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ABSTRACT

Swarms of low-cost, autonomous robots can potentially be used to collectively perform
tasks over large domains and long time scales. The design of decentralized, scalable
swarm control strategies will enable the development of robotic systems that can
execute such tasks with a high degree of parallelism and redundancy, enabling effective
operation even in the presence of unknown environmental factors and individual robot
failures. Social insect colonies provide a rich source of inspiration for these types of
control approaches, since they can perform complex collective tasks under a range of
conditions. To validate swarm robotic control strategies, experimental testbeds with
large numbers of robots are required; however, existing low-cost robots are specialized
and can lack the necessary sensing, navigation, control, and manipulation capabilities.

To address these challenges, this thesis presents a formal approach to designing
biologically-inspired swarm control strategies for spatially-confined coverage and pay-
load transport tasks, as well as a novel low-cost, customizable robotic platform for
testing swarm control approaches. Stochastic control strategies are developed that
provably allocate a swarm of robots around the boundaries of multiple regions of in-
terest or payloads to be transported. These strategies account for spatially-dependent
effects on the robots’ physical distribution and are largely robust to environmental
variations. In addition, a control approach based on reinforcement learning is pre-
sented for collective payload towing that accommodates robots with heterogeneous
maximum speeds. For both types of collective transport tasks, rigorous approaches
are developed to identify and translate observed group retrieval behaviors in Novomes-
sor cockerelli ants to swarm robotic control strategies. These strategies can replicate
features of ant transport and inherit its properties of robustness to different envi-
ronments and to varying team compositions. The approaches incorporate dynamical

models of the swarm that are amenable to analysis and control techniques, and there-



fore provide theoretical guarantees on the system’s performance. Implementation of
these strategies on robotic swarms offers a way for biologists to test hypotheses about
the individual-level mechanisms that drive collective behaviors. Finally, this thesis
describes Pheeno, a new swarm robotic platform with a three degree-of-freedom ma-

nipulator arm, and describes its use in validating a variety of swarm control strategies.
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Chapter 1

INTRODUCTION

1.1 Swarm Robotics

In recent years, there has been an increasing focus on the development of robotic
swarms [28] for performing tasks that require high degrees of parallelism, redundancy
in system components and behaviors, and adaptability to changes in environmental
conditions and failures. These systems would be composed of hundreds or thousands
of relatively expendable, resource-constrained robots that operate with little-to-no
human supervision.

A major challenge in controlling robotic swarms is the synthesis of robot controllers
in a scalable manner; i.e., the controller design does not become more complex for
larger numbers of robots. One approach to controlling smaller groups of robots is
a centralized, deterministic control scheme [29, 71]. In a centralized strategy, one
component (a computer, robot, etc.) takes on the majority of the computational load
to plan a deterministic series of actions to be executed by each agent while keeping
track of the entire swarm’s state. This plan is then repeatedly communicated to
each robot in the swarm. For example, in a formation control problem, a central
computer would plan a path for each member of the swarm such that the robots do
not collide with one another or with obstacles while establishing and maintaining a
formation. However, as the swarm increases in size, this method becomes infeasible
due to limited computational power, limited communication bandwidth, and delay
times in communication.

This challenge has motivated the development of control frameworks for swarm



robotic systems with a specific set of requirements. In 2004, Erol Sahin proposed the

following definition of swarm robotics:

Definition 1.1.1. Swarm robotics is the study of how a large number of relatively
simple physically embodied agents can be designed such that a desired collective be-
havior emerges from the local interactions among agents and between the agents and

the environment [121].

Since this paper, many swarm control strategies have been developed with several

common features taking influence from Sahin’s early criterion [20, 45, 103, 104]:

Autonomous Robots: The system should be comprised of physical robotic plat-

forms that are capable of interacting with one another and world around them.

Scale: The number of agents in the system should be “large.” This size will vary

among applications. However, in any scenario, the strategy should be scalable.

Composition: A swarm robotic system should be composed of large groups of ho-
mogeneous robots. For example, a group of robots where each individual has
different capabilities is considered less “swarm-like” than a group of robots with

a mixture of two types of capabilities.

Individual Capability: Each robot in the swarm should be relatively ill-suited to
perform the desired task on its own. That is, either an individual is incapable
of performing the desired task alone (e.g., a single robot is not strong enough
to transport an object), or a group of robots is more capable of performing the
desired task than an individual (e.g., a single robot cannot explore an area as

effectively as a group of ten robots).



Limited Sensing and Communication: Each robot in the swarm has limited sens-
ing and/or communication abilities, which constrains the swarm control strate-

gies to be distributed rather than centralized.

Outcome: A robotic swarm should exhibit an desired group behavior. In other
words, a swarm of robots with programmed individual behaviors should collec-

tively produce an expected outcome when enough of them operate concurrently.

By these criteria, swarm robotic systems are redundant in composition, capable
of performing tasks in parallel, and potentially able to adapt to their surroundings.
These properties enable swarms to excel at solving problems in large, unknown, possi-
bly hazardous environments. This thesis presents swarm control strategies with these
beneficial characteristics that are designed to solve problems of boundary coverage

and collective payload transport.
1.2 Swarm Behaviors in Biological Systems

Swarms in nature provide examples of systems where complex macroscopic tasks
can be achieved through the interaction of large numbers of relatively simple indi-
viduals. Notable examples are the self-organization behaviors of social insects [22].
Colonies of bees, termites, ants, and other insects are able to perform tremendous
feats such as nest construction [54, 57, 72], colony emigration [56, 112, 136], forag-
ing [59, 89, 133], and transport [39, 95] through the interaction of several behavior
archetypes, using local sensing and interactions with their environment.

These biological swarms exemplify the criteria set forward by Sahin. Thus, there
is an inherent benefit to understanding the underlying behavioral mechanisms of these
systems in order to translate them into a swarm robotic framework. Two methods of

investigation, both of which are used in this thesis, can be applied toward this end.



The first method involves observing a biological system to infer behaviors that could
be implemented on a robotic system. In this case, the focus is on designing robot
controllers that are “inspired” by the biological system, in the sense that they inherit
certain properties that are desirable for the robotic system. The second method
uses robotic systems to test hypotheses about the biological system in order to gain
insight into the natural phenomenon being observed. Simple robots can be used to

help elucidate the mechanisms that drive collective animal behaviors [58, 60, 75].
1.3 Validation of Swarm Controllers Outside of Simulation

Advances in computing, sensing, actuation, power, communication, and control
technologies are currently enabling the production of affordable robots that are de-
signed to act in collectives, both in research and education [23, 44, 64, 97, 120]. In the
past few years, the miniaturization of these technologies has led to a plethora of novel
platforms for swarm applications, including micro quadrotors [79] and flapping-wing
micro aerial vehicles (MAVs) [143]. At even smaller scales, advances in MEMS, low-
power VLSI, and nanotechnology are facilitating the development of sub-millimeter
self-powered robots [10, 11]. However, many swarm applications continue to be simu-
lated rather than tested on hardware due to the high cost of existing robot platforms
or their inability to perform the required tasks. Hence, there is a need for an affordable
yet capable robot platform that can be readily customized by users for desired swarm
applications. Inexpensive, reliable robots can also be used in education and outreach
activities to spark students’ interest in STEM fields and demonstrate physical appli-
cations of mathematics and physics. Robots that are constructed from components
with intuitive interfaces and large user communities are highly beneficial in these
contexts.

To address these applications and assist in the validation of the control strate-



gies described in this thesis, a new mobile robot platform named Pheeno has been
developed with several design criteria in mind. Pheeno is small and affordable, so-
phisticated enough for multi-robot research experiments, accessible to students and
others who are new to robotics, and modular to suit the requirements of different
robotic tasks. Chapter 3 describes the development and capabilities of this platform

in more detail as presented in Wilson et al. [142].
1.4 Boundary Coverage Tasks for Robotic Swarms

Many potential swarm applications

©
will require the self-organization of G(@@ @ (2)
. . . (©) ©
robots into groups of different sizes ° ®
©)
around various regions or objects in their o °
©

©
environment (see Figure 1.1). For in-

(©) Q
stance, a swarm may be tasked to trans- @ @ @
port multiple payloads that are each too @ @ © o}

heavy for a single robot to retrieve, which
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Figure 1.1. Example scenario with two
would necessitate that enough robots ag- types of disk-shaped regions, labeled 1 and

aregate around each load to move it to 2. The unlabeled circles are robots that are

allocating themselves to the region bound-
a target destination, possibly at a de-

aries.

sired speed. However, simply allocating

robots to saturation on each payload may be inefficient. Similarly, surveillance tasks
may require a swarm to surround different types of regions, such as structure perime-
ters, to achieve particular degrees of sensor coverage. Other possible applications
include environmental monitoring and mapping, automated construction and man-

ufacturing, and disaster response tasks such as cordoning off a hazardous area or

extinguishing a fire. At the micro- and nano-scale, applications include micro-object



manipulation, microfactories and nanofactories, and medical monitoring, diagnosis,
and treatment. For example, nano-scale robots could collect in desired proportions
around objects that are transparent to macroscopic sensing technologies. If the pro-
portions of nano-scale robots were detectable, then the presence of the objects could
be inferred.

In order for robotic swarms to reliably carry out these tasks, a rigorous method-
ology is needed for synthesizing individual robot behaviors that provably result in
target robot allocations around boundaries. The swarm control framework must be
scalable to arbitrary robot population sizes and accommodate possibly extreme lim-
itations on each robot’s sensing, communication, and computation abilities. It must
also account for stochasticity arising from noise due to sensor and actuator errors;
inherent randomness in robot encounters with each other and with environmental fea-
tures; and, for nanorobots, the effects of Brownian motion and chemical interactions
at scales below tens of micrometers [43].

Chapter 4 develops a control framework with the properties in Section 1.1 for the
problem of allocating a robotic swarm in target group sizes around the boundaries of
disjoint, stationary objects or regions of different types in an unknown environment.
The objective is to achieve a desired percentage of boundary coverage by the swarm
(e.g., 50% of the boundary length of a certain type of region is covered). For sim-
plicity, only disk-shaped regions are considered, which are referred to as disks, but
this formulation can be extended to other region shapes. The robots have no prior
information about the disks and they use only local sensing and local communica-
tion, encountering the disks during the course of random walks. Disk types may be
categorized according to physical or subjective properties; for instance, size or weight
if the disks are payloads to be transported, or relative surveillance value if they are

areas to be monitored. Figure 1.1 depicts an example scenario in which the objective



is to attain an average allocation of three robots per type-1 disk and one robot per
type-2 disk. Stochastic binding and unbinding behaviors of the robots will result in
fluctuations around these target allocations, as illustrated by the variation in number
of robots bound to each disk type.

A top-down approach is employed to synthesize robot control policies that pro-
duce target allocations among the disks with probabilistic guarantees on performance.
The stochastic robot interactions with disks and with each other are represented
as a well-mixed chemical reaction network (CRN). The robot-to-robot interactions
consist of an enzyme-inspired behavior, implemented at the disk boundaries, that
greatly reduces the dependence of the allocation strategy on the encounter rates,
the difficult-to-characterize probabilities per unit time that a robot encounters an
occupied or unoccupied section of a disk boundary. This behavior also decouples
allocation tasks that may be occurring in parallel. The CRN formulation allows the
abstraction of the system to a macroscopic population model, a set of ordinary dif-
ferential equations (ODEs) that is amenable to analysis and control. This approach
can be implemented by using a supervisory agent to design the model parameters
for a particular global objective and broadcast them to the robots. The robots use
these parameters to define their stochastic decision-making policies, and the resulting
collective behavior follows the macroscopic prediction in expectation.

This work is presented as in Pavlic et al. [109].

Division of Work: Dr. Theodore P. Pavlic and I designed the stochastic controller.
Dr. Pavlic developed the CRN model and associated ODEs, and corrected for
spatial effects around the boundaries. Dr. Ganesh P. Kumar developed the
closed-form solution to the CRN model and approximated the nonlinear ODEs
by a linear, large-population approximation. I created the agent-based simula-

tion in NetLogo [139], analyzed the stability of the system, and ran simulations

7



to validate the method.

