815 research outputs found

    Cooperative Object Transport in Multi-robot Systems:A Review of the State-of-the-Art

    Get PDF
    In recent years, there has been a growing interest in designing multi-robot systems (hereafter MRSs) to provide cost effective, fault-tolerant and reliable solutions to a variety of automated applications. Here, we review recent advancements in MRSs specifically designed for cooperative object transport, which requires the members of MRSs to coordinate their actions to transport objects from a starting position to a final destination. To achieve cooperative object transport, a wide range of transport, coordination and control strategies have been proposed. Our goal is to provide a comprehensive summary for this relatively heterogeneous and fast-growing body of scientific literature. While distilling the information, we purposefully avoid using hierarchical dichotomies, which have been traditionally used in the field of MRSs. Instead, we employ a coarse-grain approach by classifying each study based on the transport strategy used; pushing-only, grasping and caging. We identify key design constraints that may be shared among these studies despite considerable differences in their design methods. In the end, we discuss several open challenges and possible directions for future work to improve the performance of the current MRSs. Overall, we hope to increase the visibility and accessibility of the excellent studies in the field and provide a framework that helps the reader to navigate through them more effectivelypublishersversionPeer reviewe

    Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies

    Get PDF
    Cooperative object transport in distributed multi-robot systems requires the coordination and synchronisation of pushing/pulling forces by a group of autonomous robots in order to transport items that cannot be transported by a single agent. The results of this study show that fairly robust and scalable collective transport strategies can be generated by robots equipped with a relatively simple sensory apparatus (i.e. no force sensors and no devices for direct communication). In the experiments described in this paper, homogeneous groups of physical e-puck robots are required to coordinate and synchronise their actions in order to transport a heavy rectangular cuboid object as far as possible from its starting position to an arbitrary direction. The robots are controlled by dynamic neural networks synthesised using evolutionary computation techniques. The best evolved controller demonstrates an effective group transport strategy that is robust to variability in the physical characteristics of the object (i.e. object mass and size of the longest object’s side) and scalable to different group sizes. To run these experiments, we designed, built, and mounted on the robots a new sensor that returns the agents’ displacement on a 2D plane. The study shows that the feedback generated by the robots’ sensors relative to the object’s movement is sufficient to allow the robots to coordinate their efforts and to sustain the transports for an extended period of time. By extensively analysing successful behavioural strategies, we illustrate the nature of the operational mechanisms underpinning the coordination and synchronisation of actions during group transport

    Design and analysis of proximate mechanisms for cooperative transport in real robots

    Get PDF
    This paper describes a set of experiments in which a homogeneous group of real e-puck robots is required to coordinate their actions in order to transport cuboid objects that are too heavy to be moved by single robots. The agents controllers are dynamic neural networks synthesised through evolutionary computation techniques. To run these experiments, we designed, built, and mounted on the robots a new sensor that returns the agent displacement on the x/y plane. In this object transport scenario, this sensor generates useful feedback on the consequences of the robot actions, helping the robots to perceive whether their pushing forces are aligned with the object movement. The results of our experiments indicated that the best evolved controller can effectively operate on real robots. The group transport strategies turned out to be robust and scalable to effectively operate in a variety of conditions in which we vary physical characteristics of the object and group cardinality. From a biological perspective, the results of this study indicate that the perception of the object movement could explain how natural organisms manage to coordinate their actions to transport heavy items

    Cooperative object transport with a swarm of e-puck robots: robustness and scalability of evolved collective strategies

