8
Printed circuit back-contact 0.0100 10.4

Cell adhesive
4-mil RTV-40 0.0207 22.8
Same

0.0072 7.9

0.0207 22.8

Dielectric
1-mil H-film
Same 0.0072 7.9

Dielectric
adhesive

2-mil RTV-40 18% of area 0.0037 4.1
Same 0.	 0

Thermal control

paint
-3-mil laminar X-500 0.0240 29.7
None, anodized substrate -	 -	 - -	 -

Cabling and
hardware

Separate cable bundles 0.0228 28.
Major cabling incorporated
in frames 0.0050 6.2

Mechanisms
For deployment 0.0376 46.7

_ 0.0376 46.7

Substrate
2-mil electroformed nickel 0.0664 73.0
Electroformed aluminum alloy 0.0464 51.1

Frame
10-mil _aluminum box beam 0.0815 101.0
Beryllium frame 0.0538 66.7

Total lb 440.3 285.0

Specific power W/ft 2 19 10

Array power W 10,400 10,400

Weight/power lb/kW 42.4 27.4

.1

.11,
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1.2.3.2.1 Boeing Box-Frame Array Concept (Ref. 1-3 and 1-14)

The work performed by Boei;lg on large area photovoltaic Arrays has an

objective of achieving a power system capable of producing 48 kW at

50 lb/kW. A typical subpanel consists of thin-walled, double-box-

section beryllium frames and single-box-section intercostals. The

matrix substrate of pretensioned fiber glass tape is bonded between

the frames and to the intercostals. The solar cell modules, consisting

of coverglasses, cells, and interconnectors, are then bonded to the

substrate. The backs of the cells, covered with a thermal control coat-

ing, reject heat directly to space. The individual subpanels are joined

together by hinges and latches. The main subpanels deploy when the

rotary drive unit retracts a cable which imparts a turning moment about

the pulleys and hinges. As each subpanel reaches the fully deployed

position, hinge latches are locked.

Figure 23 shows a second generation panel which incorporated the

necessary changes and improvements determined during the study. This

includes: orientation of fiber glass tapes at 450 with respect to the

frame; addition of beryllium diagonal bracing; and provision of shear

ties and stack clamping for shear transfer between stowed subpanels in

the launch mode. Other improvements are: replacement of twisted wire

cables with flat aluminum or copper conductors; replacement of back-

connected cells by standard front-connected ones; and replacement of

4-mil coverglass with 3-mil covers. The specific weight breakdown

is shown in the tabulation below:

• Cell modules	 12.3

• Structure	 15.1

• Adhesive and thermal coatings 	 4.4

• Mechanisms	 3.8

• Buses	 3.2

Total	 38.8 lb/kW
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1.2.3.3 Rollup Solar Arrays

1'1':;isti1i9 rollup array concepts, either demonstrated or paper study,

are summarized in Table XI. All these CO11CepL6 have the follow-

ing common features:

o Deployment mechanisms

• Means for solar panel protection during launch, including
takeup rolls, cushion pad, casfng, vtc.

• Structural support
• Substrate

• Electrical components, including solar cell stacks, dielectric,
and wiring.

It is therefore possible to synthesize new concepts different from

those shown in Table XI. The following paragraph describes some

of the array concepts proposed by the industry.

1.2.3.3.1 Hughes Rollup Array Concept (Refs. 1-15 and 1-16)

A rollup solar array concept has been proposed by Hughes. Conceptual

designs and analyses have been made on 20 kW power systems to determine

the concept feasibility. A 50 squares foot demonstration panel has been

fabricated for verification of the design procedure and limited environ-

mental tests.

The basic concept employs dendritic solar cells, 1 x 30 cm, bonded to

a flexible substrate which supports the cells and associated wiring.

In the stowed condition, the array is rolled up together with a thin,

protective cushion. The rollup assembly is enclosed in an external

shell which provides radial pressure of approximately 0.6 psi. The

interwound foam cushion transfers the applied pressure uniformly to

the array substrate and prevents any relative motion between substrate
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iyers and the swrage drum during launch environments. Theoretical

calculation has indicated that this design will withstand a 60r,

acc4 Legation without any relative substrate layer movement.

Two types of deployment bornnt, are considered. One is the DeHaviland

device with six nested elements. The other is tale Hunter spring which

is wound at an angle to the boom axis such that when released the spring

forms a long conical tube. The deploymcr::: scheme relics on the positive

action of the extending booms. As the array is being deployed, the foam

cushion will be rolled up on a takeup spool. Figure 24 shows the

demonstration rollup array in the deployed condition.

Tne demonstration array has been put through a limitod environmental

test (such as temperature shocks ranging from -250 to +2500F). The

rate of change applied was 50 0F per minute.

A conceptual design was made for a 20 kW array to evaluate the potenti-

ali-ty of the 6emonstration panel in terms of a large system. The array

is designed to withstand 0.003g perpendicular to the surface and 0.003

rad/sec t rotation about the principal axis. The weight breakdown for

the 20 kW system, based on 10 W/ft 2 500C temperature, and 95 percent

packing factor, is listed below.

o Panels	 (0.168	 lb/ft 2 ) 16.8 lb/kWj

o Deployment mechanisms 12.5 lb/kW

e Drums 3.0 lb/kW

o Cushions 1.7 lb/kW

o Covers 1.2 lb/kW

e Takeup spools 0.7 lb/kW

e Rewind mechanism 0.5 lb/kW

o Structure 1.2 lb/kW

o Bus bars 0.6 lb/kW

Total 38.2 lb/kW
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1.2.3.3.2 Ryan Rollup Array Concept (Ref. 1-17)

A different roliup array approach was taken by Ryan Aeronautical Com-

pany. The basic idea of mounting solar cells on a flexible substrate

stretched between two extendable booms is the same as with the Hughes

approach. The main differences are in the design of the boom and its

deployment mechanism, and in the approach of separation and cushioning

of substrate layers during the stowed condition.

The array concept has as an objective a power system which has a solar

array area of ?SO square feet. The array is to be compatible with the

Atlas/Centaur vehicle environments as well as with a hypothetical

spacecraft similar to the one for a 1969 Mars mission. A 50 square

foot demonstration array (without solar cells and wiring) was fabri-

cated. It consists of four 55.8 x 36.6 inch modular panels. The cal-

culated existing specific power is 12.5 W/lb, with a potential growth

to 14.5 W/lb (70 lb/kW) .

The Ryan boom is made of two titanium ribbons seam-welded together at

the two edges. The array is designed to be deployed and retracted many 	 1.

times for purposes of checkout, retromaneuver, etc. When retracted,

the boom which has a near circular shape is depressed to a flat sur-

face by a guide sleeve and spring-loaded rollers. As the direction of

the storage drum is reversed the pressure on the beam is removed and

the beam returns to its original shape. The power required for the

drive motor is approximately 10W.

The basic substrate material, selected to withstand the heat sterili-

zation requirement for Mars landing mission, is epoxy-impregnated

fiber glass cloth. The substrate thickness is 3 mils; the edge is

built up to a thickness of 12 mils. The ends of each substrate are

provided with piano-type hinges which permit modules to be easily

replaced.
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The substrate layer separation and cushioning are provided by half-

inch-diameter silicone foam rubber pads mounted on the back surface

of the substrate. The pads are faced with 2-mil Teflon sheets. The

demonstration array in a deployed position is shown in Fig. 25.

The weight breakdown for existing and future arrays is listed below.

Existing	 Future

o Beams	 4.9	 4.8

e Substrate	 2.3	 2.3

e Support structure	 15.9	 12.5

o Mount provision	 2.0	 --

o Solar cells and wiring 	 15.0	 15.0

e Totals	 40.1 lb	 34.6 lb

Specific power	 12.5 W/lb	 14.5 W/lb

Specific weight	 80.0 lb/kW 70.0 lb/kW

1.2.3.3.3 EOS Rollup Array Concept

The basic feature of the array concept lies in the use of curved-shell

substrates to provide structural stiffness without any assistance of

extending booms. This approach departs from other concepts which rely

on the booms to provide the required moment of inertia. The Hughes

concept, for example, employs De Havilland booms in arriving at the

specific power performance of 40 lb/kW, but offering only 0.003g

resistance to acceleration. The Ryan approach employs stiffer booms

to meet the 0.2g requirement. However, its specific weight is increased

to 80 lb/kW .

The stiffness property of a curved shell is well known. This property

is derived from the fact the section moment of inertia of a thin, flat

structure can be enhanced significantly by providing edgewise restraints

to force the structure into a curved surface. The main problem is to

devise a means of providing these edge restraints.
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Figure 26 illustrates a rollup array concept which utilizes the

curved-shell approach. The array substrate consists of two beryllium

sheets of approximately 7 mils, in thickness. The two sheets are bonded

together at the edges. Small rectangular holes are provided along the

edge in the same manner as a photographic film. These holes fit over

a sprocket drive which serves to deploy and retract the solar array.

e

The deployment mechanism consists of a drive motor, a cushion take-up

spool, the sprocket drive, two guide rollers, and tension wires spaced

at approximately 18 inches apart.

In the undeployed configuration, the two substrate sheets and the wires

lie flat in the untensioned mode. (The far end of the array which is

left beyond the guide rollers is an exception. This portion is left in

the string-and-bow configuration to facilitate deployment.) Upon command,

the sprocket drive which is chained to the motor shaft will start to

feed the array through the guide rollers, and the cushion pad will be

taken up simultaneously. Th? guide rollers are positioned in such a

way that the two substrate sLiets bow slightly. 	 The angle formed be-

tween the sheets will be approx i mately 100 . At this angle, the ratio

of the plan-form to the curved surface will be about 0.98. Final se-

lection of the substended angle will be determined from trade studies

since a large angle will result in a stiffer structure and less weight

but the power output per unit area will also be less.

The two beryllium sheets are kept in the bow shape by tension wines.

There are two approaches which appear to be attractive for keeping the

wires under tension. The approach is to use one continuous piece of

wire which is threaded diagonally through flexible eye bolts attached

to the array edge. As the array is deployed the slack of the wire will

be taken up by a take-up spool which is geared at an appropriate ratio

to the sprocket drive. The second approach is to use individual tension

1
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wires. Each wire has one end permanently tied to the array edge with

the other end free. As the array is fed past the roller a mechanism

grips the free end and pulls the wire in tension. The tension wire is

held in place with latching spring mechanism. During retraction mode,

the process is reversed.

Solar cell stacks and associated wiring will be mounted on a fiber

flass sheet which is bonded to the front beryllium sheet (sun side).

The back (shadow side) beryllium skin will have lightening holes for

weight reduction and temperature control purposes. 	 The system weight

estimate is summarized below.

e Solar cell stack including dielectric cells,
wiring, etc.	 20.0

• Substrate 0.007 beryllium 	 13.3

• Cushions	 1.7

e Drums and takeup spools	 3.5

e Motor, sprockets, drive chain, guide
rollers and tension wires 	 5.0

• Total	 43.5 tb/kW

f
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1.2.4 SOLAR ARRAY TEMPERATURE CHARACTERISTICS

The equilibrium temperature of a solar panel is an important parameter

in the determination of power output of the array. Figures 27 and

28 show equilibrium temperatures for flat oriented solar panels for

a specific case typical of a solar panel and for a general array design,

respectively.

The panel temperatures were calculated as a function of solar intensity

using the following assumptions:

a. The panel is a flat plate with both sides radiating to cold

space.

b. There is no adjacent spacecraft to block the panel radiation.

c. The panel has "perfect conduction"(isothermal).

a	 all - i1KF
d. ti e	0.50	

a	
0.45

+e	 +eT	 B	 T	 B

*Specific conditions used to obtain Fig. 27.

General Equation

a S coso _ J(e T + e B ) T4 + P/A

P/A = V, K  a S coso

Combining Eqs. 1 and 2

a S cosp (1 - T i KF ) . 1/4

T = ' (eT + eB)

Assume

e

(1)

(2)

(3)
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1
then

X (1 _ "Y'd

e T + sB	
0.45	 (5)

Combining; Eqs. 3 and 5

O.45 S 1/4

where	 ^x = solar absorptivity

S	 solar radiation (MW/cm2)

• Stefan -Boltzmann constant	 5.67 - 10_q

C  0 emissivity of panel top surface

C B 
0 emissivity of panel bottom surface

T - panel temperature ( 0 Kelvin)

P - electrical power output (watts)

A - panel area (ft2`

11 • solar cell efficiency

K 
	 solar cell packing factor

(3	 incident light angle from normal to the panel (degrees)

1.2.5 SOLAR ARRAY POWER OUTPUT VERSUS DISTANCE FROM THE SUN FOR
VARIOUS MISSIONS

Figures 29, 30, and 31 illustrate variations in solar array power

output for three missions under consideration, using Fig. 32 as the

basic solar cell E-I characteristic curve. The missions are a Mars
a.

Probe and Orbiter, a Jupiter Probe, and a Venus Probe and Orbiter.

The Mars Probe and Orbiter and the Venus Probe and Orbiter assume a

50 kilowatt array at one AU while the Jupiter Probe assumes a 14 r

kilowatt array at one AU. The change in power is due to temperature,

intensity, and radiation degradation variations during the mission 	 -^

duration. However, since the launch period is the 1975 year, 	 --
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radiation aegradation can be assumed to be negligible since this is

the period of minimum solar flare activity. The curves then basically

show the effects of variation in temperature and intensity on solar

array power output.

The Venus Probe and Orbiter solar array will increase in power from

50 kilowatts at earth to approximately 59 kilowatts at Venus encounter

and orbit. The transit period from earth to Venus was assumed to be

140 days while the orbit duration was assumed to be 50 days. The power

output during orbit will be constant, being that of the power at en-

counter. The power output of the Jupiter Probe will vary from 14 kilo-

watts at earth to approximately 400 watts at Jupiter encounter. The

variation in the Mars Probe solar array power output is from 50 kilo-

watts at one AU to approximately 22 kilowatts at Mars encounter and

orbit. The transit time was assumed to be 270 days to Mars with an

orbit time of 50 days. The power output curing orbit will be the same

as that of Mars encounter.

e
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SECTION 2

ELECTRIC THRUSTER TECHNOLOGY

The phrase, Electric propulsion, brings to mind a great variety of

propulsion devices. At some time during the past 10 years it seems

that every possible means to increase the energy of a storable pro-

pellant and exhaust it from a vehicle to provide thrust has been ex-

plored. The devices that have survived the exploratory research are

the purely thermal resistojet and arcjet, the electrostatic collo'.d

and ion engine and combination thermal/electromagnetic system known

as the magnetoplasmadynamic arcjet.

These various systems have found certain preferred operating areas in

which their application is most promising. These regimes are shown

in Fig. 33. In reality, there are no real boundaries to the re-

gimes, but engineering, facts have established most of the nominal

limits. Successful operation of any of these thrusters outside these

limits will require breakthroughs in materials, propellants, propellant

storage methods, power .upplies and a host of other technologies.

The most generally useful formulaticn of thruster performance is in
	 ^f

terms of power-to-thrust ratio and specific impulse. Such a formula-

tion measures the efficiency, thrust and propellant mass required by

any given thruster. For very high energy missions (high total impulse)

the thrusters of serious interest are the cesium and mercury bombard-

ment thrusters, the cesium contact thruster and the MPD arcjet. The

performance (1967) of these four types are displayed in Fig. 34,

The most advanced of the four is the cesium bombardment thruster. It

has the best performance, yields the lowest system mass and has demon-

strafed the best long-term reliability and reproducibility.
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From a long range viewpoint the MPD arcjet is probably the most promising.

At present, its performance is not as good as the other types but its

potential advantages are high thrust density, ruggedness and simplicity.

Given time and development effort it should be the best choice for

prime electric propulsion.

The mass if the two bombardment ion thrusters is shown in Figure 35.

These data are for thrusters that exist. It should be mentioned that

the mercury thrusters have not received much mass reduction attention

to date and the mass should ultimately be reduced considerably.

Because of its inherent higher magnetic field, it will probably not

be built any lighter than twice the mass of the corresponding cesium

bombardment thruster.

The MPD arcjet shown on the curve indicates a constant mass irrespective

of the power level. This results from the rather massive components

that are required. Since this thruster is still in a laboratory

status further improvements are to be expected but are difficult to

speculate about at present.
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2.1 CESIUM ELECTRON BOMBARDMENT ION ENGINE SYSTEMS

k

2.1.1 INTRObUCTION

Cesium electron bombardment ion engine systems are comprised of a

fuel reservoir and feed system, an engine, a neutralizer, and power

conditioning and controls. Power conditioning and controls will be

discussed in a separate section.

The use of cesium in a bombardment ion engine system of`-rs a very

high efficiency. The ionization potential of cesium is the lowest

known and its density is relatively high. This results in a high ratio

of accelerating energy to accelerating energy plus ionization energy,

or power efficiency. Due to its low ionization potential and large

ionization cross section, a large fraction of the propellant is

ionized, thus the mass utilization efficiency is high. The product

of power and mass efficiencies, or overall engine efficiency, is

therefore very high.

Additional advantages accrue from the use of cesium. It is easily

handled by static zero-g feed systems, it allows the use of a cesiated

tantalum cath:;,Ide with its attendant long lifetime, and its character-

istics in the discharge allow the use of weak magnetic fields with

a resulting low engine. weight. The cesium plasma bridge neutralizer

used with these systems is the most efficiency and long-lived

neutralizer developed to date.

In this analysis, two principal objectives were taken. The first was

to characterize engine system volume, mass, and power. The second

objective was to describe in some detail the interfaces between this

system and its power conditioning and the spacecraft.
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In search for a common parameter upon which to characterize the

propulsion system, the most immediate candidate is thrust level.

If a specific impulse can be assumed, then thrust level determines

engine size, mass, and electrical operating characteristics. The

feed system is sized on the basis of the total impulse. Again, if

a specific impulse can be assumed, then the feed system size and

mass can be characterized as a function of the product of thrust

and time. The neut •.alizer can also be characterized as a function

of the emission-thrust-time product. Assuming certain general

packaging characteristics, it is then possible to find the propulsion

system size, mass, and power as a function of thrust and time.

A large number of curves were generated in order to arrive at the

final system parameters. These curves were derived from experimental

data and known scaling relations. For example, feed system .passes

are known for a number of lightweight Zero-g systems. The principal

feed system mass is the reservoir. The mass of this reservoir

with a constant skin thickness should be proportional to the two-

thirds power of the capacity. Practical feed systems are somewhat

more efficient at larger capacities, however, and the mass is

better approximated as the volume to the 0.6 power. In addition,

certain fixed mass associated with the vaporizer and flanges must

be considered. In this manner, the example curve was derived.

Similar detail was included in the generation of all the remainingr-.

curves. It was not felt appropriate to include such great detail

in t'Us report, so the curves are discussed only where they might

appear questionable.

As discussed in Section 2.1.6, considerable performance improvement

is expected in the near future. Such improvements were not considered

in the generation of the data included herein. While this dates the

enclosed material, i.t allows more acc).- , te detail. Minor inaccuracies
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f
in detail will be absorbed in the final values for size, mass, and

power so these final values may be considered as very accurate norms.

Details of the integration of the propulsion system into each space-

craft will modify these ove rall values beyond the range of error

inherent in the results preset.,-ed.

2.1.2 OPERATION

2.1.2.1 Eny, ine

A schematic of a cesium electron•`•+.ombardment	 ion engine system is

shown in Fig. 36.	 Cesium propellant is introduced as a vapor

through the cathode, 	 is ionized in the discharge chamber, 	 and is

accelerated through the electrodes to high exhaust velocities.

Within the chamber the cesium vapor is bombarded by electrons passing

from the cathode to the anode.	 The paths of these electrons are

increased by applying an axial magnetic field.	 This increases the

probability of ionization and results	 in a significant reduction

in discharge power and an increase in mass utilization.

The electroncs are emitted from the cesiated tantalum surface within

the cathode.	 Such a surface is capable of emitting currents of one

ampere per square centimeter at temperatures as low as 600 0 centi-

grade.	 The tantalum surface is cesiated by the propellant flow. 1

Prior to starting,	 he cathode is heated external l y.	 Once the8 	 Y

discharge has been initiated,	 the cathode emitter is maintained at

operating temperature by ion bombardment from the plasma,	 radiation

from the plasma, and other second order ef"*ects. 	 With the discharge

on, the external heating power is removed and the cathode runs in

an autocathode mode.

When an ion arrives at the screen electrode, 	 it	 is accelerated by

the electric field between the screen and accelerator electrodes to
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e

a high exhaust velocity. The accelerator electrode is biased nega-

tive to prevent the passage of electrons from the exhaust to the

source.

2.1.2.2 Control

Two control loops used with this engine are shown in Fig. 37. The

first is a feed control loop. The exhaust beam current is measured

at the power supplies and compared with a reference. The error be-

tween the reference and the beam is amplified and used to drive the

cesium vaporizer. This results in precise beam current control.

The second control loop senses a small increase in beam current re-

sulting from a small increase in discharge power and adjusts the

discharge power up or down to operate at the point where maximum

engine efficiency is achieved. This control (Section 2.1.4.3) is

unique to the cesium electron bombardment ion engine.

2.1.2.3 Feed System

The cesium feed system, shown schematically in Fig. 38, represents

a simple yet effective solution to the problems of phase separation

and flow control in zero gravity. By properly designing a network

of tapered cells into the propellant reservoir, the liquid cesium

is pumped by surface tension forces to the feed line. At the feed

line, a wick draws the cesium from the reservoir. At the free end

of the wick a heater is used to evaporate the cesium in a controlled

flow to the engine. Increasing or decreasing the heat to this

vaporizer effects rapid and accurate flow control.

2.1.2.4 Neutralizer

The cesium discharge neutralizer consists of a miniature cesium feed

system, a cathode similar to the engine autocathode, and a sustaining

_y
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t

l
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anode electrode. A do bias is applied to the sustainer and the

cathode is heated electrically. The vaporizer of the. miniature feed

system is then heated until a discharge is initiated between the

cathode and :sustainer electrode. Vaporizer power is regulated to

maintain a pre-Jetermined current to the sustainer electrode as

indicated in Fig. 37. With this discharge vstablished, a con-

ductive plasma bridges the space between the neutralizer and the

exhaust ion beam. As a result, electrons are conducted into the

beam at very low voltages while the neutralizer may be located far

enough out of the beam to prevent degradation due to ion bombardment.

2 . 1.2.5 Lifetime

Two cesium electron bombardment ion engine systems have bee- ife-

tested. Both systems consumed a total power of 1 kilowatt and

generated approximately 30 millinewtons of thrust. The specific

impulse for both tests was 5,000 seconds. In these tests, the 9 kg

and 18 kilogram zero-g feed systems used ran to cesium exhaustion.

The engines performed as designed and the neutralizers operated

throughout both tests. The tests ran for 3100 hours and 8100 hours

respectively, and the tests indicite that lifetimes of 2 to 5 years

are to be expected.

2.1.3 PERFORMANCE

This section describes the performance achieved to date with the

major ion engine subsystems.

2.1.3.1	 Et,-, i ne

Cesium electron bombardment ion engines have been built and operated

at thrust levels from a few micronewtons to 45 millinewtons. Figure

39 shows engines of a permanent magnet variety which sp,.-A the

thrust range from 12 x 10 -G newto:: to 45 millinewtons.
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Mass

Mass performance of cesium engines has been well established and

is :shown as a function 0' thrust in Fib;. 40. Weight is e. function

of thrust because thrust determines the beam current and the effective

electrode area which is required. The thruster mass is one of the

least significant masses of a cesium ion engine system especially

when permanent magnet engines are used.

Volume

Thrust level also determines the overall engine volume. This volume

shown in Fig. 41 includes the necessary space which must be left

around the engine to provide high voltage isolation. It includes

the volume occupied by the discharge chamber, cathode, electrodes

and the electrode support insulators.

Mess Utilization

A great deal of performance data has been obtained for cesium

thrusters. This performance has been verified in life te,-ts where

no significant reduction in efficiency has been found. The first

characteristic considered here is the mass utilization efficiency.

This is shown in Fig. 42 as a function of thrust. The mass

efficiency is reduced at low thrust due to the smaller discharge

chambers required and resultant increase in the ratio of surface

area to volume within the thruster. Knowledge of the mass utilization

efficiency allows computation of the required propellant mass from

the total mission impulse requirement and thruster specific impulse.

Only very small margins are required since the mass utilization

efficiencies have been verified over long periods in a number of

life tests. Comparisons of the total calculated cesium expelled to
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the measured mass change u£ the reservoir, have been in agreement

wits. the eSL imated mass efficiency to within 1 percent.

Specific Im2ullse

For .'.ow thrust ion engines, the small . total fuel mass required

reduces the importance of specific impulse. Such systems are

normally considered for power-limited satellite applications, so

specific impulse is determined by the point aC which the minimum

thruster power is realized. For high thrust missions where signi-

ficant spacecraft design parameters are affected by the efficiency

versus specific impulse characteristic of the engine, specific

impulse cannot be ignored.

The specific impulse is determined by the mass utilization efficiency

and accelerated ion energies. The ion energies are determined by

the net accelerating potential which can be accurately approximated

by the positive high voltage potential applied to the ion source.

No doubly charged ions are observed with cesium electron bombardment

ion engines, so the average exhaust velocity can be computed as the

product of the mass efficiency and the ideal exhaust velocity.

The change of power efficiency with specific impulse is not very

great, so specific impulse can be generalized. Figure 43 shows

the resulting specific impulse as a function of thrust level. The

ideal specific impulse is that corresponding to the ion velocities

uncorrected for the mass utilization efficiency.

Power Efficiency

For thrust levels well in excess of 4.5 millinewtons, thruster efficiency

is not strongly dependent upon size and the performance of cesium

bombardment engines can be characterized by a power - to-thrust ratio
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versus specific impulse curve as shown in Fig. 44. Another curve

used to define this ?e rformance is the overall engine efficiency versus

specific impulse as shown in Fig. 45. Detailed engine power require-

ments will be presented and discussed in Subsection 2.1.4.

2.1.3.2 Feed System

Zero-g cesium feed systems have been buit and operated with capaci-

ties ranging from 0.05 kg to 18 kg. Propellant tankage masses have

ranged from 100 percent of the fuel mass for the smallest seed systems

to 10 percent for lightweight 2.3 kg feed systems, and 15 percent for

large systems which were not designed to be especially mass efficient.

Flight qualified cesium feed systems can be built with a mass in the

neighborhood of 10 percent of their cesium mass capacity. Two typical,

feed systems are shown in Fig. 46. These feed systems have capacities

of 0.25 kg and 18 kg. The larger system has a laboratory valve atop

its vaporizer and the small feed system has a neutralizer attached.

Power requirements for these zero-g feed systems range from 3 watts

to 10 watts as shown in Fig. 47. The power required depends upon the

response speed necessary. Heat shielding can be used to minimize the

power requirement. Most systems built to date have had response times

on the order of 30 to 60 seconds. The mass performance expected from

cesium zero-g feed systems is shown in Fig. 48. The data are presented

as a function of fuel mass since this determines the overall size of

the feed system. Feed system volume is shown in Fig. 49.

2.1.3.3 Neutralizer

The principal mass of the cesium discharge neutralizer is the feed

system and cesium mass. The cesium mass is determined by the mission

duration and the emission current or thrust level. These neutralizers

5400-Final
Volume 1	 2-21



WF

z
Uh

•

O

Ui

or.x

I

44
P4
U

N 
2Lcn

0
8	 .,4UJ
O tn 1;

j
D

O	 0w

0
U P4

Uj

8
N

0
8

0
O

(suO4Mau /suoMOM) I /d 'OIIVS isnSHI-04-83MOd
5400-Final
Volume 1	 2-22

73620196

.7777



^^ t2 _	
^ ^	 a,4Xd..".. h	 ^ f .a,.	 +- - y ,sii.Y^:1lS 1 -+	 -	 s,.+- ,a. . t,... e...,

I

1

i

O	 m	 S	 1i	 N

Ouswed) 
WIL 

x dL 'A:)N3OIJA lIV83AO

5400-Final	 2_23
Volume I

.....N
0
VON

O
O'
h
W
1J')

CA. y

^ ^ N
uLL

V w. 4u

N

M	 Nw

u

g	

^

O	 u
u

N	 44w
W

e^
N

8
©	

O

•-

w

00

O	 wO

73620197



;Z^

1 ^^

;` \

Figure 46. Zcro-g Cesium Feed Systems

5400-Final
Volume I

2-24

1065163



O

O

1
O

h

3

r

N

u

a^
N

O"

w

vu
Vim!

al0
W

d'

al
N

00
oil
W

i

73629200

N	 ^	 h
	 O

N b3MOd S3ZISOdVA

5400-Final
	

2-25
Volume I



10
600%

X
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I
require a minimum cesium flowrate at low thrust levels and approxi-

mately 1 percent of the engine flowrate at high thrust levels. In

the range of interest between 4 x 10
-5
 and 5 x 10-7 newtons thrust,

the neutralizer mass is relatively independent of the product of

thrust and time except near 5 x 10 -2 newtons thrust, where the mass

becomes proportional to this product. Volume is determined by the

neutralizer mass since the mass is primarily cesium. Neutralizer

mess and volume are shown in Figs. 50 and 51, respectively.

Neutralizer power consumption is nearly independent of the thrust

level. Neutralizer anode, cathode, and vaporizer powers are plotted

as a function of thrust level in Figs. 52 and 53.

2.1.3.4 Propellant Requirements

The total propellant mass required is determined by the product of

thrust and time divided by specific impulse. Figure 54 shows curves

of propellant weight versus thrust for different mission times.

These curves were drawn using the specific impulse: corrected for

mass efficiency from Fig. 43. The dotted line in Fig. 54 corresponds

to a curve for constant specific impulse. As can be seen, the effect

on total mass of assuming a constant specific impulse is very small.

If this assumption is made, a single curve for propellant mass as a

function of the product of thrust and mission time can be drawn as

shown in Fig. 55.

2.1.3.5 System Volume

To the sum of engine, feed system, and neutralizer volumes one must

add additional space since the components do not necessarily mesh

in a clean physical package, This packaging volume is shown in
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Fig. 56 as a function of the component volumes. This assumes the

system is packaged effectively in a right circular cylinder of ap-

proximately two-to-one length-to-diameter ratio. Since tha component

volumes are determined by both thrust and mission time, the overall

system volume is presented in Fig. 57 as a function of thrust for

various mission durations.

2.1.3.6 System Mass

System mass performance is somewhat more difficult to predict. In

this analysis, we have assumed three components for the packaging

mass over and above the mass of the engine, propellant, feed system,

and neutralizer. This mass consists of a fixed mass of 0.3 pounds,

plus 10 percent of the component mass, plus a mass proportional to

the overall package area of 0.01 pounds per square inch. These

weights, added to the subsystem mass, yield a set of curves of system

mass versus thrust for different mission times. This set of curves

is shown in Fig. 58.

2.1.3.7 Power

Adding the engine powers from Subsection 2.1.4 to the neutralizer

and feed system powers, the overall system power as a function of

thrust is shown in Fig. 59.

2.1.4 POWER CONDITIONING REQUIREMENTS

A maximum of nine engine, feed systems, and neutralizer loads must

be provided with appropriate powers. These loads can accept do and/

or ac depending upon the nature of the load function. The function

of each load will be described first, followed by definition of the

specific load requirements for various system operating levels.

of
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2.1.4 1 Positive High Voltage
	

5

}

The major portion of the power for thrusters above 4 millinewtons

thrust is supplied in the form of positive high voltage power. This

supply maintains the source at a positive potential with respect to

ground and provides the source of energy for ion beam acceleration.

The load for this supply is the ion beam current plus any stray drain
	 ai

currents between ground and the source or the accelerating electrode

and the source. With adequate care taken to prevent stray currents
	 u

from ground to the source, the ion beam current is computed as the

difference between the currents to the source supplied by this power

supply and the current to the accelerating electrode as shown in

Fig. 37.

The power from this supply is the only power which is converted to

useful ion beam energy. For high thrust engines, and specifically
	

Y

high efficiency engines, this supply handles the major portion of

the electrical power. The positive high voltage supply must satisfy

three requirements. First, the supply must be protected against

overload caused by breakdowns, This requires a momentary power

turnoff to clear faults. Second, when the power supply is turned

on, the engine plasma appears as a very low impedance between the

high voltage power supply output and ground or the accelerat4

electrode. As a :esult, high transient currents must be delivered

during the turnon period without triggering the overload cycle.

Finally, the positive high voltage must never fall below about 75

percent of the nominal working voltage. This restriction on ripple

level is required because bombardment engines always operate space-

charge limited. Momentary loss of high voltages will allow the

plasma within the engine to extrude into the gap between electrodes.

This results in high currents which can trigger the overload circuit.
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The current drain on the positive high volt&g a power supply is

primarily determined by the thrust level. Thrust is proportional to

the product of ion beam current and the sgaure root of the positive

high voltage. The positive high voltage is determined as a function

of thrust by the specific impulse data of Fig. 43. The ion beam

current is therefore a function of thrust alone. A drain current

between the accelerator and positive supply must be added to the

beam current. The resultant positive high voltage supply current

is shown as a function of thrust in Fig. 60.

The positive high voltage used in this determination is shown as a

function of thrust in Fig. 61.

2.1.4.2 Negative Nigh Voltage

The second power supply and the only other high voltage power supply

is the negative accelerator bias supply. This supply provides the

bias required to establish a negative barrier to reflect electrons

frt,m the exhaust beam. This barrier prevents electron backstreaming

from the exhaust beam to the source which would result in a power

loss. Again, overload protection, turn-on surge current capability,

and limited ripple are rejuirements for this supply.

The barrier voltage required to prevent electron backstreaming

depends upon the positive high voltage and is shown as a function

of thrust in Fig. 62. The current drain on this supply ranges

from 10 percent of the positive high voltage current at low thrust

levels to the order of 1 percent of high thrust levels. This

current is shown in Fig. 63.
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2.1.4.3 Discharge Power

This supply provides the voltage and current necessary to sustain

the discharge in the engine. This supply is biased at high voltage

(V+) and its output current is normally limited to protect the

supply. The discharge power supply output is controlled by a feed-

back control loop as shown in Fig. 37. This control circuitry

modulates the discharge power and senses the magnitude of the re-

sultant modulation on the ion beam current. High beam modulations

indicate that the addition of a small amount of discharge power

will result in a high beam current increase. In this case, the

control increases the average discharge power. The control

effectively maximizes the overall source efficiency.

If a do discharge power supply is used the current ripple must be

limited to approximately 10 percent of the average current level.

When alternating current power is supplied to the engine (when

multiple anodes are used in a self-rectifying discharge configuration)

inductive filtering must be used in the center tap return line to the

cathode to achieve 10 percent discharge current filtering.

The discharge voltage is nearly the same for all cesium electron

bombardment ion engines. A slight increase in voltage is observed

at the low thrust level. Discharge voltage is shown as a function

of thrust in Fig. 64. The discharge current is a function of

the ion beam current which in turn is a function of thrust level,

so the discharge current is also shown as a function of thrust in

Fig. 65.
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2.1.4.4 Cathode Power

Cathode power is required for large engines only during startup.

For smaller engines, it may be required continuously. The cathode

power serves to bring the cathode to temperatures adequate for

electron emission and, if necessary, to maintain the cathode at

such temperatures. Since the power delivered is converted entirely

into thermal energy, any waveform may be accepted. The power supply

must be isolated at positive high voltage and must be capable of

being turned off for auto-cathode operation. Both preheat and

steady-state cathode power levels are shown in Fig. 66.