1.5 Collective Transport Tasks for Robotic Swarms

Cooperative manipulation and transport of heavy payloads will be required in var-
ious potential swarm robotic applications, including automated construction, man-
ufacturing, and warehouses; disaster response and search-and-rescue missions; as-
sembly of ships and aircraft; and manipulation, assembly, and construction tasks in
inhospitable space and marine environments. In such applications, robots will be
tasked to form a team around a payload and coordinate their motion and applied
forces to transport the load to a predefined destination. Although various approaches
to this task have been developed [14, 33, 52, 62, 119, 130, 132], there remains a
need for a rigorous swarm control framework that can produce reliable transport in a
wide range of scenarios with arbitrary payloads, unstructured and possibly hazardous
environments, and lack of prior information about the loads and environment.

Group food retrieval in ants (Figure 1.2) is a valuable source of design inspiration
for multi-robot transport. This phenomenon is a striking example of a cooperative
manipulation strategy that is (a) fully decentralized and scalable in the number of
transporters, (b) conducted without specialized end effectors, and (c) successful for
a wide range of payloads in environments with uneven terrain and obstacles. The
behavioral mechanisms underlying group retrieval remain poorly understood [38, 95],
but coordination likely depends on indirect interactions through the load itself, known
as stigmergy [61, 77], although more direct interactions and signaling among trans-
porters may play a role as well. Coordination also depends on some or all of the
ants knowing the heading to the nest and being able to maintain this direction using
visual or other cues.

This thesis considers a collective transport problem in which a group of robots



Figure 1.2. Image, from Kumar et al. [78], of a team of Novomessor cockerelli ants
carrying a weighted circular foam disk along a leftward direction. For size and weight

reference, the object on top of the foam load is a U.S. dime (2.3¢g, 1.8cm diameter).

must move one or several payloads that are too heavy or cumbersome for an individual
robot to move. The goal of the transport is to move the load(s) from a starting location
to a previously defined destination at a desired velocity. The robots can differentiate
between different load types, but they have no prior information on the load quantities
and locations. This problem is addressed from two different perspectives, as described
below, in Chapter 5 and Chapter 6.

Chapter 5 presents a method that uses the boundary coverage strategies devel-
oped in Chapter 4 to maintain multi-robot transport teams of desired sizes around
multiple payloads while moving them in a desired direction. Robots can join the
team or leave to recharge or perform other tasks, causing the team composition to
change dynamically. The swarm control strategy is based on observed attachment and
detachment behaviors that are exhibited during group food retrieval in Novomessor
cockerelli ants. This work focuses on the synthesis of robot control policies for collec-
tive transport that: (a) are derived from a dynamical model of the system, enabling
theoretical analysis of the transport behavior; (b) allow robots to detach from the
payload, dynamically allocating themselves to the transport team; and (c) do not
require a centralized coordinator for any information other than high-level task spec-

ifications, such as the types of payloads to be retrieved. This work is presented as in



Wilson et al. [141].

Chapter 6 describes an approach to testing hypotheses about ant-like collective
towing behaviors using the Pheeno robot platform. Specifically, robots are used to
replicate the ant behaviors in order to better understand the factors that produce
an observed decrease in steady-state transport speed with increasing team size in N.
cockerelli ants. This approach develops models of one-dimensional collective towing
and applies order statistics to previously obtained ant towing data from [31] to de-
termine possible individual ant behaviors. These ant behaviors are then translated
into robot controllers that incorporate a reinforcement learning algorithm in order
to replicate the observed group behavior. The work focuses on determining whether
the observed decrease in transport speed can be reproduced using the assumed ca-
pabilities and prior knowledge of N. cockerelli ants. While the main objective of
this work is to understand the biological system, robot controllers that are based on
the hypothesized ant behaviors can be further analyzed and optimized for specific

applications while retaining beneficial properties of the biological strategies.
1.6 Contributions of the Thesis

The contributions of this thesis can be summarized as follows. First, scalable
control strategies are developed that provably allocate a swarm of robots among a
heterogeneous set of tasks/roles that are associated with the boundaries of distinct
spatial regions. These strategies account for spatially-dependent effects on the robots’
physical distribution and are designed in such a way that they are largely robust to en-
vironmental variations. Second, a control approach is presented for collective payload
towing that accommodates robots with heterogeneous capabilities. Third, rigorous
approaches are developed for identifying and translating collective transport behaviors

that are observed in ant colonies to swarm robotic control strategies. These strate-
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gies can replicate features of the biological transport process and inherit its beneficial
properties of robustness to different environments and to individual failures and er-
rors. The approaches incorporate dynamical models of the swarm that are amenable
to analysis and control techniques, and therefore provide theoretical guarantees on
the system’s performance. Implementation of these strategies on robotic swarms of-
fers a way for biologists to experimentally test hypotheses about the individual-level
mechanisms that drive collective transport behaviors. Fourth, this thesis presents
a new type of low-cost, customizable swarm robotic platform with a three degree-
of-freedom manipulator arm and describes its use in validating a variety of swarm

control strategies.
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Chapter 2

LITERATURE REVIEW

This chapter summarizes relevant literature on affordable robotic platforms for
swarm experiments; modeling and control of robotic swarms with stochastic behav-
iors, including behaviors that are similar to adsorption processes; and collective trans-

port strategies by robotic swarms.
2.1 Existing Swarm Robotic Platforms

In recent years, various robot platforms have been developed for multi-robot re-
search and education. Table 2.1 compares several existing platforms that have capa-
bilities similar to the robot described in this thesis, Pheeno.

The r-one robot [96] is an open source platform designed for multi-robot experi-
ments and education. It has a large sensor array for communication and localization.
A gripper attachment [98] allows the robot to drag payloads along the ground, al-
though it does not enable 3D manipulation. The platform is not readily expandable
to users who lack significant experience with electronics.

The WolfBot [19] is an open source platform designed for distributed sensing and
education. It has a sensor suite for communication, localization, and on-board image
processing. The platform incorporates the BeagleBone Black computer, which allows
the robot to be modular but has less community support than Pheeno’s processors,
the Raspberry Pi 2 and the Arduino Pro Mini. The cost of parts for the WolfBot is
$550, which is twice the cost of the Pheeno base.

The Khepera IV is an expandable, commercially available research and educational

platform. Additional modules have been developed for the robot, including a two
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Robot Processor Sensing Communication Manipulator Cost
AT- 3D accelerometer, $270 for base
Pheeno mega328P 3D magnetometer, Serial, WiF1i, RPR serial (core),
and ARM wheel encoders, Bluetooth linkage $80 for
Cortex-AT7 IR, camera gripper'
3D accelerometer,
2D gyroscope, Omni-
r-one [96, 98] éi“l‘z/éx-MZ% wheel encoders, Radio, IR directional g?go__ Easeéﬁ
IR, bump, ambient gripper E1PP
light
3D accelerometer,
ARM 3D magnetometer,
WolfBot [19] Cortex-AS IR, camera, WiFi, Zigbee None $5501
ortex microphone,
ambient light
3D accelerometer,
3D gyroscope $
’ . 3,180 - base
ARM wheel encoders R RR serial ’ ’
Kh v ’ -
epera Cortex-A8 IR, ultrasonic, WiFi, Bluetooth linkage $fi7902r*1
camera, ambient ErPP
light
3D accelerometer,
Do
marXbot [24] ARM11 camera. front WiFi, Bluetooth attachment N/A
camera, RFID eics
reader, 2D force
3D accelerometer,
IR, camera,
microphones,
dsPIC range and bearing $1,000 - base,
e-puck [100] 30F6014A turret®, Zigbee None battery, and
three-camera charger”2
turretEB,
omni-directional
camera®
3D accelerometer,
Thymio II [117] IR, microphone, IR None $199 - base™3
PUCZAT IS temperature, touch
wheel encoders, $150 - base*4,
. P8X32A- microphone, IR . $100 - IPRE
bbler 2 P ®
Scribbler 2 [9] Qa4 ambient light, Serial, Bluetooth None Fluke2
camera® Board™®
* Retail
T Cost of parts. pricz al @ Additional extensions not included with base robot.

L Available for purchase at http://www.k-team.com/mobile-robotics-products/khepera-iv

2 Available for purchase at http://www.gctronic.com/shop.php

3 Available for purchase at http://www.techykids.com

4 Available for purchase at https://www.parallax.com/product/28136

5 Available for purchase at http://www.betterbots.com

Table 2.1.

Wilson et al.

Comparison of currently available multi-robot platforms. Figure from

142
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degree-of-freedom revolute, revolute (RR) serial linked manipulator capable of lifting
50 g. The robot and gripper attachment retail for approximately $6,000, making
them expensive to use in educational curricula and multi-robot research.

The marXbot [24] is a highly capable, modular, open source platform designed
for multi-robot experiments. It has a large array of sensors for communication, lo-
calization, and onboard image processing. It also has a three-pronged attachment
mechanism that can connect to a hand-bot [44] for manipulation tasks. Its large
sensor suite makes it an expensive platform for multi-robot applications.

The e-puck [100] is a commercially available robot designed for education at the
university level. The platform is equipped with sensors for odometry and communi-
cation, and its capabilities can be increased with various extensions. However, the
robot is fairly expensive for multi-robot applications, retailing for about $1,000.

The Thymio IT [117] is an open source platform designed for users with little or no
previous experience in robotics. It has a variety of sensors but lacks basic odometry
sensors like wheel encoders, a gyroscope, or a magnetometer, although its capabilities
can be expanded with accessories such as LEGO components.

The Scribbler 2 [9] is a commercially available, open source educational robot that
is suitable for users with a range of programming experience. Additional devices,
sensors, and servos can be attached to the robot through a hacker port, and an add-
on board can be plugged in to provide a camera and wireless communication with a
computer.

There are other robot platforms that can be used for multi-robot research and
education, although they are too dissimilar to Pheeno to be included in the compar-
ison table. The Kilobot [118] and GRITSbot [111] are very small, affordable robots
that have been developed for swarm robotic experiments. The Pololu 3pi [90] is a

small hobby platform with very limited sensing. The LEGO Mindstorms [13] and
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iRobot Create 2 [90] are designed for education and can be given augmented capa-
bilities through accessories and expansion packs. The LEGO Mindstorms kit has a
specific set of sensors and chassis components, allowing up to four sensors and four
motors to be driven at once. This inherently limits its sensing and actuation abilities.
The iRobot Create 2 is suitable for users with more experience in robotics. Its main
chassis contains bump sensors, drop sensors, and encoders, which enable the robot to
perceive its environment through collisions but do not allow it to predict and avoid

encounters.
2.2 Modeling and Control of Robotic Swarms with Stochastic Behaviors

Much existing work on understanding and controlling robotic swarm behaviors
relies on developing an accurate macroscopic model of the population dynamics. The
model’s dimensionality is independent of the swarm size, which facilitates quick sim-
ulation and a scalable control approach. Previous work has addressed stochastic
approaches to swarm robotic task allocation, in which the robot task-switching rates
are optimized using non-spatial macroscopic models that describe the time evolution
of the robot population in each state [15, 36, 85, 93, 106]. Non-spatial swarm models
have also been used to optimize stochastic robot behaviors in problems of robotic
assembly of parts into products and self-assembly via binding through random col-
lisions [50, 74, 94, 102]. Spatial macroscopic models of swarms that describe robot
deterministic and random motion in addition to stochastic task switching have also
been developed recently [40, 47, 65, 113].

The utility of the macroscopic model in these works hinges on the ability to accu-
rately determine the non-tunable components of the model parameters. Specifically,
in applications where the model captures random interactions between entities in the

system, these components are the corresponding encounter rates. However, encounter
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rates can often be determined only through simulation [63, 68] because the robot
motion pattern and sensor footprint and the environment configuration can induce
unpredictable spatially dependent effects, or simply spatial effects, on the frequency
of robot encounters with other system entities. Encounter-rate formulas based on ge-
ometric parameters have been used in previous work on macroscopic swarm modeling
of systems in which robots encounter objects that are small [80, 92] or large (and
elongated) [37] relative to them. However, these formulas can be applied only for
environments with low densities of robots and objects in which robots are uniformly
spatially distributed at all times, which is ensured when robots execute random walks
and the objects do not bias the robots’ movements. The scenario presented in Chap-
ter 4 and Chapter 5 violates these assumptions in that the encountered objects are
adjacent to one another and thus not distributed at low density. The implausibility of
deriving analytical solutions of encounter rates for this scenario provides motivation
to find a way of controlling the swarm without knowledge of these rates while still
using a macroscopic model.