    Get PDF
    Cooperative object transport in distributed multi-robot systems requires the coordination and synchronisation of pushing/pulling forces by a group of autonomous robots in order to transport items that cannot be transported by a single agent. The results of this study show that fairly robust and scalable collective transport strategies can be generated by robots equipped with a relatively simple sensory apparatus (i.e. no force sensors and no devices for direct communication). In the experiments described in this paper, homogeneous groups of physical e-puck robots are required to coordinate and synchronise their actions in order to transport a heavy rectangular cuboid object as far as possible from its starting position to an arbitrary direction. The robots are controlled by dynamic neural networks synthesised using evolutionary computation techniques. The best evolved controller demonstrates an effective group transport strategy that is robust to variability in the physical characteristics of the object (i.e. object mass and size of the longest object’s side) and scalable to different group sizes. To run these experiments, we designed, built, and mounted on the robots a new sensor that returns the agents’ displacement on a 2D plane. The study shows that the feedback generated by the robots’ sensors relative to the object’s movement is sufficient to allow the robots to coordinate their efforts and to sustain the transports for an extended period of time. By extensively analysing successful behavioural strategies, we illustrate the nature of the operational mechanisms underpinning the coordination and synchronisation of actions during group transport

    Scalable Control Strategies and a Customizable Swarm Robotic Platform for Boundary Coverage and Collective Transport Tasks

    Get PDF
    abstract: Swarms of low-cost, autonomous robots can potentially be used to collectively perform tasks over large domains and long time scales. The design of decentralized, scalable swarm control strategies will enable the development of robotic systems that can execute such tasks with a high degree of parallelism and redundancy, enabling effective operation even in the presence of unknown environmental factors and individual robot failures. Social insect colonies provide a rich source of inspiration for these types of control approaches, since they can perform complex collective tasks under a range of conditions. To validate swarm robotic control strategies, experimental testbeds with large numbers of robots are required; however, existing low-cost robots are specialized and can lack the necessary sensing, navigation, control, and manipulation capabilities. To address these challenges, this thesis presents a formal approach to designing biologically-inspired swarm control strategies for spatially-confined coverage and payload transport tasks, as well as a novel low-cost, customizable robotic platform for testing swarm control approaches. Stochastic control strategies are developed that provably allocate a swarm of robots around the boundaries of multiple regions of interest or payloads to be transported. These strategies account for spatially-dependent effects on the robots' physical distribution and are largely robust to environmental variations. In addition, a control approach based on reinforcement learning is presented for collective payload towing that accommodates robots with heterogeneous maximum speeds. For both types of collective transport tasks, rigorous approaches are developed to identify and translate observed group retrieval behaviors in Novomessor cockerelli ants to swarm robotic control strategies. These strategies can replicate features of ant transport and inherit its properties of robustness to different environments and to varying team compositions. The approaches incorporate dynamical models of the swarm that are amenable to analysis and control techniques, and therefore provide theoretical guarantees on the system's performance. Implementation of these strategies on robotic swarms offers a way for biologists to test hypotheses about the individual-level mechanisms that drive collective behaviors. Finally, this thesis describes Pheeno, a new swarm robotic platform with a three degree-of-freedom manipulator arm, and describes its use in validating a variety of swarm control strategies.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Abstractions, Analysis Techniques, and Synthesis of Scalable Control Strategies for Robot Swarms

    Get PDF
    Tasks that require parallelism, redundancy, and adaptation to dynamic, possibly hazardous environments can potentially be performed very efficiently and robustly by a swarm robotic system. Such a system would consist of hundreds or thousands of anonymous, resource-constrained robots that operate autonomously, with little to no direct human supervision. The massive parallelism of a swarm would allow it to perform effectively in the event of robot failures, and the simplicity of individual robots facilitates a low unit cost. Key challenges in the development of swarm robotic systems include the accurate prediction of swarm behavior and the design of robot controllers that can be proven to produce a desired macroscopic outcome. The controllers should be scalable, meaning that they ensure system operation regardless of the swarm size. This thesis presents a comprehensive approach to modeling a swarm robotic system, analyzing its performance, and synthesizing scalable control policies that cause the populations of different swarm elements to evolve in a specified way that obeys time and efficiency constraints. The control policies are decentralized, computed a priori, implementable on robots with limited sensing and communication capabilities, and have theoretical guarantees on performance. To facilitate this framework of abstraction and top-down controller synthesis, the swarm is designed to emulate a system of chemically reacting molecules. The majority of this work considers well-mixed systems when there are interaction-dependent task transitions, with some modeling and analysis extensions to spatially inhomogeneous systems. The methodology is applied to the design of a swarm task allocation approach that does not rely on inter-robot communication, a reconfigurable manufacturing system, and a cooperative transport strategy for groups of robots. The third application incorporates observations from a novel experimental study of the mechanics of cooperative retrieval in Aphaenogaster cockerelli ants. The correctness of the abstractions and the correspondence of the evolution of the controlled system to the target behavior are validated with computer simulations. The investigated applications form the building blocks for a versatile swarm system with integrated capabilities that have performance guarantees