2.1.4.5 Magnet Power

A magnet power supply is required when spacecraft constraints pre-

clude the use of permanent magnet materials. This is a low voltage

do power supply, again isolated at the positive high voltage poten-

tial. Regulation and filtering to within 5 percent is the generally

established requirement for this supply. This power is shown in

Fig. 67.

2.1.4.6 Feed System Power

The feed system requires only pne power supply. This is the vapor-

iser power shown earlier. As in the case of the cathode power

supply ) all the electrical energy is converted to thermal energy

so almost any waveform is acceptable. The vaporizer power must be

controllable in order to effect feedback control of the cesium

flowrate. This supply is also isolated at the positive high voltage

potential.
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2.1.4.7 Neutralizer Power

Three neutralizer power supplies are required. The first of these

is the neutralizer anode power. As described earlier, this de bias

supply is used to establish a discharge from the neutralizer. A no-

load voltage on the order of 100 volts is required in low thrust

applications where low flowrates make the discharge difficult to

initiate. This positive supply is referenced to the neutralizer

common potential at ground. Ripple must be limited to + 50 percent.

The second neutralizer power is the power required to bring the

neutralizer cathode to operating temperature. As a heater supply,

any waveform may be used. The power need not be controlled unless

this function is combined with the neutralizer vaporizer supply.

This supply is also referenced to neutralizer common.

The last neutralizer power supply is that which powers the neutra-

lizer vaporizer. This vaporizer supply must have a controllable

power output referenced to neutralizer common. The output power is

controlled as a function of the neutralizer anode potential or

current in order to effect operation at the minimum reliable cesium

flowrate. This supply can have any convenient output waveform.

2.1.4.8 Pre-heater

One additional supply used in some applications is a pre-heater

supply. This supply powers a heater located in such a position as

to bring the ion engine and its electrodes to a temperature above

the cesium dewpoint at operating flowrates. This supply delivers

power during initial startup only. It can be referenced to ground,

and can use any convenient waveform.

I
7
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2.1.4.9 Impedances

The voltage and current &-or each of the power supplies have been

shown as a function of thrust level. In the case of the cathode

power, vaporizer power, neutralizer cathode power and neutralizer

vaporizer power, only the total power is shown. These loads can

be varied conveniently between impedances of 1 to 10 ohms. The body

heater would be designed to utilize the maximum available pre-heat

power and could be designed to operate with any impedance from 1 ohm

to a few tens of ohms.

2.1.5 SYSTEM CONSIDERATIONS

2.1.5.1 R,espon:e

Typical turn-on times required for cesium bombardment engine

systems are on the order of 15 to 30 minutes. This response can be

enhanced through specific designs or through utilization of a

standby mode of operation where the thruster is kept at temperatures

adequate to allow immediate turn-on.

Turnoff response is instantaneous. No problems have been encoun-

tered in turning off cesium bombardment engines by simply removing

all power. Subsequent re-starts are unaffected by this mode of

shutdown.

2.1.5.2 Thrust Vector Alignment

Thrust vector alignment accuracy is within 2 0 of the thruster axis

for conventional ion engines. The use of well-controlled fabri-

cation, assembly and alignment processes can yield thrust vector

accuracies on the order of 1/2 to 10 .	 Thrust vector alignment
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depends principally upon the alignment accuracy achieved between the

two electrodes and 1/2° thrust vector alignment requires that this

electrode alignment be maintained to within 0.001 inches after launch.

Thrust deflection has been demonstrated on cesium bombardment micro-

thrusters. Deflection angles of ± 5° can be obtained. The techniques

established for thrust vectoring can be applied to any cesium bom-

bardmcnt ion engine and used in conjunction with the spacecraft

attitude control system to cancel thrust vector alignment errors.

2.1.5.3 Clearance

Ion beam exhaust profiles from cesium electron bombardment ion

engines have been measured by probing the exhaust and examination of

the erosion caused by ion beam impingement on vacuum tank walls

Approximately 90 percent of the ion beam

10° half-angle, while 99 percent of the beam

f-angle cone. Negligible ion flux is detected

30°.

When this type of engine is integrated with a spacecraft, care must

be taken to prevent projection of any spacecraft components within

a 30° half-angle cone about the thruster axis. This will prevent

erosion through sputtering, and deposition of cesium on spacecraft

surfaces. In order to sustain a monolayer cesium surface coverage

on a spacecraft component, that component must be located well

within a half-angle cone of 20° about the thruster axis.

throughout long tests.

falls within a cone of

falls within a 20° hal

beyond a half-angle of

-.

..r

2.1.5.4 Electrical

Commands must be provided to the power conditioning system to effect

desired operating modes of the engine. The three basic modes are

thruster system off, standby, and on. Thus, operation of the ion
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engine system can be effected through the use of only three commands.

Additional commands are required if throttling and thrust vectoring

are used.

Telemetry is desirable on any spacecraft system to provide diagnostic

information for analysis of failures in flight. Specific performance

measurements can also be made to allow ground command modification of

the thruster system operating levels. Telemetry can range anywhere

from simply the ion beam current up to a complete compliment of a

dozen or more diagnostic channels as have been used on ion engine

flight tests.

2.1.5.5 Thermal 

The thermal interface for the cesium electron bombardment ion engine

system presents somewhat unique problems to the spacecraft designer.

First of all, the ion engine may not necessarily be operated in a

continuous mode. This requires that the thermal control measures used

be sufficient to maintain reasonable temperatures under both full

power dissipation and zero power dissipation conditions. Fortun-

ately, the engine feed system and neutralizer operate at relatively

hig% temperatures and are not severely affected by cold storage

temperatures. Thermal stabilization can be achieved by closely

coupling solar energy to the system, forcing the total power variation

between full load and no load to be negligible, or by coupling the

ion engine system to the spacecraft with a specific thermal impedance.

In either case, the effect is to reduce the ratio of maximum to

minimum power radiation from the ion engine system.

The power conditioning may be packaged either with the engine, which

minimizes the spacecraft high voltage wiring, or in a remote location.

Remote operation of the power conditioning unit removes all electronic

components from the environment which is established for the ion
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engine. This allows wider temperature variations on the ion engine

hardware. A thermal interface must be carefully designed for each

application.
i

2.1.6	 DEVELOPMENT STATUS

Cesium electron bombardment ion engines have been developed to a

high level of efficiency.	 This high efficiency has been demonstrated

as both repeatable and predictable. 	 Nearly identical high performance

has been achieved on life tests of 4,000 and 8,000 hours of 3 x 10-2

newton	 engine systems, including feed system engine and neutralizer.

Research is presently under way to identify ways to increase effi-

ciency.	 One of the principal techniques which is promising from

the standpoint of efficiency improvement is scaling from the low

millipound level to the 0.11 newton 	 level.	 The reduction in wall

area to volume ratio for the discharge chamber and reduction of

cathode losses (present even in the autocathode configuration) is

expected to reduce overall system losses by as much as 50 percent.

Other opportunities present themselves for improving engine effi-

ciency.	 Cathode design is being studied to reduce the cathode

power.	 While the cathode in many cesium engines operates in an

autocathode mode, 50 percent or more of the discharge power can be

dissipated in maintaining emission temperatures. 	 In addition to

reducing autocathode losses, new magnetic field configurations used

in mercury electron bombardment ion engines may be used to further

increase engine efficiency.

While there is every reason to believe that significant  efficiency

improvements will be made, such projections have not been used in

this study.	 The effect of such improvements will be realized in a

reduction of the power for any given thrust. 	 It does not appear
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Vo lume I

1
.s	 f

.ro-asus.._:..:: '. ..^.-aK3.iii:^ 	 A:•̀ ^ :'.' 	 ^fi :. x: ;.. ^. 1, it	 ... .xu Y fi ''	 ,rt .-' ;^	 ,	 Y	 t 	 ^l	 1	 ^^4f r.^ a+	 f



l

unreasonable to assume that the discharge and cathode powers shown

in this analysis may be reduced by 50 percent within the next few

years.

2.1.7 CONCLUSIONS

The cesium electron-bombardment ion engine system is one of the

most efficient, high specific impulse electric propulsion systems

available. A high degree of confidence has been established. This

confidence could only be enhanced through additional ground testing

and flight testing. Improvements in effici,-n^y will come with time.

Future areas of emphasis include research to more fully understand

the detail'' ionization mechanisms, development of thruster systems

for specific applications, and ground and space life testing. Even

,Ath the existing level of performance, established in 1964, this

thruster system is one of the most efficient, high-specific-impulse

propulsion. systems.
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2.2 MERCURY ELECTRON BOMBARDMENT ENGINE

2.2.1 S UMMY

The objective of this survey is to present the current status of the

mercury electron-bombardment ion thruster systems as a component of

potential electric propulsion systems for mission application. Descrip-

tions have been given regarding the results of investigations to date

as'well as the major development problem areas of the thruster system

and subsystems.

Future desired development areas have been outlined to indicate where

potential thruster system performance gains may be achieved.

In addition to the tables of data and performance figures which have

been given to fully describe the present state of the art for mercury

thruster systems, a 2.5-kilowatt system has been designed and presented

as a mercury thruster system example which includes developments to

date and the expected near-term improvements which can be predicted

with a high degree of confidence.

An exhaustive bibliography is included which may be referred to for

detailed analyses in particular areas.

2.2.2 INTRODUCTION

The objective of this particular discussion on thruster systems is to

give the present status (as of 1967) of the mercury electron-bombardment

ion thruster system as a component of an electric propulsion system,

to describe the major investigations and development problems to date

of the thruster system and its subsystems, and to discuss future devel-

opment and projected system performance.

y
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o,.



The term "thruster system" as used throughout is defined to include

(a) the thruster, (b) the feed system, and (c) the neutralizer system.

The feed system can be broken down into its subsystems which are the

propellant storage reservoir, transfer line, vaporizer, and isolator.

The neutralizer system can also be broken down into its subsystems; the

propellant storage reservoir, transfer line, vaporizer, neutralizer

cathode, and keeper electrode.

Although the performance and electrical requirements of the thruster

system are extensively discussed in the following subsections, the

detailed presentation and discussion of the power-conditioning require-

ments are discussed elsewhere. Only generalized schematics and block

diagrams have been presented here to indicate the function and magnitude

of the specific power requirements of the thruster system.

The first subsection of this discussion is devoted to the operating

principles of the mercury electron -bombardment ion thruster system.

The next subsection presents the current status and a detailed discussion

of the level of development of the mercury thruster system. Numerous

tables and figures have been included to fully illustrate its performance

and capability.

A represent4tive 20-centimeter diameter mercury thruster system has

been defined which operates with 2 .5 kilowatts of input power and pro-

duces 0.74 newton of thrust at 5000 seconds specific impulse. This

particular thruster system incorporates developments in thruster tech-

nology to date as well as future potential developments. This thruster

system may be used to illustrate the projected performance for future

mission considerations. Further, the system selected has been designed

to take advantage of new, and yet realistic, improvements in many of

the thruster subsystems.
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Future development areas are outlined and discussed briefly to indicate

those areas where improvements could result in the greatest gains to

thruster system performance, reliability, and lifetime.

Finally, concluding remarks are given which summarize the extensive

investigations to date as well as the contents of the present effort.

A level of development is described from this survey which is used to

identify the state of the art for mercury, electron -bombardment ion

thruster systems.

2.2.3 PRINCIPLES OF OPERATION

A typical mercury, electron -bombardment ion thruster is shown in Fig. 68.
Although the present discussion is of mercury propellants, this particu-

lar thruster design can produce thrust with a variety of propellants

including cesium, argon, nitrogen, and hydrogen. The basic phenomenon

of electron -bombardment ionization is the feature of this particular
thrust device which permits the use of such a variety of propellants.

The operation of this thruster, which is described below, is common for

any of the propellants listed. Mercury, however, is preferable from a

thruster system consideration because of its high atomic weight, minimum

storage volume, and high thrust density.

The propellant, usually in the liquid state, is stored in a reservoir.

The reservoir is required to contain the propellant and dispense it in

the liquid state to the transfer line or feed line. The propellant is

delivered to a vaporizer which is located at the end of the transfer

line. Vaporization occurs by contact of the liquid propellant with a

hot porous plug or vaporizer which is located in the transfer line.
The vaporizer regulates the flow of propellant through it by utilizing

porous plugs with specified permeability and cross section area. When
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the plug is maintained at some predetermined temperature by heating the

section of transfer line containing it, then vapor will be delivered

through the plug at a known flow rate. The vaporizer plug also serves

to separate the liquid and vapor phases of the propellant to ensure

that liquid does not migrate downstream of the vaporizer to the isolator 	 -`

or ionization chamber where electrical br,.akdown and shorting could

occur.

An electrical insulating device, the isolator, is utilized downstream

of the vaporizer to physically connect the vaporizer to the vapor dis-

tribution system. The incorporation of the isolator allows the feed

system reservoir-vaporizer and thruster proper to be maintained at sepa-

rate potentials. This feature is particularly useful when two or more

thrusters operating at different voltages or specific impulse values 	 y

are used or when the thruster and neutralizer are fueled from a common 	 x

reservoir. The primary reason for this approach is the realization of

substantial weight saving accrued when one, rather than several, reser-

voirs are used.

The vapor is then distributed and introduced into the thruster ioniza-

tion chamber. Present thruster designs utilize a vapor distributor

system which introduces vapor directly into the ionization chamber and

also into the thruster hollow cathode (see Subsection 2.2.4.2.2).

The propellant vapor is ionized in the ionization chamber by means of

electron bombardment. Electrons are supplied by the hollow cathode

which is located on the axis at the rear of the thruster. A simple

thermionic emitter would suffice except that lifetime and efficiency

considerations prohibit their use. These electrons are attracted to 	 }

the cylindrical anode because of the potential drop which exists between

the cathode and anode.
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The orbital paths of the electrons are contained within the anode

diameter and lengthened by the application of an cxial magnetic field

surrounding the ionization chamber and anode. This magnetic field,

which can be supplied by either electromagnets or permanent magnets,

increases the residence time of the electrons in the ionization chamber

by preventing their direct migration to the anode and, thus, enhances

the probability of the electrons striking and ionizing propellant atoms.

Further, the magnetic field diverges sl_ghtly toward the screen end of

the ionization chamber. This field divergence acts upon the electron

motions which, in turn, act upon the ions that have been formed by

electron-bombardment collisions to direct the ions toward the extraction

system at the downstream end of the ionization chamber. The ions thus

formed are subsequently focused and accelerated from the chamber by the

acceleration system. The acceleration system consists of two electrodes:

one screen electrode attached to the downstream end of the ionization

chamber and one accelerator electrode mounted a specified distance or

gap downstream of the screen electrode by peripheral standoff insulators.

Both electrodes have a similar pattern of apertures in them through

which the ions are focused and accelerated to form many individual posi-

tive ion beams downstream of the acceleratct: electrode.

Neutralization of the individual ion beams is then effected by the addi-

tion of low-energy electrons from a neutralizer system. Although a

simple thermionic electron emitter would suffice for supplying these

electrons, for reasons o!' efficiency and lifetime (similar to the

requirements for the thruster cathode) a "plasma-bridge" type neutral-

izer system incorporates a propellant reservoir, vaporizer, and hollow

cathode device which operates in a manner very similar to thooe compo-

nents in the thruster. Neutral'.., ation, which is necessary for the suc-

cessful operation of all electroi-.:.t^,:- thrusters, requires both current

neutralization of the ion beam (equal magnitude of positive and negative

currents) and also charge neutralization of the ion beam (equal number

densities of ions and electrons in the exhaust beam).
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2.2.4 THRUSTER PERFORMANCE

This subsection describes and discusses the major subsystems of the

thruster system. Each subsystem will be briefly described from a his-

toric point of view. The trend of development efforts to date will be

discussed and data will be shown to indicate the present level of per-

formance for each subsystem. The entire thruster system will be

described under Subsection 2.2.4.5, Power and Control.

2.2.4.1 Feed Symtem

The following subsections describe the components comprising the feed

system which are the reservoir, transfer line, vaporizer, and isolator.

The specific designs of components discussed were chosen because they

represent state of the art and the most likely designs to receive

serious mission application considerations. Other feed system designs

not discussed here may be found in the literature listed in the

bibliography.

2.2.4.1.1 Reservoir

The feed or propellant system has undergone the greatest physical change

of all the subsystems since inception of the mercury thruster system

in 1959. The feed system has evolved from a simple boiler or electri-

cally heated cavity of liquid mercury to the gas-pressurized, positive-

displacement systems which exist today. Examples of these two types

of feed systems are shown in Figs. 69 and 70, respectively.

The major reasons for the development of the mercury reservoir to the

present gas-pressurized, positive-displacement design include: (a)

reduction of auxiliary power to dispense propellant from the reservoir,

(b) minimum use of moving components, and (c) development of a reservoir

design of minimum weight, volume, and structural complexity.

ja



r 

r 1hemlator

Figure 69. Mercury Boiler Propellant Reservoir
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Although all of the above objectives cannot be totally satisfied in a

single design, a design can be developed which incorporates many of the

desirable features. The design shown in Fig. 70 is such a design.

This reservoir does not require auxiliary power to dispense the liquid

propellant. Rather, the propellant is expelled from the reservoir by

gas-pressurized bladder system. A moving part, the bladder, is incor-

porated in this design. However, suitable materials such as butyl

rubbers or rolling metal bladders can be utilized which exhibit the

required lifetimes and cycles in similar devices.

The physical design and shape of this reservoir is of minimum weight

and volume. The gas reservoir, however, adds weight and volume that

is not used to store propellant. Also, the structural complexity of

this reservoir design requires special tooling and fabricating techniques

in order that reproducible and structurally sound systems can be built.

Nitrogen gas is used to force the liquid mercury into the transfer.

Argon gas or other nonreactive gases could also be used. The gas is

contained in a chamber behind the liquid mercury reservoir and separated

from it by a bladder. The bladder is constrained to eliminate possible

sloshing of the mercury or rupture of the bladder during launch or

other violent motions of the reservoir by a perforated metal retainer.

The nitrogen gas is nominally maintained at a pressure of 2 atmospheres

which is sufficient to permit gas expansion into the mercury reservoir

as the mercury volume decreases during operation and yet adequate to

maintain sufficient pressure to expel all of the mercury. Tests have

shown that this reservoir is capable of reproducibly discharging more

than 99 percent of the mercury from the reservoir.

Although minor contamination problems have been encountered with the

use of certain of the butyl rubber bladders in the positive-displacement

reservoirs, specially treated rubbers as well as any other of several
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available materials includii

contamination. The mercury

care should also be used in

originate at this interface

have been observed with the

of the 300 series stainless

ag metals can be utilized to eliminate any

should be triple-distilled grade and special

handling, since the contamination problems

in the reservoir. No materials problems

basic structure of the reservoir. Several

steels have been quite satisfactory.

2.2.4.1.2 Transfer Line

The transfer line is simply a tube or line used for the transfer of

liquid mercury from the pressurized reservoir to the vaporizer. This

line is usually quite small in diameter (nominally 0.250 centimeter),

since it delivers liquid mercury rather than vapor.

Material considerations of the transfer line include only the require-

meet that fabrication problems are minimized. Since the vaporizer plug

is a refractory material, normally tungsten, the line and flange must

also be refractory. This allows straightforward electron beam welding

techniques to be utilized.

Sealing the flange to the reservoir is affected with a rubber 0-ring.

This ring is highly reliable in producing a tight seal and is compatible

with liquid mercury. High temperatures which might affect rubber

0-rings are not encountered; nominal operating temperatures of this

flange area are less than 50 0C. A similar rubber 0-ring, the outer rib

of the bladder, is used to seal the reservoir domes together.

2.2.4.1.3 Vaporizer

The vaporizer is a porous tungsten plug, usually about 0.63 centimeter

in diameter, that is beam welded into a slightly enlarged section of

tube near the downstream end of the transfer line. Porous tungsten
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material is used which has transmission coefficients similar to the

materials used for ionizer materials in cesium, contact-ionization ion

thrusters. Average bulk density is about 70 percent that of solid

tungsten and the average pore diameter is about 5 microns.

During thruster operation, the vaporizer plug is heated to about 3000C

by a swaged tantalum heater coil that is brazed to the transfer line

section containing the plug. Laboratory tests utilizing thermocouples

to monitor the vaporizer temperature, as well as periodic weight meas-

urements of the mercury in the reservoir indicate that mercury vapor

flow can be determined from temperature readings to within 5 percent

of the actual value.

Although a description has been given on the vaporizer, it should be

noted that a vaporizer is not utilized in the mercury electron-bombardment

ion thruster when it incorporates a liquid-mercury pool cathode. This

cathode uses liquid mercury directly from a pressurized reservoir as

described in Subsections 2.2.4.1.1 and 2.2.4.1.2. This cathode is

described further in Subsection 2.2.4.2.2, Cathode.

2.2.4.1.4 Isolator

Electrical isolation of the feed system and the thruster is an important

part of the present system design. The features of an isolator are

apparent when considering future missions. Isolation allows a common

propellant reservoir to be utilized by several thrusters. This concept

eliminates the problem of electrical coupling between thrusters as when

thrusters are not operating at the same specific impulse or positive,

high voltage values. The common reservoir feature is desirable because

of weight and cost savings. Further, the common reservoir utilizing

isolation eliminates the electrical problems introduced when one or

more thrusters of an array are not operating due to command or failure.
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1

The concept of a common reservoir is desirable to also provide propel-

lant to a single thruster and neutralizer system. This feature, however,

has not been seriously considered because of the present small weight

fraction of the neutralizer reservoir as compared to the thruster reser-

voir and because of the longer transfer line needed for the neutralizer

which may require auxiliary heating.

The isolator designs required to electrically separate the feed system

from the thruster, although straightforward in nature, are complicated

by the following technical considerations:

a. Isolation devices tend to be large and heavy.

b. Isolators, without extensive design analysis, need to be
heated to prevent condensation of mercury vapor and subsequent
electrical breakdown problems.

c. Technological problems involved in fabricating isolator
devices lead to the use of exotic materials and techniques.

Although the efforts to date concerning isolators have not been exten-

sive, a satisfactory design has been developed and evaluated. An

example of this isolator design is shown in Fig. 71. 	 The design is

a high-pressure isolator which is necessary due to the use of hollow

cathodes. These hollow cathodes maintain a steady-state pressure level

in the isolator region of 5 to 50 millimeters of mercury. Isolator

designs used with oxide-type cathodes only attain steady-state pressure

levels of about 0.05 millimeters of mercury pressure.

Isolators are usually fabricated of ceramics such as boron nitride or

Lucalox (high density alumina) and have mounting flanges at each end

made of metals, such as Inconel, which are structurally compatible with

the ceramics. Metal screens are used at each end and, frequently,

throughout the length of the isolator to prevent electrical arcing

across the entire isolator length and to define the mercury plasma

boundary at the downstream end.
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High-pressure isolators, such as the design shown in Fig. 71, are about

5 centimeters in length and have an inner diameter of 1.25 centimeters.

Low-pressure isolators are about twice as large (2.5 centimeter inner

diameter).

It is possible to design the isolator such that neat conducted from the

thruster is utilized to maintain the isolator temperature at about 3000C

where mercury condensation will not occur. This design task, however,

is extremely difficult when hollow cathodes are used due to the require-

meet that only a small portion of the total mercury vapor flow is

through the hollow cathode. A heater wrapped around the isolator body

is used together with conduction and radiation of heat from the thruster

to maintain the isolator above the condensation temperature of mercury

vapor at its particular operating pressure.

2.2.4.2 Ionization

The ionization process in the mercury electron-bombardment ion thruster

is described in the following subsections. Specific reference is made

to the vapor distribution system, cathode, ionization chamber, and mag-

netic field. These thruster components are discussed from the point

of view that they represent the best available designs and technology.

The particular components discussed at length have been designed for

the Space Electric Rocket Test II (SERT II) that incorporates state-of-

the-art hardware. Other potential components are mentioned briefly.

Specific details of these may be obtained by checking the publication

listed in the bibliography.

2.2.4.2.1 Vapor Distribution System

Investigators have dealt with the techniques of delivering mercury

vapor into the ionization cham!ser. Although many designs have been

l
s,	
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generated, the similarity amoung them is that the basic considerations

were (a) what type of cathode was utilized and (b) what was the per-

formance of that particular cathode. In short, vapor distribution

systems to date have been specifically treated for a given thruster

design.

A few investigations, however, have treated the general problem of how

to introduce mercury vapor into the ionization chamber. Innovations

such as radial flow (introducing vapor into the chamber through the

periphery of the chamber itself), reverse flow (introducing vapor near

the screen electrode and directing it toward the cathode upstream of

the electrode), and axial flow (various combinations of introducing

vapor at the upstream plane of the thruster and allowing it to flow

parallel to the axis of the thruster) are the concepts that have received

major emphasis.

Although the conclusions reached from the above-mentioned concepts of

vapor distribution cannot be generalized, they do indicate trends when

combined with particular types of thruster cathodes. The general result

of most studies, where cathode-type considerations are minimized, is

that the vapor distribution system should be of the axial flow design

or a modification of the same.

Typical axial flow designs introduce propellant vapor into the thruster

from the vaporizer by utilizing a manifold. The manifold is connected

directly to the isolator and is of such a design that it delivers vapor

to the cathode backplate, the plate forming the rear plane of the ioni-

zation chamber of the thruster. The backplate, usually considered to

be a component of the vapor distribution system, permits vapor flow

into the chamber through a ring of holes radially displaced outward

from the thruster axis. The location and specific hole sizes are

determined experimentally and are not highly critical. The holes are
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equal in size despite the fact that vapor may be introduced into the

manifold from the vaporizer at a specific point. Lxperim,its with sim-

ilar hole sizes have shown that the vapor is distributed rapidly and	 n

evenly to all holes at the vapor temperatures and pressures of interest.

The holes are faced with fine metal screens that define the plasma at 	 r

the plane of the backplate. These screens are designed to prevent arcing

or electrical breakdown from occurring through the conducting vapor to

feed syst—n surfaces.

The previous discussion of vapor distribution systems is based upon a

thruster design that utilizes an oxide type of cathode. The most prom-

ising design, as shown in Fig. 72, however, incorporates a plasma-bridge

type cathode device or hollow cathode that requires mercury vapor flow

through it for proper operation. The hollow cathode is a highly effi-

cient electron emitter when compared to the oxide cathodes that have been

considered. The primary reason for this is that hollow cathode operation

is sustained with a minimum energy requirement by means of a low-pressure

mercury discharge. The use of the hollow cathode requires incorporation

of a transfer line for mercury vapor between the isolator and the hollow

cathode. Proper operation of the hollow cathode is obtained when only

about 10 percent of the total vapor flow passes through the hollow cath-

ode tip. The remainder of the flow ig therefore, required to expand

through a series of holes drilled in the transfer line upstream of the

hollow cathode. This flow is distributed to the holes in the backplate

as described above for delivery into the ionization chamber.

The backplace and manifold are made of mild steel to complete the mag-

netic field circuit when permanent magnets are used. Nonmagnetic stain-

less steel is used, however, when the magnetic field is provided by an

electromagnet. The major reason for using the same material, whether

permanent magnets or electromagnets are used, is to minimize the fabri-

cation and materials problems involved in mating the manifold to the

backplate. The transfer line attached to the hollow cathode is tantalum

and is nominally 0.320-centimeter diameter tubing.
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2.2.4.2.2 Cathode

A survey of the mercury thrl^rter systems would certainly not be complete

without a discussion of thruster cathodes. To date, these electron

emitters have been the major obstacle to the extensive "system" studies

and extender duration testing which are required prior to the system

applic-tions. The cathode, as well as neutralizer, emitters have both

been plagued by many similar problems including:

a. Excessive power requirements

b. Difficulty of fabrication and handling

c. Short lifetimes (a few hundred or thousand hours)

d. Unreproducible operating characteristics

e. Increasing and unstable power requirements versus operating
time

All of the above drawbacks have been experienced at one time or another

with most of the electron emitters that have ranged in type from the

straightforward refractory metal ribbon or wire to miscellaneous oxide

impregnated and dispenser cathodes.

A novel electron emitter, however, was conceived which used a cesium

plasma. Called the "plasma-bridge" electron emitter, this device was

subsequently developed, using mercury propellant, into what is commonly

termed the mercury hollow cathode.

Most of the past work with emitters other than the hollow-cathode type

have involved attempts to improve performance. Thruster performance

increases were only minor and the improvements to the overall thruster

system lifetime were small. Recent work with hollow cathodes, however,

shows that substantial improvements can be made, i.e., small emitter

heating power, increased lifetime, increased porpellant utilization and

reproducibility, and stable, long-term operation.
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A hollow cathode is shown in the sketch in Fig. 73.	 The present

design of this cathode design is identical to the plasma-bridge type

emitter or cathode of the neutralizer system. 	 The body of the hollow

cathode is fabricated from a 0.32-centimeter diameter tantalum tube

with a 1-centimeter thick disc of 2 percent thoriated tungsten welded

into the end of the tube. 	 This disc, the orifice plate, has a tapered

hole cut through it (0.03-centimeter diameter end and 0.02-centimeter

diameter inside).	 "'he major reason for such a thick orifice plate is

due to lifetime considerations. 	 This plate is sputtered by ions origi-

nating within the ionization chamber at nominal energies of 30 to 40

electron volts.	 The main reason for the shape of the hole in the

orifice plate is due to the use of laser cutting techniques.

• The cathode is indirectly heated by a tungsten-rhenium heater coil

wrapped around the cathode body and affixed in place and insulated by

flame-sprayed alumina. 	 Additional thermal shielding is provided by

wrapping the cathode with layers of tantalum foil. 	 The reasons for

using the flame-sprayed heater design and layers of radiation shielding

are to reduce thermal power losses and to minimize the steady-state

heating power requirements of the cathode.

An insert, a coil of 0.001-centimeter thick tantalum foil which is

coated with approximately a 0.002-centimeter thick layer of barium

carbonate, is placed inside the cathode tube immediately behind the

orifice plate. The coil insert is formed in such a manner that a small

cavity in the coil exists opposite the hole in the orifice plate.

A keeper or holding electrode is employed during hollow cathode opera-
a

tion. The keeper electrode is utilized to facilitate hollow cathode

startup and to maintain the cathode discharge during steady-state opera-

tion of the thruster. The function of the keeper during steady-state

operation is not clearly understood. Experiments with the keeper,
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however, have shown that at keeper currents less than 0.2 ampere the

discharge becomes unstable, while at currents greater than 0.8 ampere

excessive power to the keeper electrode lowers the overall thruster

efficiency. Nominal starting characteristics of the keeper electrode

are 300 volts at 0 ampere. The keeper electrode will maintain the

hollow-cathode discharge with no voltage applied to the thruster anode

at 30 volts and 0.5 ampere. When the anode supply is activated and the

thruster is operating in a steady-state manner, the characteristics of

the keeper are 12 volts and 0.5 ampere. The preceding discussion refers

to a thruster which produces about a 0.250-ampere ion beam. The keeper

electrode nominally a ring with an inside diameter of 0.60 centimeter

of 0.150- entimeter diameter tantalum wire placed 0.20 centimeter down-

stream of the plane of the end of the orifice plate. An alumina plate

attached to the backplate is used to position the hollow cathode,

support the keeper electrode, minimize thermal conduction away from the

cathode, and reduce leakage of mercury vapor from the manifold into the

ionization chamber near the hollow cathode.

Another requirement when using the hollow cathode is a small cylindrical

cavity which extends into the ionization chamber from the backplate.

This structure is commonly called the cathode pole piece since it is

made of magnetic, mild steel material when permanent magnets are used

to provide the magnetic field. When an electromagnet is used to provide

the magnetic field, the backplate and cathode pole piece are made from

nonmagnetic stainless steel. The cathode pole piece is nominally 6.0

centimeters in diameter, 3.2 centimeters in length, and mounted on the

axis of the thruster extending downstream from the backplate. The

reason for using the pole piece is to provide the proper magnetic fiefe

shape in the vicinity of the cathode. A baffle, usually a 2.5-centimeter.

diameter stainless steel disc, is mounted about 0.125 centimeter down-

stream of the pole piece and attached to it by means of several small

supporting struts. Another reason for using the pole piece and
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the baffle is to optimize the environment required for maintaining an

efficient discharge from the hollow cathode. The primary reason for

the use of a baffle is the necessity of controlling the coupling voltage

between the hollow cathode and the thruster anode. The exact function

of the cathode pole piece is not clearly understood. It has been

determined experimentally, however, that the hollow cathode operation

is most efficient and that the overall thruster performance is best

when the pole piece configuration described above is used.

Minor problems of lifetime have been encountered during thruster testing

with hollow cathodes. The area of greatest concern has been erosion

of the cathode orifice plate by ions formed within the ion chamber and

cathode pole piece cavity. These ions have energies up to 30 or 40

electron volts, and, therefore, are energetic enough to sputter surfaces

which attract them. The sputtering problem, however, is not serious.

Continued work in this area should result in increasing the life of the

hollow cathode to values greater than several thousands of hours.

Continued efforts with the hollow-cathode development should also reduce

and/or eliminate present difficulties in the areas of fabrication, the

use of multiple-reservoir feed systems, and excessive heating power and

vapor flow requirements.

Another type of thruster cathode design, the liquid mercury-pool cathode

has been extensively developed and tested. Although this particular

cathode type requires close thermal control to maintain operational

stability, it potentially has the features of low power requirement,

high propellant utilization, and long life. The major reason that this

particular cathode has not been considered in the present thruster is

due to the fact that it is an experimental device only and, as a result,

is not of such a design as to merit further consideration.
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2.2.4.2.3 Ionization Chamber and Anode

The ionization chamber geometry, also illustrated in Fig. 72, includes

the cathode and screen pole pieces, the cathode, and the anode. The

ionization chamber is the region where mercury vapor ionization occurs

via electron-bombardment collisions.

Previous investigations have revealed the fact that the particular

anode and chamber geometry and size call be experimentally determined.

Further, the anode and chamber designs are a function of: (a) the

power required for thruster discharge initiation and steady-state

operation, (b) anode and ionization chamber ion-recombination losses,

(c) thruster weight and size, and (d) arc current requirements.

The geometry shown in Fig. 12 with the anode length equal to roughly

two-thirds of t',.e length of the ionization chamber and mounted at the

downstream end of the thruster has been experimentally determined to

be the optimum configuration. This chamber geometry, however, does not

refer to the 50-centimeter and 150-centimeter diameter thrusters because

these particular thrusters use more than one cathode.

t	 It is obvious that the general shape of the ionization chamber is based

1	 upon the physical properties of the mercury plasma formed in the chamber.

This shape is, in large measure, determined by the type of vapor dis-
	 NY

tribution system, the electron emission characteristics of the cathode,

the ion residence time in the chamber, and the shape and intensity of

the magnetic field. Although the anode is commonly fabricated from a

nonmagnetic stainless steel, it can be made from any Rood electrically

conducting :material such as copper or alluminum. Anode designs for

flight-type thrusters would normally consider aluminum because of the

attractive weight advantage it has over any of the other candidate

materials.
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The ionization chamber is simply a cylinder of nonmagnetic stainless

steel with provisions for mounting of the backplate and screen electrode.

When an electromagnet is used, the magnet coil is wound directly upon

the outer chamber surface. The use of permanent magnet rods, however,

requires special mounting brackets and the incorporation of a screen

pole piece of magnetic, mild steel ( see Subsection 2.2.4.2.4)6

An advanced design f permanent magnet -type thruster utilizesgn	 ppermanent

magnet sheet material to form the actual ionization chamber shell.