A variety of approaches have been developed for controlling task allocation, as-
sembly, and self-assembly in robotic swarms with stochastic behaviors [15, 36, 37, 85,
93, 94, 102, 106, 107]. These control strategies achieve target equilibrium populations
by making use of internal timer events that may be tuned to specific parameters of
the environment. For example, mobile robots that perform random walks through-
out a domain will randomly encounter certain features (e.g., other robots, regions of
interest, assembly components, payloads) at an average rate determined by environ-
mental parameters. A stochastic task-allocation strategy will allocate a robot to a
task according to some designed probability. Once allocated, the robot will continue
to perform the task until an internally generated timeout event occurs and the robot

returns to its search. If the allocation probability and return-to-search timeout are
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properly tuned, then the swarm of robots will converge to some desired allocation
across task types in the environment. At that equilibrium, the flux of robots into
each task type will match the flux of robots timing out of that task type. However, if
the task-type encounter rates change in the environment (eg, due to battery-related
speed changes or a change in task distribution), then the timeouts will also have to
be changed in order to maintain the same allocation levels. Thus, unlike the con-
trol design method presented in Chapter 4 and Chapter 5, these stochastic control

strategies for robotic swarms are not robust to changes in the environment.
2.2.1 Relationship to Adsorption Processes

Adsorption describes the process of particles binding to a surface for an amount
of time that varies with thermodynamic parameters of the system (i.e., temperature,
density, and pressure). The resulting equilibrium distribution of particles on the
surface also varies with these thermodynamic properties. In the boundary coverage
strategy presented in this thesis, the mechanism by which robots allocate to region
boundaries is patterned in part on both reversible processes characterizing Langmuir
adsorption [82] and irreversible processes characterizing random sequential adsorp-
tion (RSA) [49, 134]. If the stochastic strategy relied on internal timer events, then
the result would be an artificial adsorption process in which the equilibrium team
sizes vary with the swarm size and number of regions. The work in Chapter 4 and
Chapter 5 shows that these density-dependent effects can be eliminated by mimicking
far-from-equilibrium irreversible processes rather than depending on timeouts.

In Langmuir adsorption, finite-sized particles collide with a surface, bind (adsorb)
to the surface with some probability, and then spontaneously unbind (desorb) later
after some mean residence time. The system reaches thermodynamic equilibrium,

where the flux of binding particles is balanced by the flux of unbinding particles. As
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the thermodynamic properties of the free particles change (e.g., as their temperature
or density increases), the equilibrium allocation of particles on the surface changes.
Langmuir processes have been used to design advanced drug delivery devices [137]
which selectively target some tissues (e.g., cancers) but have negligible allocations
around others (e.g., normal tissue). However, because such allocations are achieved
by thermodynamic equilibrium, there must be tight control over the number of devices
and knowledge of the thermodynamic variables around the tissues.

In the case of RSA, the desorption process happens at such a relatively large time
scale that adsorption is considered to be irreversible. That is, particles adsorb rapidly
but then take much longer to desorb, yielding the appearance or approximation that
only adsorptions are occurring on random locations on the surface. Consequently,
the modeled RSA system is always far from its thermodynamic equilibrium, where
adsorptions and desorptions happen on a closer timescale, and instead saturates at
some suboptimal packing around the surface. Rényi [116] originally showed that
the limiting fraction of a line covered with such sequentially attaching particles is
a mathematical constant near 0.75 that has since been called the parking constant
[53, 127]. Likewise, the approach in Chapter 4 and Chapter 5 cannot be used for
target allocation ratios above 0.75. However, by implementing classical RSA with a
second irreversible process that catalyzes desorption (which is otherwise absent), it is
possible to stabilize any target allocation ratio between 0 and the parking constant.
As a result, the strategy can achieve a continuum of dynamical equilibria without the
limitations of a thermodynamic equilibrium. This modification of RSA is trivial to

implement in robotic systems with a modicum of agency.
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2.3 Collective Transport Strategies for Robotic Swarms

Various collective transport approaches have been designed to assemble large robot
teams around objects that are difficult to move. However, the team sizes in such
approaches are generally unpredictable, and there is the possibility of a deadlock
occurring when no loads accumulate enough robots for movement but the pool of
free robots is completely depleted. Thus far, collective transport strategies that are
designed for robotic swarms have not yet addressed scenarios with all of the properties
that are considered in Chapter 4 and Chapter 5. Some prior approaches require
information about the payload and each robot’s location on the load, and they utilize
a central controller, a leader, or explicit communication between robots [84, 105, 131,
138]. Rubenstein et al. [119] and Christensen et al. [35] derive and experimentally
validate a physics-based model for transport of arbitrarily shaped rigid objects by a
fixed group of robots. A dynamical model is also derived by Stilwell and Bay [130]
for the control of robots that can arrange themselves in a fixed team underneath a
palletized load and use a leader-follower transport strategy. Other collective-transport
strategies for fixed robot teams have employed algorithms for negotiating the direction
of transport in environments with obstacles [52] and for tuning the parameters of
neural network controllers using artificial evolution [62].

In several strategies, load transport is performed by a subset of the swarm that
changes composition over time; these strategies are investigated through simulations
and experiments. O’Grady et al. [107] consider the case in a self-assembly applica-
tion where broken robots themselves become immobile loads that must be removed
by functional teammates. Those teammates must accumulate around immobile loads
until a large enough team can move the object. Moreover, the robots must randomly

leave these teams to prevent deadlock conditions. An approach to box pushing is de-
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scribed by Kube and Bonabeau [77] in which robots can leave the transport team and
reposition themselves on the load, switching between simple behaviors in response to
locally sensed cues. Similarly, Chen et al. [33] organize a set of pushing robots behind
a tall object by taking advantage of the object’s ability to block visual contact with a
destination marker. In other approaches, the robots do not deliberately approach the
load and propel it toward a specific location but rather affect transport through their
contact with the load under the influence of an external control input. The mecha-
nism of granular convection is exploited by Sugawara et al. [132] to drive a load to
a target destination through a swarm of randomly moving robots that experience a
repulsive force from the destination. Becker et al. [14] use a broadcast control input
to steer the swarm around the environment and push an object encountered by the

mass of robots to a target configuration.
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Chapter 3

PHEENO ROBOTIC PLATFORM

Source: Wilson et al. [142]

ABSTRACT

Swarms of low-cost autonomous robots can potentially be used to collectively perform
tasks over very large domains and time scales. Novel robots for swarm applications
are currently being developed as a result of recent advances in sensing, actuation,
processing, power, and manufacturing. These platforms can be used by researchers
to conduct experiments with robot collectives and by educators to include robotic
hardware in their curricula. However, existing low-cost robots are specialized and
can lack desired sensing, navigation, control, and manipulation capabilities. This
chapter presents a new mobile robot platform, Pheeno, that is affordable, versatile,
and suitable for multi-robot research, education, and outreach activities. Users can
modify Pheeno for their applications by designing custom modules that attach to its
core module. This chapter describes the design of the Pheeno core and a three degree-
of-freedom gripper module, which enables unprecedented manipulation capabilities
for a robot of Pheeno’s size and cost. Several preliminary experiments are presented
that demonstrate Pheeno’s ability to fuse measurements from its onboard odometry
for global position estimation and use its camera for object identification in real time.
Finally, an experiment demonstrates that groups of two and three Pheenos can act on
commands from a central controller and consistently transport a payload in a desired

direction.
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To implement and further validate swarm robotic strategies, like those discussed
in Chapter 4, Chapter 5, and Chapter 6, a robotic platform is required. However,
current commercially available platforms are either too specialized and /or lack desired
features. Thus, the objective of this research is to create a low-cost robot that can be
customized by users to conduct a variety of multi-robot research experiments. Toward
this end, Pheeno has been designed to be a modular platform that is constructed from
commercially available components, including low-cost processors, an array of basic
sensors, and 3D printing plastic filament. The list of robot components, schematics for
PCB boards, CAD designs for the core and gripper modules, and guides to assembly,
calibration, and programming of the platform are publicly available in an online
repository [4]. Section 3.1 and Section 3.2 were first presented in Wilson et al. [142].

The robot is composed of a core module, described in Section 3.1.1, that users can
interface to their own custom-designed modules for desired applications. Section 3.1.2
describes one such module, a three degree-of-freedom gripper module that enables the
robot to manipulate and transport objects either individually or in cooperation with
other Pheeno platforms. Pheeno’s sensing, navigation, processing, communication,
and cooperative manipulation capabilities are demonstrated in a series of experiments
presented in Section 3.2 and Section 3.3. Finally, recent upgrades to the original
platform and its capabilities are discussed in Section 3.4. Pheeno has been used at
many outreach events to spark interest in STEM fields, providing K-12 students the

opportunity to learn from programming and controlling the platform.
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3.1 Design
3.1.1 Core Module

Figure 3.1 shows the fully assembled core module of Pheeno with an exploded
SolidWorks rendering. The cylindrical core has a diameter of 12.7 cm and a height
of 11.1 ecm. Most of the components are 3D printed using standard ABS plastic,
which allows for easy replication and modification of the core. The only components
that are not 3D printed are the motor mounts as well as the circular base and cap
of the housing. These are standard robotic chassis parts sold by Pololu Robotics &
Electronics [6], used to reduce the printing time of the robot. Currently, a Pheeno core
takes about 5 hours to print with a MakerBot Replicator 2X 3D printer (MakerBot

Industries) using an infill of 12%.

Figure 3.1. Left: The Pheeno robot platform with the ICRA 2016 duckie [3] for
scale. Right: Exploded SolidWorks rendering of Pheeno.
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The core module is a differential drive platform that is actuated by two standard
micro-metal gear motors with extended back shafts and supported by two caster
wheels to maintain the balance of the robot. Motors with a 51.45:1 gear ratio are
currently used, but standard micro-metal motors with higher or lower gear ratios can
be substituted, allowing Pheeno to be quicker or more powerful to suit the user’s
needs. With the current gear ratio and 32-mm-diameter wheels, Pheeno can move
at controllable speeds between 4 cm/s and 42 cm/s. The extended back shafts en-
able the attachment of magnetic quadrature wheel encoders, which have a linear
resolution of 0.163 mm/tick. The robot can measure its acceleration and heading
using an STMicroelectronics LSM303D that contains a 3D accelerometer and a 3D
magnetometer.

The main processors onboard Pheeno are the Raspberry Pi 2 Model B micropro-
cessor [5] and the Arduino Pro Mini microcontroller (3.3V model) [1]. These boards
were chosen for their accessibility to new users and the large user communities sup-
porting them. The Raspberry Pi is a credit-card sized Linux computer that enables
users to program the robot in a range of languages. The Arduino Pro Mini is a small
(1.8 cm x 3.3 cm) member of the widely used Arduino microcontroller family. These
two boards interact through serial communication. Pheeno uses the Raspberry Pi
for high-level control and image processing and the Arduino Pro Mini for control of
low-level actuation and sensor data processing for accurate navigation. All of the
GPIO pins on the Arduino Pro Mini are occupied by connections to the accelerome-
ter, magnetometer, wheel encoders, H-bridge motor driver, and infrared (IR) sensors
on the core module. The Raspberry Pi has 26 open GPIO pins that can be used for
sensor inputs and actuator control, as well as 3 open USB ports that allow the use of
various USB adaptors such as WiFi and Bluetooth for communication.

The core module is equipped with six IR proximity sensors for enabling collision
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Figure 3.2. Top-down view of the main Pheeno circuit board with the major
components numbered. 1) Infrared (IR) sensor mounts able to interface with any 3-
pin JST connector. 2) 3D accelerometer and magnetometer. 3) Motor control board

(H-Bridge). 4) Arduino Pro Mini microprocessor.

avoidance, a Raspberry Pi camera for vision-based object detection, and four RGB
LEDs for displaying the robot’s state. Five of the IR sensors are evenly spaced along
the front perimeter of the robot, and one sensor is placed on the back to detect nearby
objects. Currently, Pheeno is equipped with six Sharp GP2Y0A41SKOF IR sensors
with a range of 4—30 cm. IR sensors with different ranges could be substituted if they
interface with 3-pin JST PH connectors on the custom printed circuit board (PCB),
shown in Figure 3.2. The Raspberry Pi camera, a 5SMP Omnivision 5647 sensor in a
fixed focus module, is mounted on top of the core. A servomechanism tilts the pitch
angle of the camera within a 180° range. The LEDs are evenly spaced around the
perimeter of the core.