    A swarm intelligence based approach to the mine detection problem

    Get PDF
    This research focuses on the application of swarm intelligence to the problem of mine detection. Swarm Intelligence concepts have captivated the interests of researchers mainly in collective robotics, optimization problems (traveling salesman problem (TSP), quadratic assignment problem, graph coloring etc.), and communication networks (routing) etc [1]. In the mine detection problem we are faced with sub problems such as searching for the mines over the minefield, defusing them effectively, and assuring that the field is clear of mines within the least possible time. In the problem, we assume that the mines can be diffused by the collective action of the robots for which a model based on ant colonies is given. In the first part of the project we study the ant colony system applied to the mine detection problem. The theoretical aspects such as the ant\u27s behavior (reaction of the ants to various circumstances that it faces), their motion over the minefield, and their process of defusing the mines are investigated. In the second section we highlight a certain formulation that the ants may be given for doing the task effectively. The ants do the task effectively when they are able to assure that the minefield is clear of the mines within the least possible time. A compilation of the results obtained by the various studies is tabulated. In the third and final section we talk about our emulations conducted on the Multi Agent Biorobotics Lab-built groundscout robots, which were used for the demonstration of our swarm intelligence-based algorithms at a practical basis. The various projects thus far conducted were a part of the Multi Agent Biorobotics Lab at Rochester Institute of Technology

    Sophisticated collective foraging with minimalist agents: a swarm robotics test

    Get PDF
    How groups of cooperative foragers can achieve efficient and robust collective foraging is of interest both to biologists studying social insects and engineers designing swarm robotics systems. Of particular interest are distance-quality trade-offs and swarm-size-dependent foraging strategies. Here we present a collective foraging system based on virtual pheromones, tested in simulation and in swarms of up to 200 physical robots. Our individual agent controllers are highly simplified, as they are based on binary pheromone sensors. Despite being simple, our individual controllers are able to reproduce classical foraging experiments conducted with more capable real ants that sense pheromone concentration and follow its gradient. One key feature of our controllers is a control parameter which balances the trade-off between distance selectivity and quality selectivity of individual foragers. We construct an optimal foraging theory model that accounts for distance and quality of resources, as well as overcrowding, and predicts a swarmsize-dependent strategy. We test swarms implementing our controllers against our optimality model and find that, for moderate swarm sizes, they can be parameterised to approximate the optimal foraging strategy. This study demonstrates the sufficiency of simple individual agent rules to generate sophisticated collective foraging behaviour

    Artificial Pheromone for Path Selection by a Foraging Swarm of Robots

    Get PDF
    Foraging robots involved in a search and retrieval task may create paths to navigate faster in their environment. In this context, a swarm of robots that has found several resources and created different paths may benefit strongly from path selection. Path selection enhances the foraging behavior by allowing the swarm to focus on the most profitable resource with the possibility for unused robots to stop participating in the path maintenance and to switch to another task. In order to achieve path selection, we implement virtual ants that lay artificial pheromone inside a network of robots. Virtual ants are local messages transmitted by robots; they travel along chains of robots and deposit artificial pheromone on the robots that are literally forming the chain and indicating the path. The concentration of artificial pheromone on the robots allows them to decide whether they are part of a selected path. We parameterize the mechanism with a mathematical model and provide an experimental validation using a swarm of 20 real robots. We show that our mechanism favors the selection of the closest resource is able to select a new path if a selected resource becomes unavailable and selects a newly detected and better resource when possible. As robots use very simple messages and behaviors, the system would be particularly well suited for swarms of microrobots with minimal abilitie
    corecore