This design has obvious potential in that considerable weight and fab-

rication steps can be eliminated. Special care, however, must be exer-

cised with this design due to the critical requirements for magnetiza-

tion of the shell. In addition, the concept of the magnetic shell does

not appear to offer sufficient weight advantages over electromagnets

for thruster sizes larger than 50 centimeters in diameter. The perma-

nent magnet, however, does eliminate the need for the power as required

with an electromagnet. The proper design oi thruster, therefore, can

only be determined after the si-r and predicted performance level have

been selected and the necessary tradeoff studies performed to select

the magnetic field type.

2.2.4.2.4 Magnetic Field

Several brief discussions of the magnetic field have already been made

in the preceding subsections. The main reason for this is due to the

fact that the magnetic field requirements, whether electromagnet or

permanent magnet, dictate the design of the thruster and manifold.

I

k
^r

The study of the magnetic field design requirements including type,

strength, orientation, and degree of divergence has been performed to

date with the following major objectives:



a. Minimum arc power requirement per ion (eV/ion)

b. Minimum magnetic field current and power for electromagnets

c. Minimum weight and volume

d. Ease of fabrication and assembly

The design of thruster which typifies state of the art for thruster

sizes up to about 50 centimeters in diameter is shown schematically in

Fig. 72.	 This particular design utilizes eight permanent magnet

(Alnico V) rods equally spaced around the ionization chamber to provide

the necessary magnetic field. The field lines are constrained to follow

the pole pieces and the cathode and screen pile pieces to optimally

shape the magnetic field.

The cathode pole piece has previously been discussed in Subsection 2.2.4.2.2.

The screen pole piece is a magnetic mild steel collar located between

the anode and the screen electrode and is of similar diameter to that

of the chamber. The particular shape of the screen pole piece is such

that the magnetic field lines located in the vicinity of the anode

prevent e1ectrons supplied from the cathode from traveling directly to

it. The specific shape of the screen pole piece, as well as that of

the cathode pole piece, has been determined experimentally.

The procedure in defining the correct permanent magnet field has been

to match the characteristics or field shape obtained with electromagnets.

Although the field lines provided by electromagnets are quite different

from those of permanent magnets, good approximateions of the electro-

magnet fields have been obtained by proper iterations of the design of

the pole pieces and permanent magnet shape, weight, and method of

attachment.

Investigations have revealed that for mercury electron-bombardment

thruster sizes up to 50 centimeters in diameter, the necesi;snty magnetic

il.
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field can be provided by the use of permanent magnets. Although most

effort to date has been with the use of permanent magnet rods, the fea-

sibility of using sheet or shell magnets as described in Subsection

2.2.4.2.3 has been demonstrated in the cesium electron-bombardment

thrusters. The major reason for considering the use of permanent

magnets is obvious. They eliminate the power, control, and isolation

requirements of electromagnets. Another advantage is that the weight

of permanent magnets is usually less than that for electromagnets.

2.2.4.3 Acceleration

The acceleration system in the electron-bombardment types of thrusters

consists of a screen electrode and an accelerator electrode. The screen

electrode is usually securely attached to the ionization chamber end

and is at the same potential as the chamber. This is a high positive

potential normally a Few thousand volts which determines the value of

specific impulse for the thruster. The accelerator electrode is biased

to a high negative potential primarily to obtain optimum focusing of

ions from the ionization chamber. The negative potential also prevents

the backstreamiug of electrons downstream of the electrodes from enter-

ing the thruster which could result in erroneous data and difficulty

of control.

The main function of the acceleration system is to focus, extract, and

accelerate the ions formed in the ionization chamber into a well defined

beam of ions downstream of the accelerator electrode. The electrodes

are usually flat metal plates into which a hexagonal array of small

apertures have been drilled. Typical electrode geometries for thrusters

larger than 10 centimeters in diameter include an array of about 1000

apertures within the anode diameter of the electrodes. These apertures

are sized such that the open area of the electrode or area of apertures

only is in the range of 65 to 75 percent of the total area of the
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electrode. This value of open or transmission area of the electrodes

is an indication of the qualitative and quantitative capability of the

system to extract and accelerate ions. These high-transmission elec-

trodes, when properly Designed, are definitely superior to those designs

with small open area ( about 50 percent). These electrodes have his-

torically been made from molybdenum or other similar materials that are

fairly resistant to sputtering damage.

	

v	 The electrodes do, however, undergo sputtering damage from two sources:

(1) ions that are extracted from the ionization chamber and are poorly

focused will impinge on the electrodes during their transit through the

acceleration system (primary ion sputtering) and (2) ions that are formed

downstream of the accelerator electrode by charge -exchange collisions

and are focused back onto the accelerator electrode ( charge-exchange

ion sputtering). The sput tering damage caused by primary ions can be

largely eliminated by proper and careful design of the screen electrode.

The upstream surface of the screen electrode defines the plasma from

rwhich the ions are extracted and, therefore, the efficiency with which

they are accelerated through the entire system. Proper design of this

screen electrode can result in minimum primary ion interception by the

electrodes as well as optimum ion extraction and thruster performance.

	

s,	 The sputtering damage of the accelerator electrode by charge -exchange

ions is a strong function of the propellant utilization of the thruster.

This is the case because the un-ionized or neutral propellant atoms are

those which undergo charge-exchange reactions with ions downstream of

the accelerator electrode and are then attracted to that electrode.

Increasing the propellant utilization will, therefore, reds--c the sput-

tering damage caused by charge-exchange ions. The damage caused by

charge -exchanged ions can also be reduced with lower values of the

accelerator electrode potential (smaller values of the high -negative

The sputtering damage effect versus energy can be seen bpotential).	 p	 g	 g	 gy	 y
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referring to Fig. 74. This figure give. the sputtering yield of atoms

per impinging mercury ion versus the impinging ion energy for several

materials. The figure also shows that the choice of electrode material

can affect the sputtering damage incurred by the electrode.

In the past, both electrodes have been fabricated from either molybdenum

or stainless steel. Because of the structural and thermal properties,

molybdenum continues to be used for the screen electrode. Aluminum,

however, has replaced other materials for the accelerator electrode due

to its low weight and low sputtering yield.

The electrode thicknesses, of 0.075 and 0.150 centimeter for the screen

and accelerator electrodes, respectively, with an accelerating gap

between them of 0.250 centimeter, are representative of the acceleration

systems in the range of thruster sizes from 10 to 50 centimeters in

diamer er. Thruster sizes not included in this range have slightly dif-

ferent acceleration system geometries.

Work on improving thrustor lifetime has been performed by various

organizations because the accelerator electrode receives minor direct

interception of primary ions due to improper focusing and experiences

major sputtering damage due to the charge-exchange ions. This particu-

lar work has, in addition to the use of different riaterials, involved

the use or consideration of exotic materials (i.e., beryllium, ceramics,

and bimetallic types) and the consideration of electrode protection by

zoating the basic electrode metal with a lou, sputtering yield of liquid

metal or other insulating material. One effort has even considered the

use of replacable electrodes either entirely or by the use of wire

electrodes which are continuously replaced across the end of the

thruster.
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Although only a modest level of effort has been performed to theoreti-

cally determine the correct electrode geometries and resulftnt perform-

ances, most effort has been of a "cut-and -try" nature. This has been

a necessary method because of the relatively unknown conditions in the

ionization chamber from which the ions are extracted. Experimental

work has, however, resulted in accelerator system designs of sufficient

merit and potential that they have not been a deterent to thruster

operation, good performance, and long Life.

Other factors which affect the acceleration system design and the

thruster system performance and efficiency include the desired value

of specific impulse and thrust for a given thruster size as well as the

method and degree of pout-acceleration ion beam neutralization. Because

these factors are of importance in the design and operation of the

acceleration systen., they will be discussed separately under their

respective subsections. 	 ^•

2.2.4.4 Neutralization

The need to neutralize the ion beam produced by the thruster is obvious.
k

Without the addition of electrons, the individual beams of ions would

be repelled back toward the acceleration system by the positive, space-

charge buildup of ions immediately downstream of the thruster. 	 This

space -charge buildup occurs in an extremely short period of time (nano-

seconds to microseconds).

It is therefore imperative that effective and complete neutralization

occurs when the thruster is producing; and accelerating ions for purposes

of generating thrust.	 Many types; of neutralizer systems have been

investigated to determine which types are satisfactory.	 Although the

primary requirement is to provide both current and charge neutralization

of the ion beam, several other factors are equally important in the

determination of the correct type of neutralizer. 	 These factors include

the lifetime, efficiency, and complexity of the neutralization system.
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T ►.e difficulties experienced in selection criteria of neutralizers are

exactly the same as those encountered in the selection of cathodes for

the thruster.	 Both the neutralizer and thruster cathodes must be good

electron emitters.	 Although this is an obvious requirement, a good

electron emitter is not synonomous with lifetime, efficiency, and rim-

plicicy or complexity.	 Emitter investigations in the past have dealt

with many types including refractory or wire, dispenser, impregnated,

and oxide.	 Each of these types of emitters is attractive from an elec-

tron emission standpoint. 	 All of them, however, are unattractive from

either an efficiency, lifetime, or fabrication viewpoint.

The neutralizer cathode problem has been resolved by the use of the

hollow cathode, as is also true of the thruster cathode. The use of

the hollow cathode as a neutralizer electron emitter, however, preceded

its incorporation into the thruster. Initial investigations with the

hollow cathode neutralizer followed the successful demonstration of a

similar type of cathode which operated with cesium propellant. This

particular device was termed a cesium "plasma-bridge" type neutralizer

and utilized a propellant reservoir and vaporizer separate from those

components in the thruster. A schematic of the mercury plasma-bridge

neutralizer is shown in Fig. 15.

The work with mercury propellant has resulted in a plasma-bridge neu-

tralizer cathode which also has a separate propellant reservoir and

vaporizer. The mercury neutralizer, however, also incorporates a neu-

tralizer anode or keeper electrode. This keeper performs the function

of maintaining the neutralizer cathode discharge during startup, low

beam, and steady-state operation of the thruster. This function is

very similar to that of the thruster cathode keeper electrode.

The neutralizer is usually located immediately downstream of the thruster

and adjacent to the beam (2 centimeters downstream of the accelerator
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r 2-percent thor lated
tungsten disc

j r Or ifice 0.1 cm thick
. 02 to .03 cm diam
tapered hole

rTantalum Insert
coated with barium

^ carbonate mixture

f•

Heater
terminal

1®^ - 0.05 cm nfam 40M
Mercury

♦ flow

Heating element-1 /	 Flame-sprayed	 ♦♦
aluminum oxide

x-0.05 cm	 j	 0.32 cm	 ^♦
Tantalum	 outside diem

4. Neutral izer	 heat shield	 tantalum tubing
keeper electrode

^- 2.5cm _
0.15 cm

10.0 cm -------
0.0012 cm tantalum foil
neutralizer Insert

Figure 75. Plasma Bridge Type Mercury Neutralizer
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electrode and 2 centimeters radially outward from the edge of the

accelerator electrode aperture pattern). 	 This position is selected as

a compromise between the lowest 	 coupling' voltage between the neutral-

izer cathode and ion beam and the least damage to the neutralizer system

resulting from primary ion interception it-od charge-exchange sputtering.

The value of the coupling voltage is r^.gnificant n.A so much because

it reduces the net accelerating voltage of the ions by the amount of

the coupling voltage, but because the coupling voltage represents the

maximum energy of ions that can form between the neutralizer cathode

and ion beam and strike the cathode.	 Any resultant sputtering damage

WO',-.+u directly influence the operating lifetime and, perhaps, the per-

formance of the neutralizer system.

T	 p	 ,	 , a tradeoff oThe position of the neutralizer cathode is 	 therefore	 f

neutralizer cathode lifetime versus efficiency or power required to

provide electrons to the ion beam as a function of coupling voltage.

Proper placement of the neutralizer, however, is possible such that

lifetimes necessary for near-term missions are feasible with this type

of device.

As mentioned above, the mercury plasma-bridge neutralizer requires a

propellant reservoir and vaporizer. 	 Present designs incorporate this

particular neutralizer system into the thruster system with a separate

propellant reservoir and vaporizer for the neutralizer and a separate

propellant reservoir and vaporizer for the thruster. 	 Although this

fact means added weight for the neutralizer and thus, the thruster

Eystem, the contribution of the neutralizer system weight to the total

thruster system represents less: than 5 percent of the total thruster

system dry weight for thrusters required to produce more than about 105

newton-seconds total impulse.
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2.2.4.5 Power and Control

The preceding sections have dealt with the basic operation of the

thruster system and state of the art components. This section will be

devoted to a general presentation of the power aal control requirements.

In addition, tables and figures of data will be Riven which include

thruster system performance for various thruster sizes. This data has

been extrapolated to the curves of Subsection 2.2.5 to indicate the

general range of performance by utilizing the best features fro g, all
of the existing thruster system investigations.

Tables XII and XIII list specific thruster system performance param-

eters, calculated performance values, and other data of interest which

are normally presented to fully deecribe the capability of a given

system. These data which have been taken from tests that were not

necessarily "performance optimized," are listed for a range of exist-

ing thruster sizes from 5 to 20 centimeters in diameter. Also, included

in the listing is the limited data available on the 50- and 150-centi-

meter diameter thrusters. These data are necessarily limited due to

the lack of extensive test investigations and system considerations.

The electrical schematic of the mercury electron bom loardment ion thruster

system is shown in Fig. 76. Note that the bias supply has been included

only for reference to ground testing techniques. The specific power

supplies utilized have been noted as to whether ac or do type power is

needed. Th e general range of each power iiupply has not been given.

This voltage-current capability for individual supplies is best deter-

mined by reference to a particular thruster system design and size.

This is the case because any two thrusters will seldom have the same

operating characteristics.
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'd ^ •rl 7 9 9 ĈC 	1 W •r4 ,i' fr 1. C N	 Q, N 04 CO 1+ ^I 1
dw

Ai 4"
CO -A 4J u V CL ¢ 44)i O	 N •-1 (a N	 aui	 `' ro u' 6 •^ u

94 0
to

tnsr ^.o 	 ►^	 wro^
o

c
a
	>,4o,a.s.^ao	 14^^rnaa^^ $ aduarHv, a^v, ^nlHv^

2-94

B
r	 a"-	 _ - t.tY —:.tieig	

,ic, rsl as,	 •e.
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General power supply characteristics, as shown ii Table XIV, however,

can be discussed. The ac power supplies are required to supply only

heating power an6 are usually low voltage-low current supplies.

Included in this category are the power supplies required for the

reservoirs, vaporizers, and cathodes. The next general category of

power supplies are the low voltage-low current do you er requirements

which include the keeper electrodes, thruster anode, and, if applicable,

the thruster electromagnet. The remaining supply requirement is the

high voltage-low current do supplies required for the high positive and

high negative accelerating voltages.

Table XIV lists the power supplies and the restrictions on each in

terms of high voltage isolation, regulation, and control.

The types of controls necessary to operate the thruster system in a

steady-state mode include the following:

a. A beam-control loop to sense the actual beam current and
compare this value with a predetermiced or preset value.
This loop regulates the thruster vapL:izer power and thus
temperature as required to provide the proper flow rate and
maintain the level of beam current.

b. A neutralizer control loop to sense the voltage level at a
preset value of current of the keeper electrode. Deviations
from the proper voltage are sensed and utilized to control
the neutralizer vaporizer power and temperature as required
to provide the proper coupling potential between the neu-
tralizer and the ion beam by varying the flow rate.

Related to these two control loops is the requirement for thruster

and neutralizer system vaporizer powers.	 These two particular power

requirements have been defined during development of many of the mer-

cury thruster systems to be directly related to the beam currerL out-

put of the thruster. 	 This relationship has been plotted in Figs. 77

and 78 which show thruster feed system power versus beam current and
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TABLE XIV

THRUSTER SYSTEM POWER SUPPLY CHARACTERISTICS

Power Supply
H.V.

Isolation
Regulation or Control

Thruster:

Reservoir No Temperature, 500C *200C

Vaporizer No Flow rate, function of beam current

Isolator No Temperature, 3000C *500C

Cathode Yes Temperature, 12000C t1000C

Keeper Yes Constant voltage

Anode Yes Constant voltage

Screen Yes Current limited

Accelerator Yes Current limited

Turn-on Yea Automatic sequencing

Turn-off Yes Total power removal

Neutralizer:

Reservoir No Temperature, 500C *200C

Vaporizer No Flow rate, function of beam voltage

Cathode No Temperature, 12000C *1000C

Keeper No Constant voltage

Bias No Constant voltage

Turn-on No Automatic sequencing

Turn-off No Total power removal

y

i^

k
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neutralizer system power versus beam current, respectively. In the

case of the thruster, the feed system power represents only the thruster

vaporizer power, whereas with the neutralizer system, the neutralizer

system power includes the vaporizer, cathode, and keeper electrode

power requirements.

A thruster arc control loop was previously incorporated into the

thruster when the various types of oxide cathodes were used. The loop

was designed to adjust the cathode emission by varying the cathode

heater power in order to match a preset value of thruster arc current

when the thruster arc voltage was held constant (the use of the word

arc in this instance is synomous with anode or discharge). This par-

ticular control loop is not used, however, when thrusters are run with

hollow cathodes due to the predictable emission characteristics.

It is possible to operate the thruster system in a "hands-off" mode by

utilizing the above-mentioned control loops as required for a specific

system design. A list of desirable telemetry and command chati:nels nec-

essary for three different degrees of system analysis are presented in

Tables XV and XVI, respectively.	 It can be seen that minimum to max-

imur.. quantities of data can be obtained when the flexibility of com-

munication channels selected for a particular mission is exercised.

The actual number of channels chosen, however, is based upon the degree

of analysis desired, the weight and power requirement as well as the

complexity of command channels, and the particular mission.

"^	 w

n^

The need for command channels is based upon the degree of control

desired in analyzing and/or correcting thruster system performance

while it is in space. It should be noted that the commands listed as

"necessary" are required to optimize thruster system performance while

those listed as "desired" give the investigator the additional capability

of thruster system performance mapping and detailed study.
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TABLE XV

TELEMETRY DATA CHANNELS

Data or	 Minimum
Parameter	 Data-

Current:

Thruster Reservoir
Thruster Vaporiser
Thruster Isolator
Thruster Cathode
Thruster Keeper
Thruster Anode
Thruster Screen
Thruster Accelerator
Neutralizer Reservoir
Neutralizer Vaporizer
Neutralizer Cathode
Neutralizer Keeper
Neutralizer .mission

Voltage:

Thruster Reservoir
Thruster Vaproizer
Thruster Cathode
Thruster Isolator
Thruster Keeper
Thruster Anode
Thruster Screen
Thruster Accelerator
Neutralizer Accelerator
Neutralizer Vaporizer
Neutralizer Cathode
Neutralizer Keeper
Neutralizer Bias

Temperature:

Thruster Reservoir
Thruster Vaporizer
Thruster Isolator
Thruster Cathode
Thruster Anode
Thruster Chamber
Neutralizer Reservoir
Neutralizer Vaporizer
Neutralizer Cathode

Nominal	 Research
, Data —	n.—

-	 r

a

IV ,!

•^ •/ J

v

- A
IV'

v
%/ ,/ J

Pressure:

Thruster Reservoir
Neutralizer Reservoir
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TABLE XVI

COMMAND CHANNELS

f

Fowe r
Supply

Thruster:

Reservoir
Vaporizer
Isolator
Cathode
Keeper
Anode
Screen
Accelerator
Turn - on /of f

Neutralizer:

Reservoir
Vaporizer
Cathode
tee a pe r
Bias
Turn-on/off

Necessary	 Desirable
	

Parameter

Command	 Command
	

Affected

No Yes Temperature

No No
No Yes Temperature

No Yes Temperature
Yes Yes Voltage

Yes Yes Voltage

No Yes Voltage

No Yes Voltage
Yes Yes Power

No Yes Temperature
No No -

No Yes Temperature

Yeti Yes Voltage

Yes Yes Voltage
Yes Yes Power
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An important coimu nd funct: ,,n is that of thruster and neutralizer

turn-on and turn-off. It is clear that the start up sequencing of both

must be completely automatic and must also be precisely timed such that

the thruster is not allowed to emit ions prior to the emission of elec-

trons. Without complete neutralization of any portion of the beam,

several complications result. These include:

a. When any value of thrust is being proci.:ced by the thruster,
incomplete neutralization of this beam will result in an
excess of ions emitted which leave the spacecraft negative.

When this occurs, the ions are repelled due to the ion space-
charge buildup which prevents the thruster from producing
thrust. The order of time required for reversal is nanoseconds.

In addition, the beam will rapidly assume the high positive
potential of the screen, and the spacecraft will assume a

high negative potential (screen) which will attract the ions
and prevent further emission of them from the thruster.
Because there is a slight time delay, however, the spacecraft
will assume a potential which is positive with respect to the

:.oval space potential.

b. The current and charge emission of electrons in excess of the
current and charge emission of ions will cause the spacecraft
to assume a potential which is negative with respect to the
local space potential. Excess electron emission, however,

4	 will not lead to the results described above.

From the preceding discussion, it is obvious that the magnitude (current

and charge) of emissions from the neutralizer and from the thruster

must be sychronized. Since operation of the neutralizer is mandatory,

some means must he chosen to either rapidly increase its emission when

only partial neutralization is occurring or the thruster must be rapidly

throttled back or turned off until the neutralizer emission capability

is regained. It is known, however, that rapid increase in the neutral-

izer emission is extremely difficult because of the thermal response of

the neutralizer system. It is also difficult to rapidly throttle down

the thruster because of the same types of thermal response considera-

tions in the thruster. It is necessary, therefore, to turn off the

thruster when the ion beam is not being completely neutralized.

0;.

(I



i^
f.

^F

The requirement for turn-off of the thruster must also he automatic

because of the intolerable time delays involved in sensing the problem

and commanding turn-off from the earth. One potential method of deter-

mining the degree of neutralization is with the use of a probe. This:

probe would measure the potential of the beam, and thus the spacecraft

potential,and compare this value to the space potential in the vicinity

of the spacecraft. The nominal spacecraft potential is defined above

is usually a few volts positive. If, however, total neutralization is

not occurring, the spacecraft potential as indicated by the probe would

rapidly rise to a potential value approximately equal to the positive

high voltage of the screen electrode power supply. This screen voltage

will normally be of the order of a few thousand volts as dictated by

the specific impulse. The rapid rise of the beam potential (space

potential in the vicinity of the probe) or the magnitude of that poten-

tial could be utilized to provide the signal required to turn off the

thruster.

Another method which could be utilized to turn off the thruster system

would be to take advantage of the fact that a poorly neutralized or

unneutralized beam would partially be reflected back onto the accelera-

tion system which would result in overloads to the two high voltage

supplies. This fact could be combined with an overload number counter

which would limit high voltage cycles to a predetermined number. After

this number of cycles (say five or ten) is reached, a signal caused by

that fact could be used to turn off the thruster.

This latter method of sensing partial or no neutralization is not

desirable because it does not prove that turn-off of the thruster was

caused by a failure or inadequacy of the neutralizer system. The high

voltage supplies will normally cycle when overloads due to any cause

are sensed. These causes may include the flaking of metal from between

the electrodes, the presence of any foreign metal which could short out

either high voltage supply, and micrometeorite impact on or near the

electrodes.
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Although the use of a potential probe would measure the exact effective-

ness of the neutralizer system, it is undesirable because of the need

to provide additional design as well as cost, components, weight, and

volume to the spacecraft.

In addition to the general discussion above, various investigations and

development work with the mercury thruster systems have resulted in

reduction of power-conditioning and control requirements. These include

the following:

a. The incorporation of permanent -magnet type magnetic fields
which obviate the need for any type of power supply and
regulation.

b. Reduction of thruster and neutralizer cathode heater require-
ments. Previously the oxide cathodes required up to 100 watts
heating power at about 50 amperes current. Present hollow-
cathode type designs require less than 20 watts heating power
at about 3 amperes current.

c. Examination of the ionization chamber operation using alternat-
ing current directly for the discharge.

These as well as other areas discussed in Subsection 2.2.7 will continue

to be investigated and the benefits will chiefly be seen in reducing

the power -conditioning restrictions and control requirements.

i
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2.2.5 PRESENT STATUS

The following section will be used to presei,t and describe those

thruster system parameters and calculations which are of interest to

mission planners. The basic systent design evolved in the preceding

sections and typified by the SERT II mercury, electron-bombardment ion

thruster system will be used as the basis for these parameters. All of

the values presented below represent realistic and attainable ones that

have been selected to define the present state of the art for mercury

thruster systems.

Nu ,.aerous figures have been included that are representative of present

and expected near-term system performance. Consideration has been given

to the potential improvements in many of the subsystems and components.

These improvements are included in the figures and represent the extra-

polated performance values based upon the expected performance for the

next generation of thruster systems.

2.2.5.1 Durability

Durability for thruster systems includes the reliability and lifetime

capabilities of all subsystems and components. The primary considera-

tion here is whether or not the thruster system is capable of performing

a given mission. Although the ultimate performance in terms of time

for a system is a function of component lifetime, the reliability and

durability are equally important as they apply to the total system.

The following discussion will be limited to lifetime, reliability, and

durability as they pertain to the thruster system And subsystems and

cot.iponents. Specific limitations and potential problem areas will be

selected. It has been assumed that those components are areas that
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have been omitted from this O gR.ussion meet the necessary requirements

of lifetime, reliability, and durability for near-term missions. Near-

term missions are defined as those potential unmanned missions which

will take place from the present to 1975. 	 These will primarily be

scientific, r..­.-onnaissance, and communication satellites having orbits

about the earth up to synchronous altitudes and lifetimes up to a maxi-

mum of five years.	 Nominal lifetimes, however, may be significantly

shorter.	 This is particularly true when consideration is made of the

thrust system requirements which indicates small duty cycles even for

the five -year missions.	 Thus, the average lifetime requirements for

the near - term missions appear to be limited to about two years.

For the mercury electron - bombardment ion thruster system, the thruster

and neutralizer cathodes have historically been the life - limiting com-

ponents of the total system.	 Introduction of the hollow-cathode type

emitters and keeper electrodes has increased the efficiency and repro-

ducibility of operation for the thruster and neutralizer system. 	 Very

long lifetimes, however, are still a problem with these emitters because

of the mercury discharge voltages. 	 The arc voltage of about 35 volts

is sufficiently high that ion sputtering of the cathode continues to be

a problem.	 This problem has been reduced from the magnitudes incurred

with the former oxide cathode designs by the fact that the discharge

voltage has been reduced (from 50 volts with oxide cathodes) and that

the thruster geometry has been modified to result in reduced cathode

a utterin .P	 B

Although the lifetimes of the emitter systems are limited at present to

less than one year, continued efforts in this area can result in greater

lifetimes; lifetimes that are adequate for the near-term missions pres-

ently being planned.
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The ultimite life - limiting component in the mercury uystEm as well as

any of the electrostatic devices is the accelerator electrode. Since

this electrode is sputtered by ions formed downstream of the thruster

by charge - exchange collisions, the effective damage car be reduced.

Factors that are capable of reducing this damage include; (a) use of

materials of low sputtering yield, (b) reduction of the neutral mercury

flow out of the thruster ( increased propellant utilization), (c) elec-

trode designs which minimize the effective erosion, and (d) thicker

electrodes. All of these factors can result it, reducing the damage

and, therefore, increasing the life of the electrode. At this time,

however, the erosion of the accelerator electrode is sufficiently

small that lifetimes greater than those required for near - term missions

exists.

Minor materials problems such as bladder and vaporizer materials have

been encountered in the past. These have been eliminated through the

use of both improved designs and material substitutions.

Although the thruster system has several areas where improvements in

lifetime can be made, it does have adequate potential for near-term

missions. Continued development in these several areas to eliminate

or reduce the present limitations, however, will greatly increase the

usefulness and capability of the mercury thruster systems.

Reliability and durability are obviously necessary to the successful

application of any system in space. Little direct concern, however,

is made of these requirements in this discussion because of the present

status and future capability of the mercury system. Suffice it to say

that complete qualification and environmental evaluation are necessary

prior to the application and use of any system in space.
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2.2.5.2 M_a_ss

Near-term mission requirements emphasize the following parameters in

order of decreasing importance; reliability, durability, lifetime,

power-to-thrust ratio, efficiency, mass, and size. Although the mass

is not of prime concern for these missions, it becomes, increasingly,

the pacing factor for missions of longer duration and greater dis-

tances from earth.

System mass can be traded directly for system power and, thus, perform-

ance. This relationship can be seen in Fig. 79. Shown is the thruster

mass only as a function of power of the thruster system. Figures 80,

81, and 82 show the effect of total thruster system weight on perform-

ance capability in terms of total impulse. These figures present three

thruster system sizes (4.45 x 10 -3 , 4.45 x 10-2 , and 4.45 x 10-1 newtons

thrust) or the effect of different levels of thrust upon total impulse.

It is seen that for larger values of total impulse, the percentage of

system dry mass is smaller. Also, the higher the thrust of the systems

for a given mission length, the smaller is the percentage of system dry

mass.

2.2.5.3. Size

Thruster size is only of minor importance. Size is, however, a consider-

ation used to define the basic system volume requirements.

As seen in Figs. 83 and 84, thruster size can be related to the total

thruster system power and thruster mass, respectively. A given size

of thruster will have a certain mass. However, the power is obviously

a function of the desired specific impulse and thrust and, therefore,

each size of thruster can operate within a range of available power or

over a range of specific impulse.
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The thruster size is normally represented by the anode diameter. For

mercury thrusters, the anode diameter should be multiplied by about

1.3 to arrive at the overall thruster diameter. No consideration in

this thruster envelope has been made for the neutralizer system since

it can be mounted either to the thruster or to the spacecraft structure.

The only requirement for location and mounting of the neutralizer is

that the relative position with respect to the ion beam is maintained.

2.2.5.4 Clustering — Scaling]

Considerable effort and experimentation has occurred in the area of
-i

the clustering and the scaling of thrusters.

In particular, work has resulted in the evaluation of an array of

three 20-centimeter-diameter mercury thrusters and of an array of nine

20-centimeter-diameter thrusters.	 In each of these investigations,

the groups of thrusters were operated and particular attention was

given to the electrical and magnetic interactions between and among

them.	 The effects of magnetic field interactions can be minimized by

the use of permanent magnets and pole pieces which define the field

lines within the thruster with use of pole pieces. 	 Although the ma-

jority of electrical interactions can be eliminated by the incorpora-

tion of effective shielding techniques, it is apparent that the greatest

difficulty from thruster interactions is due to the types of controls

used to operate individual thrusters and groups of thrusters. This is

because common power supplies are ordinarily utilized to power more

than one thruster or similar functions in many thrusters.

Thrusters utilizing mercury propellant have been fabricated, tested, 	 j

and evaluated ranging in size from 5 to 150 centimeters in diameter. 	 f
a

It is worth mentioning here that despite the lack of detailed scaling 	 F

laws which would aid in design of thrusters of different size than
r	 ^:
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those previously built, this lack is not critical. It remains that

the best guidelines for defining and designing a new thruster depend

upon the following:

a. Specific application which defines thrust, power level,

weight, and size.

b. Experienced and capable personnel who are iamiliar with the
design of thrusters and their operating characteristics.

In addition to the conventional thruster design shown in Fig. 68,

two bidirectional thruster designs have been investigated. One of

these thrusts in two directions 180 degrees apart while the other

thrusts in two directions 90 degrees apart. Excessive fuel loss

through the dormant electrode system in either thruster design is pre-

vented by utilizing very small apertures in the accelerator electrodes.

Although neither of these thruster designs has been extensively in-

vestigated or found to be particularly efficient, they do represent

unique techniques for obtaining thrust vectoring.

2.2.5.5 Thrust

Thrust capability of any system is a requirement defined for a specific

mission. Whatever power, size, mass, and other requirements are dic-

tated for the particular system are a result of the desired thrust.

Although the thrust is a direct function of power as noted in Fig. 85,

it is also a function of specific impulse. This is seen in Fig. 86

which shows the range of power-to-thrust versus specific impulse for

the mercury thruster system. Other variables, such as thruster size

and system mass, are only an indirect function of thrust. Their effect

of system definition can be visualized by referring to all of the

curves shown in Figs. 79 through 86.
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2.2.5 6 Specific Impulse

Specific impulse, perhaps the most familiar "figure of merit" for all

classes of thrusters, is the measure of the amount of thrust produced

by a given rate of flow of the propellant and is directly proportional

to the ejection velocity.

The specific impulse when corrected due to incomplete ionization of

the propellant, is the accepted basis for thruster performance com-

parisons and is termed the "effective" specific impulse. In all of

the curves and data presented, the effective specific impulse is im-

plied whenever specific impulse is given.

The two most frequently used curves which indicate the performance and

merit of thrusters are the power - to-thrust ratio and overall efficiency.

These are plotted as a function of specific impulse in Figs. 86 and

87, respectively.	 It should be noted here that although these curves

show the performance range for the mercury thrusters, they do not show

such other important considerations such as size, mass, or durability.

These additional considerations can only be obtained after the partic-

ular mission, specific impulse, and thrust requirements have been se-

lected.	 To describe at this point the necessary development and def-

inition of a specific thruster system would only result in a review

of the previous discussions and a review of history. It is more impor-

tant to realize, however, that the application and design of any system

does not begin until the specific mission requirements and timetable

for development are provided. It is then the task of experienced and

qualified personnel to design, fabricate, evaluate, and qualify the

candidate thruster system.
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2.2.6	 PERFORMANCE PREDICTIONS

This section includes a general discussion of the expected performance

of the mercury	 electron-bombardment ion thruster system.	 It is dif-
p

ficult to classify and categorize completely this information and, as

a result, only an outline of the potential system improvements will be

presented.	 These improvements have been developed and evolved since J

the introduction of the mercury ion source as a thrust-producing de-

vice in 1959 and represent tile present and near-term improvements I

affecting thruster system performance and capability. Greatest of

these, which are also described in other sections are:

a. Improvement of thruster and neutralizer electron emitters
or cathodes which require minimum power and are long-lived.

b. Design and development of ion acceleration systems matched
to ionization chamber characteristics to give efficient ion
extraction and minimum accelerator electrode erosion.

c. Increase of propellant utilization via increased ionization
chamber efficiency, optimum propellant introduction and dis-
tribution methods, and efficient electron emitters.

d. Design and utilization of divergent magnetic fields which,
for a given thrust and specific impulse, yield maximum ion- 	 l
ization chamber performance.

e. Development and application of permanent magnet thruster
configurations which perform as well as electromagnet de-
signs and require no power.

f. More sophisticated thruster systems and test techniques which
involve at least preliminary investigation and development of
the following advanced subsystems:

(1) "zero-gravity" type feed systems including the gas-
pressurized, positive-displacement systems

(2) High perveance (performance) electrode acceleration
systems

(3) Breadboard and flight power-conditioning equipment

(4) Longer and larger volume vacuum facilities with greater
pumping speeds

(5) Extensive measurement and data-recording systems

p

}

1

i

i

{
fi

k	 I

	5400-Final
	

2-122

Vo 1 ume I

	

^'	 q +'a ^	 # is	
x	 ^^	 e

	

I	
y

_	 Y	 1	 Y:t-	 f	 .' a

	
r^	 ^ 1;6^4^3^1 	

..+._.ar	 ga



Y.	 w

Representative data, summari^ed in Tables XII arc XIII, from various

thrusters have been reviewed and utilized in clic presentation of the

above mentioned Figs. 79 through 87.