The robot is powered by a 11.1V 3000 mAh LiPo battery that is secured to the
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bottom of the chassis. The current draw of the robot is 120 mA when idle and
410 mA during typical use. When the motors are stalled and image processing is
performed onboard, the current draw can spike to 670 mA. During demonstrations
at outreach events, where visitors remotely controlled the robot through a graphical
user interface on a laptop computer [67], the robot operated continuously for 5 hours

while retrieving small objects and streaming 1080 x 720p video to the laptop.
3.1.2 Gripper Module

In order to give Pheeno manipulation capabilities, a gripper module (Figure 3.3
and Figure 3.4) was designed that consists of a standard 3-degree-of-freedom (DOF)
revolute, prismatic, revolute (RPR) serial arm with an end-effector capable of grasping
an object. The joints of the arm are driven by three standard servos, which provide
the arm with the ability to lift an object up to 6.2 cm, roll it up to 180° about the
core’s radial axis, and rotate it up to 180° about the core’s central vertical axis.

Most of the gripper components are 3D printed using standard ABS plastic, al-

Figure 3.3. Left: The Pheeno robot platform with gripper module holding an
ICRA 2016 duckie [3] for scale. Right: Exploded SolidWorks rendering of the Pheeno

gripper module.
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lowing for easy modification and replication. The rack gearing that provides the
prismatic motion and two shafts that stabilize the lift are available commercially
from [2, 7]. The gripper jaws are composed of a rigid structure with molded urethane
rubber pads that deform while grasping an object. The gripper is underactuated,
driven by a single servo through a yoke mechanism. The Raspberry Pi camera from
the core module is affixed to the top of the gripper module, allowing visual servoing
of the gripper if desired. Additional sensors included in the gripper module are a
front-mounted IR sensor and a potentiometer to give feedback on grasping.

Another PCB is included in the module to provide power to the servos and take in

Figure 3.4. A SolidWorks rendering of the gripper module with degrees of freedom
and components shown. 1) Yaw servo, which enables 180° rotation about the central
vertical axis of the Pheeno core module. 2) Gear rack servo, which enables 6.2 cm of
prismatic motion. 3) Wrist servo, which enables 180° rotation about the radial axis
of the Pheeno core. 4) Underactuated gripper with potentiometer feedback. 5) Core

module camera. 6) IR distance sensor.
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sensor inputs. An 8-channel 10-bit ADC allows these analog sensors to be connected
to the Raspberry Pi, enabling closed-loop control of the gripper through image pro-
cessing and sensor feedback. The PCB has been designed with two open channels for
the ADC, which allows additional analog sensors to be interfaced with the gripper.
When Pheeno is driving and moving its gripper during typical use, its current draw
is 640 mA. In situations where the gripper servo and drive motors are stalled and the
lift servo is strained while image processing is being performed onboard, the current
draw jumps to 1.08 A. A large battery capacity was chosen to accommodate these
high power demands.

The arm is capable of lifting and manipulating a weight of about 400 g. This allows
Pheeno to manipulate light objects independently or cooperate in a team to transport
heavier objects. When a robot manipulates an object by itself, its yaw servo can be
actively controlled to rotate the object about the core module’s central vertical axis
independently of the rotation of the wheel base. During collective transport tasks,
each robot can turn off its yaw servo, which allows its drive train to backdrive the yaw
servo and rotate to a desired heading within a 180° range. This enables the robots to
simultaneously grasp a load while driving in a common direction at different angles
relative to their manipulator arms. Once a robot detaches from the load, its yaw

servo can become active again to return the gripper to its forward configuration.

3.2  Experimental Tests of the Pheeno Robot’s Capabilities

Three types of experiments were conducted to evaluate Pheeno’s ability to lo-
calize using its onboard odometry, identify objects by color from its camera images,
communicate through WiFi, and cooperatively manipulate an object as a team. The

experimental results are discussed in this section.
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Dead Reckoning A path-following algorithm was implemented in two experiments
in order to test Pheeno’s ability to determine its (z, y) coordinates in a global reference
frame using only onboard odometry. Pheeno’s heading is defined as 6, its angular
speed as w, and its translational speed as v. The robot’s motion can be modeled as
unicycle dynamics:

T = wvcosb, Yy =wsinf, 0=w

A standard PID controller was used to drive the robot to a desired position (x4, yq)
at a constant speed while tracking a desired heading,
Ya — 9(t)

A Y

04(t) = arct
4(t) = arc anmd—x(t)

where (Z(t),y(t)) is the robot’s estimate of its position at time t. This state esti-
mate was updated at a rate of 15 Hz. In the first experiment, Pheeno estimated its
global position and orientation using only measurements from its encoders. In the
second experiment, a set of complementary filters was applied to the platform’s en-
coder, accelerometer, and magnetometer measurements in order to correct for errors
due to wheel slipping, which can occur when the robot accelerates and makes fast
turns (Appendix B). A general block diagram of a complementary filter is shown
in Figure 3.5. For this sensor fusion, the encoder measurements were high-pass fil-
tered and the accelerometer and magnetometer readings were low-pass filtered using
a first-order filter.

The target trajectory and actual robot trajectory in the first and second experi-
ments are compared in Figure 3.6a and Figure 3.6b, respectively. In both experiments,
drift in the robot’s position from the target trajectory is unavoidable. In the second
experiment, the inclusion of the accelerometer and magnetometer measurements pro-

duces a more accurate estimate of the robot’s global position compared to the first
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Figure 3.5. A block diagram of a complementary filter. Here, x and y are mea-

surements of a state z, and Z is the estimate of this state by the filter.

experiment, in which only encoder measurements are used. However, the resulting
improvement in tracking performance is relatively small; moreover, the localization
approach in the first experiment is easier to implement and explain in an educational

setting.
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Figure 3.6. Pheeno’s actual trajectory (red line) as it tracks a predefined trajectory
(black line) while localizing using (a) only encoder measurements, or (b) a fusion of

encoder, accelerometer, and magnetometer measurements.
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Image Processing To evaluate Pheeno’s onboard image processing capabilities,
measurements were taken of the time required for the robot to (1) acquire image
frames from its camera for processing, and (2) perform contouring to identify the
centers of mass of shapes with different colors in the image. These tests were run
for the image in Figure 3.7 at three different resolutions and used image processing
algorithms from the OpenCV library [27]. The images were transformed to the HSV
color space, thresholded for red, yellow, and blue, and contoured using the standard
transform, thresholding, and Canny contouring functions from OpenCV 2.7 in Python
2.7.10. Figure 3.7 shows an output of the color tracking algorithm with the color blob
centers of mass identified. Table 3.1 lists the minimum, average, and maximum times
to acquire and process 200 frames at different image resolutions. The data shows the
expected tradeoff between resolution and processing speed and demonstrates that
the image processing routines are performed with reasonable sampling times at lower

resolutions.

(a) (b)

Figure 3.7. (a) A masked image from Pheeno’s camera after contouring for red,

yellow, and blue. (b) Identification of each color blob’s center of mass.
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Resolution Image Acquisition Contouring
(pixels) (sec) (sec)

320 x 240 [0.010, 0.023, 0.040]  [0.170, 0.172, 0.220]
640 x 480  [0.050, 0.063, 0.090]  [0.660, 0.672, 0.680]
1024 x 768 [0.130, 0.139, 0.180]  [1.760, 1.781, 1.800]

Table 3.1. Time to acquire an image and perform image processing routines at
different resolutions. The results are from 200 captured frames. The data take the

form [minimum, average, maximum/ time to process a frame in seconds.

3.2.1 Collective Transport

Algorithm 1 was implemented on several Pheenos equipped with gripper modules
in order to test the platform’s ability to perform cooperative manipulation tasks.
The experiments were performed in the UCLA Applied Mathematics Laboratory,
directed by Prof. Andrea Bertozzi. Three robots were placed in a 1.5 m x 2.1 m
arena with a single circular payload of height 8 cm, diameter 20 cm, and weight 150
g. The robots and payload are marked with 2D binary identification tags to enable
real-time tracking of their positions and orientations. The tags are tracked using
two overhead Imaging Source DMK 21F04 1/4” Monochrome CCD cameras with a
resolution of 640 x 480 pixels at a frame rate of 30 FPS. The robots and load are
identified from their tags using the thresholding, boxpoint, and contouring OpenCV
libraries on a Windows computer. A control computer serves as a pseudo-GPS, path
planner, and communication hub for the robots. The control computer and the robots
communicate with each other using WiFi. The overall control architecture of each

robot is shown in Figure 3.8.

Robot path planning The control computer selects a goal position a set distance

away from the load perimeter for each robot (see Figure 3.9). The first is designated
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Algorithm 1: Transport strategy for a single robot

while not at goal position around load do
move to next waypoint

end

while entire team not at goal positions around load do
wait

end

if gripper IR sensor measurement > 8 c¢m then
move forward

else
rotate core to target transport direction

rotate gripper back to load
grasp load

end

while entire team not grasping load do
wait

end

lift load

carry load in target transport direction

as the position of a robot that will pull the load backward in the desired direction
of transport. The control computer assigns this position to the robot that is closest
to it. The remaining goal positions are evenly spaced around the load according to
the number of robots in the team. Starting from the first goal position, the control
computer sweeps the image in the counterclockwise direction and assigns the next
detected robot to the next goal position around the load.

The control computer plans each robot’s path as a series of points from its initial
position to the goal position. A waypoint algorithm is used to design robot paths
that circumvent the load, avoiding robot-load collisions. The control computer sends
each robot its next waypoint and acts as a pseudo-GPS, updating the robot’s global
position and orientation at a rate of 3 Hz to correct for errors in the onboard state
estimates described in Section 3.2. When a robot determines that it has reached its
waypoint, it requests the next one from the control computer. If it has reached its

final location around the load, it waits for all robots to communicate to the control
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Figure 3.8. Robot control architecture for collective transport.

computer that they have reached their goal locations.

Load grasping and transport The control computer notifies the robots once
they all have reached their assigned positions around the load. Next, the robots must
orient themselves in the desired direction of transport and grasp the load, as shown in
Figure 3.10. In the Approach phase, each robot drives forward until the reading from
the IR proximity sensor on its gripper drops below 8 cm, indicating that the load is
within its gripper pincers. The robot then records its current orientation and enters
the Core Rotation phase, during which its core module rotates so that its heading
aligns with the direction of transport. If the robot ends up facing the desired direction,

then it will drive forward during transport; if it is facing the opposite direction, then
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Figure 3.9. Goal position assignments for three Pheenos prior to transport in the

direction of the large arrow.

Figure 3.10. Pheeno reorienting itself and grasping the load in preparation for
transport. From left to right: the Approach phase, Core Rotation phase, and Gripper
Rotation phase.

it will drive backward. The robot calculates the angular difference A between its
initial and final headings using its onboard magnetometer, and in the subsequent
Gripper Rotation phase, its gripper rotates an angle —A# back toward the load.

A robot’s onboard camera is used to correct any misalignment of its gripper with
respect to the load due to noise in the magnetometer readings and error in the rotation

of the core and gripper. The Raspberry Pi uses an algorithm similar to the one
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described in Section 3.2 to determine the center of the load, which is colored blue.
Two PI controllers regulate the yaw angle of the gripper and the pitch angle of the
camera to align the center of the thresholded image with the center of the frame.
Once this alignment is achieved and the load is gripped, the robot communicates to
the control computer that it is ready to lift the load and waits for confirmation.
After all robots have communicated they are ready to lift, the control computer
sends them a command to start the transport. At this point, the control computer
no longer serves as a pseudo-GPS or communication hub. The robots simultaneously
lift the load, turn off their yaw servos to allow passive yaw rotation of their grippers,
and drive in the direction of transport while maintaining their headings with a PI
controller that acts on each robot’s magnetometer readings. The robots continue
transporting the load until they exit the arena defined by the overhead cameras’

view.

Transport Results Transport experiments were performed with teams of two and
three robots, with the same transport task repeated five times for each team size.
The initial positions and orientations of the load and robots were chosen using a
random number generator. Figure 3.11 plots the robot trajectories during the path
planning phase of the experiments. The robots follow very similar trajectories during
each trial, demonstrating that they can reliably communicate with a central computer
hub to localize and receive commands. The slight discrepancies in robot paths across
trials are likely due to errors by the control computer in reading the fiducial tags and
variations in each robot’s determination of whether or not it has reached a particular
waypoint along its path. Figure 3.12 plots the load trajectories during the transport
phase of the experiments. For each team size, the load follows approximately the

same trajectory and travels in the desired direction, indicating that the robots are
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Figure 3.11. The individual robot trajectories during the path planning phases
of five transport trials with a team of (left) two robots and (right) three robots.
Trajectories with the same line style correspond to the same robot, and trajectories
with the same color correspond to the same transport trial. Robots begin at the red

stars and move to the black x’s, and the blue circle represents the load.

able to consistently achieve stable transport of the load in a target direction without
communication. Small variations in the initial load position are due to human place-
ment error, and discrepancies in the load trajectories are likely due to noise in the

magnetometer readings of each robot.
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Figure 3.12. The load trajectory during five transport trials with a team of two
(solid lines) and three (dashed lines) robots.
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3.3 Experimental Validation of Novel Control Strategies

Pheeno has also been used to validate other mobile robot controllers developed in

the Autonomous Collective Systems Lab. This section will discuss them briefly.

3.3.1 Confinement Control of Double Integrators using Partially Periodic Leader

Trajectories (Elamvazhuthi et al. [48)])

This work uses an open-loop oscillatory leader strategy to confine a follower or
group of followers. The confinement is done via interaction potentials that are of
gravitational type but repulsive in nature. A system is considered with a single leader

agent, whose position at time ¢ is given by [z;(¢), y:(¢)]T, and N follower agents, whose

T

positions at time ¢ are [z°(t),y'(t)]", i = 1,..., N. The z and y velocity components

of follower agent i at time ¢ are denoted by [v%(t), v} (t)]". The dynamics of the leader

and followers are defined by the following system of equations:

T = Uy (3.1)
yl = Uy
Tt = Ui

) Al — .
U = i (2$ ﬂil) 7 M

(27 —20)? + (y* — w)?]

i =

. Ayt — )

(@ =) + (' =)’ Y

where A, k,a € Rt and ¢ = 1,...,N. This model produces one-way interaction
between the leader and the followers for any non-zero value of A.
This confinement control approach was validated with an experiment in which

Pheeno emulated a follower agent that was confined by a virtual leader. One robot
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was placed in a 1.5 m X 2.1 m arena and marked with a 2D binary identification tag
to allow for real-time position and orientation tracking. The tags were tracked using
one overhead Microsoft LifeCam Studio Webcam with a resolution of 1920 x 1080
pixels at a frame rate of 30 FPS. The 2D binary tags were identified using standard
OpenCV algorithms on a Windows computer.

To accommodate the nonholonomic constraint of the robot platform, the robot
used a PI controller to keep its heading facing away from the virtual leader at all times.
This heading control produces approximate holonomic motion in a differential-drive
platform. To facilitate this motion, the leader’s oscillation frequency was maintained
below the bandwidth of the robots’ motors. A desktop computer updated and trans-
mitted the virtual leader’s position and the robot’s global position to the robot via
WiFi at a frequency of 3 Hz while the robot updated its position onboard at a fre-
quency of 10Hz.

A circular target trajectory was defined, shown in Figure 3.13a, for the robot to
track in the experiment. The trajectory was given by vg(t) = [R, cos(wpt) R,(sinw,t)]?,
where R, = 67 cm and w, = 0.02. The robot was controlled using the parameters
A=RFP ' R, =38cm, k=1, a=4,and w = 2.

The trajectory of the robot during the experiment was compared with the cor-
responding trajectory of a simulated follower agent, indicated by a dark red dot in
Figure 3.13a, that moves under the influence of the same leader agent. Note that
while the robot is nonholonomic, the simulated follower is holonomic. Figure 3.13b
plots the trajectories of the virtual leader, the robot, and the simulated follower agent
during the experiment. The robot was initially placed inside the region of confine-
ment bounded by the leader’s path, and the simulated follower was initialized at the
center of the leader’s orbit. The figure illustrates that the robot was successfully kept

inside the region of confinement for the duration of the experiment.
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Figure 3.13b shows that the trajectory of the robot deviates farther from g
than the trajectory of the simulated follower. This is likely due to the nonlinear
effects of friction on the shafts of the robots’ motors. The motors require a minimum
input voltage to drive the robot’s motion, which can be controlled at speeds above
2 cm/s. These speeds are generated by the repulsive interaction potential in the
robot’s controller when the distance between the robot and the leader is below a
threshold value. Hence, the robot moves away from the leader only when it is within
this distance; otherwise, it is stationary. In contrast, the simulated follower does not
have such a constraint on its speed and will move when the leader is farther away,
causing its trajectory to adhere more closely to vg. Thus, the experiment shows
that when the confinement strategy is implemented in practice, the controller design
must account for unmodeled dynamics in the physical platform by allowing only those

velocity control inputs that exceed an appropriate lower bound.
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Figure 3.13. (a) The robot being herded by a virtual leader along a target trajectory
~vE, shown in green. The blue dot is the virtual leader’s position, the pink dot is the
center of the leader’s orbit, and the dark red dot is the position of a simulated follower
agent. The light blue line on the robot indicates its orientation. (b) Time evolution
of the positions of the leader agent (blue), simulated follower agent (red), and robot
(black) for an experiment with the target trajectory vg (green).
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3.3.2  Decentralized Sliding Mode Control for Autonomous Transport by

Multi-Robot Systems (Farivarnejad et al. [51])

In this work, a sliding mode control law was defined for a fixed group of robots to
transport a payload in a desired direction, @45, at a desired speed, vges. The control

laws for each robot’s heading, ¢, and speed, v, are defined as:

¢ = —kgsgn(s,) (3.2)
and
0 = —kysgn(sy) (3.3)
where,
S¢ = O — Pdes and Sy = U — Uges- (3.4)

A unicycle model transformation was ap-

AN

|y

plied to these controllers to enable their
implementation on the robots.

To validate the control strategies, five
experimental trials of collective trans-

port were conducted with four Pheeno

robots and a rectangular load. The

. Figure 3.14. A zoomed-in screenshot
robots and load were marked with 2D
from the overhead camera that tracked the

binary identification tags to enable real- ]oad and robots during the experiment.
time tracking of their positions and ori-

entations by an overhead camera. The robots were initially placed in the configuration
shown in Figure 3.14. This configuration was chosen to minimize unwanted effects

such as wheel slip and unnecessary stress on the central servo, which controls the
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yaw angle of the manipulator arm about the central axis of the robot. Each robot
updated its state estimate using a basic complementary filter acting on its onboard
encoders, compass, and accelerometer. The controllers Equation 3.2 and Equation 3.3
were implemented on the robots with the parameters set to ky = 0.01, k, = 0.05 and
a sliding mode boundary layer parameter €, = 0.01.

The robots were tasked with transporting the load at a desired velocity of vges = 10
cm/s along the x-axis of the global frame defined by the overhead camera. Each trial
was run for 30 s. Figure 3.15 shows the paths of the load and transporting robots
during a single experiment, and Figure 3.16 plots the average and standard deviation
of the load’s velocity, heading, and trajectory over the five experiments. These plots
show that the sliding mode controllers are fairly successful at achieving the control
objectives. The slight rotation of the load and its deviation from the desired path in
Figure 3.15, as well as the increasing standard deviations in the plots in Figure 3.16,
are due to unavoidable drift in the onboard odometry caused by wheel slip, sensor
noise, and model error, among other factors. Sensor noise can result in discrepancies
in the robots’ velocities, causing the robots to exert torques on each other through

the load, which produces wheel slip and error in the odometry.
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Figure 3.15. The trajectory of the Pheenos and the transported load during one
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the experiment.
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the standard deviation. Top Left: The average velocity of the load during transport.
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3.3.3 A Probabilistic Approach to Feature Identification and Automated
Construction of Topological Maps using a Stochastic Robotic Swarm

(Ramachandran et al. [114, 115])

This work quantifies the number of topological features of an unknown environ-
ment using a swarm of robots with local sensing and limited or no access to global
position information. The robots randomly explore the environment and record a
time series of their estimated position and the covariance matrix associated with this
estimate using an extended Kalman filter (EKF). Tools from topological data anal-
ysis, in particular the concept of persistent homology, are applied to a subset of the
point cloud to construct barcode diagrams, which are used to determine the numbers
of different types of features in the domain. This procedure was used to construct
topological maps to identify collision-free trajectories for robots to navigate through
the environment.

To experimentally validate this procedure beyond simulation, four Pheeno robots
were deployed in an environment with one to three features. These experiments
tested the robustness of the procedure to hard-to-simulate noise and disturbances
in the system that are contributed by wheel slip, sensor noise, and controller action
on non-ideal feedback. The robots were initially placed at random locations in a
1.5 x 2.1 meter rectangular arena that was bounded by wooden walls, as shown in
Figure 3.17. The robots were controlled to move at 10 cm/sec with an avoidance
radius of 10 cm. Whenever a robot detected a feature, wall, or another robot, it
avoided a collision by moving according to a specular reflection from the detected
object and then continued in a straight line. The robots were marked with 2D binary
identification tags to enable real-time tracking of their positions and orientations by

an overhead camera (Microsoft Life Cam, resolution of 1920 x 1080 pixels). A control
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(a) | (b) (©)

Figure 3.17. The experimental arena with four Pheeno robots and (a) one feature,
(b) two features, or (c) three features. At the start of the experiment, the control
computer identifies the robots’ positions and orientations, indicated by the red dots
and cyan lines, from the robots’ 2D binary identification tags. This identification
is done using the thresholding, boxpoint, and contouring OpenCV libraries on a

Windows computer.

computer broadcast each robot’s initial state x = [x,y, ¢]7 over WiFi, where z and
y are the robot’s position coordinates in the arena and ¢ is its heading. Each robot
used an Extended Kalman Filter (EKF) to estimate its state at intervals of 200 ms.
This state was updated according to a kinematic unicycle model and a measurement
state vector, z = [Ad., Ag¢., ¢.|T, where Ad, is the encoders’ measurement of the
linear distance traveled, A¢, is the change in heading angle measured by the encoders,
and ¢, is the orientation of the robot in the global frame measured by the compass.
The state error covariance matrix P, process covariance matrix Q, and measurement
covariance matrix R were initially set to P = diag(0.2,0.2,0.1), Q = diag(2,2,4), and
R = diag(0.1,5,0.4). These matrices were chosen to favor the robot’s measurements
over the kinematic motion model. The initial state estimate covariance was chosen
to reflect errors in tag placement on the robots and camera discretization error. The

EKF was implemented on Pheeno’s Arduino Pro Mini microcontroller (3.3V 8MHz),

while the state data and covariance matrices were stored onboard its Raspberry Pi 2

49



Model B.

Figure 3.18 shows several representations of the robots’ estimated locations during
an experiment with two features. These plots clearly show two distinct regions where
obstacles must lie, since the robots could not drive within those regions. The plots
in Figure 3.19 and Figure 3.20 show that given a sufficiently long deployment time
and a sufficiently large number of robots, the approach produces accurate counts of
the numbers of connected components and features in environments with one, two,
and three features. There is a trade-off between the robots’ deployment time and
the reliability of their position data, since the EKF state estimates will drift due to
the robots’ wheel slip and sensor noise. These factors cause the covariances of the
position estimates to eventually grow larger than the environment and thus yield
no useful information for mapping. This uncertainty can be reduced by correcting
the drift with direct GPS measurements or with estimates of global position using
local measurements of known objects in the environment. From these experiments,
it is evident that larger numbers of robots yield more accurate mapping results,
since there is a higher chance of robots exploring small gaps between features before
the covariances of their position data grow too large to provide useful information.
Finally, Figure 3.21 shows that the procedure is effective at building the topological

map of the experimental arena.
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(a) Contour plot of the probability that each grid (b) Point cloud
cell is free, over all grid cells of the discretized
domain; colorbar values range from 0 to 0.9

Figure 3.18. Experimental results from an environment containing two features.

o1



-
1

—#— One Feature domain
—#— Two Features domain
—#— Three Features domain

~
T

connected components computed

°

53758 67291 80722 94382 108124 121856 13536 149045 162728 176339

Time period of Deployment

—#— One Feature domain
—*— Two Features domain
—#— Three Features domain

Nunber of Features computed  Nymber of

53758 67291 80722 94382 108124 121856 13536 149045 162728 176339

Time period of Deployment

Figure 3.19. Computed numbers of
connected components (top) and features
(bottom) versus swarm deployment time
period T (in seconds) for experiments
with four robots on the domains shown

in Figure 3.17.

25
—#— One Feature domain
——#— Two Features domain
—#— Three Features domain

Number of connected components computed

Number of robots for each 3Deployment

—#— One Feature domain
N ~—#— Two Features domain
—#— Three Features domain

s
05 [ /

Number of robots for each beployment

Number of Features computed

Figure 3.20. Computed numbers of
connected components (top) and fea-
tures (bottom) versus number of deployed
robots N for experiments with 7" = 180

sec on the domains shown in Figure 3.17.