	

L	 These curves provide a starting point for mission pla anc rE dosiring

c	 to utilize mercury thruster systems. The curves presemcd in Figs. 79

	

3	 through 87 have been taken from original investigations given in the

bibliography.	 Although the curves show the specific operating char-

adteristics and potential of various thruster systems and subsystems,

f	 they have been purposely generalized and extrapolated such that per-

formance capabilities and ranges are suggested in heretofore uninves-

tigated areas.

2.2.6.1 2.5 Kilowatt Thruster System

To illustrate the expected thruster system performance for near-term

applications, a 2.5 kilowatt mercury thruster has been chosen to illus-

trate the potential and performance obtainable with the mercury thrusLer

system.

Table XVII gives the approximate values and performance calculations

for this system. The mission requirements for this particular thruster

include a specific impulse of 5000 seconds, 2.5 kilowatts of power to

operate the system, and a mission lifetime of 2 years.

Although this system indicates near-term performance, it should be

stressed that these values are approximate. The ultimate capability

is obviously based upon the development and qu alification of such a

system.

-

f
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TABLE XVII

2.5 KILOWATT THRUSTER SYSTEM

Thruster Parameter Value

Input power, watts 21500

Thruster power, watts 21465

Neutralizer power, watts 35

System mass efficiency, percent 79

System overall efficiency percent 69

Power-to-thrust ratio, kilowatts/newton 34

Specific impulse, seconds 51000

Thrust, newtons 0.74

Positive high voltage, volts 3,600

Negative high voltage, volts 29000

Beam current, amperes 0.6

Thruster system weight, kilograms 10

System specific weight, kilogram/kilowatt 4
Propellant weight, kilograms 100

Mission time, hours 17,500
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Several features of this particular thruster system, however, are note-

worthy and applicable to most of the projected mercury thruster systems

under consideration for near-term missions. These features include the

following:

a. A gas-pressurized, positive-displacement feed system reser-

voir capable of "zero-gravity" operation

b. An isolator device to "electrically" isolate the feed system

from the thruster

c. A hollow-cathode type electron emitter in the thruster and

neutralizer system

d. Permanent-magnet type magnetic field

e. Neutralizer system mounted to or separate from the thruster

f. Control loops to provide completely automatic operation of
the thruster system

g. Structural design of the thruster to produce a durable,

lightweight system

As illustrated by the large bibliography for missions for electric

thrusters, there has not been a lack of effort in the areas of missions,

mission requirements, and related mercury thruster system development.

To date, however, serious use of electric propulsion has not occurred

because of the low confidence level in electric thrusters in general

and In mercury electric thrusters in particular. This lack of con-

fidence is expressed in the following areas of greatest concern to

mission planners:

a. Lack of adequate life test data which would reveal the capa-
bility of electric thrusters to operate reliably in space
without experiencing major changes in operating character-

istics for periods of time greater than a few thousand hours.

b. Lack of substantiated data that small thrust (less than 5 x

10- 3 newtons thrust) mercury thruster systems can be designed

and qualified that have:

(1) Long life

(2) Durable and reliable components and subsystems
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(3) Moderate levels of efficiency

(4) Thrust vectoring and throttling response

(5) Simple packaging in small volumes at minimum weight

C. Electrical space power capability that would allow mission
planners to meaningfully design prime thrust missions uti-
lizing electric propulsion.

s

Although these facts exist, many mission analyses have recently been

made which utilize electric propulsion in one particular area where it

is capable of performing the near-term missions. These missions, for

the most part, require microthrust capability for use in station keep-

ing and attitude control of various spacecraft platforms. One of the

reasons that such types of applications are now being considered is

due to the development of techniques which allow the fabrication of

lightweight solar cell arrays (18 kilograms per kilowatt is now state

of the art for these power sources). The recent development of these

arrays means that microthrust systems can be designed with minimum

weight and power requirements for the entire thrust system including

thruster system propellant, power-conditioning and control equipment,

and power source.

2.2.7 FUTURE DEVELOPMENT AREAS

The mercury thruster system as described in the preceding sections is

quite capable of performing the thrust activities of most near-term

missions. There are several areas, however, where new or continued

development and investigation could result in improved performance and

capability. In addition, areas of thrust and performance not covered

by the present mercury thruster system investigations should be included.

Development of the components and subsystems, as outlined below, could

result in improved systems and competitive performance.

5400-Final
	

2-126

	 1
Vo 1 ume I

A



? R

i

a. Electron emitters for the thruster and neutralizer that are
efficient, long-lived, and easily fabricated

b. Higher perveance acceleration systems

c. Lighter weight, structurally sufficient component designs

d. Lightweight permanent magnet designs

e. Consideration of an ac-operated discharge which could elimi-
nate do rectifier losses and possibly reduce the cathode
sputtering

General areas of development where potential benefit may occur include:

a. Development of mercury microthruster systems

b. Use of a single reservoir concept for each thruster and
neutralizer or for more than one thruster system

c. Development of feed systems not dependent upon pressurized
gas

d. Use of unitized, one-piece construction for such items as
the ionization chamber, propellant reservoir, and system
support structure

e. Extensive thruster "system analyses" oriented toward poten-
tial applications

Although the exact nature and results of the above-outlined areas of

improvements cannot be predicted, these areas are, in general, repre-

sentative of those areas which could produce the improvements neces-

sary for thruster systems beyond the present near-term missions. The

future development of the mercury thruster systems will be in two major

areas: One will be the investigation anu development of very small

thrust systems (microthruster systems), and the other will be the

optimization and refinement of present thruster systems from a systems

application point of view.

Figure 88 presents the general areas of future development, schedule,

and costs that are required to bring the status of the mercury thruster

system to the "application" level in the period beyond about 1975.
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2.2.8 CONCLUDING REMARKS

The objective of this subsection has been to present the current status

of the mez 6;ury electron-bombardment ion thruster systems and to pre-

dict performance in terms of potential near-term missions.

Although research and investigation into the efforts that have been

performed with the mercury thruster do not include extensive system

considerations, the discussion has been presented from the "system"

point of view. Descriptions have been given regarding the results of

investigations to date as well as the anticipated thruster system

performance.

Curves of reported performance are presented and extrapolated, where

necessary, to indicate the potential performance and capability of the

mercury	 Ythruster system. In addition to this state of the art discus-

sion, a 2.5-kilowatt system has been offered as an example of a system

incorporating both the developments to date and the anticipated near-

term improvements which can be predicted with a high degree of confidence.

Included in this report is an extensive bibliography of the investiga-

tions of the mercury thruster system since 1960. This collection pro-

vided the basis for the conclusions contained herein and is intended

to provide the detailed analysis in particular areas not covered in

this report.

W
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2.3 CONTACT ION THRUSTERS

2.3.1 INTRODUCTION

2.3.1.1 Description

An ion engine consists of a positive ion source supplied with propellant

from a feed system, a set of accelerating electrodes to eject the ions

in a thrust-producing beam, and a neutralizer to add electrons to the

departing ions so the thruster and spacecraft remain neutral. The

contact ionization thruster depends for its operation on the ability

of hot tungsten (11000C) to ionize cesium that evaporates from it.

Sintered porous tungsten serves as the ionizer. Cesium vapor diffuses

through the tungsten and evaporates as ions from its outer surface.

Ionization is produced since the 3.7 volt ionization potential is well

below the 4.5 volt work function of tungsten. Other ionizer materials

with even higher work functions have been investigated, but the most

stable and efficient porous ionizers are being built of tungsten.

As shown in the accompanying sketch (Figure 89), the ionizer is

heated electrically. Thermal radiation from the ionizer is the major

power loss, so the structure is heavily heat shielded.

An accelerating electrode, biased negative, is positioned in front of

the ionizer. This serves two purposes: it applies a strong electric

field at the ion source, helping to overcome space charge limitations,

and it blocks neutralizing electrons from flowing upstream to bombard

the ionizer. A neutralizer and a feed system complete the ion thruster.

These will be described later, along with other subsystems.

The useful range of contact engines is very broad. Thrusters have

been built with nominal operating thrusts from 4.5 x 10-5 newtons to

0.45 newtons. The corresponding input power ranges from 15 watts to 20
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kilowatts. The performance of contact ion thrusters is not as good as

bombardment thrusters, and large tungsten contact ionizers are very

expensive and difficult to construct. At the present time, contact

thrusters may be attractive only for satellite control (requiring

thrust below a few millipounds), and not for prime propulsion. At

these levels their use may be dictated by their special capabilities,

such as beam vector control or throttleability. These performance

features are discussed in a later section.

The history of contact engine development extends back further than

any other type of electric thrunter. Contact ionization of cesium

was first pointed out as being, extremely efficient by Irving Langmuir.

Development of such sources for propulsion began in 1957. Most of the

development of these engines has been conducted at Electro -Optical

Systems, Hughes Research Laboratories, TRW Systems and NASA-Lewis

Research Center. Contact engines research has been supported by the

Air Force Aero Propulsion Laboratory and by NASA Lewis Research Center.

Supporting research has been conducted at a variety of laboratories.

Contact engines were tested in ballistic flights by the Air Force in

1962 and 1964 and by NASA in 1964. In 1965 ) the Air Force flew a

contact engine as an auxiliary experiment in the SNAP 10-A nuclear

reactor test. NASA Goddard Space Flight Center has pruchased contact

microthrusters to perform east -west station keeping on forthcoming

ATS flights.

2.3.1.2 Subsystems

Figure 89 shows a contact engine and the power sources for its operation.

There are at least five sources:

V+	 , which biases the source and supplies the ion current

and power.
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V	 , which biases the accelerator

IIonizer, which heats the ionizer

Feed, which supplies the cesium; this may be more than

one supply if there are valves, etc. to be powered.

Neutralizer, which heats the neutralizer to supply electrons;

these may be more than one heater, and there may

be neutralizer bias supplies.

Other supplies may be required, such as deflection bias supplies if the

engine is equipped for beam vectoring. In addition in a complete

contact engine system there are command circuits and telemetry circuits

to control and activate these supplies.

The system can be divided into subsystems in various ways. A logical

way according to operation of the ion engine would be

a. Feed (including its power supply)

b. Ionizer (including its heater supply)

c. Accelerator (including the V
+, 

V - , rnd deflection supplies)

d. Neutralizer (including its supply or supplies)

e. Control and Telemetry

These subsystems are interrelated. A signal from the V+ and V -

supplies must be used to control the feed rate, for example. The

control and telemetry subsystem obviously interacts with all of the

others.

Subsystems can also be defined according to the technologies involved

°	 in developing and fabricating them	 r',.' m this point of view, the
a

division is:

a. Ion Thruster

b. Power Supplies

c. Command and Telemetry
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The latter two are closely related and frequently are studied together.

Thus ) on the ATS microthruster system, there is a Thruster Subsystem
	 4

and a Control Logic/Power Conditioning Subsystem.

The cesium feed and neutralizer elements are very similar to those

required by cesium bombardment enginesp and a discussion of them is

contained in Section 2.1 of this document.

2.3.2 DEMONSTRATED PERFORMANCE

2.3.2.1 Performance

The most significant performance measure for the contact engine (or for
r

any electrostatic engine) is the power/thrust ratio. This is shown

as a function of specific impulse in Figure 90 for a high performance

contact engine, the EOS "M1" engine and the ATS microthruster. Power

here includes all engine power: neutralizer and feed system as well as

ionizer and beam power. Efficiency of the M1 engine is plotted in

Table XVIII.

Two reservations must be considered in extrapolating these data. First,

the curve is different- for engines of different size. The curve in the

figure is for a fairly large engine, capable of producing 0.1 newton.

The data are valid for all engines of this design above about 1 mlb,

since peripheral heat losses are small in these larger engines.

Losses and useful beam power both scale directly with ionizer size.Y

But below 5 x 10
-3
 newton the losses become more significant. The

power figure chosen for each engine is an optimal one, near the minimum

of the P/T versus I sp curve,

The seconu caution in considering engine power is that this power is

closely related to engine life. Favorable power/thrust ratio demands

Irl
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TABLE XVIII

M1 ENGINE SYSTEM PERFORMANCE
I
1

Specific Beam Thrust Ionizer Total Power/ Efficiency,
Impulse, Current, N x 10 Power, Power, Thrust, Percent

sec A ,....^. W W** kW /N

3460 505 23.5 340 790 37.3 51

3880 565 29.7 340 948 35.5 60
9

5500 895 66.5 340 2262 37.8 79

6730 920 84.0 340 3208 44.4 86
I

7780 920 97.0 340 4124 47.3 90 j

8690 920 109.0 340 5036 51.6 92

i

1

n

Thrust and specific impulse corrected for 7V beam potential.

Assumes power conditioning efficiency is 90%.
s

7

n
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high ionizer current density. This increases sputtering damage and

other wear-out mechanisms. For the present state of the art in large

tungsten ionizers, this tradeoff can be exemplified as follows:

for P /T - 39 kW /N,	 life	 1000 hours

for P /T - 45 kW /N,	 life	 10,000 hours

2.3.2.2 We^,ht

1
1
I

t

I

Two well-established contact engines provide weight estimates. The

first is the EOS M1 engine, which operated typically at 23 x 10-3

newtons with a 1 kW input. (This is the engine which at peak perform-

ance gave 6.7 x 10 -2 newtons for 2.26 kW, with reduced lifetime as

mentioned above). It weighed 4.1 pounds, including neutralizer and

mounting structure but not including cesium supply. The other engine

is the ATS microthruster. This operates at 10 -4 newtons while consum-

ing 17 watts. Its mass is 1.1 kilograms, of which cesium supply is a

negligible part. Thus, contact engines seem to have a weight-to-thrust

profile as in Fig. 91. Below about 4.5 x 10 -3 newtons the mass is

mostly structure and heat shielding, and does not scale with thrust.

The current from a contact engine is limited either by ionizer or

pe rveance considerations. For a given current the thrust depends on

the accelerating voltage, and hence thrust varies with specific impulse.

Therefore, the ratio of mass to thrust, or mass to power, also varies.

Figure 92 shows the "specific mass" (mass/power) for the M1 engine at

peak performance. Note that for microthrusters the beam power is a

small part of the total power, so this strong variation with specific

impulse does not occur. The ATS microthruster consumes about 15 watts

with no beam; at full beam, this rises only to 17 watts.
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2.3.2.3	 Life

The subject of lifetime has already been touched upon.	 Because they

must operate at high current density to be efficient, contact ion
i

engines have an inherent lifetime limitation due to electrode erosion

from ion sputtering.	 Even with " perfect" ion optics and focusing,

with no ions from the contact ionizer ever striking the electrode,

sputtering still takes place from slow ions generated by charge

exchange scattering.	 This process can be reduced by the use of a

sacrificial electrode which attracts the ions and is sputtered without

degrading the overall optics, or '-y clever design of the optics them-

selves;	 the	 latter is the usual course. 	 {

Endurance tests of large contact ion engines are summarized in Table

XIX.	 The most significant was the 2284 -hour test of engine M1-R3.

This was the longest test of a contact engine ever reported. 	 At the

close of the run, electrodes were in good condition and appeared able

to continue for several thousand hours. 	 When test objectives of 2000

hours had been met,	 it was decided to learn as much as possible by

allowing the engine to continue operating until a failure occurred.
1

The neutralizer cesium supply was exhausted at 2100 hours and subsequent

testing was unneutralized.	 A graphic record of run parameters appears

in Fig. 93.	 Table XX shows run data. r1
The run ended when the ionizer heater failed at its input terminal.

This connection was made by crimping a tantalum rod to the tantalum

center conductor of the heater. 	 The	 joint was supported b	 an aluminaJ	 PP	 Y

sleeve.	 The tantalum center conductor had melted and some of the alumina

had fused,	 indicating a	 high temperature.	 A hot	 havevery	 spot could

occurred for several reasons:	 The crimp connection could have become

loose, tantalum could have evaporated from the heater wire, or tantalum

could have reduced the alumina, effectively decreasing the diameter of

the heater.	 Ionizer heater data indicated that the heater resistance
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1
was increasing slowly with the run time, which would indicate that one

or more of the mechanisms was in process. Resistance u aLa did not

predict that failure was imminent, however.

The accelerator electrode experienced some early erosion around its

edges due to beam former misalignment ) but after th y. first 100 hours

the erosion was progressing very slowly. Daily photographs were taken

after 900 hours of operation and it is difficult to detect change

throughout the remaining 1400 hours of the run. The decelerator

electrode suffered somewhat more heavy erosion at the beginning of the

run but by 100 hours this erosion had stopped. There was very little

ionizer erosion.

r.:

The run of M1 -6 was ended by a vacuum failure which badly oxidized

the ionizer. The failure was caused by liquid nitrogen dripping on

a gate valve, because the nitrogen controller had a fault rel ay. A	 -^g	 Y	 Y

gasket in the valve froze and opened a large vacuum leak. This typifies

the complicated problems involved in keeping facilities running for

thousands of hours. The test of M1-R2 ended when the ionizer heater

failed and the test of M1 -8 ended when the vaporizer tube developed

a leak.

The amour,t of cesium used during; the 2283-hour test of M1-R3 was 3.42

+0.01 kg, found from comparing the weights of the cesium reservoir 	 g

before and after the test. The average ion beam for the test was
i

302 +2mA, corresponding to a cesium use of 3.43 +0.03kg. These

figures indicate an ionization efficiency of 98.6 percent or better.

Sections were taken from the accelerator and decelerator electrodes.;

If erosion is extrapolated linearly, which is conservative, the worst

web would be severed in 21,500 hours, or ten times the present test.

Such extrapolation is useful chiefly in that it does not predict

imminent failure.

r
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This test, together with briefer tests of M1 engines operating at

higher current density, established a tradeoff of efficiency versus

lifetime for this design of contact engine. Insofar as lifetime is

established by basic electrode erosion, and for conventional spherical-

tungsten ionizers as used here, the tradeoff is as follows:

for P/T	 39 kW/N, Life , 1 1 000 hours,

for P/T = 45 W114 9 Life	 10 ) 000 hours.

There is little experimental information on the life of contact micro-

thrusters. They generally run at current density below that for large

thrusters, so their lifetime should be greater. One microthruster

test ran 3000 hours, and the test ended only because cesium was

exhausted. Further investigation or microthruster sy--tem life will

be made later cinder Contract AF 33(615)-67-C-1854„

2.3.2.4 Pulse and Turn-On Considerat ions

The contact engine is not well suited for providing brief thrusting

periods. There are two reasons for this. First, the ionizer represents

a considerable thermal mass, which requires some time to heat up.

This is aggravated by the fact that the ionizer is heavily heat -shielded

for efficiency, and so is not usually designed to be overdriven for

rapid heating. Second, thrust cannot be modulated by the obvious

means of turning on and off high voltage, since cesium " flooding" of

the ionizer occurs.

Typical turn on times from a cold start for present-day contact engines

are 1 hour for the M1 4.5 x 10 -2 newton engine and 10 minutes for the

ATS microthruster.	 Most of this is spent heating the ionizer. The

buildup	 of thrust iR faster, controlled by the response of the cesium

feed system vaporizer. Depending on the specifid design of the vaporizer

^^5.^2.'#. ' ..3.i	 1. -' _	 _, .,. ....^•^,. +s,...:

	

'4:f ^	 _



i'
I`
1

I

this response time is between 10 seconds and one minute. The same

time constant is typical for termination of thrust.

The power profile during turn-on depends on the engine size. Typically,

the ionizer is turned on first, and this represents about 20 percent

of the power for a large engine or 60 percent for a microthruster.

This power level is held until the ionizer reaches full temperature.

During this heat -tip either current limiting or power limiting must be

used, for the ionizer heater resistance changes by several hundred

perct, ! . t. After the ionizer is hot, the high voltage and vaporizer

supplies are energized. The neutralizer is turned on with the ionizer.

When the engine is turned off, all power may be removed simultaneously.

It is preferable, however, to first de-energize the vaporizer and let

the beam decay before removing high voltage and ionizer power.

f+

r

ti
u.

2.3.3 Electrical Characteristics

This section describes the electrical power, controls, and telemetry	 R

appropriate to a contact ion engine. Thruster power requirements have

already been touched on in the discussion of Section 2.3.2
	

:

2.3.3.1 Power

Power inputs for a contact engine are in the following categories:
I

Ionize, heat:

Beam (V+):

Accelerator (V-):

Feed:

Neutralizer:

5400-Final
Volume I

ac or do heater power. 5W to several

kW. Isolated.	 . a

+dc, 1 to 5 kV, 1 mA to several amperes.

-dc, 100 V to 5 kV, 10 ijA to several mA.

ac or do heater power. Several watts.

Isolated.

ac or do heater power. Several watts.
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I
Feed system power and neutralizer power are discussed further in the

section on Bombardment Ion Engines. These elements are virtually

identical for the cesium contact and cesium bombardment engines.t
Figure 94 shows how power requirements vary with contact engine

size. A typical specific impulse of 5500 seconds was chosen. Total

power is similar to t h at shown earlier, in connection with engine

characteristics

I
I
I

1
1
1

1
i
1
1

As discussed under "pulse and turn-on" considerations, the ionizer

must be heated before the rest of the engine is turned on. The ionizer

heater supply must be current - or power - regulated during the heat-

up period. High voltage and feed system vaporizer are turned on after

the ionizer reaches full temperature. The neutralizer may be turned

on at any time duri.ng the start-up. It is most commonly energized

when the ionizer ..,egins heating.

Regulation of the various power supplies is not critical. Characteristics

appear in Figure 95. It is perhaps most important for the ionizer

heater supply to deliver sufficient power. A drop of 1 percent in heater

voltage lowers temperature by 112 percent or about 7 degrees. Since

ionizerG are customarily operated 20 to 50 degrees hotter than necessary,

regulation to a few percent is sufficient. For the high voltage,

regulation is less important. A 1 percent change in V + varies the

specific impulse and the thrust by 112 percent. Changes in V - show

no effect, unless they are so gross as to defocus the beam or cause

space change problems. These seldom appear within 1.0 percent of the

desired V . The neutralizer heater, like the ionizer, must simply

keep the device hot enough. Temperature is seldom set close to the

minimum level, since this engine element consumes so little power.

(This may not be strictly true for a thermlonic neutralizer filament

on a microthruster. Here the temperature is kept as low as possible,

while still providing adequate ow 	 to prolong filament life.)
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The feed system vaporizer supply, finally, is "unregulated" in that it

is part of a control loop. Beam current is sensed, and vaporizer

power adjusted to give the desired beam.

Allowable ripple on the do supplies for a contact engine has never

been well defined. V+ ripple will vary thrust and specific impulse.

Unless V+ or V - ripple is great enough to cause defocusing or space

change problems, there should be no bad effect. The ion engine

heaters (ionizer, neutralizer, and vaporizer) can run equally well

on ac or on dc.

2.3.3.2 Controls and Co mmands

Controls and commands for a contact ion engine can be categorized

according to the role of the engine in its mission. An operational

engine system requires few commands. An experimental system requires

more commands for diagnostic operation and to investigate peculiarities

of engine behavior.

A qualified, operational system would use the following commands and

controls:

a. System on/off

b. Thrust Level
c. Thrust Direction (if beam is vectored).

For an experimental device, it is appropriate to have separate commands

for each element, so that operations can be closely controlled. These

additional commands might be used:

a. Ionizer heater on/off

b. High voltage on/off

c. Neutralizer on/off

d. Feed on/off (i.e. ) idle thrust livel)

{

i

y

K
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As for active controls on ion engine operation, very few are needed.

Present systems include only one control 	 loop.	 This regulates vaporizer

power to maintain desired ion beam.	 Ream currant is sensed, either

by measuring; I+ or,	 more accurately.	 by measuring	 (I+ - I - ).	 This is

compared to a desired reference	 level.	 The difference signal 	 is

amplified and used to power the vaporizer. 	 This loop has one long

time constant (the thermal response of the vaporizer) and so should

be inherently stab le. 	 Other	 loops have been investigated in the

past (regulating ionizer temperature to keep the neutral efflux or

drain current

and much simpler

at some	 low	 level,	 for	 instance)	 but it	 is quite satisfactory

to simply	 -sca t	 ionizer	 The	 is	 trueprepower.	 same	 of

other engine inputs.

'r

2.3.3.3 Telemetry

An operational contact engine system requires little telemetry. Minimum

requirements are probably I+ and I - . I+ (beam current) is used to

indicate the thrust being produced, assuming that voltage supplies arc

functioning properly and that neutralization is adequate. I (accelerator

drain current) is Lhe most sensitive indication of healthy engine operation.

Almost nothing can go seriously wrong with a contact engine without

increasing drains.

For more thorough diagnosis of engine operation, the following telemetry

indications are useful:

a. V+ and V - . These show whether voltage supplies are indeed

functioning properly.

b. Ionizer heaLer current (or power). This shows whether

the ionizer is healthy. It is Much easier to measure and 	
Y,

telem,-ter current than ionize temperature, and the same

information is provided.
r
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c. Neutralizer emission. This indicates whether the neutralizer

is performin g; :satisfactorily.

d. Neutralizer heater current (or power). This helps to diagnose

any problem with ► the neutralizer.

e. Thrust status. This confirm.; that the electronic command

circuitry is carrying; out the desired function.

f. Thrust vector status. This provides similar config;urat:.on of

beam direction if the system is equipped for beam deflection.

For deflection in various direction;, this may require 2 or

3 telemetry channels.

g;. Input power (or current and voltage). This indicates generally

satisfactory system performance. It may require 2 channels.

h. Temperatures. One or more channels may profitably be used

to monitor critical temperature points in the electronics or

engine. Engine monitoring; is difficult because most of the

hardware is at high voltage.

i. Beam potential (or spacecraft potential). This indicates

the adequacy of neutralization. It requires extra equipment:

either a beam probe or s potential meter (field meter) for

the spacecraft.
M
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2.4 COLLOID THRUSTERS

2.4.1 INTRODUCTION

2.4.1.1 Introductory Remarks

The production of charged liquid droplets has been investigated

for almost a century. During the present decade this phenomenon

was recognized as a source of charged particles with potential

application as an electrostatic space thruster. Subsequently, it

has been shown to be not only a feasible concept which is competitive

with other types of thrusters, but a system that should outperform

them.

The generation of charged liquid droplets is accomplished by the

application of an intense electric field to a liquid propellant

at the tip of an emitter of small radius of curvature. Both

positive and negative particles are generated by a variety of

propellant liquids, emitter shapes, and i.,aterials. The

characteristics of generated and accelerated charged particle

beams are examined by current measuring techniques such as

time-of-flight (TOF) analysis, retarding potential analysis, neutral

particle detection devices ; and visual observation.

The charged particle thruster is unique in that it is the only

electro-static propulsion system in which the energy required to

generate charged particles is negligibly small. Both surface

lonizati:,n and electron bombardment ion thrusters expend a relatively

large amount )f energy in just ionizing the propellant.

The charged particle thruster has a potential efficiency of greater

than 90 percent in the very low and very high specific impulse

ranges. At very low specific impulses, large particles with
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uniform low charge-to-mass ratios (specific char6z) may be used while

Cs& or HSO4 ions may be electrostatically sprayed to produce very

high specific impulse beams. In the intermediate specific impulse

range (500-3000 sec), the efficiency of present charged particle

thrusters is degraded by the production of particles having a wide

spread of charge-to-mass ratios. The formation of nonuniform charge-

to-mass ratio droplets when operating in the 10 3 to 10 5 r,/kg range

is typical of all propellants investigated so far.

New propellants being developed give hope for considerably better

efficiencies. Even with the present efficiencies, however, the best

charged particle systems are more efficient than the best ion engines

up to a specific impulse of approximately 3000 sec (nominal 5 kV ac-

celerating potential), and again are more efficient in the Cs + ion

mode around 7000 sec.

Besides efficiency, such factors as startup time and standby power

requirements are important considerations in thruster systems.

Versions of the charged particle thruster utilizing capillary feed

systems require no standby power and have startup times under a

millisecond, allowing uulsed operation without power penalties. Even

where pressure regulated or pump type feed systems are used, the

startup time would be only a few seconds.

2.4.1.2 Brief Historical Background

2-1-;
In 1952, H. Prestor-Thomas	 discussed the electrostatic acceleration

of charged colloidal particles as a possible means of space propulsion.

In 1957, theoretical papers were presented on performance characteristics

of both liquid and solid charged particles. A program was initiated in

1958 by Aerojet-Ceneral on an experimental and theoretical investigation

of charged colloid propulsion. Although solid particles were initially

it*
Refc,`rc.1c_s and bibliography for Section 2 are located in Subsection 2.6.
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I
considered, the investigation wa., directed toward liquid drop generation

encouraged by reports in the literature on the electrical atomization of

liquids. This wort: under the direction of R. D. Schultz 
2-2 

was subse-

quently supported by AFOL'^..th ARPA funds. This work concentrated on

the generation of particles at specific charges of about 10 2 C/kg accel-

erated by 100 kV to obtain specific impulses of greater than 1000 seconds.

Around 1959 AFAPL initiated some inhouse investigations in liquid drop

spraying. R. Hunter analyzed some of Lite propulsion characteristics of

a heavy charged particle beam having a specifid charge spread. 
2-3 

This

work developed into an inhouse experimental study and contractual studies

with C. Hendricks at the University of Illinois 2	 and with TRW Systems

(S.T.L.). 2	The work of Hendricks was aimed at theoretical and experi-

mental research on the charged article generating mechanisms. The workR	 particle 	 H

at TRW, eventually under E. Coi i, was a research and development pro-

gram aimed ultimately toward a heavy charged particle thruster for space

propulsion.
2-6

In 1961, M. W. Hoffman of Los Alamos reported on generating liquid gal-

lium droplets which ranged in size, from 2 to 100 4 using a high pressure

feed. 2-7

D. Gignoux and H. Anton of Cosmic Inc. reported in 1961 on a technique

employing a rotating nozzle to vary the feed rate to the cylinder rime

and generate charged liquid droplets. 
2-8 

They have continued this work

under sponsorship of NASA Lewis up to about 1965. Their recent work

includes the testing of octoil and glycerol up to voltages of 60 kV at

currents up to 1 mA.2-9

Work continued at AFAPL with investigations of negative particles and

the bipolar concept (electrodeless thruster) by Hunter in 1964, 10

L. A. Cox at High Voltage Engineering used the condensation technique

to generate charged particles (1961-1)63?) .
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U. Golden and C. T. Norgren at NASA Lewis made experimental and theo-

retical studies of colloid thrusters (1962-1965). -
11

TRW is developing a microthruster for a flight test in the near future.

They have tested a bipolar thruster and linear slit configuratLons.

Thrust vectoring was investigated and the energy losses at the emitter

tips were examined. 12 An extensive single needle parametric study

was conducted.

EOS initiated colloid studies early in 1966 and then went on contract

with AFAPL in the middle of the year. They studied thruster scaling

laws, and liquid m al spray (obtaining a high efficiency Cs thruster).

Linear slit geometries and various needle shapes and materials were

examined in addition to various propellants. Energy loss at the needle

tips was studied. A 73 needle bipolar thruster was tested for over 50

hours to obtain 3.5 x 10-4 N and 5.;, x 10
-4
 N thrust at 4.5 kW/N.2-14,2

-15

Needle rows, focusing; techniques and deflection studies were made

recently.

2.4.2 PARAMETRIC PERFORMANCE

2.4.2.1 Parametric Relations

Parametric relations are shown in Figs. 96 through 98 to serve as a

basis for mission application studies. In Fig. 96 power to thrust ratio

is shown as a function of specific impulse.	 Straisht lines correspond-

Lng to constant efficiencies of 50, 60, 70, 30, 90, and 100 percent are

shown. The shaded region is where colloid thrusters typically operate.

Figures 97 and 93 were obtained from Reference 2-16 and show the ratio

of propellant plus power supply masts to total impulse for a solar cell

power supply with a specific mass of 25 lcg/kW and a SNAP 10-A nuclear

l
a
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power supply With a specific mass of 500 kg/kW respectively. In bath

cases the mass utilization efficiency is assumed to be 0.95 and the

overall efficiency is assumed to be 0.75. Missions corresponding to

durations of 1/3 and 1 year arc indicated by the solid curve. The

shaded area represents the predicted capabilities of colloid thrusters

without post acceleration. The lined area represents the capability

assuming post acceleration up to 100,000 volts.

The following is a disc-fission on the application of colloid thruster

for east-west and .:firth-south stationkeepinF of synchronous satellite.
2-12

One of the most promising, applications for the electrostatic thruster

is east -west stutionkeeping of a gravity-gradient-stabilized synchronous

satellite. For a 454 kg satellite, a thrust level of the order of

50 micronewtons would be required. Shown in Fig. 94 is a comparison

of thruster system mass as a function of total impulse for a flight-

type cesium contact thruster 
2 - 1 7
 and a colloid thruster. In order to

obtain these curves, a value of 91 kg/kW was used for the solar cell

power source. A total impulse of about 4540 newton-seconds corresponds

to about a 5 year satellite life. From this curve, it is clear that a

colloid thruster operating, at a specific impulse of 1000 seconds can

potentially offer a significant mass advantage over the cesium contact

thruster for cast-west stationkeeping. The reason for this is due

mainly to the relatively low power required for the colloid thruster

(5 watts) as compared Lo the cesium contact thruster (20 watts).

Another mission of considerable interest is that of" north-south station-

keeping for a synchronous sate 1l ite . For this mission, a 454 kg satel-

lite would require a thrust level of about 1.3 millinvwtons on a

thruster duty cycle of about 50 percent. Shown in Fig. 100 is a com-

parison of projected thruster system weight as a function of total

impulse for the colloid, cesium contact and cesium bombardment thruster

systems. The data for the cesium contact and cesium bombardment
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was exc.'Ipolated from References 2 - 1R and 2 -19 respectively. As can

be seen from Fig. 100 9 the colloid t hrusler offer-; a significant weight

and power advantage over the other thruster systems, below total im-

pulse values of about 10 5 newton-seconds. A total impulse of 105

newton-seconds corresponds to a maximum satellite life of about 4 years

for a north-s outh stationkeepfilg operation on a 454 kf; satellite.

Therefore even at the hig;her thrus t levels (i.e., - ruaLer than 45 micro-

newtons) the colloid thruster can of fcr significant mass savings *:or

reasonably long; satellite lifetimes.

2.4.2.2 Charge-to-Mass Ratio

The hydrodynamic spraying of charged dropletts from a capillary emitter

generally results in the emission of a broaA range of specific charge.

Mean charge-to-mass ratios from approximately 4 x 10  to 7.2K 10 5 C/kg

have been obtained. This range has been produced by a wide variety of

working fluids with a large range of electr.'.cal conductivities. Table

XXI is a summary of spray characteristics o' different propellants

tested (Ref. 2-15). Investigations of other working fluids for a

collof.d thruster have been made and charge-to-mass ratios obtained fall

within the range given above (Ref. 2-16) .

Parameters used to vary charge- to -mass ratio in laboratory experiments

are emitter geomet-ry and potential, mass flow rate of the propellant

fluid, and fluid conductivity. In general, the charge-to-mass ratio

is dependent on emitter potential and fluid conductivity in an increas-

ing fashion. A more extensive range of charge-to-mass ratio is

achieved for a given solvent by varying fluid conductivity in addi-

tion to varying emitter potential (Table XXI) . The charge-to-mass

ratio of droplets is observed to decrease , with increasing mass flow

rates.
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Unlike other electrical propulsion systems (for, example, the electron

bombardment and contact ionization engines), tits average charge-to-

mcss ratio of particles generated by the electrohydrodynamic process

varies in a complicated manner with nearly any change in other engine

parameters. A series of experiment curves illustrating the dependence

of charge-to-mass ratio on emitter voltage, feed pressures (directly

proportional to mass flow) and temperature for a FcC13/glycerol

propellant fluid are given in Figures 101 to 104 (Rzf. 2-11).

This data was taken utilizing a single emitter and exemplifies the general

behavior and trends for organic solvent doped with conductive salts.

The charge-to-mass ratio increases with increasing voltage and decreases

with increasing feed rate and temperature.

This dependence of charge-to-mass ratio on other thruster parameters

and the broad range available makes research in this area more complex

but in no way detracts from the overall unique versatility of the

co Uoid thruster concept.

The charge-to-mass ratio distribution efficiencies, a measure of

the charge-to-mass ratio spread in a particle beam, are used in

determining one important aspect of thruster efficiencies. A

mixture of ions (high specific charge particles) with heavier

multimolecular particles are present in a typical beam. While ideal

emission consists of particles with the .game charge-to-mass ratio,

this is not readily obtainable in present sprayinr, processes. One

exception was the electrostatic spraying of liquid cesium in which over

95 percent singly charged ions are emitted. The general trend is for

specific charge efficiency to decrease with increasing emitter potential

(2 to 10 kV range) and mass flow rates (30 to 760 torr range).

Some interesting features concerning the charge-to-mass ratio efficiencies

of a charged particle beam are illiostrated in Figure 105. The

charge-to-mass ratio efficiencies versus average specific charge are
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plotted for a variety of fluids tested. As the average charge-to-

mass ratio increases over the range from 10 2 C/kg to 10 5 C/kg, there

is a definite trend for efficiencies to decrease, Propellant

studies by other inveztigators have produced similar results in showing

a decrease in efficiency with increasing charge-to-mass ratio (Ref. 12).

The reason for the particularly high efficiencies for charge-to-mass

ratios greater than 10 5 C/kg is that particles are ionic and therefore

are stable. For cesium, greater than 95 percent of the beam was

I

observed to consist of singly charged ions.

2.4.2.3 Power, Thrust, Power-to-Thrust Ratio, and Charge-to-Mass

IRatio Distribution

The colloid thruster system differs uniquely from other electrical

propulsion systems in that the fields used to accelerate the charged

particles also provide the energy for particle generation. For a

bipolar scheme, incorporating both negative and positive particle

generation accomplishing neutralization, the pourer input is nearly

just the power supply voltage times the beari,^	 P	 PP Y	 , curzaiit.8

The great advantage of colloid thruster devices over those of other

electrical propulsion systems is they can operate more efficiently

at specific impulses less than 5000 sec. Electrical efficiency for

propulsion systems is defined by, 4.$.

Thruster Efficiency	
Beam Power
Power Input	 {

The charged particle beam generated from colloid emitter sources is

characterized by a spread in charge-to-mass ratio. An ideal colloid

source woild produce a beam of particles with identical charge-to-mass

ratios (ve ry nearly approximated by liquid cesium propellant). The

presence of a charge - to-mass ratio distribution is responsible for a

beam power less and has been shown to be expressible in efficiency

terms as (Ref. 2-3).
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This term is appropriately termed the beam power efficiency associated

with the spread in particle charge-to-mass ratios. Neglecting other

sources of energy Losses, the overall thruster efficiency is

represented then, by the beam power efficiency. There are, however,

other processes that occur along with the generation and acceleration

that consume energy and these must be included in the overall thruster

system efficiency. These processes do not contribute toward total

thrust and involve particle interaction near the emitter tip, neutral

mass emission and beam angular spread.

The thrust produced by an ideal, monoenergetic beam of positively

charged particles is

rk

d m v

dt

where m is the mass of propellant contributing to the thrust and v is

the velocity of the charged particles. Hence the thrust is given by

T " th+ v .

The total Kinetic energy in the beam is

m+ v 2

q V

where q is the charge on a particle and V is the accelerating potential.

The Kinetic power in the beam is

i	 2
B	 v

iB
 V T/ —M+

 2
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where i B is the beam current

Since

i.. B
q /m+	 ^+

and using

V	 T

fi+

the ideal beam power becomes

2

iB 
V 

Zfi

The effect of neutrals on reducing the thrust levels for an ideal thruster

can be determined if we let m, the total mass flow in the beam be

A = m++mn

where 
A  

represents the mass flow of neutrals then

T2	2)2(m - mn	
m V

and

T	 (2V)1/2 (m ) 1/2	 m(m - n)

Figures 106 and 107 illustrate how thrust varies with mass flow and

voltage for a single needle. 
2-13 

Thisdemonstrated performance will

be of value when determining which parameters to control for system

operation.
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The performance characteristics of laboratory colloid thrusters haveP	 Y
been investigated and Table XXII lists some. thruster parameters

tdetermined fro	 .,blished data.2 12 
2_ 14

2.4.2.4 Mass Flow Rate

The rate at wh&.-h propellant mass is utilized in a colloid thruster

system influences the manner in which thruster parameters, such as

thrust and specific impulse, may vary. 	 The problem, then has been

to determine which parameters control the rate of mass expenditure

and the quantitative nature of their dependence. 	 Once this has been

established the effects of mass flow rate on thruster parameters can

be studied via these control parameters. 	 Combining an	 understanding of

control and thruster parameters, a flight feed system can be ultimately

designed.

Control parameters used to vary mass flow in the laboratory are feed

pressure and temperature.	 Mass flow rates as a function of these

parameters have been measured 	 and the results are illustrated in

Figures 108 through 110.	 These mass flows were measured using an

emitter with a 0.10 mm diameter bore. 	 Useful information can be obtained

from these plots as follows:

a. Mass flow rate varies linearly with feed pressure.

b. There is an exponential dependence of mass flow on temperature.
This is a result of the viscosity of the propellant and ite•
dependence on temperature in this range.

^i

c. Mass flow remains constant with emitter potential insofar as
increases in emitter potential do not indirectly produce
temperature rises.	 -i

Additional experimental investigation is needed to e.etermine the effects

of mass flow on thruster parameters.	 Data isolating upper and lower

limits on thrusts and specific impulses achievable for given mass

flows and propellant types are needed. Figure 106 in Section 2.4.2.3

shows how thrust varies with mass flow for a single needle. 	 Figure 111
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TABLE XXII

DEMONSTRATED PERFOR:"CE PARAMETERS
FOR COLLOID THRUSTERS

Thruster Type Isp
.sec

T (6y N) P/T (kW/N) Reference

36 Needle 587 to	 691 574 Lo 735 3.7 to 4.3 12
Single Polarity

73 Needle 500 to	 750 356 to 557 4.4 14
Bipolar

60 Needle 763 to	 840 494 to 618 5.3 to 5.8 12
Single Polarity

36 Needle 1024 to 1212 392 to 533 5.3 to 5.8 12
Single Polarity

i
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l

l

snows the effect of varying mass flow on specific impulses. This

plot is a good example of the complexity involved when there is an

interaction of many thruster variables. The decrease in specific

impulse with increasing pressure is a result of lowering the average

charge-to-mass ratio of the generated charged droplets. Increasing

mass flow has the property of reducing charge-to-mass ratios.

2.4.3 THRUSTER STATUS

2.4.3.1 Electrical Characteristics of Thrusters

To examine the electrical characteristics of a heavy charged particle

thruster specified operational requirements will be 4sumed. The

following parameters are required of the thruster.

1
l
1

Specific Impulse

Thrust

Voltage

103 sec

0.89 millinewtons

6 kV

Assume further that the following are the operating characteristics of

the thruster at the parameters specified above:

Total Efficiency 	 N 50 percent

Mean Charge-to-Mass Ratio 104 C/kg

Mass Efficiency	 90 percent

At this mean charge-to-mass ratio, efficiencies and the required

parameters the following are obtained:

l

l

1
a

Beam Current

Power in

Power to Thrust

Mass Flow Rate

800 to

9 W

10 kW/N

8 x 10-8kg/sec

1
1
1

E
5400-Final	 2-182
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At a reasonable value of 5NA/emitter, 160 emitters would be required to

produce the total current.

For a bipolar system the above characteristics are complete since

no neutralizer is required. To include a neutralizer several more

watts would be required. The disadvantage of the bipolar system

is in the two feed and control systems.

2.4.3.2 Vector Control

Electrostatic control of thrust vector has been demonstrated

experimentally.

The best results have been obtained by first focusing the beam of

charged particles and then deflecting the beam with a pair of deflecting

plates which also serve as the extractor. Figure 112 shows how the

deflection angle, 0, and the full width at half maximum (FWHM) varies

with deflection voltage, V. The deflection was found to be very linear

with voltage up to at least 30 degrees. It was seen that the FWHM of

10 degrees remain nearly constant throughout the range of deflection.

2.4.3.3 Li fe and Life Test

Duration runs discussed below show that thrusters can operate for over

1000 hours with little degradation. Emission efficiency decreases with

erosion of emitter tip shape, but operation can nevertheless be

maintained in spite of severe erosion. Complete destruction of the

emitter tip shape does not stop operation. If the emitter is sealed

over or clogged by deposition, emission of course ceases. Erosion of

the emitter may in fact prevent clogging and maintain operation although

degrade performance.
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Performance of several thousand to ten thousand hours can be anticipated

in the future although little work has been done in this direction.

Propellants should be selected to minimize deposition and operation

limited to good stable modes minimizing erosion due to discharges at

the emitter tips.

Several bipolar thrusters have been operated continuously for over 50

hours. As an example a thruster with 37 positive emitters and 36 negative

emitters was operated continuously for over 53 hours. 
2-1412-15 

The

operating voltages were +4.4kV and -5.8kV. The average currents over a

50 hour period were +150 , ►A and -154$AA with a thrust of 0.36 millinewtons .

This produced a power to thrust ratio of 4.4 kW/N. During the

entire run, only a minimum of adjustment of the feed system pressure

was required to maintain the emitter current balance and a constant thrust

level. The fact that no significant drop in current level was observed

during the 50 hours of operation is an excellent indication that a run

of this duration is not effected by deterioration of the emitters.

The needle tips when examined after the teet showed very little erosion

resulting from this run.

After 50 hours had elapsed the thrust level was increased to 0.55 millinewtoii.

by increasing the feed pressure and adjusting the emitter voltages to

maintain a reasonably balanced emitter currents. The emitter currents

and voltage were +215uA at 4+.18kV and -2400 at -5.8kV. The power to

thrust ratio remained at 4.4 kW/N.

ks
The mass f lowrate was not measured directly, therefore, the specific

impulse is not known. However, based on results of single needle tests

it is estimated that the specific impulse was between 450 and 700 seconds.'

Longer life tests have been conducted with positive colloid thrusters.

A thruster module developed for a flight microthruster system has
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l
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accumulated 1500 hours of operation, of which $20 hours were continuous,

at a specific impulse in the 800 seconds range with r.o apparent sign of

degradation	 (Ref. 2-12).

2.4.3.4 Development Areas

The colloid thruster as a functional reality has made many advances.

More and refined diagnostic techniques are needed to support experimental

development and to provide the theoretical groundwork for understanding

the mechanisms of particle generations and energy losses.

More experimental research is needed in the area of developing a flight

feed system for controlling propellant mass flow rates. This will

involve a closer study of mass flow effects on thrust and specific

impulse and the choice of suitable controls. Various schemes for a

workable feed system have been examined and a more extensive analysis

of proposed alternatives is necessary. Presently a reliable, light-

weight positive pressure feed system that consumes very little power

is being considered. Mechanical means for providing pressure to a

propellant reservoir by using a spring loaded device has been

considered (Ref. 2-20). Conversion of thermal energy, utilizing the

increase in vapor pressure of a suitable material producing pressure,

for mechanical displacement of a propellant fluid has also been

considered.

Single emitter studies utilizing small bore capillary tubing have

produced maximum currents on the order of 25 #IA for common experimental

propellants.(Highly conductive fluids such as H2SO4 and liquid metals

produce much more but are intrinsically high specific impulse devices.)

To achieve operational thrust levels then, colloid thrusters based on

single needles must by necessity contain large arrays of needles. This

introduces a fabrication problem as mass production techniques on such

small work places have not been developed.
4g^

1

1



Experimental studies in the propellant area have been limited to organic

solvents doped with conductive salts and liquid metal.. Motivation be-

hind propellant studies have been aimed at producing charge droplet beams

with more efficient spread in charge-to-mass ratios and also in achieving

desired limits in charge-to-mass ratios. Studies in source configurations

have not provided any encouraging results in altering specific charge

efficiencies. Fluid research, however, remains an important area for

development.

Another area for development is in the direction of producing sources of

higher thrust density. The present approach is to replace needle emitters

with slit geometrics or closely spaced needles to simulate slits. Cal-

culations have shown that the alit geometry using closely spaced needles

will produce 2 to 3 times the current density over that of needle

geometries.

2.4.4 SYSTEM CONSIDERATIONS

2.4.4.1 Control System

The performance of colloid thrusters can be varied over a wide range of

thrust and specific impulse by controlling the mass flow rate and needle

voltage. Thrust increases with increasing mass flow rate and needle

voltage while specific impulse decreases needle voltage. Figure 113

shows a typical example of how thrust and specific impulse are related

to mass flow ra ge and needle voltage.

The design of a flexible system requires feedback information to control

the mass flow rate and needle voltage. The feedback information available

are the beam current, needle voltage, and thrust obtained from the orbital

path of the satellite. If the current versus needle voltage character-

istics are known for different mass flow rates then the above information
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will be sufficient to determine specific impulse and power to thrust

ratios. The voltage and mass flow rate can then be adjusted accordingly

to obtain the desired performance.

2.4.4.2 Feed System

Three basic approaches are available for a flight reliable feed system.

The classification of these system types are:

a. Positive Displacement System

b. Positive Pressure System

c. Capillary Feed System

The various physical means of implementing any one of these systems may

depend on the choice of control parameters and propellant fluid. Clearly

the design problem is optimizing operation utilizing a knowledge of

parameters involved.

The present state-of-the-art for colloid thrusters precludes the use of

capillary feed systems except for the possible use of liquid metals
r

which in turn generally produces ions. Since capillary feed systems are

essentially self-sustaining, they are ideal for spraying of liquid metals

at high currents with no applied external pressure. Instead of producing

heavy droplets, liquid metals generate higher efficiency ion beams with

high specific impulses. Until suitable accel-decel mechanisms are devel-

oped colloid thrusters using liquid metal propellants will remain outside

the useful colloid range of 700-1500 sec. Organic solvents such as

glycerol, a common colloid thruster propellant, have been fed by capil-

lary means but this method is seriously limited by the lack of control
fs

and low current emission. One advantage of a capillary feed system is

that it eliminates the need for valves or pressure regulators. For

liquid metal feed systems the technology of surface tension feed systems

is a highly developed one.
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A posit ive (lisplact,n ►vut system diIIers ossenti.11ly iron ► a positive

pre.istire syStt,rr► in OWL tilt , volume of f luid displaced remains constant

not the pre istirt , . For example, : ► mall changes ill 	 volume due to

tvmper.att ► rt► variations or accumulative plugging will result y n pressure

changes. Additional feedback controls would I)v nveded for changing Lhe

rats of displact,ment to maintain constant prosstiro. For this re ason, .a

positive prt-istil't' s ys tem seems alt prest'nt to be a mo re favorable choice

for controlling, propellant feed. Unt, advantilge of the positive dis-

placemt,nt system is that it determines tilt+ mass flow raft, of propellant

fluid accurately.

An example of a positive pressure feed system, developed by TRW Systems,

involves the use of a spring loaded device in conjunction with a shut off

valve (Ref. 2-12). The spring applies a constant pressure to a diaphragm

housing the propellant fluid and compensates for changes in system

vol o une. This is a simple device and is adaptable to any compatible

fluid requiring only changes in spring pressure. This system has the

disadvantage of making it necessary to pre-select a given level of pressure

for operation.

Another approach, is to replace the spring concept with a medium whose

pressure can vary. Briefly, a material whose vapor pressure varies with

temperature in a desired range can be utilized to provide the force

necessary to displace a diaphragm. A numijer of suitable organic and

inorganic materials are available with the proper vapor pressure

characteristics. Suitable choice depends on the feed pressure range,

minimum variation with changes in ambient temperature and the propellant

fluid itself. Basically, a system using this principle has the feed

pressure controlled by temperature. At this time a simple on-off

valve seems desirable over check valves and flow regulators due to

acceleration forces in a mission vehicle. These forces can result

in premature fluid displacements and leaks. A disadvantage in a system

of this type is that a temperature control requires additional rower.
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In any feed system selected, certain universal requirements are to be

met by the choice of control propellant. These are low vapor pressure

and non-corrosiveness. A minimum amount of stored propellant for long

missionv requires low vapor pressure. That the propellant be non-

corrosive is self-explanatory.

2.4.4.3 Neutralization

The use of a bipolar thruster configuration provides neutralization while

thrust is produced by both the positive and negative particles.

Neutralization is assured by the emission equal positive and negative

currents. Good efficiency operation is obtained by matching the specific

charge of the two polarity beams. If the charge-to-mass ratio differs

greatly between the two polarities, the lower charge-to-mass ratio

particles will provide most of the thrust while the other provides

the neutralization current. Assuming for simplicity a very narrow

charge-to-mass ratio distribution and that the accelerating voltage

and the emitted currents are the same for both polarities, the fraction

of the total thrust provided by the negative particle is

T-
	 + kl/2)-1,

T

where k is the ratio of the charge-to-mass ratios (q/m)-/(q/m)+•

When the charge-to-mass ratios are equal the contributions to the thrust

are equal. For a 10 percent or greater contribution to the

thrust by the negative beam the charge-to-mass ratios should be within

two orders of magnitude of each other. This is not a very stringent

requirement since less than one order of magnitude difference can

readily be achieved which in turn provides better than a 25 percent

contribution.
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For operation of a single polarity positive emission an electron emission

neutralizer can be used. The powerfor a neutralizer emitting hundreds

of # ►A of electrons is several watts. Thi, is in the power consumption

range of a thrust operating at a couple of t tlb. It could be advantageous

to use a negative emitter to neutralize even with a mismatch of the

charge-to -mass ratios (k > 100).

2.4.4.4 Telemetry

For a bipolar colloid thruster (no external neutralization required)

operating with an extractor electrode and a temperature controlled feed

system, the following telemetry signals should be provided for minimum

operation:

a. Positive and negative voltages

b. Positive and negative currents

Feed system control temperature

In addition to these signals, a failure diagnostic operation should

include signals for the extractor current, temperature of thruster

housing or extractor, and signals indicating on and off status of any

feed system valve.

For maximum research conditions it would be desirable to have additional

insCrumentation in the form of thermocouples to examine the temperatures

developed near the positive and negative needles and transducers to

determine mechanical durability of a system during launching operations.

Although suitable mass flow detectors for these low flow rates have not

been developed to date, it would be advantageous to receive telemetry

data on this parameter. This would be important in analyzing the

operational characteristics such as specific impulse and thrust.
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2.5 MPD ARC JET ENGINES

2.5.1 INTRODUCTION

Tile magnetoplasmadynamic (MPD) arc jet is an electromagnetic engine

for space propulsion under development in several laboratories. The

following discussion is based on the EOS MPD arc jet which is referred

to as ALPHA (Alkali Plasma Hall Accelerator). The evolution of the

ALPHA thruster is shown in Fig. 114.

The ALPHA engine is a unique type of MPD arc jet thruster. In this

d-.vice an axisymmetric ar r. discharge is maintained between an anode

and a buffered cathode in the presence of solenoidal magnetic field.

Lithium or an alternate alkali metal is used as the propellant. The

propellant is vaporized and injected through an annular slot in the

anode into the "interaction zone," characterized by nearly parallel

magnetic flux lines. Here the propellant is ionized by electron-atom

collisions. The resultant electrically neutral plasma then flows

through a region of diverging magnetic flux lines, designated the

"electromagnetic nozzle," where it is accelerated to produce thrust.

A brief and somewhat simplified explanation of the acceleration

mechanism is presented in the following subsection. A more complete

discussion appears in Ref. 2-21.

2.5.2 ENGINE MECHANISMS

An electromagnetic thruster may accelerate particles in any or all of

the following different ways:

1. By gas dynamic thrust,

F l = '. p d A;
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2, Fly self-magnetic field thrust,

2

.
r2 _ ^4r	 (4	 A

+ In Aa ); and
c

3. Fly 11all current interaction, wherein the thrust,

Z ' c
F'.3	 m	 AD

a

is obtained by accelerating; the propellant ions through the

potential drop between the anode and the downstream plasma.

Definitions:

F l , F 2 , and F 3 = force (N)

p = pressure (N/m2)

A = area (m2)

µ	 permeability of free space	 4n x	
107W

o	 amp meter

I = current

In = log

Aa
A = cross section ratio
c

m = mass flow rate (kg/sec)

Z = mean degree of ionization

e = electronic charge (C)

ma = mass of an atom (kg)

VAD = potential drop, anode-to-downstream plasma (V)
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in ALPHA, the Hall mechanism predominates. This mechanism can be

described in either of the following two equivalent ways-

a. A neutral plasma is accelerated by the Lorentz force due to
the interaction of an azimuthal r!all current with the radial
component of the applied magnetic field.

b. Ions are electrostaticall y accelerated in the electric field
through the electrons which are trapped in an applied magnetic
field.

An axial component of the electric field accelerates the ions in the

downstream direction and causes an equal magnitude reaction upon the

electrons in the upstream direction. This upstream force upon the

electrons is balanced by a downstream Lorentz (j x B) magnetic force.

In the thrustor, the net acceleration force upon the plasma is primarily

due to a Lorentz force and is proportional to the product of an azimuthal

Hall current and the radial component of an applied magnetic field.

The plasma in the region downstream of the electrodes consists of several

distinguishable zones. About the axis is a highly luminous cathode jet.

From diagnostic studies it has been found that this jet carries (conven-

tional) current to the cathode. Surrounding the cathode jet is an anode

sheath which carries the current away from the anode. Also there is a

downstream zone in which there is no current and which consists of a

neutral beam of accelerated plasma. The structure of the plasma, which

is easily visible to an observer, is helpful in explaining the mechanisms.

The primary purpose of the cathode jet is to act as a virtual cathode.

Very large electron energies occur in the cathode jet; it is the only

place where excitation of ions is visible. The electron energy can

support a potential drop from the cathode end of the cathode jet into

the downstream zone, providing some acceleration of the ions in the

cathode jet. Energy dissipated by currents in the cathode jet appears

mostly in the electrons. This in turn provides ionization power, some

beam kinetic power, and electrode losses.
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In the anode sheath region, ions are formed by electron-atom collisions.

These collisions occur most frequently near the anode, where electron

energies are large. Ions formed in this region accelerate in the

electric fields toward the downstream zone. The energy they achieve is

determined primarily from the anode-to-downstream plasma potential

drop, VAU'

From a functional standpoint, the volume of plasma may be divided into

two regions: the energy addition or interaction region, where the arc

currents flow, and the expansion region or electromagnetic nozzle, where

the particle energy is transformed into beam kinetic energy. In the

interaction region the propellant is injected at the anode and mostly

ionized where the electric potential is close to the anode potential.

The ions move radially inward and eventually join up with electrons

r

from the cathode jet.

Z 1, c 1 c ,i /ma , and the

the ions move radiall

azimuthal direction.

This motion represents a current of magnitude

ions acquire an energy equal to Z l e 1 VAD . As

y inward the j 
r 

B 
z 

force spins the ions in the

This motion establishes the potential VAD , which

is determined by

R
VAD - ( ^A VOBzdr.

h1

The difference between the arc current and Z

amount of electron current which flows icross

The power represented by r i - (Z I e  	 /mLi
radiation and anode losses and is not recover

e I6Li/ma represents the

the magnetic field lines.

VAU goes into ionization,

able as beam kinetic power.

The power loss in the virtual cathode, given by IV CDs is also dissipated

by electron conduction and goes entirely into losses, e.g., cathode

power loss, radiation, and ionization of material in the cathode jet.
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The electromagnetic nozzle is the region of diverging magnetic field in

which the plasma is accelerated axially. If sufficient energy per

article has been introduced to the plasma, the electromagneticP	 P	 , 	 nozzle$

can convert this energy to axial kinetic energy in a manner similar to

the energy conversion process in a solid wall nozzle. The electro-

magnetic nozzle in ALPHA is distinguished from a "pure" magnetic nozzle

in that there exists a strong radial electric field. The ions gyrate

in the cyclotron direction and rotate about the axis of symmetry in the

anti-cyclotron direction, the net irotion being a hypocycloidal trajec-

tory. The pure magnetic nozzle, by contrast, has no radial electric

fields; the ions simply rotate about the magnetic flux lines in the

cyclotron direction, the energy conversion process being essentially

the inverse of a reflection at a magnetic mirror.

2.5.3 ADVANTAGES OF ALPHA

r^

The chief advantages of ALPHA over other types of electric propulsion

system are discussed below, roughly in the order of their importance.

2.5.3.1 Thrust Density	 I

The fact that ALPHA can produce thrust densities 100 to 1000 times

greater than other types of high
g	

YPperformance electric thruster isP

certainly its single most significant advantage. The importance of

this advantage tends to increase with increasing power level. Generally

speaking, the more ambitious the mission contemplated, the higher the

requisite thrust and electrical power. Even at moderate thrust and

power levels, however, a space charge limited thruster such as an ion

engine must actually comprise a matrix of many separate thrusters.

The required area of this array is usually rather large for most

applications beyond the microthruster regime. Moreover, it tends to

scale linearl with thrust or ower, since scaling b eyond a few kilo-Y	 P	 ,	 g Y

watts would be achieved by merely adding more thruster units. The
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difficulties in fabricating, packaging, deploying and maneuvering such

huge arrays are well known. Indeed, these difficulties are at least

partially responsible for the sustained widespread interest in develop-

ing the technology of the MPD arc jet thruster. Not only is the latter.

VXLLt!mely compact, but more significantly, its size is a relatively

insensitive function of thrust or power.

2.5.1.2 Specific Imluls" a Range

Competitive types of electric thruster, as well as ALPHA, are capable

of performing efficiently at high specific impulse (I sp ). ALPHA, how-

ever ; is unique (at least among those thrusters likely to be operational

within the next decade) in that it can perform with relatively high

efficiency even at I sp values as low as 1500 seconds. The efficiencies

of alter;iate types of engine are so low in the I sp range between 1500

and 3500 seconds that most of this range is, from a practical stand-

point, inaccessible to them. However, largely as a result of the

projected state-of-the-art of electrical powerplant technology, it

happens that the optimum I sp for a wide variety of astronautic missions

contemplated for the next decade lies precisely within this I sp range.

2.5.3.3 Power Conditioning

An MPD arc jet characteristically requires do power at about 100 volts.

Consequently, it needs much simpler and less massive power conditioning

equipment than thrusters requiring; thousands of volts. Indeed, for

marry applications, especially those where the primary power is provided

by solar panels, the necessity of transformers may be entirely obviated

by matching the electrical power output directly to the thruster (arc

and magnet) inputs. Such rudimentary power conditioning as will be

required would therefore consist mostly of the indispensable but

relatively lightweight switching equipment and logic circuitry needed

for thruster control.
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2. 5.3.4 Me chanical Construction

An H1 11) arc JeL is not the only type of high performance electric thruster

havi ►► ,c; no moving; parts. The A1.I 111A, however, has very few parts alto-

geLher. Basically, it consists of an anode, a buffered cathode, a

magneL and a simple feed system. Moreover, each component is itself

strikingly simple, mechanically rugged, and relatively free of critical

tolerances. While it is certainly possible that an actual flight

configuration ALPRA thruster might incorporate a number of features which

increase the sophistication of the device at the price of added complexity,

it is nevertheless unlikely that any of the intrinsic ruggedness of the

engine components would have to be sacrificed.

2.5.3.5 Versatility

Though lithium or an alternate alkali metal is preferred ( in order to

minimize frozen flow losses), ALPIiA can be operated with almost any

propellant. Alsr, the thrust can be throttled and the I sp may be varied

during a mission. The flexibility of the thruster is remarkable in another

respect: It is capable of operating in a nested sequence of different

modes and so provide a type of reliability otherwise unattainable. Thus,

it can function as a Hall current accelerator, an electrothermal arc

jet (should its magnet system fail), a resistojet or cold gas thruster

(should the arc jet fail too), and even, with appropriate zhoice of

propellant, as a mono-or bi-propellant chemical rocket.

Finally, since ALPHA offers a unique combination of uncluttered geometry

with virtually unlimited variety in the choice of propellant, it is

possible to imagine a hybrid chemical/electric thruster with several

interesting applications. One could thus have a single thruster capable

of operating in the "electric mode" at high 
Isp 

for extended periods of

time, but which could also operate in the "chemical mode" at relatively

low I sp whenever short bursts of high thrust are desired. This feature
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might be valuable for missions requiring electric propulsion for a

heliocentric trajectory followed by chemical propulsion for a braking

maneuver to effect planetary capture, Another potential application

might be a geocentric "patrol" mission (electric mode) with "inspection"

or "evasive" capability (chemical mode). Of course the same types of

mission could also be performed with another ALPHA variant- n hybrid

MPD are jet/thermal arc jet thruster. Here too the device would function

primarily as a steady state ALPHA engine, but could also deliver short

bursts of relatively high thrust.

2.5,4 BACKGROUND AND HISTORY

2.5.4.1 Fundamental Problems

Present steady-state electromagnetic accelerators have evolved through

experiments which fused at. jet technology and [tall current acceleration

schemes. The history of this process is shown schematically in Fig. 114.

Since engine development took place without having a well -developed

theoretical foundation on which to build, the research into theaL

devices has been difficult and open to criticism from many quarters.

In particular, a number of important questions concerning the physical

feasibility of the device were raised. First, thrust and mass flow

measurements indicated that exhaust velocities were being obtained which

were higher than could be generated by accelerating singly-charged

ions through the arc potential, The possibility that this "anomalous"

velocity could be achieved was questioned. Second, some measurements

were made which indicated that the ambient gas in the test chamber was

being recirculated by the accelerator discharge. Arguments were then

advanced that this was probably happening in all of the tests where

good performance had been reported. Some strength was added to these

arguments by the fact that this phenomenon could be invoked to explain

the "anomalous" behavior. Third, most groups that have tested MPD arc

,jet thrusters have found that at one time or another discharges occurred

between the vacuum tank and the electrodes.
2-22 through 2-24
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Sam: people then argued that such discharges might perhaps be essential

to the operation of the on give and that once this discharge path was

eliminated, either by using an insulated tank or a ver y large tank,

then the en r,ine would be Forced to operate in an entirely different

discharge mode. Because of this possible extraneous discharge path,

It was also argued that any performance measurements made to date might

be greatly in error. Beyond those scientific feasibility problems, a

number of engineering questions were raised. Many doubted that a lvw

power loss : accurate and reliable feed system could ever be developed

for supplying lithium propellant to the engine. Later, once electric

propulsion appeared to be wedded to a solar cell power source for many

years to come, the possible contamination of solar cell surfaces by

lithium or other alkali metals was used as an argument to rule out any

MPD thrusters using alkali metal propellants.

2.5.4.2 MPD Arc jet Program at EOS

Despite the foregoing problems, an MPD arc ,het propulsion system has

been developed that has shown impressive gains in performance over

the past three years.

The main technical goals of the program are attainment of an overall

efficiency of 50% over the entire I sp range from 1500 to 6000 seconds

and the demonstration of an engine operating lifetime of 500 hours.

Significant technological steps which led to the present status

include

a. Development of technology for the routine handling of alkali
metals.

b. Development of vacuum test chamber techniques.

Establishing that engine operating characteristics or
performance are not a function of test chamber pressure if
the pressure is kept below 1 micron (10- 3 torr). Measure-2 22
ments were made down to pressures as low as 2 x 10- 7 torr.

i
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c, Developing instrumentation including;

(1) Pressure traasducers and high temperature thermo-
couples compatible with lithium

(2) Iligh sensitivity thrust balance

(3) Local calorimetric energy flux probe for use in a
condensible medium

(4) Total beam energy segmented calorimeter

(5) Optical phototracer velocity measurement technique

(6) Three-dimensional 11all effect, magnetic field and
current density probe

(7) Spectroscopic Doppler axial and azimuthal velocity
measurement techniques.

A number of the foregoing diagnostic techniques, such as
particle velocity measurements in the exhaust beam using
spectroscopy and time of flight measurements phenomenological
theory, were developed in which an moortant new concept, the
"effective mass", was postulated. 15 through 2-28 The meas-
urements and theory clarified the problems associated with
"entrained mass" and developed criteria to determine when
gas recirculation is likely to occur.

d. Wall Effects. Tests were conducted in tanks of various shapes
and sizes with the same engine operating at the same mass
flow, arc current and magnet current. Identical performance
was achieved. Other tests were conducted in which a target
was placed so as to intersect the ex%:aust beam. When the
targets were situated close to the engine (less than 2 ft away)
arcing to the target was observed. When this occurred,
measurements of thrust, arc voltage, etc., were unsteady and
unreliable. By moving the target downstream (more than 3 ft
from the cathode tip) the arcing to the target could be stopped
(i.e., no attachment points could be seen on the target, voltage
between target and anode became steady, and all other instru-
mentation became steady). These tests indicate that the size
of the vacuum tank can affect the discharge path but that once
the tank becomes large enough, no interference between the
discharge and the tank walls occurs.

e. Attainment of 100-Hour Thruster Lifetime. The successful
completion in January 19i-.' of an endurance test exceeding
110 hours (100 hours of uo.'nt- •i rupted operation with lithium)
was an important milestone for the ALPHA program. This test
resulted in no discernible erosion or other damage to the
anode, and remarkably little erosion of the cathode and buffer
(virtually all of which occurred during several preliminary
startups and shutdowns). Before-and-after photographs are
shown in Refs. 2-27 and 2-28.
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f. Lithium Feed System Development. Two types of lithium feed

systems were developed during the ALPHA program. The earlier
one was a bellows-operated device (Refs. 2-25 and 2-29).
The mechanical complexity of this type of system posed for-
midable engineering difficulties in calibration and operation
for extended periods of time. It nevertheless represented a
great step forward in the overall program inasmuch as it
demonstrated that lithium could be stored, heated and trans-
ferred in a manner useful for thrustor applications.

The second type of lithium feed system was developed to cir-
cumvent some of the intrinsic disadvantages of the bellows
device. The new system, a gas-actuated feed, underwent an
evolution of its own (Refs. 2-22, 2-27, and 2-28) and is
still being used. The key feature of this device is the
pressurization of the lithium reservoir by argon, the latter
constituting the "driver gas" whose pressure regulation serves
to control the mass flow rate of lithium vapor through a sonic
orifice inside tha anode. The chief advantages of the gas-
actuated feed system are its mechanical and functional simplicity
and the regenerative economies afforded by using some of the
waste heat in the anode (which would otherwise have to be
radiated away) to vaporize the molten lithium enroute from the
reservoir to the injection slot within the anode.