Figure 3.21. Topological map overlaid on the experimental arena with two obstacles.
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3.4 Updates to the Pheeno Design

To take advantage of advances in microelectromechanical systems, microcontroller,
and microprocessor technology and improve Pheeno’s design, updates were made to
the Pheeno core module to increase its capabilities while maintaining the same price
point. The original and updated versions of Pheeno will be referred to as Pheeno
1.0 and Pheeno 2.0, respectively. Although Pheeno 2.0 operates on a different main
processor, the same code will work on both versions of the robot (with some GPIO
pin numbers changed), i.e., they are forward and backward compatible.

Figure 3.22 shows the Pheeno 2.0 core module with an exploded rendering. By
changing the locations of some of the larger electronic components and optimizing
the wire routing, the height of the cylindrical core was shortened to 6.9 cm while
maintaining the 12.7 cm diameter. This reduction in height moved the center of
mass of the platform lower to the ground, making it more stable. The robot is still
mostly composed of 3D-printed parts, which have previously been fabricated from
either Acrylonitrile butadiene styrene (ABS) or Polylactic acid (PLA) plastics. The
top and bottom caps of the core module are now custom-made from laser-cut acrylic
sheets to allow easier access to the increased number of GPIO pins. It is still possible
to use the standard robotic chassis parts sold by Pololu Robotics and Electronics, but
some of these pins would become much harder to access on the new design.

Some other improvements on the original design were also incorporated into this
update. An additional switch was included with an indicator LED to allow the
robot to operate without powering the Raspberry Pi, and to allow the user to see
whether the Raspberry Pi is powered on without having to look inside the robot’s
core module. On many occasions, especially in outreach event settings, the robot has

been operated without requiring the use of the Raspberry Pi. Thus, this switch was
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Figure 3.22. Left: The Pheeno 2.0 robot core module with the ICRA 2016 duckie
[3] for scale. Right: Exploded SolidWorks rendering of the Pheeno 2.0 core module.

added to save power and to avoid damaging the Raspberry Pi when turning off the
robot without properly powering down the Pi. The four LEDs were replaced by a
strip of 8 NeoPixels [32], which use one digital GPIO pin to uniquely address each
LED along the strip. In contrast to the original design, in which all four LEDs could
only display the same commanded color, each of the 8 NeoPixels can be commanded
different colors simultaneously. This capability can be used for an expanded range of
user feedback and visual signals between robots.

The main circuit board of the robot was also updated to increase the capabilities
of the robot. Figure 3.23 shows a top and bottom view of the main circuit board
with the major components labeled. The major changes to the circuit board are
the replacement of the Arduino Pro Mini with a Teensy 3.2 [8] microcontroller, an
upgrade of the Rasperry Pi 2 to the Raspberry Pi 3 microprocessor, the addition
of a second motor control board (H-bridge), and the addition of a new IMU board

that includes an accelerometer, magnetometer, and gyroscope. A summary of the
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Figure 3.23. Top-down view of the (left) top and (right) bottom of the main
Pheeno 2.0 circuit board with the major components numbered. 1) Infrared (IR)
sensor mounts able to interface with any 3-pin JST connector. 2) 3D accelerometer,
magnetometer, and gyroscope. 3) Motor control board (H-Bridge). 4) Teensy 3.2
microprocessor. 5) Power cable for the Raspberry Pi 3. 6) Motor and encoder

connections. 7) Main power cable.

differences can be found in Table 3.2.

The updated microcontroller and microprocessor enable a reduction in the sam-
pling time of control schemes that are run on the robot, since the robot’s sensors can
be sampled at a higher frequency and more complex arithmetic can be performed at
a faster rate. The larger storage capacity of 256K on the Teensy also allows more
complex code like Kalman filters to be run onboard the robot without running out of
memory. There are also 19 more available analog/digital GPIO pins on the Teesny
in Pheeno 2.0 than on the Arduino-Pro Mini in Pheeno 1.0. Four of these pins
are unused by standard sensors and actuators onboard the robot and allow users to
connect additional electronic components to the core module, facilitating expanded

customizability of the platform. The rest of the available pins are used for the ad-
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Microcontroller

Microprocessor

Sensing

Cost

Pheeno 1.0  Arduino Pro Mini (3.3V, 8MHz)

Pheeno 2.0 Teensy 3.2

Clock Speed: 8MHz to 96MHz
Flash Memory: 32K to 256K
RAM: 2K to 64K

GPIO Pins: 20 to 39

Difference

Raspberry Pi 2

Raspberry Pi 3

CPU:

900GHz to 1.2GHz
Architecture:
32-bit to 64-bit
Communication:
Built-in Bluetooth
and WiFi (No need
for USB adaptor)

3D accelerometer, 3D
magnetometer, wheel
encoders, IR, camera

3D accelerometer, 3D
magnetometer, wheel
encoders, IR, camera,
3D gyroscope

3D gyroscope

$270

$260

Comparable

Table 3.2. Differences between the original and updated Pheeno core design.

ditional motor control board. With two motor control boards, up to four motors

with encoder feedback can be controlled at the same time by the robot. This de-

sign allows the integration of holonomic drivetrains, like the one pictured on the left

of Figure 3.24. The use of a holonomic drivetrain enables testing of swarm control

schemes without the added complexity of including nonholonomic motion constraints

or approximating holonomic motion, which is required when the robot has a differ-

ential drivetrain such as the wheeled drivetrain or the tank tread drivetrain shown in

Figure 3.24. All three drivetrains in Figure 3.24 were developed in the Autonomous

Collective Systems Lab.
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Figure 3.24. Three Pheeno 2.0 robot core modules with different drivetrains:

(left) holonomic drivetrain with omnidirectional wheels, (center) differential drive-

train, (right) tank treads.
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Chapter 4

DESIGN OF STOCHASTIC CONTROL STRATEGIES FOR BOUNDARY
COVERAGE

Source: Pavlic et al. [109]

ABSTRACT

This work presents a novel control approach for allocating a robotic swarm among
boundaries. It represents the first step toward developing a methodology for encounter-
based swarm allocation that incorporates rigorously characterized spatial effects in
the system without requiring analytical expressions for encounter rates. The pro-
posed approach utilizes a macroscopic model of the swarm population dynamics to
design stochastic robot control policies that result in target allocations of robots to the
boundaries of regions of different types. The control policies use only local informa-
tion and have provable guarantees on the collective swarm behavior. The relationship
between the stochastic control policies and target allocations are analytically derived
for a scenario in which circular robots avoid collisions with each other, bind to bound-
aries of disk-shaped regions, and command bound robots to unbind. This relationship
is validated in simulation and is shown to be robust to environmental changes, such

as a change in the number or size of robots and disks.

o8



This chapter presents a control framework with the properties in Section 1.1 for
allocating a robotic swarm in target group sizes around the boundaries of disjoint,
stationary disks of different types. This problem is illustrated in Figure 1.1. The
robots have no prior information about the disks and only use local sensing and local
communication, encountering the disks while performing random walks. A top-down
approach is employed to design stochastic robot control policies that produce target
allocations among the disks at steady-state, with probabilistic guarantees on per-
formance. These control policies include an enzyme-inspired behavior, implemented
at the disk boundaries, that greatly reduces the dependence of the strategy on the
robots’ encounter rates with occupied and unoccupied sections of the disk boundaries.
The stochastic robot interactions with boundaries and with other robots are repre-
sented as a well-mixed chemical reaction network (CRN). The resulting collective
behavior follows the prediction of a corresponding macroscopic population model, a
set of ordinary differential equations (ODEs), in expectation.

Agent-based NetLogo [139] simulations of a microscopic model of the strategy con-
firm that the simulated system retains all of the qualitative features of the predictions
of the macroscopic model and is robust to environmental parameter variations. That
is, a single control strategy can be implemented based on the geometric properties
of a single robot and a single disk, and the equilibrium occupancy levels of robots
around disks will be invariant to changes in the total numbers of robots, disks, and
disk types, as well as robust to changes in robot speed (e.g., due to battery decay).
Hence, the control strategy need not be re-tuned if the robots’ environment changes

over time.
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4.1 Robot Controller

It is assumed that each robot has a small sensing and communication radius.
Even when communication is possible, it may be difficult for a robot to identify the
location of the source of a message. Consequently, a control strategy is proposed that
achieves a desired average allocation around each type of disk using only local robot-
robot and robot-disk interactions. The controller for each robot, shown in Figure 4.1,

incorporates:

Robot movement: Robots move according to a correlated random walk (CRW) in
order to achieve approximately uniform distributions throughout empty space.
Each robot moves straight ahead in a short segment and then turns to a random
angle before repeating. If this assumption of spatial homogeneity is violated,
then different regions of space may approach equilibrium at faster rates than
others. However, the limiting average allocations will be robust to inhomogene-

ity of robot density.

Robot-disk interactions: Each robot can identify the type of disk that it encoun-
ters. The robot then chooses to bind to that disk with probability p, that
depends on disk type; otherwise, the robot ignores the encounter and continues

its CRW.

Robot-robot interactions: Upon encountering another robot, a robot can identify
whether it is an unbound robot or a robot that is bound to a disk. If it encoun-
ters an unbound robot, the robot executes a collision avoidance maneuver. If it
encounters a bound robot, the robot chooses to command that robot to unbind
based on a probability p, that depends on the disk type; otherwise, the robot

ignores the encounter and continues its CRW.
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[ Avoid Collision ]

A
Encounter unbound robot

Encounter
Encounter unbound ¥ bound zone
ZoneandR<p, - 2R <P [ Order Bound
5 Search p Robot to
Unboundrobot\____J Detach

sends order to detach

Figure 4.1. Diagram of control flow. Robots randomly cycle through searching
and encountering robots and unbound zones. On encountering those disk regions,
they probabilistically choose to bind to unbound regions or tell bound robots to
unbind. On encountering unbound robots, they avoid collisions. Probabilities can be

implemented with a pseudo-random number R € unif(0, 1).

A behavior in which robots unbind spontaneously at a certain probability rate is
not specified here. Robots either probabilistically choose to bind to encountered
disks or stochastically detach from free robot encounters. If a bound robot is never

encountered by a free robot, it will never unbind from the disk.
4.2 Microscopic Model: Enzymatic Chemical Reaction Network

The robot-disk system described previously resembles a gas made up of species of
free robots and disk zones that are either bound or unbound. For simplicity, only one
disk type is considered here; however, it will be shown how these results naturally
extend to an arbitrary number of disk types. The corresponding well-mixed chemical

reaction network (CRN) for the single-type case is:

r+U 2% B (4.1a)
r+ B2 U4+ 2r (4.1b)
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where 7 represents the free-robot species, B represents bound zones, and U represents

unbound zones. The mass-action rate constants pye, and p,e, include:

e,: The probability per unit time that a single free robot will encounter a single

unbound zone. This encounter rate is an environmental parameter.

ep: The probability per unit time that a single free robot will encounter a single

bound zone. This encounter rate is an environmental parameter.

pp: The probability that a free robot will bind to an unbound zone given that it

has just encountered it. This parameter is under the control of the designer.

pu: The probability that a free robot will command a bound robot to unbind given
that the free robot has just encountered the bound zone. This parameter is

under the control of the designer.

Reverse reactions are necessary to stabilize unique non-trivial equilibria. Without a
reverse reaction, the reaction in Equation 4.1a would cause the system to reach trivial
saturation of bound zones. In other examples in stochastic robotics [74, 101, 16, 18,
94, 15], event-driven forward reactions like Equation 4.1a are accompanied with delay-
driven reverse reactions — robots have a tendency to decay back into earlier behavioral
modes. Instead of implementing the reverse reactions as decay processes, the reverse
direction is implemented with the event-driven enzymatic reaction in Equation 4.1b.
The free robot that encounters the bound zone in Equation 4.1b is not consumed
by the reaction; it is analogous to an enzyme which rapidly increases the decay
rate of bound zones. Since both reactions are event driven, the expected equilibrium
distributions will vary with the ratio e, /e, as opposed to the absolute encounter rates.
In general, the absolute encounter rates e, and e, will change with robot density, total

number of zones, and robot speed (which itself can change over time with battery
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fatigue). However, the ratio e,/e,, and thus the equilibrium distribution, will be

invariant to these changes.
4.3 Macroscopic Model: Concentration Fields of Zones and Robots

From the theory of mass-action kinetics in well-mixed gases, a smooth concentration-
-field approximation of the CRN in Equation 4.1 for large populations is the multi-

affine system
(

7 = puepr B — ppe,rU

U= pueyr B — ppe,rU (4.2)

\ B = ppeurU — pueprB

where r, U, and B represent the number of free robots, unbound zones, and bound
zones, respectively, for a given arena (i.e., concentrations in a fixed volume size).
The system clearly has a continuum of trivial equilibria characterized by r = 0,
which represents the total depletion of free robots. Moreover, because this system
is continuous, the set {r : r > 0} is positively invariant; if the initial concentration
of free robots is positive, then the concentration will remain positive indefinitely.