2.5.4.3 Component and Overall System Design Improvement

a. Design of Electrodes and Insulators for Structural Integrity.
Learning how to build and cool thrustor components and how to
put them together so as to be capable of withstanding conditions
in the vicinity of the arc discharge was a gradual and pains-
taking process.	 Many problems involving heat transfer, fabri-
cation and joining techniques for high-temperature materials
compatible with alicali metals, and of course, optimum config-
uration, all had to be solved during the course of thrustor
development.

b. Introduction of the Buffer and Buffer Gas. Early in the pro-
gram a decision was made to accept the penalties associated
with the introduction of a "buffer" as a separate new component
of the arc head. This decision repres<itts an important mile-
stone because it marks a transition to relatively stable and
efficient arc operation with greatly reduced cathode erosion.
Essentially, a buffer is a metal enclosure surrounding the
cylindrical cathode along most of its length and terminating
near the (generally conical) cathode tip. A steady flow of
"buffer gas" (which may be thought of as a secondary propel-
lant) is maintained within the thin annular region between the
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cathode and the buffer. This gas (usually hydrogen) flows
downstream past the cathode tin, where it is finally injected

into the arc discharge region. Its mass flow rate is kept
Mow 10% of that of the lithium "primary propellant". Although

the buffer and buffer gas actually perform several functions,
the main one is to increase the pressure at the cathode tip,
thereby promoting stable "point attachment" of the arc. With-
out buffering, the arc was found to attach sometimes at a
diffuse spot and sometimes at a point, and to shift erratically

between the two modes. The "diffuse attachment" mode proved
to be highly undersirable because of excessive bower loss to
the cathode and erosion of cathode material.

C. Improvement of the Magnetic Field Configuration. The configur-

ation of the applied magnetic field has undergone a gradual
evolution, partly due to trial-and-error experimentation guided
by intuitive judgement and partly as a consequence of predictions

based on the analysis of acceleration mechanisms. Each
improvement in the field shape has resulted in some reduction
in the required magnet power and a corresponding increase in
overall thrustor efficiency. While none of these modifications
can be considered particularaly dramatic, the more salient
developments included the addition of a second electromagnet,
thus extending the magnetic nozzle further downstream of the
anode, and the discovery of the importance of the gradient
of the magnetic induction at the axial location of the cathode
tip. No attempt was made to optimize the electromagnets them-
selves. It was recognized at the outset that, once the optimum
field configuration could be determined, it would then be a
straightforward matter to design the best magnet to generate
the desired field. Hence it was decided to defer (to a future
advanced development program phase) the realization of perform-
ance improvements deriving exclusively from the optimization
of solenoid construction, and to concentrate instead upon
.-tudying the interactions between the geometry of the applied

;netic field and the efficiency of the accelerator.

d. Radiation-Cooling of the Anode. One of the more important
milestones of the program was the removal of the anode's
dependence upon a convective cooling loop. This was done by
conducting most of the anode heat into an adjacent graphite
radiator, and by conducting the rest into the vaporizer,
where it is largely absorbed by the lithium propellant.
Despite some difficulties introduced by the resultant coupling
of the maximum propellant flow rate to the arc current, this
technique has worked out quite well.
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e. Development of IAC. The most recent series of thrustor design
embodies several. modifications aimed at reducing power losses
and increasing the arc voltage (so as to provide a greater
potential drop through which to accelerate the ions). Several
such " IAC" (Isolated Anode Configuration) thrustors have been
successfully tested. The new design is characterized by the
isolation of the anode from the cathode - buffer assembly by
physical separation and by removal of insulator material.
This change was motivated by the finding from tests of earlier
model thrustors that a substantial amount of heat was being
conducted across the insulator from the anode into the buffer
and showing up as a temperature rise in the buffer coolant.
A second feature of the IAC is the integration of the "hot-liner"
inside the downstream magnet housing with the anode itself.
The reason for this stems from the finding that previously
much more heat was lost to the hot-liner than was lost to the
anode. Since the two components always tended to operate at
very nearly the same potential anyway, it was deemed practical
to combine them into a single unit and thereby facilitate heat
conduction from the liner into the anode, thus increasing the
heat available for vaporizing lithium. A third feature of the
IAC is the increased ratio of the diameter of the anode to
that of the cathode-buffer assembly. (Analysis had indicated
that the maximum arc potential should be a sensitive function
of this ratio.) Finally, a component designated the "plasma
isolator" has been incorporated into the IAC design. This
device consists of a number of concentric rings, each of which
is electrically insulated from adjacent rings as well as from
the vacuum chamber and other support structure. This provides
a means of mechanically supporting the cathode-buffer assembly
without shorting out the radial potential gradients in the
plasma. Another function of the plasma isolator is to inter-
cept back-scattered particles, particularly ions gyrating up-
stream along magnetic flux lines.

2.5.5 CURRENT DEVELOPMENT STATUS OF THE MPD ARC JET

2.5.5.1 Engine Characteristics and Performance

The best performance to date has been achieved with IAC-type thrusters.

Figure 115 is a typical drawing of model IAC-3. (Recent data from prior

tests are tabulated and plotted in Ref. 2-28.) The arc voltage versus

ion velocity is shown in Fib. 116, and the power-to-thrust ratio is
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plotted as a function of specific impulse in Fig. 117. It is seen

that thrust efficiencies (values of beam kinetic power divided by arc

power) as high as 51% and overall efficiencies (values of beam kinetic

power divided by arc plus magnet power) as high as 44% have been meas-

ured. The values reported for magnet power, incidentally, are those

for the actual magnets used. No attempt has yet been made to construct

ana use optimized magnets. When this is finally done, it is anticipated

that the required magnet power will drop appreciably. The thermal ef-

ficiency, defined as 1 - (power loss to the electrodes/arc power),

reached as high as 68%. Slightly higher values (over 70%) had occa-

sionally been recorded in earlier ru:is. For the IAC tests, the arc

power was typically 20-30 kW, and the lithium mass flow rate was

usually 10-13 mg/sec. 	 The thrust and specific impulse for the most

part varied between 0.44 and 0.59 newtons and 3000 and 4000 sec,

respectively.

The power per unit thrust (P/T) generally exceeded the best (i.e.,

minimum) values attained in pre-IAC tests, due mostly to operation at

somewhat higher specific impulse. In the test of the 1AC-1 thrustor

(Run 901), for example, the minimum values of P 
arc 

/T and (Parc +

P 
magnet )/T were 209 and 250 kW/lb, respectively. This compares with

minima of 168 and 208 kW/lb obtained earlier in 1967 in a test (Run

736) of the thrustor configuration designated LAJ-AF-CG-2C, GAF-V-2.

In evaluating the performance achieved with ALPHA engines, it should

be borne in mind that primary emphasis in the test program has been

placed upon checking out new ideas, correlating measurements with

theory, and in general attempting to further the understanding of the

acceleration mechanisms and their interactions. Seldom have two con-

secutive tests been made with identical thrusters; continual design

modification has been the rule rather than the exception. It is

therefore clear that the current development status of ALPHA has not
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yeL arrived at the point where a specific design has been "frozen",

so that efforts may thenceforth be concentrated upon refining it in

order to extract the maximum possible performance.

It is appropriate to consider some of the characteristics of recent

laboratory model thrustors other than gross performance data. This

will serve to bracket the more important "system" aspects of recent

thruster configurations with respect to earlier models on the one

hand and with respect to goals for the immediate future on the other.

The longest endurance test of an ALPHA thruster occurred at the bc-

ginning of 1967 (Run 732). The total elapsed time of arc jet

operation was 111 hours, 26 seconds, of which 110 hours, 13 seconds

were with lithium propellant, and over 100 hours were uninterrupted.

Termination of the run was voluntary, and the electrodes evidenced

little or no discernible erosion. This test was conducted with

thruster model 1AJ-AF -CG-2A, GAF-IV - 1 (see Fig. 118). It is worth

noting that more recen' designs, especially IAC-2 and 1AC-3 (see Fig.

115), nre much less " cluttered" in the immediate vicinity of the

arc discharge, and more significantly, most of the (boron nitride)

insulator material has b-ten removed. Past experience has shown that

the insulators tend to be the components most susceptible to erosion

and cracking. For these reasons it is felt that the prognosis for

greatly extending the demonstrated thruster lifetime in the near future

is highly encouraging. A 500 hour life test is scheduled for next year.

However, there does not appear to be any technical reason why tests of

much longer duration could not be attempted earlier if it were considered

useful to do so.

The present feed system design and its relationship to past and projected

developments is another significant aspect of the current status of

ALPHA. As mentioned previously, the undesirable consequences of attach-

ing the lithium vaporizer directly to the anode proved troublesome
	 y
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1
because of the concomitant coupling of the maximum propellant flow ratep g	 P P

to the arc current. The practical significance of this caupling was

that it tend ed to limit operation to relatively low flow rates. Extrap-

olations from plots of measured thrust per unit arc current and other

test daUk. as well as analysis, had indicated that the thruster would

function at higher efficiency if the propellant mass flow could be in-

creased. This was finally accomplished by redesigning the anode and

the vaporizer and paying particular attention to the heat conduction

path from the former to the latter. Several other difficulties with

the gas-actuated feed system were encountered. Some of these proved

sufficiently recalcitrant to necessitate significant detours in the

ALPHA program. The most serious ones were:

a. The problems of anode cracking due to excessive thermal
stress during temperature cycling.

b. The frustrations of repeatedly unsuccessful attempt; to

obtain a leak-tight seal at the anode/vaporizer braze ,point.

c. Ttte subtleties of mass flow rate calibration.

All of these problems have finally been solved, and the present feed

system design is considered satisfactory for laboratory test purposes.

In order to test an ALPHA engine in space, it will, of course, be	
-

necessary to have a feed system capable of operating under zero-gravity
.r

conditions. It is unlikely, however, that this next step in feed system

development will entail any radical departures fro ►n the technology of	 ^.

the present gas-actuated feed. Instead, it is more probable that zero-g

capability will be provide(! simply by using capillary forces to collect

the propellant in the reservoir, rather than gravity. once collected,

however, pressure forces would still he used to drive the propellant

into the vaporizer.

The radiation cooling; of the arc head components is another area in which

the present development status has already advanced to a poicit where rel-

atively little additional work wii; be required to pa.se from the labora-

tory test phase to flif;ht hardware. For more than a year, thruster
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designs have incorporated a graphite radiator surrounding the anode.

Several features and implications of the radiation coming of the anode

should be emphasized: First, the thermal power which must be dissipated

from the anode has usually been equal to or greater than the sum of the

cathode; and buffer power losses. Second, the anode radiator has always

been of rather moderate dimensions (see Fig, 118 ao.d the thruster

assembly drawings in Ref. 2-28); indeed, the maximum dimension is about

equal to the magnet diameter, Finally, this radiator has proven to be

so effective in laboratory tests, that occasionally steps had to be

taken to decreaserare its effectiveness in order to keep the anode suffi-

ciently hot to permit adequate heat conduction to the vaporizer: The

meaning of these considerations is clear: The apprehension has been

expressed in some quarters that a flight model ALPHA thruster is likely

to require so much surface area to radiate waste heat that one of its

biggest advantages over the ion engine, vis., its enormously higher

thrust density, would effectively be forfeit. This apprehension is

entirely groundless.

The IAC-3 design (Fig. 115) represents the present state of the art,

not so much by virtue of the fact that it happens to be the most recent

one, but because it is itself admittedly transitional, in the same sense

that the entire program is approaching the threshold of an advanced

developme-t phase. In the IAC-3 model, for example, an important step

has been taken toward the radiation - cooling of the cathode and buffer.

These components are now fabricated of thoriated tungsten throughout

most of their length. At least five times as much heat is radiated

away as is conducted toward the isolator region, where the copper

construction and water . 00ling loops begin. The reason why complete

radiation cooling of the cathode and buffer was not attempted in this

design is simply that it was desired to utilize the isolator from the

preceding (IAC-2) model, and this isolator req u ired water cooling any-

way. The next step, which is the total elimination of all plumbing

connections between the arc head and the laboratory environment, is

scheduled for the near future.

i
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Other features of a flight model ALPHA thruster which have not yet

been incorporated into a laboratory test model include optimized radi-

ation-cooled magnets, components designed specifically for minimum

weight, and power conditioning equipment. Present plans call for the

design, fabrication and testing of high-efficiency radiation-cooled

electromagnets by early March 1968. Component weight reduction and

the development of power conditioning equipment have not been considered

appropriate tasks under past or present research contracts. Consequently,

work in these areas has been deferred until the advent of an advanced

development program specifically oriented toward a flight test. Neither

effort, however, is considered likely to comprise a major fraction of

such a program, since the requisite engineering appears to be rather

straightforward.

Current Typical MPD Arc Jet Summary

1. PROPELLANT: Lithium

2. BUFFER GAS: Hydrogen (also used for cold gas attitude

control system and for propellant feed pressurization)

3. THRUSTOR SIZE AND WEIGHT: 0.5 ft 3 ; 100 lb

4. MAGNET TYPE: Radiation-cooled electromagnets (Bitter

solenoids)

5. NUMBER OF MAGNETS: 2

6. ELECTRODES: Anode, cathode and buffer, all fabricated of

thoriated tungsten and radiation cooled

7. FEED SYSTEM: Composite capillary and gas-actuated (hydrogen

gas pressurization) zero-gravity type feed. Lithium vapor

injected into arc discharge region through annular slot in

anode. Heat for lithium vaporization conducted from anode

during steady-state operation, but preheated via umbilical

prior to booster launch, and via on-board power from lift-

off until arc initiation. Lithium vapor flow rate metered

by a sonic orifice inside anode.
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8. ARC POWER INPUT:	 3.7 W

9. ARC VOLTAGE:	 61.7V

10. ARC CURRENT:	 60A

11, MAGNET POWER INPUT:	 30OW

12. MAGNET VOLTAGE:	 5V

13. MAGNET CURRENT: 	 60A

14. THRUST LEVEL:	 26.7 millipound

15. POWER-TO-THRUST RATIO:	 150 W /lb (including magnet power)

16. SPECIFIC IMPULSE:	 A single operating point will be selected

in the range of 3000-4000 sec

17. OVERALL THRUSTER EFFICIENCY:	 50% (beam kenetic power/total

power input to thruster)

2.5.5.2 Power Conditioning and Control

The power conditioning and control for MPD arc jet engines cannot be

precisely stated until a flight type engine configuration has been

established. This section will discuss the power conditioning and

control requirements for flight modified laboratory engine.

A block diagram of the MPD arc jet power supplies is shown in Fig. 119.

The diagram shows that the engine requires four power supplies for

operation and one or two power supplies for control. This very likely

will not be the case in a flight system. The ma*nets will probably be

designed to operate in series from one power supply. Another power

supply with a mie ,Voltage center tap will probably supply the cathode,

buffer, ane anode with power. If no control problems arise, it may

even be possible to supply all power requirements (except control) in

a series from one power sup ply or directly from the power source.

The MPD arc jet engine power requirements are shown as a function of

specif:'c impulse in Fig. 120.
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Note that they are constant with respect to specific impulse. All

changes in specific impulse, with constant power, are achieved by vary-

ing the propellant mass flow rate. This is why the flight MPD arc jet

will have a wide range of throttling capability.

Figure 121 shows where the power supplies to the engine go. Since

the bottom section of Fig. 121, beam kinetic power, is the only power

turned into thrust, this is effectively a graph showing engine

efficiency and losses vs specific impulse. When a high mass flow rate

feed system is developed, the efficiency should rise substantially for

1500-3000 second specific impulses.

Presently,thruster control can be accomplished by seven external

signals. The thruster control commands are delineated in Table XXIII.

The feedback control system is discussed appropriately in the projected

system development status (Section 2.5.6.3).

2.5.5.3 Discussion of the Experimental Programs EOS

The following statements are intended as a brief summary of the present

status of our understanding of the physical processes which take place

in an ALPHA engine. In the light of the controversy surrounding certain

aspects of the device, the separate items are assigned to one or another

category, according as whether the information has been conclusively

established by experiment or else has been presumed or inferred from

the results of actual measurements.

Power Balance

The beam power was repeatedly measured by means of a segmented calorim-

eter and also with a local calorimetric energy flux probe which had been

built specifically for use in a condensible medium like lithium vapor.

I	 The results of these measurements consistently agreed with the difference
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TABLE XXIII

THRUSTER CONTROL COMMANDS

COMMAND
C_ DESCRIPTION FUN` CCTTI_ON

1 Magnet and lithium reservoir Applies and shuts down on-
preheaters ON/OFF board electrical power to

solenoid and lithium tank
preheaters prior to arc
startup and prior to each
restart

2 Magnet current ON/OFF Energizes and de-energizes
solenoids

3 Buffer gas ON/OFF Initiates and terminates
flow of hydrogen buffer gas

4 Liquie lithium feed Starts and stops capillary
valve. OPEN /CLOSED force-actuated floe of

liquid lithium

5 Driver gas pressurization Starts and stops gas
ON/OFF pressure-actuated flow

of liquid lithium i

6 Anode-cathode arc ON /OFF Starts and stops anode-
cathode arc current

7 Anode-buffer arc ON/OFF Starts and stops anode-
buffer (i.e., anode - to- +^^
ionizing electrode) arc l
current J

1
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1
between that arc power input and the electrode losses, the latter having

been determined from the temperature rises in the various water cooling

loops.

Average Particle Velocity in the Exhaust Beam 	 I

The lithium ion velocity measured by an optical phototracer technique

agrees within experimental error with the average velocity computed by

dividing the thrust by the mass flow rate. This procedure was repeated

with sodium as therimar propellant, and once again good agreementP	 Y P P	 ,	 8	 8	 8

was obtained.

Extended Current Loops in the Exhaust Beam

Hall current probe measurements (made during a sodium run) have indicat-

ed that at least half of the total arc current flows through the cathode

,jet as far as 8 inches downstream of the electrodes. When the back-

ground pressure in the vacuum chamber was relatively high, no loop

current could be detected.	 As the tank pressure was reduced, the loop

current rose to an asymptotic value.

Existence of Hall Currents

At a distance of several inches downstream of the face of the magnet

housing the axial magnetic field strength on the centerline was found

to increase by 5 to 10% when the arc was extinguished. The existence

of Hall currents in the exhaust beam is thus conclusively established,

since no other effect can account for the observed diamagnetism of the

plasma.

Ion Rotation in the Cathode Jet

Spectroscopic Doppler shift measurements have indicated that the ions

in the cathode jet were rotating.
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Multiple Ionization

Spectral lines from the lithium ion (Li 11) have been observed in the

cathode jet, indicating that some double ionization of the lithium ion

does exist.

Entrainment

Data reported when the tank pressure was less than 10 -3 torr is consider-

ed to be reliable. Conversely, data obtained when the tank pressure

exceeded this value must be considered suspect. This is particularly

true of the high efficiency points (1 0 > 6u%) reported in Ref. 2-25.

Acceleration Mechanisms

Reasonable correlation with experimental data exists by assuming that

the thrust is produced primarily by the acceleration of the ions through

the potential drop between the anode rnd the exhaust beam. In come

cases (especially with sodium propella,:t) some degree of double ioni-

zation must be invoked to account for the magnitude of the thrust

observed.

Anomalous Performance

Many measurements exist where the thrust is greater than that which could

be obtained by accelerating singly ionized particles across the anode-

to-plasma potential difference. At the present time, it is felt that

this can best be explained by multiple ionization, rather than by

electron ^llisions.

9
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2.5.5.4 Present Design Problems

Most of the remaining design problems are associated with future tasks,

suet' as radiation-cooling and optimizing the configuration of the mag-

nets or embarking upon a systematic weight reduction campaign. At the

present time, only two important design problems may be said to exist,

and even these have to do with extracting higher performance from an

engine which now functions comparatively well; they are certainly not

in the nature of problems which impede acceptable performance. The

first of these is the question of how to further increase both the

thrust and thermal efficiencies. This means getting an even larger

fraction of the arc power into the form of kinetic beam power, while

reducing the frozen losses and the power losses to the electrodes.

Since the problem of maintaining adequately high potentials now appears

to have been solved, the effort now must focus on their optimum utiliza-

tion, i.e., for acceleration of ions rather than for multiple ionization.

To accomplish this, it will be net:essary somehow to further refine the

internal geometry of the arc head, since the changes made in the inde-

pendent variables fi, Iarc and B during tests of each configuration

tended to quickly establish an upper limit for the performance of that

configuration. All attempts to exceed the "intrinsic" maximum efficiency

for any particular thruster (by increasing the anode - to-exhaust beam

potential) appeared to lead instead to an increase in the degree of

second ionization, and hence to a corresponding increase in the frozen

flow losses.

The design philosophy which has been followed in the past has been to

attempt to separate as much as possible the ionization processes from

the acceleration processes, so that the latter could be subject to

voltages greatly exceeding those prevailing in the latter. Closely

related to this idea is the fact that virtually all of the losses can

be associated with electron current. Hence, the electron current, as

well as the potential drop across which it flows, must be reduced to
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as low a value as possible. Since it is virtually impossible to promote

functional separation between the ionization and acceleration processes

without simultaneously introducing soaale spatial separation between the

regions where each procrii is dominant, it is easy to understand how

the idea for an "isolated anode configuration" ("IAC") arose. Actually,

the design considerations leading to the IAC were more complex. The key

point, however, is that the philosophy responsible for this development

was so fruitful that the chief design problem at the present time is

how to construct a thruster which embodies the same ideas, but carries

them even further.

The other design problem is how to achieve greater flexibility in the

propellant feed system, so as to permit higher mass flow rates and also

to realize the full potential capability of the ALPHA thruster for

throttling. The limitation on both of these is imposed by the: coupling

of the propellant mass flow rate to the arc current via the fraction of

the power lost to the anode which is conducted into the vaporizer and

utilized for propellant vaporization. This coupling is one of the key

features of the present gas-actuated feed system. Among its advantages

are the regenerative economies it affords, the fact that it facilitates

radiation cooling of the anode, and of course, its mechanical simplicity.

The problem at hand, then, is how to effect a de-coupling, or at least

a relaxation of the constraints imposed by the coupling, without

sacrificing these advantages. As mentioned earliers the maximum pro-

pellant mass flow rate attainable in the present feed system is consider-

ed adequate for test purposes. It is possible, however, that future

tests will indicate the need for still higher values of di. If not, then

a systematic attempt to solve the aforementioned problem by modifying

the feed system design will probably have to await the projected incor-

poration of provisions for zero-gravity operation.

e
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2.5.5.5 Areas of Uncertainty	 I

Certain aspects of ground-based experiments on plasma thrusters in

general and on MPD arc jets in particular are conducive to misinterpreta-

tion and erroneous measurements. 'these types of subtleties have plagued

the industry since its inception. The resulting atmosphere of contested

claims and of retractions of published data has given rise to a great

deal of confusion amongst the proponents of competitive devices. This

situation has had the inevitable effect of eroding the confidence of the

various contracting agencies or else, in certain instances, inspiring

the question of how an existing confidence level could logically be

maintained. Against this background of justifiable skepticism it is

disquieting, to ..y the least, to consider the ALPHA engine. Without

exception, every other research group which has reported measurements

of thruster efficiency anywhere near as high as those routinely recorded

for ALPHA has, sooner or later, been forced to admit to serious errors 	 y

in experimental procedure or in the interpretation of results. Indeed,

"measurements" of efficiencies exceeding 100% were not uncommon; the

latter at least had the merit of alerting the investigators to the

existence of spurious effects in the laboratory, such as mass entrain-

meet and extraneous current paths through va--uum chamber walls. What

makes the ALPHA laboratory test results particularly suspect in some

quarters is the inability of most other groups to duplicate the perform-

ance claimed. A noteworthy exception, however, is the work recently

reported by Seikel (Ref. 2-30) . Measurements using a thruster sup-

plied by EOS were made in the NASA/Lewis facility	 These results

corroborate prior EOS findings.

Numerous	 arguments exist and have in the past been invoked to explain

why the technical approach followed by EOS (especially with regard to

propellant choice and thruster geometry) is responsible for the relative-

ly high performance measured, and that the measurements themselves are

indeed accurate.	 Conversely, the reasons for the failure of other groups
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to reliably measure such performance has also been the subject of much

consideration and discussion. These arguments will not be reproduced

here. What is germane, however, is the fact that future plans affect-

ing the developtaent and application of ALPHA must be conditioned by the

skepticism of some responsible observers. Nothing short of a flight

test is ever likely to convince these skeptics that the thrust measure-

ments made in the laboratory do not include any significant spurious

effects attributable to the lack of a space environment.

Mass Entrainment

The extent tGwhich entrainment effects in vacuum chamber tests of the

thruster have been influencing laboratory measurements can be decisively

ascertained only by means of a flight test. Experiments have been

performed which indicate that the background pressure, so long as it is

maintained below one micron (10
-3
 torr), has no discernible effect upon

thruster performance. However, regardless of the vacuum chamber used,

one cannot entirely discount the possibility that some type of entrain-

ment still exists. Charged particles near the tank walls, for example,

could conceivably approach and interact with the exhaust beam by

travelling up magnetic flux lines. Once entrained, such particles may:

a. Be accelerated along with the injected gas from the thruster;

b. Increase the charged particle density in the exhaust beam,
thereby causing the current distribution in the test chamber
to be different from that in space;

c. Cause the flow and diffusion of neutral propellant atoms to
differ from the case without entrainment;

d. Contribute to the rate of recombination of the ions and
electrons downstream of the discharge region, thereby helping
the propellant to escape the magnetic field in the test chamber
sooner than it would in space.
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Wall Effects

The problem of wall effects is in many ways similar to that of mass

entrainment. Despite numerous precautions in the laboratory, it is

possible that spurious current paths (via the tank walls) can distort

performance measurements. in the near future it is planned to conduct

several thruster tests in the new EOS/USAF Environmental Test Facility,

Since this vacuum chamber is 22' x 35 1 , such tests should reduce the

probability of spurious wall effects even below that for past tests in

much smaller hanks. The latter probability is felt to be very small,

but here again, as with mass entrainment, no vacuum chamber of practical

size is ever likely to be universally considered sufficiently large to

completely preclude all possibility of wall effects.

R_ Noise Interfere ice

A simple experimeat was conducted in the laboratory to obtain some

qualitative information on the rf noise generated by the thruster.

This was done in order to get a preliminary estimate of the potential

seriousness of the interference problem. Four antennas were placed in

various locations and orientations within the vacuum chamber, and the

response was monitored on a VHF detector. Throughout the range from

10 to 500 MHz, this preliminary test indicated that the rf noise

generated by the thruster is extremely small. Some additional results

were obtained for frequencies below 1 MHz by displaying the arc voltage

on an oscilloscope. As with Lhe VHF detector, no significant change

in the noise level over that of t' ,e background (i.e., no arc) was

observed. The ripple of the do power supply was orders of magnitude

larger than any other signal seen on the scope, but far below ratio

frequencies. However, these test results may be misleading, since it

it possible that the metal vacuum tank may affect the results. The

tank is part iron and is G' in diameter by 14' long. Also, there is a

frequency band from 1 to 10 MHz which has not been examined. There is
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a tendency to get more noise in the low frequencies when the thruster

is operated on hydrogen instead of lithium, but a similar test has not

been conducted for UHF. Due to these uncertainties, the results must

be considered tentative. Thus, although it appears unlikely that

thruster-generated RFI would pose a significant problem for space

communications, this must be verified by further laboratory tests and,

of course, a flight test.

Propellant Deposition

It has been observed in laboratory tests that any surface at moderate

temperature which is directly exposed to the exhaust beam of the thruster

will be coated with lithium. Conversely, it has been repeatedly and

consistently observed that no appreciable lithium deposition occurs on

other surfaces (of the thruster itself, as well as of the vacuum tank

walls) so long as these surfaces are neither directly exposed to the

beam nor intercept magnetic flu:: lines pasaing through or near the

cathode jet. It is natural to conclude from these observations that

no serious problems of propellant deposition on optics, temperature

control surfaces, solar pan a ls, etc, of a spacecraft with an ALPHA-

type engine are likely to be encountered, provided certain simple

precautions are taken with regard to the orientation of such surfaces.

Once again, however, some residual doubt (at least) must remain until

an actual flight test can be performed.

Zero-Gravity Feed

Zero-gravity feed systems have already been developed for cesium in

conjunction with ion engines. No great technological innovations will

be required to develop a lithium unit of comparable capacity and feed

rate. Indeed , the transition from the system currently in use to a

true zero-gravity device will probably require less engineering effort
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rrom	 bellows-than that which accompanied the transition	 the earlier

type system to the present gas-actuated one (see Subsection 2.5.4.2).

Nevertheless ; certain design problems do exist. 	 Tnese are mostly

connected with the fact that a lithium feed system must be kept at
1

higher temperatures than a cesium system. 	 The melting and boiling

points of lithium, for example, ere 179 and 1317 deg C. respectively,

compared with corresponding values of 29 and 670 deg C for cesium.	 It

is important to note, however, that even in its present configuration,

only a small part of the lithium feed system (comprising the vaporizer)

is maintained at tem Eratures above 200 - 300 deg C. 	 Moreover, veryP	 8	 ^	 Y

little of the htaL supplied to the vaporizer actually represents an

intrinsic power loss.	 Starting as waste anode heat which would other-

wise necessitate provision for extra cooling, the thermal energy is

transferred by conduction to the vaporizer, where it serves to pre-

heat the propellant to its vaporization temperature.

As mentioned in Subsection 2.5.5.1 above, the zero-gravity version of

the 'lithium feed system is likely to retain at least some utilization

of gas pressure to supplement capillary forces and thereby permit

relatively high mass flow rates.

l
l
l

5

R

E^
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2.5.6 PROJECTED DEVELOPMENT OF THE MPD ABC JET ENGINE AND SYSTEM

2.5 6.1 Projected MPD Arc Jet Description

Electrode Assembly

The ALPHA thrustor electrode assembly consists of the anode, cathode

and buffer, together with supporting structure. Most of these com-

ponents have more than one function. The anode serves also as the

lithium vapor injector. The buffer serves as the Ionizing electrode

+nd is maintained at a potential intermediate between that of the

cathode and that of the anode. The annular region between the cath-

ude and the buffer serves as the hydrogen injector. And finally, the

supporting structure serves not only to mount and support the electrodes

with respect to each other and with respect to the magnets, but it also

serves three additional functions as well: first, to electrically in-

sulate the cathode from the buffer; second, in its role as a "plasma

isolator," to electrically insulate each portion of the upstream plasma

from the radially adjacent annuli; and third, to reflect back-scattered

neutrals and those ions which have gyrated about magnetic flux lines

in the upstream direction.

Future designs of the electrode assembly will incorporate each of the

foregoing features and will be completely radiation cooled.

,Radiator System

f

The radiator system for the thruster includes some or all of the fol-

lowing items:
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a. Anode radiator

b. Cathode radiator

C.	 Buffer radiator	 ^I

d.	 Masnet radiators

C .

	

	 All conduction and convection patris bet:ween each radiator and
the corresponding component

r

It excludes the power supply radiator (if any), which must be consid-

ered part of the powerplant package.

Most of the simplifications that can be envisaged at the present time

will probably he embodied in the design of the radiator system for a

flight model. The cathode and buffer radiators, for example, could be

combined into a single unit with the help of a material like beryllium

oxide, which is a good thermal conductor but also a good electrical

insulator. Furthermore, it will probably not be difficult to dispense

with the need for separate magnet radiators, and to rely instead upon

radiation into space directly from the outer surfaces of the magnets

themselves. Finally, it appears that,, at the thruster power levels

below 4 MW, no convective heat transfer will be required. It is pos-

sible, however, that heat pipe technology may be utilized even for

microthruster applications, if this can prove significant in magnet

power or mass,

Further study in the near future should settle this question. Indeed,

it is anticipated that all of the design problems associated with radi-

ation cooling the entire thruster will have been solved by mid-1968 for

all power levels below 20 W.

A
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As in the case of the radiation cooling problem, it is expected that

within the next two years much experience will have been accumulated

designing, fabricating and testing flight -optimized magnets. In the

proce-s, the follow ing questions will have to he answered:

a. What is the optimum magnetic field distribution?

b. Should electromagnets or permanent magnets, or some combina-
tion of these,be used to produce th,i requisite field
distribution?

c. What are the optimum materials and configurations for each
type of system?

The answer to the first quastion is currently being sought in the labo-

ratory. The remaining questions have already been partially answered

on a contingency basis, and no special difficulties are foreseen in

these areas.

Feed Svstem

The engineering development work on the feed system will be concen-

trated in the following areas:

a. Zero -gravity lithium feed

b. Lithium flow metering

c. Hydrogen plumbing

The design philosophy of the zero - g lithium reed will be to retain as

much as possible of the preser.L. gas-actuated laboratory model version.

One will attempt, therefore, simply to replace the gravity -operated
of 	 by a comparable component which makes use of capillary

forces instead. Once collected, the molten lithium would be forced

from the reservoir into the vaporizer by pressure forces, exactly as



is dont• at the present time, except that hydrogens from the buffer gas

supply tank, rather than argon, would be used for pressurization.

Metering of the lithium vapor flow by means of a calibrated sonic ori-

fice, as is now done, will almost certainly be carried over to a flight

model. This would be adequate for most thruster applications. It may

not, however, be adequate for purposes of preliminary flight testing

because it does not permit reliable measurement of instantaneous flow

rates and also because a backup device would be highly desirable in

view of the great importance of accurate flow rate measurements to the

determination of thruster performance in a space environment. Most of

the effort on an alternate lithium flow meter will be directed toward

the development of an elecrromagnetic instrument &signed to detect the

minute currents induced by the flow of liquid lithium across magnetic

flux lines.

The difficulty with hydrogen plumbing arises frm the somewhat corf-

flicting requirements of maximum reliability and maximum utilizjti_on

(ire the sense of multipurpose design) . The existe v cf^ aboard a space-

craft of a bottle of high-pressure hydrogen for some pa.Cticular purpose

provides the designer with an irresistible challenge to try to make

this gas supply serve as many other useful functions ;is possibl y . Thus,

it is natural to specify the use of hydrogen for pressurization of the

lithium reservoir as well as for buffering the cathode. But additional

possibilities exist which require careful invvstie.ation. The same gas

supply, for example, cuitid be ui;ud in a cul " t;as attitude control sys-

tem for the spacecraft-, or perhaps even ft i. connvcct?ve cooling of cer•,

tain components such es batterics or magnets. Tbo tradeoff between

plumbing simplicity on the one hived and overall 1 !,L(!ni simplification

due to mu ► t{ ple functions on the other will be C.'LL II islnee early in

any flight application program.
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2.5.6.2 Projected Thruster Performance

Numerical predictions of projected thruster performance are especially

risky in a program evolving; as rapidly as ALPHA. It is therefore re-

markable that Fig. 122, still accurately represents, not only the

present performance status, but the best available projection as will.

Thi3 figure was originally drawn vary early in 1966 and was later in-

cotporated into Ref. 2-31. It illustrates, in a rather simplified

form, both a summ e ry of achievements up to that time and an extrapola-

tion extending several years into the future.

Figure 123 shows the minimum anticipated performance for a flight

test model ALPHA thruster. It was drawn in April 1967, and at that
a.;T

time represented a projection of "nominal," rather than pessimistic

performance.

2.5.6.3 Proiected System Development S_ tus-
kz.

^Y

Figures 124 through 126 are a variety of simplified functional block

diagrams of different ALPHA systems ( represented symbolically by the

two thrusters in the diagram) .
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Figure 123. Projected Minimum Performance of a Flight
Test Model ALPHA thruster
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SECTION 3

POWER CONDITIONING AND CONTROL

3.1 POWER CONDITIONING ELECTRONICS

The power conditioning electronics has to provide both the steady-state

and the transient electrical interface between the power source and the

thruster. The principal functions which the power conditioning elec-

tronics may have to perform in order to provide these interfaces include:

Dc -tc-ac inversion

Voltage transformation

Rectification

On-off power control

Analog power, voltage, and current control

Overload control

Current-limiting

Filtering (input and output)

Isolation

Subsystem block diagrams for these functions where the prime source of

power is do are provided in Fig. 127. There can be many variations

of these block diagrams, dependent on the type of input power, thruster

requirements, and, in the case of a do powerplant, the design approach

for the do-ac inversion function. Input and output filtering require-

ments are also dependent on the design of the do-ac inverter. Figure

128 is a typical block diagram of the power conditioning electronics

when the prime source of power is ac. The ac power source eliminates

the need of a do-ac inverter.
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3.1.1 INVERTER-CONVERTER CIRCUIT DESIGN

The do-ac inversion function requires the use of switching devices

which have the ability to interrupt current flow in a controlled on-oft

operation. By using two or more such devices, the ac waveform required

for magnetic transformation can be generated at poc,er levels governed

by the switching element capabilities. Figure 129 shows the basic

approach to the inversion function. The desirable operating charac-

teristics of the switching element include:

Negligible turnon and turnoff times as compared to the operating,
frequency

Negligible forward drop in the on state (low saturation resistance)

Resistance in the off state approaching that of an open circuit

Negligible control power as compared to the inversion power level

Complete control of the switching operation

l3.1.1.1 Basic Design Ĉ ocis ide ra i_ ons

There are many devices that can be used for active switching. Unfortu-

nately, most do not provide the desirable operating characteristics.

Transistors, silicon controlled rectifiers, and thyratrons are the only

active switching elements that can be considered for static power in-

verters at the present time.

SCR's and thyratrons have been used primarily as the active switch in

high power (> 500W) inverter development to date. The ability to

switch power at both high current and high voltage levels without series-

parallel hybrid schemes of the active element has been their chief advan-

tage relative to the power transistor. Available SCR's, for example,

can switch currents as high as 1000A at up to 700V. The thyratron has

an additional advantage of high tolerance to both nuclear radiation

and high temperature operation.
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From the standpoint of inverter design, the transistor has two distinct

and inherent operational advantages: the first involves the finite

switching; rimes for the devices which places an upper limit on the in-

verter switching frequency. As the switching times of the active switch

become a significant portion of the switching; period (t - 1/f), the in-

verter efficiency decreases rapidly. Increased switching frequencies,

however, result in significant reductions in magnetic component mass.

The typical range of turnon and turnoff times for transistors, SCR's

and thyratrons is shown in Fig. 130. As shown, the turnon character-

istics for the three devices are relatively competitive. From the

standpoint of turnoff times, however, the SCR requires a much longer

time. Transistor inverters, on the other hand, have been fabricated

with switching frequencies as high as 200 kHz at an efficiency greater

than 85 percent. Thyratrons limit efficient inverter operation to a

switching frequency of less than 1.5 kHz. Inverters utilizing SCR's

can be efficiently designed for switching frequencies ranging from 3

to 4 kHz. The effect of switching frequency on magnetic component

mass is illustrated in Fig. 131 for the output transformer. 	 The

choice of operating frequency involves, then, a tradeoff between the

merits of low magnetic component mass and inverter circuit efficiency.

Thc- second advantage of the transistor involves the indirect control

that the base signal exercises over forward current. Unlike transistors,

turnoff for SCR's and thyratrons cannot be accomplished through action

of the control gate. Turnon for SCR's and thyratrons, however, does not

require a gating signal for the duration of on -time (t/2) but only a

pulse of sufficient width to turn on the SCR.
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The disadvantages to circuits requiring direct turnoff commutation as

compared to the indirect high gain control in transistor circuits are in

the areas of mass, reliability, and efficiency. In addition to the

reliability consideration of operating time, care must be exercised to

prevent mistriggering of SCR's by external interference. This interference

may come from many sources including other SCR's, and will act on either

the gate or anode to cause possible circuit malfunction.

Inverter circuits are typically arranged in either a push-pull or bridge

configuration. The bridge configuration has the advantage of operation

at up to twice the input voltage level used for push-pull arrangements.

In addition, both circuits may acquire their timing from a self-excited

or driven mode.

3.1.1.2 Single-Phase Transistor Inverters

The relative advantages and disadvantages of the two timing modes for

transistor inverters include:

1.	 Self-excited timing

a. Advantages

(1) Simplicity

(2) Switches conduct alternately, minimizing the possibility

of source shorting periods

(3) Some inherent overload protection (this results from

loss of gain in the feedback loop)

(4) High efficiency at low power levels

b. Disadvantages

(1) Operating frequency varies with changes in load

input voltage or environmental conditions

(2) Possible high transient spikes

(3) Possible starting problems under loaded conditions
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l
d	 Driven timing

a.	 Advantages

(1) Stable	 frequencyoperating

(2) Reduced starting and transient problmms

(3) Turnoff accomplished by removal of timing w-tvpform

(4) Readily adaptable to pulsewidth modulation techniques

(5) High efficiency at high power levels

b.	 Disadvantages

(1) Requires more circuitry and components than self-

excited approach ^+

(2) Requires careful selection of timing waveform or

circuit design to avoid source-shorting period:; due to
active switch storage times

(3) Requires additional overload protection circuitry

At the present time modularized power conditioning systems for ion

thrustors as large as 5 kW could be fabricated with self-excited inverters.

The driven approach would be required above the 4 kW level for higher

effic i.cT,^y.

Basic Push-Pull Self-Excited Inverters 	 I

In a self-excited inverter, two transistors alternately conduct, switching

the do input voltage across half the primary, causing flux in the core to

be cycled between positive and negative saturation. The circuits of Fig.

132 show two basic transistor inverters.

Assume one of the transistors is switched into the saturated condition.

The collector current rises linearly until the transformer core (square

hysteresis loop material) saturates. At core saturation, the rate of

change of flux, which until now has been relatively constant will be
reduced suddenly, causing a reduction in the induced voltages. The

sharpness of this change will depend on the squareness of the hysteresis i
5400 -Finipl	 3-10
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(a) COMMON BASE

(b) COMMON COLLECTOR

Figure 132. Common Base and Common Collector Self-Excited Push-Pull
Inverters
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loop. The decrease in induced drive voltages causes the conducting

transistor to come out of saturation and turn off. Simultaneously, a

small reverse change in flux a causes a reversal of transformer voltages,

and serves to switch the second transistor on, thus completing the cycle.

The frequency of operation can be set by the choice of the magnetic core

parameters, the primary turns, and the input voltage. If the voltage

drop across the transistor and winding resistance is assumed to be

negligible, the frequency of operation is given by

E
f •• -- in

n
4 Z 

`m

where Ein is the input oltage, n is the number of t rns in the

transformer primary, and 4 is the transformer flux. The beat efficiency
is obtained when the powei drawn by the load is very nearly equal to the

maximum output that may be obtained, and when the feedback winding is

matched to the input impedance of the transistor. The circuit is

inherently safe from overloads in that it switches off if the loaning

becomes too heavy; the transistors will not conduct again until the

fault his been cleared.

There are several versions of the basic push-pull circuit.

Common Base Circuit - The common base circuit is shown in Fig.

132(a). Its major advantage is that with low input voltages,

somewhat faster switching times may be obtained in the configu-

ration. The major disadvantage is that the base-to-emitter wind-

ing on the transformer must carry the total collector current.

Common Collector Circuit - This circuit, shown in Fig. 132(b)

required a drive winding with a slightly higher number of turns

than the primary (emitter-to-emitter winding). This circuit has

0

v

f:R
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greater at reduced loads than at rated loads.

i

,in advantage with respect to transistor cooling when used in a

system that has the negative side of the do power supply grounded

to the vehicle system ground. The collectors of most transistors

are mounted directly on the transistor base plat.!, and in this

type system the transistor can be attached directly to a cold plate

without electrical insulators.

Common Emitter Circuit - Two versions of the common emitter circuit

are illustrated in Fig. 133. The starting circuit is the basic

difference between these two inverters. (Starting circuits were

not included in Fig. 132.) This circuit eliminates the drive

problems in the common base and common collector circuits, and is

frequently used in low power inverter design.

Improved Self-Excited Push-Pull Inverter

There have been many modifications made to the basic co mon emitter tran-

sistor inverter shown in Fig. 133(a). The modifications have been

made primarily to eliminate high collector current spikes during

commutation, which are a direct result of the finite storage effects in

the transistor. During the storage period, while the transistor on one

side of the circuit begins to conduct, the transistor on the other side

remains on; thus the two simultaneous collector currents produce magnetic

fluxes that buck each other, thus producing the high current spikes. The

collector current is determined to a first approximation by the base

current times P. The collector-to-emitter voltage VCe is at its maximum

at this time; therefore, transistor dissipation is extremely high until

the stored charge is cleared in the opposing transistor. Since the

storage time is directly proportional to overdrive, these losses are even

it



(b)

Figure 133. Common Emitter Self-Excited Push-Pull Inverters

5400-Final	 3-14

Volume I

tf

O

1623567



frequency also increases the average losses due to the storage effects.

The net result is transistor degradation, lower efficiency and reduced

inverter operating life. The high collector currents also cause excessive

voltage spikes at switchover which could destroy the transistor. The

voltage spikes are a result of the stored energy from the inductance of

the circuit leads and leakage flux of the transformer.

Several modified common emitter inverters that compensate fir storage

effects are shown in Fig. 134. In these circuits, the saturable

output transformer has been replaced with a linear or nonsaturating

transformer. The timing is provided by the saturable inductor in the

base circuit.

The modified Jensen inverter shown in Fig. 135 is probably the most

commonly used self-excited push-pull power inverter. In this circuit,

a saturable base drive transformer (T1) controls the inverter switching

operation at base-circuit power levels, and the linear output transformer

couples the output to the load as in Fig. 134. Because the core mate-

rial of the output transformer (T2) is not allowed to saturate, the peak

collector current of the transistors in the inverter is determined prin-

cipally by the value of the load impedance. This feature makes possible

high circuit efficiency. Operation is as follows:

Because of a small inherent unbalance in the circuit, one of the

transistors, say Q1, initially conducts more heavily than the other.

The resulting increase in the voltage across the primary of T2 is applied

to the primary of T1 in series with the feedback resistor, R fb . The

secondary windings of T1 are connected so that Q2 is reverse -biased and

driven to cutoff, while Ql is driven into saturation. As T1 saturates,

the rapidly increasing primary current causes a greater voltage drop

across feedback resistor Rfb . This increase in voltage across Rfb

reduces the voltage applied to the primary of T1; thus the drive input

5400-Final	 3-15
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(a) BASIC SATURABLE BASE INDUCTOR INVERTER	 i

(b) MODIFIED SATURABLE BASE INDUCTOR INVERTER

Figure 134. Modified Common Emitter Self-Excited Pu gh-Pull Inverter
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and ultimately the collector current of Q1 are decreased. The decrease

in the collector current of Q1 causes a reversal of the polarities of the

voltages across all the transformer windings. Transistor Q1, therefore,
is rapidly driven to cutoff, and Q2 is allowed to conduct. The inverter

operates in this state until saturation of T1 in the opposite direction.

The cycle is repeated at a frequency determined by the design of T1 and

the value of resistor R fb . The external base resistor (R1) reduces the

effect of the transistor base-to-emitter voltage, Vbe , on the operation

of the circuit. These stabilizing resistors are needed because Vbe

varies among individual transistors with temperature and operating time.

To insure that the inverter starts oscillating after power has been

applied to the circuit, an initial drive signal is provided by the R3/CR1

network (one of many starting circuits that can be used). There are

several methods that can also be employed for on-off inverter control.

These include; (1) on-off control of the input power and (2) shorting

the transistor bases to ground. The latter method has proved very effective

in providing overload control or short-circuit protection for the

inverter.

At high power levels, low closed-loop transistor gain can result in sig-

nificant reductions in circuit efficiency. Low gain may also prevent

the inverter from sustaining oscillations with aging or changes in envi-

ronmental conditions. In a self-excited push-pull inverter this can be

solved in part, by additional inverter stages. Figure 136 illus-

trates a two-stage push-pull self-excited inverter that compensates for

storage-time effects.

Driven Push-Pull Inverter

Efficient (> 80 percent) self-excited push-pull inverter operation is

presently limited to about 1 kW of power with available power transistors.
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This is due to both the low closed-loop transistor gains and the power

switching capabilities of the transistor. To increase both the power

handling capability and the efficiency at higher power levels, driven

inverters can be used. The basic push-pull or parallel inverter power

stage is shown in Fig. 137(x). To further increase the power han-

dling capabilities of this single power stage, a number of different

hybrid series-parallel schemes can be employed. Two or more push-pull

power stages, nor example, can be paralleled by wiring their output

transformer secondaries in series. This effectively parallels the tran-

sistors, and currents are balanced without dissipative compensation

elements. Multiphase inverter systP:As, such as that shown in Fig. 138,

are another example where isolated drive timing signals are required.

In addition to increasing the power handling capabilities and efficiency

of an inverter system, the driven type of inverter offers several advantage

that can exclude the use of self-excited inverters. As previously

mentioned, these advantages include: (1) faster switching in the power

stage, (2) regulation by pulsewidth modulation of the drive signals at

any power level, and (3) an operating frequency that is insensitive to

load, input voltage, and environmental variations.

The basic parallel inverter power stage shown in Fig. 137(a) is sub-

ject to the same current spike problems that occur in the basic common

emitter circuits shown in Fig. 133 as a result of the transistor stor-

age effects.	 Storage time compensation in the driven inverter stage

can be provided in a manner of ways. The circuit shown in Fig. 137(b)

is one approach which prevents forward bias from being applied to one

transistor while the other is in the storage time transitional period.

The polarities shown in Fig. 137(b) exist after base drive has re-

versed but before storage time has allowed the conducting transistor to

turn off. Reverse bias is applied to Q1 but forward bias is shunted

from Q2 through CR1, winding 1-2, and the collector-emitter circuit of

Q1 to the return of the drive winding. When Q1 starts turning off and
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Figure 137. Push-Pull Inverter Power Stage
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applied to Q1 but forward bias is shunted from Q2 through CRI, winding

1-2, and the collector-emitter circuit of Q1 to the return of the drive

winding. When Q1 starts turning off and the emitter-to-collector

voltage exceeds the bias winding voltage, forward bias is applied to

Q2 and the next cycle of operation begins. The bias windings are

necessary to overcome the forward drop of the diodes. The feedback

rectifiers will automatically compensate for storage time regardless

of load or environmental variations.

Self-Excited Bridle Inverter

In applications where the do powerplant voltage approaches half the

breakdown voltage ratings of the transistor, the push-pull inverter

cannot be used. (This can be overcome if series transistor switches

are used but due to the problems of compensation this technique is

not recommended.) Each transistor in the push-pull inverter is

subjected to twice the supply voltage during the time it is in

cutoff. This is caused by the voltage induced in one-half of the

transformer primary by the half that is conducting and is series-

aiding to the powerplant voltage. Fast-switching transistors that are

capable of switching currents above 10 amperes limit push-pull

operation at the present time to about 50 volts.

To overcome the 50V input limitation, a bridge inverter such as that

shown in Fig. 139 can be used. Neglecting transient effects, this

circuit doubles the push-pull inverter voltage limitation without any

compensation circuitry. In the bridge inverter Q1 and Q4 conduct

simultaneously on alternate half-cycles while Q2 and Q3 conduct on

the other half-cycle. Like the push-pull inverter (Fig. 136) the

timing and storage compensation are provided by the saturable base

drive transformer and feedback circuit. Initial oscillations are

ensured by R1, R2, and CR1.
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If the transistor closed-loop gain is too low to ,:ovide efficient

operation, a two-stage inverter such as that shown in Fig. 140 could

be used. This circuit utilizes both push-pull and bridge inverter

operation. The power stage utilizes the bridge configuration due

to the breakdown voltage ratings of the principal power transistors.

Since medium power transistors are available with breakdown voltage

T3tings as high as 500V a push-pull drive circuit can be used. This

inverter circuit also provides compensation for storage effects with

feedback from the output transformer back to the saturable base drive

transformer.

Driven Bridge Inverter

The basic driven bridge inverter power stage is shown in Fig. 141.

At the higher input voltage levels the driven bridge inverter would

be used instead of the parallel inverter power stage for the same

reasons as discussed previously. Utilizing available transistors,

a driven bridge inverter could be fabricated for at least 4 kW of

power conditioning with 4 power transistors at about 90 percent

efficiency.

3.1,1.3 Single-Phase Controlled Rectifier Inverters

In order to commutate on an SCR or thyratron switching device, a

suitable means of reducing the anode current for a sufficient

amount of time must be employed. The actual turnoff can be

accomplished by tieing a variety of methods which include at least

one of the following provisions:

Reversal of current

Auxiliary circuit interruption

Diversion of anode current

Anode reverse-biasing

Since the active switcher are not ideal elements, other considerations

may result in the incorporation of additional components necessary to
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limit voltage overshoots, rates of voltage change, and rates of current

change. Thus, in general, the functit'ns of commutation become:

The reduction of forward current to zero in the previously

conductin active component

The delay of forward voltage reapplication to the previously
conducting active component until it has gained its forward
blocking capability

The control of forward current buildup in the active component

presently being turned on

The commutation of controlled rectifiers in inverter circuits can be

accomplished by using one of our general methods. From the standpoint

of basic commutation in the inverter, the relative advantages and

disadvantages of these commutation techniques include:

	

1.	 Parallel Capacitor Commutated

a. Advantages

(1) Simplicity

(2) Cathodes of controlled rectifiers are at ground
potential

(3) Commutating network can be placed on transformer
sec ndary

b. Disadvantages

(1) Large kVA rating required for commutating capacitor
to handle inductive loads reliably

(2) Poor voltage regulation

(3) Circuit can only be turned off by removing input
do power

(4) Care must be exercised to insure reliable starting

(5) Commutation may fail at high load power factors

	

2.	 Impulse Commutated

a. Advantages

(1) The loss of gating signals does not necessarily
result in commutation failure

(2) Circuits are well adapted to voltage control
techniques

(3) Circuits can be used to reverse power flow if
desired

(4) High efficiency

(5) Low regulaticn;

(6) Load power f .d.	 earl';I cions do not require
change, in	 components or result
in commotaL^.,; 

E
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2.	 Impulse Commutated (ci nt . )

(7)	 The values of L and C for commutation are smaller
than in the parallel inverter

b. Disadvantag^is

(1) Circuit can only be turned off by removing input
do power

(2) Large input filter capacitor is usually required
at the inverter input terminals

	

3.	 Series Capacitor Commutated

a. Advantage - The gating excitation may be interrupted to
stop inverter operation

b. Disadvantages

(1) Operating frequency changes with load variations

(2) Output voltage changes with load variations

(3) Very light loads may cause commutation failure

	

4.	 Harmonic Commutated

a. Advantages

(1) Permits operation over the full 360 degrees of
phase control

(2) Supplements commutation of polyphase systems

(3) Provides power factor improvement and increased
regulation

b. Disadvantages

(1) Requires a fixed harmonic voltage source or other
stabilization scheme for operation over a wide load
range

(2) Possibility exists of commutation failure under
light load conditions with internally produced
harmonic voltage

For most electric propulsion power conditioning requirements the

impulse commutated inverter is the recommended design approach for

controlled rectifier inverters. At low input voltages or high temperature

inverter operation with constant load, however, the parallel capacitor

commutated inverter should be considered.

ra
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Parallel Capaciytor Commutated Push-Pull Inverter

The parallel capacitor commutated inverter circuit is illustrated in

Fig. 142(a). This circuit represents one of the earliest inverter

design approaches utilizing controlled rectifiers. It is commonly

referred to as the parallel inverter and has been successfully used

in many applications. Commutation of the conducting SCR is accomplished

by the commutating capacitor (C). This capacitor can be placed on

the primary or the secondary side of the transformer. With SCR 1

conducting, the operation of the circuit is as follows:

A firing pulse is applied to the gate of SCR 2. SCR 2 rapidly turns

on and the anode voltage falls to nearly ground potential (+1V).

Since the capacitor was charged to twice the supply voltage (positive

at SCR 2 side) the voltage at the anode of SCR 1 is about twice the

supply voltage below ground potential (less the SCR 2 drop). Note

that at this point the voltage across the transformer has not yet

changed in polarity. The capacitor discharges through the transformer

into the load, and at the same time is being charged in the reverse

direction by the supply voltage. Thus, the discharge rate is faster

than the RLC time constant alone. The time that the anode of SCR 1

is held below ground level must be as long or longer than the turnoff

time of the SCR. The voltage waveform across the transformer (and

load) is the same as the capacitor voltage waveform. SCR 2 is now

conducting and SCR 1 is off. A firing pulse is applied to the gate

of SCR 1 and the commutation process repeats in the reverse direction.

Voltage and current waveforms for the parallel inverter are shown in

Fig. 143. A variety of waveforms can exist at the load depending upon

inverter component values and load characteristics. As previously

mentioned, the commutating capacitor can be placed on the secondary

side of the transformer or split between primary and secondary.

Figure 142(b) is a thyratron inverter with the commutating capacitor

across the transformer secondary winding. There are two advantages

with the capacitor on the secondary. In the case of a stepup transformer

the size of the capacitor can be reduced by the square of the turns ratio.

5400-Final	 3-30

Volumelume I 

Pon"} } a .

'v :it1$13^' ti3Yi^H.i1`	 s.	 ^ ^	 ^	 t	 i.l• 4y. ^ ^.	 4. ,	 ..	 4	 _	 u._^_s.. ..

i'



DRI'
SIG

DRI\
SIGI

E

r2

(a) BASIC SCR INVERTER

(b) HIGH TEMPERATURE THYRATRON INVERTER

Figure 142. Parallel Capacitor Commutated Inverters

5400-Final	 3-31
Volume I

73623555



A

I

i

..	 I
TIME AVAILABLE FOR TURNOFF

A	
♦ I	

B

g	 g

(A)

TIME AVAILABLE FOR TURNOFF

A	 B	 B

MMM

B	 B	 A	 A

(B)

f TIMF AVAILABLE FUR TURNOFF

I^
► r	 ^

B	 B`

	

A	 A

(c)

i

LOAD WAVEFORM	 ANODE VOLTAGE WAVEFORM
I

A- LIGHT RESISTANCE LOAD
Figure 143. Parallel Inverter

B- HEAVY RESISTANCE LOAD	 Waveforms
i

C- PARTIALLY INDUCTIVE LOAD

5400 Fina 1
Volume I	 3-32

73 , ,211.35

ry,,}^	 e	 f

i	 ^	 z'.^f^3, r."S'
	 ^. ^!^	 a };	 yx	 ,^ }	 r x	

z" ,	 :	 ,^	 --^^	 __
x



For high temperature thyratron operation this approach also allows

the capacitor to be placed out of the hot zone.

The inductance (L) serves as a ballast to prevent excessive current

flow during switching. During the switching interval, high currents

can flow in the primary to the commutating capacitor and to the anode

of the SCR which has been turned on. If this current is not limited,

the charging time for the capacitor will be very short and the SCR

to be turned off will not be reverse-biased long enough for turnoff to

occur.

Another type of parallel inverter is shown in Fig. 144. This is known

as a counter-emf inverter. An external voltage is applied to the

commutation transformer at the same instant that the grid trigger

voltage is applied to the opposite tube to reverse the voltage on the

conducting thyratron. Detailed operation of this circuit was not

found in the literature and several problem areas can be seen. The

commutating transformer,	 example, must handle large currents with

extremely low do drop and be able to supply over twice the supply

voltage to reverse-bias the thyratron, The driving power required

for commutation appears to be extremely high with this circuit.

Impulse Commutated Push-Full Inverter

The basic impulse commutated inverter is illustrated in Fig. 145.

This design approach is basically the parallel inverter with a different

or improved mode of commutation. Like the parallel inverter the

switching frequency of the inverter is determined by the frequency of

the gate drive signal. The commutation is also initiated by alternately

gating each SCR on successive half-cycles. The actual commutation or

turnoff of the conducting SCR in this circuit is provided by the L-C

resonate circuit as opposed to only the commutating capacitor in

Fig. 142. L and Cl are selected to resonate at a frequency that

develops a pulse of sufficient width to turn off the conducting SCR.

The inductor also serves as a ballast to limit the current flow during

switching.
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The rectifiers shown in Fig. 145 serve several purposes that result

in the many advantages of the impulse commutated inverter. 	 By providing

a feedback path for trapped energy, the diodes limit the rise in

voltage across either 	 1,41f of the transformer primary during switching.

This maintains a square wave output voltage and permits the use ofq	 g

SCRs that have a lower breakdown voltage rating. 	 By placing the

feedback rectifiers on the ends of the primary winding as shown in

Fig. 145 the energy that is fed back is dissipated in the inverter.

This is eliminated by placing the diode cathodes at a tap and removing

the series resistors as illustrated in Fig. 146. 	 In this configuration

the energy that is trapped in the commutating inductor or in a

capacitive or inductive load is fed back to the source. 	 The feedback

path to the source increases the inverter efficiency and eliminates

the need for a large commutating capacitor when the load is largely

inductive.	 In the paralle. inverter, the commutating capacitor becomes

prohibitively large with inductive loads.	 The small value of commutating

capacitance in the impulse commutated inverter also insures starting

under no-load conditions. 	 The minimum value of commutating capacitance

required in the impulse commutated inverter can be approximated by;

t_I
Cl _	 E

The need of a large input filter capacitor (C2) is the principal

disadvantage of this design approach.	 This capacitor must be placed

at the inpu. terminals of the inverter to minimize the effects of

transmission line inductance on switching characteristics.	 The size

of this capacitor is dependent on the magnitude of trapped energy

that is fed back during each half-cycle and the limitations on the

rise in source voltage from the energy feedback. One of many modifications

to the basic push-pull circuit is shown in Fig. 146(x). This circuit

can be used as a basic building block for polyphase bridge inverters.

7
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l
The need of a center tapped do supply or a neutral point established

by a pair of large capacitors is one disadvantage of this circuit.

Unlike push-pull transistor inverters that are driven, 'Che impulse

commutated push-pull inverter cannot be pulse-width modulated for

voltage control or regulation due to the commutation requirements.

Figure '47 illustrates a design approach for output voltage control

using two push-pull inverters with outputs wired in series. Output

voltage or power control is obtained to this circuit by phase-shifting

the drive signal of one inverter with respect  t th other.go e 	 Maximum

output is obtained when the drive signals to each inverter are in

phase.

Series Capacitor Commutated Inverter

The chief advantage of a series capacitor commutated inverter is its

ability to produce a very nearly sinusoidal output waveform when

supplying a relatively fixed load. Since side wave excitation is not

required in electric propulsion power conditioning equipment, the

series capacitor commutated circuits do not appear to have any practical

value.

Harmonic Commutated Inverter

The six-phase double way harmonic commutated inverter is one of many 	
-.

harmonic commutated inverter design approaches. Like the series

capacitor commutated inverter, this design approach does not appear

to have any worthwhile application in power conditioning equipment

for electric propulsion. 	 -A

Impulse Commutated Bridge Inverters

The conventional single-phase bridge inverter utilizing impulse 	 ►
lfl

commutation is illustrated in Fig. 148(a). The basic operation of 	 if
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(a) CONVENTIONAL BRIDGE INVERTER CIRCUIT
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(b) MODIFIED BRIDGE INVERTER CIRCUIT

Figure 148. Impulse Commutated Bridge Inverters
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this inverter is similae to the push-pull circui t:. It Orovides high

eff..iciercy, low regulation, and tolerance to a wide range of power

factors with the same commutating components. The bridge inverter

has two distinct advantages relative to push -pull operation. The

first advantage is the inherent ability to operate reliably at higher

input voltages. The ability to operate at twice the input voltage

also doubles the power capability over that for the single - phase push-

pull circuits. The second and perhaps more important advantage is

the provision for p ,:lsewidth modulation without the need of additional

inverter circuits. Voltage control and inversion can be accomplished

simultaneously with but one ot ,tput transformer. Commutation is

provided by SCR 1 and SCR 2 conducting simultaneously on alternate

half -cycles with SCR 4 and SCR 3, respectively. Pulsewidth modulation

or voltage control can be provided by time -delaying the drive signals

on one side of the bridge with respect to the other side. The phase-

shifting drive cLrcuitry for the bridge inverter is identical to that

for Fig. 147.

A modification to the basic bridge inverter is shown in Fig. 148(b).

In this circuit the feedback of trapped energy is provided by commutating

transformers which eliminate two feedback diodes.

3.1.1.4 Li quid-Metal JXB Inverter

The feasibility of using the liquid -metal JXB switch as the active

switching element in low voltage, high current do-ac inverters was

examined. The principal advantages of this device are its insensitivity

to nuclear radiation and its capability inr operation in a thermal

environment as high as 6000C.
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Several different operational configuratic°is using .nercury have been

fabricated and tested by various organizations. The results of this

work indicate that there are many operational problems involved with

this device. These include:

Severe low frequency limitations

High magnetic field requirements

Subject to erratic operation during periods of high shock
and vibration

Projected lifetime and reliability are low as a result of
packAging requirements

Even though the JXB switch exhibits some environmental and electrical

advantages, it appears that the problem areas will not be improved

enough for this device to be urged effectively in future space power

conditioning systems.

3.1.2 VOLTAGE TRANSFORMATION

Trensformatiun of the powerplant voltage to the nominal voltage

levels required by an electric thruster is usually provided by the

power transformer which also provides isolation between 	 the source

and load. If isolation is not required, a do input voltage can be

stepped down by pulsewidth modulation of a series switch between the

source and the load. At low power levels this approach is more

efficient than transformation provided by a single static inverter.

Since high voltage isolation is required for most of the auxilliary

thruster supplies, the series switch approach is at present limited to

control system powe. requirements. The voltage doubler circuit shown

in Fife,. 149 is commonly used for high stepup voltage, low power

requirements. The V- supply for the contact ion thruster would be the

principal application. The voltage doubler circuit improves the output

waveform by reducing the stray transformer capacitance that results

from high stepup turns ratios.

i

r
1
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Figure 149. Voltage Doubler Circuit

3.1.3 RECTIFICATION

The principal input power, requirements for electric thrusters involve

a do voltage requirement. This requires rectification of the

alternating waveform (sine, square or quasi-square) after trarmformation

to the desired input voltage level has been accomplished. The standard

power rectification circuits are illustrated in Fig. 150 for single-

phase and polyphase power.

The peak inverse voltage (PIV) rating required for each diode is the

principal difference between the two single-phase circuits. The

diodes in Fig. 150(x) require a PIV rating that is at least twice the

peak output voltage; the PIV ratings are halved in the bridge circuit.

The resultant ripple voltage and ripple frequency for each circuit is

identical. The application of either the single-phase center-tapped

or bridge circuit is dependent on several design considerations. The

considerations include rectifier circuit efficiency, system design,

PIV ratings of available diodes, transformer size and efficiency, and

the impedance characteristics reflected to the transformer primary.
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c. THREE-PHASE

Figure 150. Typical Full-Wave Rectifier CiLcuits



The centertap circuit is necessary in low voltage (< SOV) rectification

due to efficiency considerations. The rectifier losses are doubled in

the bridge circuit since twice as many diodes arse required. At

voltages higher than half the PIV rating of available diodes the

bridge circuit is necessary. For single semiconductor diodes, the

maximum PIV rating can range from 600 to 1200 volts depending on

the switching speed and forward current capability of the device.

Selection of the optimum circuit for rectification in the intermediate

voltage range involves several tradeoffs. The individual inverters

in a multiple inverter system using bridge rectifiers, for example,

do not require synchronizat±c:. when their outputs are wired in series.

The multiple inverter approach not only reduces the switching

requirements for the active switches but also the PIV ratings required

for the output rectifiers. Another important design tradeoff involves

rectifier efficiency versus output transformer size and, hence,

efficiency. A smaller output transformer can be fabricated with

bridge rectification since the number of secondary turns required

for the centertap circuit is halved.

There are numerous hybrid rectification design approaches that can

be implemented in addition to the standard circuits shown in Fig. 150.

Output control cr regulation, for example, can be coupled with

rectification by replacing the diodes with either transistors or SCRs.

In many applications, the voltage or current requirements excised

the maximum ratings of available diodes. In thise applications,

series-parallel diode arrangements must be provided. Series-parallel

schemes have the disadvantage of requiring dissipative networks for

equal current or voltage division across the diodes. This is

especially critical during transient or switching periods. In high

voltage applications compensation can be minimized by using a series

of silicon avalanche diodes. Voltage division for these diodes can

be accomplished by shunting each diode with a capacitor only. These

diodes recover if the PIV ratit;g is exceeded during transient conditions.
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The polyphase rectifier circuit for a delta-connected transformer

secondary shown in Fig. 150(c) results in a lower ripple voltage and

& higher ripple frequency that is obtained with the single-phase

circuits. Like the bridge circuit, the polyphase tell wave rectifier
circuits can be wired in bertes without inverter synchronization.

3.1.4 POWER AND VOLTAGE CONTROL

Analog or on-off control of the voltage or power to the thruster can
be accomplished by:

Input power conditioning control elements

Internal power conditioning (inverter) control

Output power conditioning control elements

Input or output ac control can be provided with saturable reactors,

magnetic amplifiers, or SCRs. Transistor circuits provide input and

output do control. Device choice along with the relative system

position is primarily dependent upon efficiency considerations.

The basic electrical schematic for the magnetic devices are illustrated

in Fig. 151. By virtue of the controllable impedance offered by

the magnetic device, the output power can be controlled. This involves

primarily control of the ct%unutation angle by externally controlling

the volt-seconds required for the device to saturate. Until saturation

the device exhibits essentially an infinite impedance. After saturation,

a short circuit is essentially provided.

The simple saturable reactor circuit, of which there are many variations,

has been used for many years in a wide number of applications. It

offers a rugged design approach, high degree of linearity, and tolerance

to a wide range of environmental conditions. Cate control of the
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(a) SATURABLE REACTOR

r► "

(b' MAGNETIC AMPLIFIER

Figure 151. Magnetic Control Circuits
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alternating input power is a direct function of the control winding

power; output power increases with an increase in control power. The

power gain in a saturable reactor is limited to a range from 10 to 100.

This res.ilts in relatively low circuit efficiency which limits the

application of saturable reactors to primarily high temperature and

low voltage circuits in space power systems.

The magnetic amplifier, or magamp, is differentiated from the saturable

reactor by the addition of rectifiers which prevents domAgnetization

of the core by the alternating input voltage. With the rectifiers

and square-loop core material, the magamp can provide gain and

efficiency characteristics that are considerably higher than the

saturable reactor characteristics in most app l ications. Low voltage

applications are the exception due to the diode losses. The control

winding current is inversely related to the output gate power in a

magamp; increases in control current increase the volt-seconds

required for core saturation.

Silicon controlled rer-cifiers, life the magnetic devices, also control

power and voltage by ::trolling the commutation angle. The application

of these devices, however, can result in erratic operation due to

the high susceptibility of turnon characteristics to transients.

3.1.4.1 Input and Output Con t rol

In applications where turboalternator voltages are stepped tip to meet

the engine requirements, voltage or power control with a magnetic amplifier

on the power transformer secondary would be preferred. For stepdown

applications that involve only one supply per power transformer,

primary control could be more efficient than secondary control. The
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arc supply for the cesium electron-bombardment thruster is the

principal example of a primary control application. In supplies that

require analog control or regulation, on-off control as well as

current-limiting can be provided with the same control element. In

supplies that only require on-off control and current-limiting,

control provided by a magamp could be more advantageous than the

series combination of a current-limiting choke and contactor. This

approach is recommended for the ion engine high voltage supplies,

for example, since the magamp diodes have been provided by the

rectification requirements.