Thus, assuming non-zero mass-action rate constants, there is an additional equilib-

rium (r,U, B) = (r*,U*, B*) where r* > 0 and

B* €u B* €u s
= Dou or, S = o (4.3)
U* Pu€p B* + U* Doy +pueb p_Z + i

Let By, Uy, and 1y represent the initial number of bound zones, unbound zones,
and free robots, respectively. Noting that U =7+ and B = —7, it must be the case

that B* + U* = By + Uy. Additionally, the system of three differential equations in
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Equation 4.2 can be re-written as a single differential equation

,_/L /_’L
= puerr(Bo — (r = 10)) = pewr (U + (r = o)) (4.4)

= ((Bo + ro)pues — (Us — 10)ppeu)T — (Doeu + pucs)r”

representing the dynamics of the number of free robots. Under the assumption of
non-zero mass-action rate constants, the non-trivial equilibrium at » = r* > 0 is such

that
pueb pbeu
— (Up —10)

r* = (By+r)) ——m— EE—
( )pbeu + Dus Dby + Dubh

So, by Equation 4.3 and because B* + U* = By + Uy,

B* B*

“— (B 11— ) — Uy — )~
r (0+7’0)( Bo+Uo> (Uo TO)BO+UO

which is positive and asymptotically stable so long as By + rq > B*. That is, so long
as the total number of free and bound robots rq + By is larger than the predicted
equilibrium number of bound robots B*, the (r*, U*, B*) equilibrium will be asymp-
totically stable with r* > 0. In other words, from Equation 4.3 and the condition that
By + rg > B*, the system in Equation 4.1 has an asymptotically stable equilibrium

described by

(r*, B*,U") if o+ By > B,
(T7 Ba U) = (45)

(0,Uy — ro, Bo +19) otherwise.

So the system is driven by the imbalance between fluxes to and from bound and
unbound zones; it comes to rest when enough free robots are converted into bound

zones to restore flux balance or when the pool of free robots is totally depleted.
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4.3.1 High-Population Linear Approximation

Due to its quadratic structure, Equation 4.4 can be solved explicitly. For any
t >0,
70
To + (T’* - TO) exp(_T*(pbeu + pu€b>t),

r(t) =r"

*

which, for ry > 0, is essentially constant. That is, r(t) =~ r* =~ ro for rqg > 0.
Consequently, for ry > 0, the multi-affine system in Equation 4.2 that approximates

the bimolecular CRN in Equation 4.1 can be viewed as the linear system

U = puebTOB - pbeuroU U PbEuTo B
that models the unimolecular (4.6)
B = pruT’oU - puebroB B Pu€pTo U

In this ¢ > 0 regime, the number of free robots scales the per-zone encounter rates.
Moreover, although the linear system in Equation 4.6 has an equilibrium in Equa-

tion 4.3 that is independent of ry, the time constant of the system is

1
(pbeu + pueb)TO .

(4.7)

Thus, increasing r( increases the total speed of the system but has no impact on the

equilibrium allocation of robots to disks.
4.3.2 Multiple Disk Types: Decoupled Analysis and Control

For any number of zones, there is some sufficiently large initial number of free
robots 7y that satisfies the condition that By + rg > B* and thus guarantees the
stability of a non-trivial equilibrium zone concentration described by Equation 4.3,
which is invariant to changes in ry5. So if the pool of free robots is sufficiently large,

the equilibrium analysis of a system with multiple disk types can be performed inde-
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pendently for each disk type.

For example, if there are n disk types and the number of free robots ry is initially
greater than the total number of unbound zones across all disk types, then the con-
centration of bound zones B* and unbound zones U’ on disk type i € {1,2,...,n} at
equilibrium is such that B*/U" = (¢! /ei)(p}/p’,) where €, pi, ei and p!, are the en-
counter rates and reaction probabilities specialized for type i. That is, the equilibrium
analysis for any type is decoupled from the analysis of any other type.

Although the multiple types have a coupled effect on convergence rate and tran-
sient dynamics in general, the equilibrium allocations can be predicted in isolation.
So for the remainder of this chapter, a sufficiently large pool of robots is assumed to
meet subjective convergence time constraints for an arbitrary number of disk types.
Moreover, only design for a single disk type will be explicitly discussed; it is implied

that the process is identical for multiple coexisting types.
4.3.3 Corrections for Spatial Effects on Boundaries

In principle, robots can be organized around a disk to reach 100% allocation
(B/(B +U) = 1). However, in practice, it is likely that two robots interacting
stochastically with a disk will bind with non-zero inter-robot space between them that
is nevertheless too small for another robot to encounter. So although the amount of
unbound space on a disk may be large, the actual number of unbound zones available
for additional binding may be small. Thus, the maximum value of B/(B+ U) will be
less than unity; even a (py, pu) = (1,0) policy will saturate with free space remaining
on disks. Moreover, even well before saturation, some amount of free space will be
inaccessible for free robots to bind to because it will be too close to existing bound
robots. Thus, a theory is needed to model the nonlinear reduction in remaining

unbound space as robots bind to disks.
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In the following, assume that all linear distances are given in units of the arc
length occupied by a robot when bound to a disk. That is, each robot binds to 1
unit of arc length, and so the theoretical maximum number of robots bound to a disk
is equal to the disk’s circumference. However, because robots are not equipped with
the ability to cluster together, the actual maximum number of bound robots will be

much lower. Consider:

e A disk with a single robot bound to it. An incoming unbound robot will not
be able to discover disk space adjacent to a bound robot unless its center is
at least 0.5 units away from the edge of the bound robot. So the bound robot
effectively occupies both its own 1 unit of arc space plus an additional 1 unit of
arc length adjacent to it. Additionally, if the incoming unbound robot maintains
a distance a between itself and every other robot (to avoid collisions), then the
additional space occupied by the bound robot increases to dpmax = 1 + 2a units
because there are 0.5 + a units of additional occupation on both sides of the

bound robot.

e A disk with many robots bound to it. If two robots have less than 1 + 2a
unbound arc length between them, an incoming unbound robot will not be
able to discover it. However, these small distances can be no smaller than the

. . A
avoidance distance i, = a.

With this in mind, the space between robots is partitioned into sections no longer
than dmax = 1+ 2a, as shown in Figure 4.2. The quantity ¢ is defined to be the mean
size of the partitioned inter-robot spaces. Thus, although truncation of an inter-robot

space that is only slightly larger than 1 4 2a can create a truncated space smaller
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Figure 4.2. Partitioning of space between robots. Here, four robots are shown
connected to a single disk. Each robot with its corresponding disk sector, shown with
a “B”, constitutes a bound zone. The four spaces between each pair of robots have
been partitioned into smaller spaces no larger than .« = 1 + 2a, which represents
the maximum additional arc length that a bound robot can interfere with due to

spatial effects.

than a, the mean ¢§ is bounded above and below such that

5min:a < d < 1+2a:5max-

The statistic § is actually a function 6 : [0,1] — [a, 1 + 2a] that maps an allocation
ratio B/(U + B) to the mean additional arc occupancy per bound zone §(B/(U + B)),
which is abbreviated to d here for convenience. At low allocation ratios, 0 ~ 1 + 2a
because the space between bound robots is large. Consequently, there will be more
encounters with bound zones and fewer encounters with unbound zones than otherwise

expected. Similarly, at high allocation ratios, § &~ a. So although bound zones are
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still magnified, this magnification decreases with added allocation ratio.

To model the effective increase in B by § B and the corresponding effective decrease
in U by dB, the substitutions B* — (14 0)B* and U* — U* — § B* are applied to the
equilibrium condition in Equation 4.3. Consequently, the actual (B*, U*) equilibrium

will be such that

Correction factor

“1+0) B
€uPb
Fo) = _ 4.8
1-— 5% U~ EpPu, ( )

where the overbraced expression is a correction factor for the spatial effects in a
physical robot scenario. For comparison, the corrected allocation can be related to

the idealized allocation by

Idealized allocation

B*
B = _ o 1 . (4.9)
U+ B (U —=0B)+(1+0)B" Tb+1 1+0 B2

where the overbraced expression matches the idealized allocation ratio in Equa-
tion 4.3. So the ideal and actual allocations are predicted to be related by a 1/(14 )
gain. For low allocations, this gain will be 1/(1 + 2a); for high allocations, this gain

will be determined by the saturated value of § > d,,;, = a.
4.4 Shape of § Function

An important future direction is to develop theory to predict the precise shape
of the ¢ function. However, as discussed later, simulations suggest that ¢ is only
determined by the value of a. Moreover, ¢ appears to be a cosine of the form §(r) =
Acos(2m(r/T) + ¢) that pierces 6(0) ~ 1+ 2a and §(1/(1 + a)) = a subject to the

constraints A > (1+4+a)/2, T >2/(1+a), and ¢ > 0.
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4.5 Control of Equilibrium Allocations

From the equilibrium described by Equation 4.8, a (py, p,) control policy can be

synthesized using the rule
B* (149

p_eB (1+9) (4.10)

Pu e U*1—90

&
where B*/U* is the desired bound-unbound allocation ratio of zones at equilibrium.
Equivalently, if the desired robot-to-boundary-space allocation ratio is B* /(B*+U*),
then (py, p,,) should chosen according to Equation 4.9. Thus, for any given allocation
ratio, there is a continuum of (py, p,) pairs that will achieve the desired equilibrium.
The control policy in Equation 4.10 has one degree of freedom over which some
feature of the system can be optimized. For example, by Equation 4.7, the conver-
gence rate of the system can be maximized by making the sum p, + p, as large as
possible. So, for fastest convergence for to a desired allocation (B*,U*), p, and p,
can be chosen so that
| (ﬁﬁiiﬁﬂ—1> if e,B*(1+6) < e U*(1 — §B*/U"),

ew U* 1=0B*JU*>
(Pbs Pu) = (4.11)

ey U* 1-6B* /U* .
1, Pl W > otherwise.

However, optimization criteria other than maximal convergence rate may suggest
other choices of (py, p,). For example, there will be fewer temporal variations in the
number of robots bound to each disk if p, + p, is reduced. Similarly, the variance in
allocation across disks may be reduced for certain (py, p,) combinations. Furthermore,
if the e, /e, ratio can be artificially shifted (by asymmetrically changing the relative
distance that sensors react to bound and unbound zones) or the avoidance distance a
changed, it is possible to shift the p;,/p, control policy for a desired B*/U* allocation

ratio. Thus, there are mechanisms that can further adjust the p, + p, sum without
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changing the equilibrium allocation ratio.
4.6 Model Validation in Simulation

To test the macroscopic model of stochastic allocation to circular boundaries,
simulation trials were conducted using NetLogo [139]. The framework allowed for
simulating hundreds of mobile robots randomly interacting with each other and with

disks of different types.
4.6.1 Variations due to Encounter-rate Ratio

For many robot motion behaviors, the encounter-rate ratio e;,/e, may be approx-
imated, for example, by dividing the sum of the areas of a robot and an unbound
zone sector by the area of an unbound zone sector alone, where zone sectors are slices
of each disk with arcs that are the length of the interaction region with the robot.
In general, it can be estimated from equilibrium allocation data. If, for example, it
is incorrectly assumed that the e,/e, ratio is unity, the equilibrium allocation will
shift in a predictable way based on the correct e,/e, ratio, as shown in Figure 4.3.
Consequently, if the e, /e, ratio is not well known, it can be estimated by measuring
this curve during system testing. Inferring this encounter-rate ratio is empirically
much simpler than inferring the actual encounter rates. Also shown in Figure 4.3 is
the effect of the inter-robot space §(1.0) being both non-zero and yet smaller than
required to fit any additional robots. Thus, disks saturate at a level less than full
occupancy.