In the case of a do powerplant, control of the inverter output voltage

can be provided by controlling the inverter input voltage. Series

and shunt transistor regulators as well as the switching types can

be employed for input voltage control. These control techniques, while

being well known and reliable, are not especially recommended for

electric propulsion power conditioning applications due to efficiency

considerations. They are used primarily in low power, high stepup

voltage applications where secondary contro,. cannot be provided

effectively due to insulation requirements. Control of the thruster

power or voltage can also be provided in the inverter output circuit

using the same techniques employed with the turboalternator powerplant.

In single-phase push-pull SCR and selfexcited transistor inverters,

voltage or power control in the output circuits is essential.

3.1.4.2 Internal Inverter Control

Nondissipative control of the inverter output can be provided by phase-

shifting or pulsewidth modulating lowlevel inverter drive signals.

Driven push-pull and bridge transistor inverters use the pulsewidth

modulation techniques. Output control in the SCR bridge inverter can

be provided by pulsewidth modulating or phase-shifting one pair of
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drive signals. On-off control can be provided by gating the drive

signals.

Modulation or the phase-shifting of drive signals can be accomplished

in a number of ways.	 The reference oscillator or multivibrator is the

first and common stage to all design approaches. 	 For pulsewidth

modulated drive signals, the multivibrator output can be coupled to

a voltage-controlled monostable multivibrator. 	 The output of the

multivibrator in turn is coupled to the drive amplifiers for the power

stage of the inverter.	 The duty cycle of the multivibrator is controlled ^+

by the output voltage of a differential amplifier that compares the

inverter output voltage with a signal voltage. 	 In applications that -

require phase-shifting between pairs of drive signals, one pair of -R

drive signals would be coupled directly from the multivibrator to the

drive amplifier.	 The other pair of drive signals are obtained from

the same multivibrator but are phase-delayed prior to drive-amplifier

coupling.	 A magnetic amplifier can be used for the phase delay by

controlling the bias current which in turn would be controllee by a

differential	 amplifier.

3.1.5	 FILTERING

Filtering is an important and integral part of the design of almost

all power conditioning equipment. The design of this function, however,

is frequently neglected until the overall system design approach for

the power conditioning electronics, particularly the inversion and

regulation schemes and, hence, the critical active components, have

been selected. With the advent of extremely large power conditioning

systems for electric propulsion it is imperative that filter design

tradeoffs be made with the various inversion and regulation design8
schemes in the initial system and circuit design phases. It is also

extremely important that source and load characteristics or requirements

relative to filtering be accurately defined and that unnecessary

5400-Final	 3-50	 a

Volume I

^'^',°'*p^
pk
	^....	

fx 	 ^^'r.4 { r te ^	 ^	 "^^	 r

^ ,^	
#r^z ,t	

^	 f#,	 '+ • i^, r	 "G	 ^.	
^^. - ^{ s...E^ ,_?^i^ilrixllYi^, #	 ._	 ^	 -r,^

^dt.

4;'



t

requirements not be imposed for the sake of uncertainty. In addition

to the always inherent system design considerations of minimizing the

specific mass and maximizing the efficiency, there are other factors
4

that must be examined closely which are especially relative to filtering

requirements when optimizing the overall system. These include

voliime, temperature, and electrical constraints.

The filter requirements for power conditioning equipment can be

classified into three general areas. These areas are:

Input filtering (energy storage)

Output filtering

Suppression of radio frequency interference

3.1.5.1 Input Filtering

The input filter interface for do-ac inversion or do-dc conversion

i,

equipment, when required, usually consists of a capacitor shunted

across the input power terminals. A choke input L-C filter is also

used where additional filtering over that provided by only a

capacitor is required.

a	 ,
^• a

1

The input filter may perform one or several functions as the interface

between the power source and the power conditioning equipment. These

functions include energy storage, stiffening source characteristics

in the case of a "soft" source, and the reduction of ripple and switching

spikes on the bus bar.

Filter functional requirements, the design approach, and the electrical

characteristic requirements of the components (L and C) are primarily

dependent on:

Overall power conditioning system design approach

Power source or power conversion equipment characteristics
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Dc-ac inversion scheme

Regulation scheme

Load requirements and characteristics

Switching frequency

Active power conditioning component characteristics

ri

Since the design of an optimum power conditioning system is a result

of many design approach iterations of the different power conditioning

functions required, it is difficult to analyze the total effect of

each of the previous factors on filtering requirements. Optimizing

any single power conditioning function does not necessarily result in

optimization of the system. The general trends in filtering requirements

and penalties as a function of each of these factors can be identified

for both circuit and system design tradeoff studies.

The switching characteristics of an impulse-cmanutar_ed inverter, for

example, requires an energy pulse for commutation. Thim energy is

eventually trapped in the commutating inductor aad can be either

dissipated in the inverter or returned to the source. If the source

and transmission line impedances are negligible and the source is able

to receive electrical energy as well as supply it, the stored energy

would be delivered back to the source. These characteristics are not

available in applicable electric propulsion powerplant systems. For

high efficiency, an input filter (energy storage capacitor) is required

between the powerplant and the power conditioning inverter. To minimize

any effects of transmission line inductance on inverter switching

characteristics, it is imperative that the filter capacitor by physically

located at the inverter input terminals. These requirements result in

thermal limi'-ations on the application of the inverter. Presently

available capacitors, especially energy storage types, are limited to

1250C operation and usually require derating above 85 0C. The size of

the filter capacitor for the impulse-commutated inverter is dep.ndent (,rn:
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Load power factor (e.g. $ feedback rectifiers allow energy
that is stored in a capacitive or an inductive load to be
fed back to the filter circuit rather than dissipated in the
circuit)

The load power requirements, controlled rectifier switching
times, and energy trapped in commutating inductor

Limitations on rise in source voltage after commutation

Capacitor ripple current limitations

Increases in any of these factors will increase the size of the filter

capacitor. Since the loads for ion engines are primarily resistive,

the power factor consideration can be eliminated. There is always some

leakage inductance in the power transformer, however, which is also

another energy storage consideration for the filter. One of the most

important considerations that involves the size of the filter capacitor

is the variation of trapped energy in the commutating inductor with

load variations from the initial design point. The maximum value of

trapped energy in the commutating inductor occurs under no-load conditions.

Due to the relatively slow response of an ion engine and the no-load

modes that can occur during its operation, it is important that the

input filter capacitor be sized according to the no-load trapped

energy in the commutating inductor.

In other controlled rectifier and transistor inverter design approaches,

an input filter capacitor would be used primarily to filter out the

ripply: on the transmission line resulting from inverter commutation.

Where fast switching frequencies are employed, an input filter capacitor

might be needed to minimize the effect of transmission line inductance

or power source characteristics on the inverter switching characteristics.
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From the standpoint of weight and power loss conside r iti onn a-.e of
input filter chokes or L-C fi'ters is usually avoid . jtc 	 is a1r:►

the adverse effect of input inductance on switching characteri,;tics

that must be considered as mentioned previously for the r;tnsm1vsiou

line. To meet filtering requirements not met by a shuLLt caNaLitor, or

to limit supply current during commutation, there are -omu 61:uatinns

where an input choke is necessary. The parallel -commutated c(,nLro'led

rectifier inverter is an example where current - limiting, f- needed c1 ie

to short-circuit conditions during commutatioiL. C%. xrent- limiti11g Arty

also be necessary due to load or output filter capacitance. For t e

ion engine, the load effects can be neglected since the powe r facl.,r
is nearly equal to one. The effect of the output filter, ebpeciaily.

a simple shunt capacitor or pi network filter, cannot be neglected In nn

analysis of input current-limiting requirements. Increating the

capacitance of these output filters to meet load filtering requirement:,

results in increased capacitor charging currents after commutation,

Exi;e.,sively high charging current requirements can result in active
switch degradation or even failure without some type of current-limiting.

Although this condition is usually avoided in output filter design,

the magnitude of charging currents relative to active switch ratings

should be checked for compatibility and current-limiting requirements.

Voltage regulation employing the high efficiency pulsewJ.dth modulation

techniques is an application where the choke of an L-C filter could be

required for filtering rather than current-limiting.

3.1.5.2 Outpiit Filtering

There are generally two classes of output filtering requirements involved

with power conditioning equipment. The first involves wave shaping;

where sinusoidal voltages are required. Since ion thrusters do clot

require a sinusoidal voltage, this class of filtering can be ne,. , I ec Led

Phe second class of filtering involves lowering Lhe ripple fact o r aftei
the inverter output has been rectified, i'or ion t.hrustors, thi : i .nvo l vvs

primarily the V+ and V- supplies. (Other requirements, ft,r ex.4 plc, MILL
include the electromagnet and arc suppl yob for hho electron-boriLardmeii!
thrustor.)
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Neglecting half-wave rectification, the ripple that is present

on the output voltage after rectification and before any filtering

or high efficiency regulation scheme is added can be attributed to

one or several sources. These include: (1) unbalanced secondary

winding on the output power transformer, (2) unbalance in the

rectifier circuit, (3) finite switching times inherent in active

components required for commutation and rectification, and (4)

the effect of stray or circuit inductance and capacitance on

switching characteristics. The first, second and fourth sources

of ripple can usually be reduced during do-dc converter design

to a point where they will have a negligible effect relative to

the ripple produced by the turnon and turnoff times of the active

components. This primary source of output ripple produces the

input transmission line ripple as discussed previously. Figure

152 compares the output voltage waveforms, before and after

rectification, for active components having both ideal switching

characteristics (t r	t  n 0) and finite switching characteristics

(tr	 Tl; t f - 
­
2 ). The filter has the function, then, of

transforming (b) to as close to (a) as is required by the load.

For the ion engine V+ and V- supplies the ripple should be less

than 3 percent.

There are four basic output filter design approaches that can be

used for filtering the rectified voltage shown in Fig. 152(b).

These are:

a. R-C filter

b . L-C filter

C . Pi filter

d. Cascaded L-section filter

These filters are illustrated in Fig. 153 with fullwave rectification.

The pi and cascaded L-section filters are extensions of the L-C
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Figure 153. Power Conditioning Output Filter Networks I
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filter and are used where the ripple requirements are too severe

for the single L-section filter * for the 3 percent ion engine

requirements, the R-C or L•C filter should provide sufficient

attenuation for most power conditioning design approactles,

The use of either filter is primarily dependent on regulation

techniques and active component switching times.

With an R-C filter, both the charging and the discharging paths for

the capacitor oust be examined. Assuming that the charging

currents are not high enough to damage the active components

and the charging time is short compared to 1 /2t, where the

switching frequency f + 1/t, the output voltage using R-C filtering

is illustrated in Fig. 154(a). The value of C required to most

the R-C filtering requirements is proportional to the switching

times t  and t  and inversely proportional to R. In the

charging circuit there will, be some series impedance (R s ). As

%/RL decreases, or w RLC Increases, the peak charging current

increases. For a fixed Rs /RL there will be a maximum w RLC

then that cannot be exceeded without damaging the active components.

As a first approximation, the charging currents can be calculated

with the impedance of the capacitor at the desired switching

frequency. If the charging currents resulting from the capacitance

calculated to meet filtering requirements exceeds the active

component ratings, additional series impedance must be added to

the capacitor charging circuit. This can be accomplished by

replacing the R-C filter with the L-C type. In addition to

limiting tt6 charging current, the L-C filter will improve the

regulation and ripple factor characteristics of the R-C filter

with a smaller value of C. The disadvantaass associated with

the L-C filter are the added voltage drops and power losses in

the inductor.
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(o) Unmodulated do-dc Converter Output With R -C Filtering
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do

ER

0

No Filtering

E dc	 R— — —	 _	 E

R-C Filtering
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do

L-C Filtering

(b) Pulse Width Modulated do --dc Converter Output With R-C And L-C
Filtering

Figure 154. Vo1Cafe Waveforms, Fi1lered and Lin fi1tered
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When pulsewidth modulation techniques are employed for high

efficiency regulation an L-C filter must be used. Figure 154(b)

illustrates various pulsewidth modulated waveforms after

rectification. The purpose of utilizing pulsewidth modulation

techniques in either the inverter or the rectifier circuits is

to maintain efficiently a constant do output voltage with changes

in input voltage, load, or other circuit parameters. With Em 	-
changes and thus cycle changes it is obvious that the R-C filter

cannot perform the required filtering. In addition to requiring

an excessively large capacitor, the capacitor in the R-C filter

always charges to Em.	 I

In the L-C filter, the capacitor performs the function of shunting

alternating components of current past the load.	 To do this

the capacitor reactance is usually smaller than the load impedance

of C	 1/WRL.	 To reduce the ripple shunted by the capacitor,

the reactance of the capacitor should also be much lower than

the reactance of the inductor or C >> 1 /A.	 As the switching
frequency increases or the load decreases C and L will decrease.

Decreasing the duty cycle or the difference between E m and Edc
will also decrease the size of these components. 	 Since a positive

voltage transient will appear at the 	 output of the regulator

when the load current is suddenly decreased, and will be maximum

when the load current is switched from full to no-load, the L-C

ratio should be minimized within practical limits.	 The maximum

output voltage can be calculated with the following expression:

2 1/22	 L I,
Vo (max) s Vo + 

C
	

k
b

This neglects any losses in the output filter.
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Even though the inverter and regulator design approaches affect

both the input and the output filter design and resulting component

values considerably, an even greater effect can be realized by

the overall system design approoch. Utilizing a modularized do-dc

converter approach, for example, with eight modules delivering

the required V+ power, the switching ripple without filtering

could be theoretically 12.5 percent of the resulting output voltage.

This would reduce not only the output filter requirements but

the input filter requirements of the single inverter. The 12.5

percent figure assumes that none of the eight modules is commutating

at the same time. For realistic filtering requirements the

probability of two or more modules switching at the same time must

be determined.
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3.2	 COIJVERTERS r

In sta ti c converter design, a fundamenta l t i adeof f .-xi:, rr	 on

weight and efficiency.	 For example, as the	 frcq-!(,t%— is increased

the weight of the converter may be decreaset, natil,Y bvcau^,e ."

the	 redu c tion in weight of	 the magnetic	 and	 iilLurinf, coi , pont- ► .r^..

However, as the switching frequency is increased, 	 Lite a	 ti.cie nvy

of the circuit is reduced because of increased 	 transi< st	 r swi t	 hii;,.,,

losses.	 In the frequency range of inters t her(-,	 ti ►e t i ans f (. rme r

losses actually decreased as the switching frequency was itcreased,

but the increasing transistor switching losses more titan can-:el

this effect.	 The transformer losses decrease because of reduced

copper losses and because at higher switching frequencies the

transformer may be operated at a low flux density without the

penalty of a large number of primaryP	 Y	 8	 P	 Y turns.

Transistor losses are a function of switching time and it is

therefore desirable	 to use as fast a switching device as is possible.

However, as the required output power level is increased,	 large a

power transistors must be used and these are Lypicall ,y characterized

by inherently slower switching speeds than those (-f t,,e lower power

class.	 The result is that conventional,	 large Power converters are

usually operate at low switching frequencies and have relatively

high efficien, . ies, but are very bulky and extrumely heavy.

The modular approach i 1 tilizes extremely	 Cast	 swi r_i ► ing transistors

in the	 light to medium power	 level,	 together wit,	 highly efficie ►ut

magnetic materials, 	 to produce extremelylitilrw^	 ,;t	 highly

efficient, and highly reliable high freq ►► rnc.,	 power ( onvertPr modules.
1

These modules can then be used as "building	 to assembly
larger power systems	 that are much small e r, w i , !	 ,g	 P	 y	 e ^,h	 c nsidc cahl}

less, and are as efficient as a conventional power 	 onverter.
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Before the design of the high frequency converters could be

initiated, considerable attention was given to the following areas:

a. Second breakdown effects

b. Storage time effects

C,	 Fast switching power transistors

d. Fast reco-very rectifiers

e. Transformer designs

f. Circuit selection

3.2.1 SECOND-BREAKDOWN EFFECTS

Second breakdown is a factor that must be conRidered in the design

of high speed, high power converters. In g aral, second breakdown

is a condition in a junction transistor that causes the output

impedance to change instantaneously from a large positive value to a

negative value and then a final small positive value. In some respects,

second breakdown appears similar to a normal avalanche breakdown,

either collector-to-base (BV 
CBO) 

or collector-to-emitter VCE(SUS)' There

are however, two major differences: (1) the second breakdown final

limiting voltage is always in the 5 to 30 volt range, while 
BVCBO 

and

VCE(SUS) usually have much higher limiting values, and (2) second

breakdown is energy dependent while 
BVCBO 

and 
VCE(SUS) 

are independent

of energy to a first order approximation.

Physically, second breakdown is a local thermal runaway effect induced

by severe current concentrations. These concentrations can result

from biasing conditions, excessive transverse base fields and defects

in the base regic^i or junctions or both. It can be found to some

degree in all junction transistors. In many transistors, primarily

small signal and low frequency power types, the maximum steady

state dissipation rating limits the voltage-current product to

something less than critical value necessary to produce second

breakdown. Results show that transistors with higher frequency
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behavior is attributed to a narrower, active base spacing, whichP	 8,

increases the severity of transverse base fields, amplifies biasing

effects and raises the defect level relative to the greater tolerances

required.

If the on time of the transistor is decreased or the frequency of

operation is increased, the critical voltage-current product

necessary to produce second breakdown becomes greater.	 This condition

results from the fact that the rate of localized heating is governed

not only by current concentration, but by the thermal time constant

of the semiconductor material; 	 therefore high frequency, high power

transistors can safely handle large power dissipation without

incurring second breakdown in high speed switching circuits.

High frequency, high power transistors are rated for second breakdown

in two wayb; (1) a safe operating range curve for forward-bias

drive conditions, with time as the running variable, and (2) a safe

operating range curve showing second breakdown energy as a function

of reverse-bias voltage and inductances. Forward bias second break-

down can be analyzed as follows: During the turnon time the transistor

is subjected to high dissipation in the active region. A plot of

the experimentally determined load line superimposed on the transistor

safe operating region curve for the appropriate time duration,

tON , will determine whether the circuit is operating in the safe

operating region for second breakdown.	 I

3.2.2 STORAGE TIME EFFECTS

As operating frequency increases, limiting factors such as power

dissipation, core loss, frequency response and storage effect

become more severe on converter operation. At high frequencies, the

most severe limiting factor is the storage time effect. Figure 155

shows a typical two transformer converter circuit. During the storage

period, while the transistor on one side of the push-pri l circuit

begins to conduct, the transistor on the other side remains on; thus
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the two simultaneous collector currents cause magnetic fluxes that

oppose each other. Therefore high current spikes are produced.

The collector current is determined to a first approximation by the

base current times beta. The collector-to-emitter voltage; (V CE ) is

at its maximum at this time, therefore transistor dissipation is

extremely high until the stored charge is cleered in the opposite

transistor. Since the storage time is directly proportional to overdrive,

these losses are greater at lighter loads than at rated loads of the

converter.	 I

The high collector currents also cause excessive voltage spikes at

switchover which could destroy the transistors. The voltage spikes

are a result of the stored energy from the inductance of the circuit

leads and leakage flux of the transformer.

It is imperative that the transistors of high	 frequency converters

should have low thermal resistances and fast switching characteristics.

J

The converter transformer should have low core lass and low leakage

inductance.

Converter circuits that receive their drive or are synchronized from

a separate dr'ver or inverter stage are also subject to the same

problems.	 Figure 156 shows a converter circuit which provides

compensation for storage time. 	 The circuit prevents forward bias from

being applied to one transistor while the other transistor is one.

The	 polarities shown exist after base drive has reversed but refore

storage time has allowed the on transistor to turn off. 	 Reverse

bias is applied to Q1 bv^	 forward bias is shunted from Q2 through CR2,

winding 1-2 and the collector-emitter circuit of Q1 to the return

of the drive winding.	 When Q1 starts turning off and the emitter-

collector voltage exceeds the bias winding voltage, 	 ► onward bias is
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I
applied to Q2 and the next cycle of operation begins. The bias

windings are necessary to overcome the forward drop of the dicjdo4 ,

The converter circuit that was selected for the ,Fars Orbit( r program

is shown in Fig. 157. This circuit was selected for several ro.isons.

First because of its simplicity and secondly beLauso- tht- ,onvec ter

circuit compensates for storage time without any rw d, ti. , ar ions.

Transformer T1 is a saturating type which determin pa tho irequency

of operation. T2 is the output transformer and doe s ioL saturate.

When T1 saturates, base drive for both transistors tails tt) zero until

the "on" transistor starts turning off. Stored energv in the yore is

then released which forward biases the oppost.re transistor, thus

starting the next half ryc le of operation.	 I
The methods discussed automatically compensate for storngr time

regardless of load or environmental conditions. There are other means

to accomplish the same end, but most of them do not adjust- for

changing load or temperature.

3.2.3 TRANSISTORS CONSIDERATIONS 	 I
In order to design efficient high frequency converters, fast switching

power transistors are necessary. A survey of state-of-the-art power

switching transistors was made early in the program. During; the evalu-

ation phase, the several manufacturers were contacted. The results of

the examination are given in Table XXIV. 	 Here the parameters which

are essential for an initial selection are listed - current and voltage

ratings and switching times.

l
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The maximum collector current, the dissipation, and the heat sink

thermal resistance of the power transistors can be approximated on

the basis of the following conditions:

The maximum collector current is given approximately by

I a	 POUT/n

C	
VS VC(SAT)

where

VS is the supply voltage

VCE(SAT) is the collector-to-emitter saturation voltage

POUT is the output power

r is the desired efficiency of the output transformer

The transistor dissipation can be approximated as follows (base

dissipation was neglected here):

P	 T1 V	 I+ 2 I V + on
—= V-SC

D	 T	 CE(SAT) C	 CEX S	 T	 3

where

VS is the supply voltage

VCE(SAT) is the transistor saturation voltage

IC is the collector current

ICEX is the collector current with the base reverse-biased

t	 is the transistor turn on time
on

t 
	 is the transistor fall time

T1 is 1/2	 T - (ton + tf)

T is the period

The equation above is used only as a guide for the first stages of

design; the exact dissipation is determined experimentally.

I
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3.2.4 RECTIFIER CONSIDERATIONS

The rectifier circuits of the high frequency converters were an

important design consideration. At high switching frequencies fast

recovery silicon rectifiers are necessary if the converter efficiency

is to be optimized.

At low frequencies, the losses normally associated with rectifier

diodes are due to the forward voltage drop during the conduction

cycle and to the reset current pulse leakage current. Normally, the

largest percentage of the losses are attributed to the forward

conduction characteristics.

Diodes with recovery times in the 10 to 20 microsecond region may

have excellent loss characteristics up to 1 kiiz. At the higher frequencies,

the rectification efficiency is increasingly impaired and heat losses

increase as a direct result of the increased recovery losses. To

minimize the rectifier recovery losses, fast recovery rectifiers with

recovery times of a few hundred nanoseconds are required in the output

rectifier circuit of the converter. Several current fast recovery

diodes are listed in Table XXV.

ib

I

i

7
l

3.2.5 'TRANSFORMER CONSIDERATIONS

In the design of efficient high frequency converters, the transformer

design is a very important consideration. Losses that could perhaps

be neglected at lower frequencies become predominant at high frequencies.

Practical transformers can be designed quite efficiently using Hi-Mu-80

and Supermalloy magnetic materials at switching frequencies up to lOkHz.
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TABLE XXV
m

SILICON RECTIFIER DIODES

FAST RECOVERY TYPES

Assumed Operating Conditions - 250 Volts - 1A

DIODE TYPE PIV MAX CURRENT FORWARD DROP RECOVERY TIME
(1A) (Max)

Unitrode UTR 52 500 2A (lA at 1000C) 1.1 400 naec

Unitr .—.I e UTR 3350 500 3A (1.5A at 1000C) 1.0 350 nsec

Motorola IN4937 600 lA (1000C) 1.2 0.2 µsec

MR836 600 3A (1000C) 1.1 0.2 µsec

MR846 600 3A (1000C) 1.4 1	 µsec

West. IN3903 400_ 20A 0.7 0.2 µsec

IN5007 600 lA (400C) 1.1 0.120 µsec

IN3883 400 6A (140*0 0.95 0.200 µsec

T.I. IN3883 400 8A (1400C) 1.0 0.200 µsec

IN3913 400 30A (1000C) 1.4 (30A) 0.200 µsec



1
These materials exhibit reasonable losses in this frequency range.

The optimum tape thickness for this frequency range is 112 mil, but

the stacking factor is quite poor in this size. An additional factor

is the fact that most magnetic material manufacturers will not guarantee

the characteristics of core materials of 1/2 mil or less. Witil

operating frequencies up to 10 kHz, 1 mil tape wound cores may he

used very effectively and efficiently.

Some ferrite cores offer certain advantages over tape wound cores in

the frequency range above 50 kHz. The major disadvantages of ferrite

core materials are low curie temperature, low maximum flux density and

considerable variance of maximum flux density with temperature. The

advantages that this core material offers are the many different core

configurations that are available, their low cost, and above all they

exhibit low losses at frequencies extending into the RF spectrum.

At frequencies beyond 10 kHz the skin effect starts to become

significant. For example, at 50 kHz a transformer can have more skin

effect wire loss than the measured wire loss. Since Litz wire is not

available in the large wire sizes that are required for power conversion,

the alternative is to use parallel windings of smaller diameter wire

which equal the cross-sectional area of the desired wire size.

The problems of leakage inductance and interwinding capacitance are

also factors that affect the design of the transformer. For low

voltage windings, the scarcity of turns on the transformer and leakage

inductange can cause very poor coupling between windings and this can

result in poor load regulation. Higher voltage windings are hindered

by interwinding capacitance which causes increased losses in both the

transformer and in the power transistors. The combination of both

can cause spurious oscillations that can appreciably disrupt circuit

operation.
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The core of a transformer is selected on the basis of power handling

requirements, frequency, and. temperature of operation. Temperature

is an important consideration in the selection of a ferrite core

because the curie temperature for many ferrites is quite low.

Magnetization is zero above the curie temperature. Another important

consideration in the selection of core material is the desired

transformer efficiency. The efficiency can be used to obtain an

approximation for the magnetic power to be dissipated. The necessary

volume of core material can then be estimated on the basis of the

value of magnetic power and the core loss factor for the selected

material at the operating frequency. The core loss factor is

determined from the core-material data furnished by the manufacturer.

In the design of the transformer, the curie temperature must be

considered together with the variation of flux-density as a function

of temperature and the desired operating valua_ of flux density, B.

For the base-drive transformer, a temperature rise results in a

decrease in flux density and an ultimate increase in operating

frequency. The ambient temperature and the maximum operating core

temperature are used to c( ,mpute the maximum permissible temperature

rise,	 A second estimate of the volume of core material must then

be made on the basis of the magnetic power to be dissipated and the

temperature rises according to 3.2 mW/cm 3oC. This volume should be

compared with the volume selected above on the basis of core losses.

The final volume should satisfy both requirements.

The output power transformer is designed to satisfy the following

familiar equation:

VS x 108

NP	 4 FAB
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where

l

l
l'
l
l
l
l
l

I
I

r

V S is the source voltage in . , o l t s

F	 is the operating frequer.( 	 it c111+
7

A	 is the transformer core area in cm`

B	 is the flux density in gausses

In the design of the output transformer for high frequency converters,

excessive primary turns should be avoided to minimize power dissipation,

to insure that the transformer can be fabricated using the proper wire

size and the relatively small cores that are usually employed, and to

insure that the leakage inductance effects are minimized. Good balance

and close coupling between primaries can be achieved by means of

bifilar windings. The flux density for the output transformer is

determined by the usual compromise: The selected wire size on the

basis of a 50 percent duty cycle must be large enough so that power

dissipation will be low. If the wire size is inadequate, dissipation

will be appreciable and a high transformer core temperature will

result.

The design of the base-drive transformer is quite different from that

o^ the output transformer. When the driver transformer saturates,

a sharp drop in the applied primary voltage must be produced. The

magnetizing current must then increase from a small value to one that

is comparable to the primary current. The following equation may

be used to arrive at the number of primary turns because of the

saturation requirement:

1.26 NPIm

H^	 1

r
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where

HS is the value of magnetizing field strength at saturation in
in oersteds

NP is the number of primary turns

I 
	 is the value of magnetizing current at saturation in amperes

1	 is the length of magnetic path in centimeters

The equation presented above together with the basic transformer

equation must both be satisfied for the proper design of the base

drive transformer.

3.2.6 CIRCUIT SELECTION

The circuit suitable for high frequency operation was selected for

several reasons. The circuit is shown in Fig. 158. The paragraphs

that follow will describe its operation and point out reasons for

its selection.

i
In the circuit, a saturable base-drive transformer T1 controls the

converter switching operation at base-circuit power levels, and a

linear output transformer couples the output to the load. Because

the core material of the output transformer, T2, isn't allowed to

saturate, the peak collector currents of the transistor in the

inverter are determined principally by the value of the load impedance.

This feature makes possible high circuit efficiency. Operation of tie

circuit is as follows;

Because of a small inherent unbalance in the circuit, one of the

transistors, say Q1, initially conducts more heavily than the other.

The resulting increase in the voltage across the primary of the output

transformer T2 is applied to the primary of the base-drive transformer

T1 in series with the feedback resistor, RFB . The secondary windings

of transformers T1 are connected so that transistor Q2 is reversed

biased and driven to cutoff while transistor Q1 is driven into

saturation. As transformer T1 saturates, the rapidly increasing
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primary current causes a greater voltage drop across feed-back

resistorRFB . This increase in voltage across RFB reduces the voltage

applied to the primary of transformer T1; thus the drive input and

ultimately the collector current of transistor Q1 are decreased.

The decrease in the collector current of transistor Q1 causes

a reversal of the polarities of the voltages across all the

transformer windings. Transistor Q1, therefore, is rapidly driven

to cutoff, and transistor Q2 is then allowed to conduct. The

inverter operates in this state until the saturation of transformer

T1 in the opposite direction is reached. The circuit then switches

to the initial state and the cycle is repeated at a frequency determined

by the design of transformer T1 and the value of feedback resistor

RFB'

The external base resistors, RB , reduce the effect of the transistor

base-to—emitter voltage, V BE , on the operation of the circuit. 	 These

stabilizing resistors are needed because V BE varies among individual

transistors with temperature and operating time.

The collector current in each transistor must rise to a value equal
+

to the load current plus the magnetization current of transformers

T1 and T2 and the feedback current to produce the required drive.

Because the output transformer is not allowed to saturate, the

magnetization current is only a small fraction of the load current.

In the switching operation, transistor Q1 will continue to conduct

after the drive is removed because of the excessive charge that was

stored in the base during saturation.	 However, transistor Q2 will

not conduct until the core of transformer T1 has been reverse-magnetized

and current has been injected into the base of transistor Q2.	 In

the single transformer converter, both transistors conduct heavily

during the switching. 	 In the two-transformer circuit, neither

transistor conducts during the switching time and thus very low power

supply impedance is not necessary for fast switching.
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The energy stored in the output transformer by its magnetizing

current is sufficient to assure a smooth change -over from one

transistor to the other with no possibility of the converter

oscillations stopping.

Operation of the high frequency converter is relatively insensitive

to small system variations that may result in a slight over - loading

of the circuit. Under such conditions, ^he base power losses will

increase but these losses are so small that a slight increase in

them will not noticei.bly affect circuit performance. The amount of

energy stored in the output transformer will also be increased.

Although this increase will result in a greater transient dissipation,

the converter switching will still be smooth. Because the output

transformer is not saturated, the collector currents are always

determined by the circuit load impedance and not by small system

variations.

A practical design of a high frequency converter should include a

means of initially biasing the transistors into conduction to

assure that the circuit will be started reliably. Such biasing

networks can be readily added to the inverter, and are much more

dependable than just assuming that the circuit unbalance will

immediately shock the converter into oscillation.

3.2.7 OVERLOAD AND SHORT CIRCUIT PROTECTION

Ion engines are subject to arcing quite frequently and, if adequate

protection is not provided, the power conditioning subsystem can

easily be destroyed. It was for this reason that the basic module

was provided with overload and short circuit protection. In the

event of an overload or short circuit condition it was desirable to



shut down the oscillator circuit for as long as the overload or arc

persisted. Upon removal of the overload or short circuit, the converter

circuit would automatically return to its normal mode of operation.

The current overloads are sensed by current transformer T3. The output

voltage from the current transformer is proportional to the current

flowing in the primary winding. This output voltage is rectified by

the full-wave bridge circuit composed of CR5, CR6, CR7, and CR8.

Filtering of the output voltage is provided by capacitor C10. A

near constant impedance is provided by a resistor network composed of

R15 and R17. A portion of the rectified voltage is then used to

drive a level detector circuit (Schmitt trigger) composed of Q5 and

Q6. The output from the level detector circuit is then coupled

to an emitter following circuit (Q8), which in turn drives the

output transistor (Q7). The output stage of the overload circuit

provides sufficient drive to saturate transistors Q3 and Q4 which

serve to short out the base drive to the power switching transistors

Q1 and Q2. When the base drive to the oscillator transistors is

removed, the oscillator ceases to function for a prescribed period

of time (the off time is determined by the amount of overload).

After the predetermined off time, the oscillator circuit attempts to

start again and if the overload or short circuit is still present the

oscillator circuit shuts down again. The converter circuit will

cycle on and off until the overload or short circuit is removed from

the output terminals. Upon removal of the overload or short circuit,

the converter will automatically return to its normal mode of

operation.
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3.3 50 kHz CONVERTER DESK

To illustrate specific designs of high frequency modul;jr cotiverters,

the following material is abstracted from the resttl t - of a previous

program (NAS3-7926). In that program several configurations and operaL-

ing frequencies were examined. 	 The investigation of Lite 50 kHz, 100

watt design is reported here in detail.

Five converter circuits were designed, breadbo arcic(I rind tosted. Each

circuit utilized a different output transformer with it different volt/

turn ratio. The efficiency as a function of output power is shown in

Fig. 159. Variations in efficiency occurred below and above the 100

watt level. At the 100 watt level the efficiencies wort , almost the
same, approximately 89 percent.

The component weights for the ircuits breadboarded and tented are

listed below:

Circuit
	 Weight

No.	 rams

L
	

89.1

2
	

90.7.

3

4
	

100.4

5
	

96.5

Circuit No. 2, shown in Fig. 160, was selected as the representative

circuit at the 40 kHz switching frequency. This circuit was then sub-

jected to further performance tests.

Figure 161 shows the variation of ()utpui• Voltage as a function of

input voltage at constant power anti aL con,l ant load.
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Figure 162 shows the variation of uutpu, vo1 t :^;c as a function of
output power.

Figure 163 shows the change in efficiency of the 50 kl ►z module as a

function of temperature at 100 watts output.

Figure 164 shows the switching frequency variation as a functiun of

ambient temperatuxe for temperature variations from -50 0C Lc 11300C.

The table below shows a breakdown of the component weights for the 50

kHz module.

COMPONENT WEIGHT

Wc< igh t:
Significant Components	 (f,rams)

Output transformer	 40.20

Driver Transformer 	 2.75

Current Transformer	 2.85
Output Filter Capacitor	 12.85

Output Power Transistors ( 2)	 8.45

Basic DC-DC Converter Circuit

Total Components	 X3.0 (or 2.59 oz)

2 I.ete Module No. 1 Circuit with
Overoad and Short Circuit Protection

Total Components	 91.2 (or 3.21 oz)

The results of similar studies at other frequencies resulted in system

component weights of 131 grams at 10 kHz and 34 gr <-,mG aL 200 kHz and

efficiencies of 93 percent and 87 percent. Thr throe 100 watt con-

verters are shown in Figure 165.
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