To validate these predictions, trials were conducted using 500 simulated mobile
robots moving along correlated random walks in a space with 6 disks with circum-
ference capacity for 28.27 robots per disk. By increasing the so-called turning angle

of the CRW, the robot motion became less directional and more Brownian. Conse-
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Figure 4.3. Effect of encounter ratio. For each e,/e, ratio, a plot comparing the
idealized allocation ratio to the actual allocation ratio is shown according to Equa-
tion 4.9. Here, 6(r) = cos(2m(r/4.6) + 0.2), which is consistent with an a = 0 case.
Allocations saturate near an actual ratio of 0.75 because the mean slack space §(1) is

both non-zero and too small to accommodate additional binding.

quently, robots with higher turning angle are more likely to re-encounter a disk and
re-bind immediately after choosing to unbind. This decrease in unbinding efficacy
decreases the effective ¢, /e, ratio, as shown in Figure 4.4 which matches Figure 4.3

for different e, /e, ratios.
4.6.2 FEstimation of 6 Function

The ¢ function used in Figure 4.3 is based on an avoidance range of @ = 0 and a

circumference of 28.27 robots. As shown in Figure 4.5, this function fits mean data

72



Actual B/(U+B) Allocation

T T T
Allocation Ratio Data

T T T
Allocation Ratio Data

ool 7 Mean Allocation Ratios . | ool T Mean Allocation Ratios ,
“|] ==+ Unity-Gain Relationship ’ “|] ==+ Unity-Gain Relationship ’
Allocation Ratio Predicted from /-’ Allocation Ratio Predicted from /-’
0.8 _ _ _ Sampled Mean Unbound Space a 4 0.8 _ _ _ Sampled Mean Unbound Space s

e
3

o
)

nd
o

o
~

o
w

0.2

0.1

(e,/e,=0.90,R® =098 R’ =100) -

data mean s

Actual B/(U+B) Allocation

e
3

o
)

nd
o

o
~

o
w

0.2

0.1

(e,/e,=0.29,R% =097,R> =099)

data mean s

on

01 02 03 04 05 06 07 08 0.9
Idealized B/(U+B) Allocation for eb/eu=l and No Spatial Effects

(b) High CRW turning angle (ep/e,, ~ 0.29)

01 02 03 04 05 06 07 08 0.9
Idealized B/(U+B) Allocation for eb/eu=l and No Spatial Effects

(a) Low CRW turning angle (ep/e, = 0.9)

Figure 4.4. Effect of encounter ratio in simulation. For each e;,/e, ratio, a plot
comparing the idealized allocation ratio to the actual allocation ratio is shown ac-
cording to Equation 4.9. The particular e,/e, ratios corresponding to the two motion
primitives (low and high turning angle) were fit to the observed data. Additionally,
d(r) = cos(2mr/4.6 + 0.2), which is consistent with predictions from an a = 0 case
with a disk circumference of 28.27 robot widths. Allocations saturate near an actual
ratio of 0.75 because the mean slack space 0(1) is both non-zero and too small to
accommodate additional binding. The slight deviations from prediction in (b) can be
improved with better understanding of the derivation of the ¢ function. Small dots
show outcomes of individual simulation runs. Open circles show means across ten
trials of each allocation ratio. Error bars show £1 standard error of the mean (SEM).
Each trial uses 500 simulated robots and 6 disks.

from simulated scenarios regardless of CRW parameters and effective encounter-rate
ratio. The empty-occupancy §(0) < 1+ 2a because the circumference does not divide
evenly by 1+ 2a. That is, the partitioned space of the empty disk includes a residual

sub-unity partition, and so the mean across those partitions is less than 1.
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Figure 4.5. Simulated effect of encounter ratio on §. The single § function from
Figure 4.3 accurately predicts mean inter-robot space across different encounter ratios
and motion primitives. Each small dot shows a result from an individual simulation
run. Open circles show means for different allocations. Error bars show SEM. Ten

trials were run per allocation ratio.

4.6.3 Robustness to Environmental Variations

Empirical studies show that the relationship between idealized and actual allo-
cation is not sensitive to environmental variations. For example, Figure 4.6 shows
statistics taken from simulation runs with several combinations of robot population,
robot size, number of disks, and disk size. As shown, varying the size and number of
disks and robots does not change the actual allocation ratio. A single control strategy

leads to the same equilibrium allocation ratio in every case.
4.6.4 Robustness to Multiple Disk Types

In Section 4.3.2, it was argued that binding and unbinding probabilities for each

disk type can be designed in isolation so long as the pool of robots is sufficiently large.
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Figure 4.6. Effect of varying environmental parameters. Ten trials were generated
for each disk size, and the average across the trials are shown with error bars indicating
+1 standard error of the mean. A dashed line of unity slope is shown for reference.
The solid line represents the predicted curve based on the avoidance distance a, which

is non-zero for these cases.

This characteristic is confirmed in Figure 4.7, which shows results from simulations
that each generate 500 robots in arenas with varying numbers of disks of different
sizes and target allocation ratios. As predicted, the equilibrium allocation for either
disk type is independent of the presence of other disk types with different sizes and

different target allocation ratios.
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(b) Small-disk allocations

1

Ten trials were generated for each

experimental treatment (number of big, number of small disks, big allocation ratio,
and small allocation ratio); the big-disk type is twice as large as the small-disk type.
The averages shown for each big-disk allocation are taken across the pool of 110
trials that include all eleven small-disk allocation ratios for the corresponding big-
disk allocation ratio and big—small mixture. Error bars show +1 standard error of
the mean. Linear interpolation lines are shown for clarity. A dashed line of unity

slope is shown for reference.

4.6.5 Effects Due to Interactions Between Free Robots

When robots can obstruct the path of other robots, there is an opportunity for
repeated disk encounters because of the inability of recently unbound robots to escape.
To investigate this effect, simulations were run of collision-avoiding robots that would
ignore encounters with a disk after unbinding from it until either a new disk was
encountered or a programmed time delay had elapsed. Figure 4.8 displays plots of
expected-vs-actual allocations for different values of time delay. For low delay values,

recently unbound robots are likely to re-encounter the same disk after taking evasive
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Figure 4.8. Effect of varying the delay before a recently unbound robot is allowed
to rebind to the same disk. Each data point is an average over 30 simulation runs at
the corresponding set of delay parameters shown in the legend; error bars show +1
standard error of the mean. Arbitrary smoothing splines have been added for clarity.

A dashed line of unity slope is shown for reference.

maneuvers to avoid collisions with surrounding free robots. Consequently, at low
delay values, the encounter rate with unbound space is effectively increased and the
expected-vs-actual curve shifts upward as in the low e,/e, cases in Figure 4.3. With
higher delay values, recently unbound robots are more likely to escape into free space
where their encounters with disks will be randomized. Consequently, increased re-
-binding delay leads to curves that approach the idealized boundary-avoidance-only
case in Figure 4.4a.

Free-space collision-avoidance behavior does not reduce the environmental robust-
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Figure 4.9. Effect of varying environmental parameters. Each data point is an
average over 30 simulations runs at the corresponding set of parameter choices shown
in the legend; error bars show +1 standard error of the mean. Arbitrary smoothing

splines have been added for clarity. A dashed line of unity slope is shown for reference.

ness that was shown in Section 4.6.3 and 4.6.4 for the idealized boundary-avoidance-
only case. Figure 4.9 displays plots of expected-vs-actual allocations for a time delay
of 0 s with four random combinations of feasible environmental parameter values,
both controllable (robot number and speed) and uncontrollable (number and size
of disks). The proximity of the curves show that the relationship between actual
and target allocation is invariant to these parameter changes. Hence, they provide a

robust guideline for specifying stochastic policies that lead to a desired allocation.
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Chapter 5

DESIGN OF STOCHASTIC CONTROL STRATEGIES FOR COLLECTIVE
PAYLOAD TRANSPORT

Source: Wilson et al. [141]
ABSTRACT

This work presents an approach to designing decentralized robot control policies that
mimic certain microscopic and macroscopic behaviors of ants performing collective
transport tasks. In prior work, a stochastic hybrid system (SHS) model was used
to characterize the observed team dynamics of ant group retrieval of a rigid load.
Macroscopic population dynamic models have also previously been used to design
enzyme-inspired stochastic control policies that allocate a robotic swarm around mul-
tiple boundaries in a way that is robust to environmental variations. This approach
builds on this prior work to synthesize stochastic robot attachment—-detachment poli-
cies for tasks in which a robotic swarm must achieve non-uniform spatial distributions
around multiple loads and transport them at a constant velocity. Three methods are
presented for designing robot control policies that replicate the steady-state distribu-
tions, transient dynamics, and fluxes between states that have been observed in ant
populations during group retrieval. The equilibrium population matching method
can be used to achieve a desired transport team composition as quickly as possible;
the transient matching method can control the transient population dynamics of the
team while driving it to the desired composition; and the rate matching method reg-
ulates the rates at which robots join and leave a load during transport. The model

predictions are validated in an agent-based simulation to verify that each controller
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design method produces successful transport of a load at a regulated velocity. The

advantages and disadvantages of each method are compared.
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In this chapter, the boundary coverage algorithm presented in Chapter 4 is ex-
tended to a collective transport scenario. It addresses the ant-inspired cooperative
transport problem summarized in Figure 5.1. The problem is to design stochastic
control policies for individual robots that, when implemented on a sufficiently large
swarm, will produce desired allocations of robots around each load and maintain

those team sizes while the load is being carried toward its destination. In the work

Q Detached|

tY AN B s
® ® ([
@ . . : %Detached

(a) Multi-robot transport arena. (b) Top view of ant transport team.

Figure 5.1. Multi-robot and multi-ant collective transport scenarios. In (a), an
arena is depicted with five loads surrounded by a swarm of robots, including some
that have attached to the loads and some that are moving freely between the loads.
The three large loads are of type 1, and the two smaller loads are of type 2. Although
the size of a load may not be observable by an individual robot, the load type is
assumed to be measurable (by the color of the load or its surface texture). The loads
are divided into a Back (left) half and a Front (right) half. Based on the type of
the object, a certain number of robots is desired on each of the two halves. Robots
bound to the Back (left) halves of the loads are shown in yellow, robots bound to the
Front (right) halves are shown in purple, and the freely moving Detached robots are
shown in green. This scenario is based on the observations of ants in (b) from [78].
There, the circular load is moving to the right, and ants are characterized as grasping
the Back (left) or Front (right) of the load; otherwise, they are Detached ants.
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presented in Chapter 4, robot attachment-detachment strategies were designed for
allocating target-sized populations that are uniformly randomly distributed around
regions at equilibrium. Here, that approach is extended to achieve non-uniform distri-
butions of robots around loads. In particular, it is desired to match the observations
of [78] that more ants accumulate on the leading side of a transported object and
appear to interact differently with the load based on their attachment position with
respect to the direction of motion. Since this is a stochastic allocation strategy, the
equilibrium distributions will be dynamic: there will be continual fluctuations above
and below the desired allocation levels, but the mean allocations will converge to
these levels. Moreover, as long as there are enough robots available to reach the
desired allocation levels on the loads, but not so many that robot crowding impedes
individual robot motion and load transport, the equilibrium mean allocation levels

will be insensitive to the size of the swarm and the density of robots in the arena.
5.1 Robot Controller Architecture

The robot controller design is illustrated by the state-transition diagram in Fig-
ure 5.2. As was discussed previously for the application of boundary coverage, the
catalytic detachment process allows allocation policies for multiple load types to be
decoupled. Consequently, without loss of generality, only one type of load is consid-
ered here, which is define as disk-shaped. Although there is only one type of load,
there are two types of subregions: the leading (Front) and trailing (Back) sides of
the load with respect to its transport direction (Figure 5.1b). An unbound zone is
defined as a load sector with an arc length equal to the linear distance that a robot
can occupy along the load perimeter. A bound zone is comprised of a robot attached
to the load along with the adjacent load sector.

Matching the description of the ant behaviors presented in [78], robots switch
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between Front, Back, and Detached states. Each robot is initially Detached and
executes a correlated random walk (CRW) in order for the population to disperse
approximately uniformly throughout the arena. In a CRW, robots iterate through
short straight paths that are each punctuated by a turn to a random angle. However,
other motion patterns that achieve similar dispersal are also valid choices. When a
Detached robot encounters another robot, it executes maneuvers to avoid a collision.
Alternatively, when a Detached robot encounters an unbound zone on the Front (or
Back) of a load, it attaches with probability pyr (or pyg). If a robot is attached to
the Front (or Back) of a load and encounters a Detached robot nearby, the attached
robot will detach with probability p,r (or p,g). In the absence of encounters, an
attached robot will never detach from a load. In summary, the four parameters that

characterize the attachment-detachment policy of each robot are:

e pyr, the probability to attach (bind) to an encountered unbound zone on the

Front of a load

e p,r, the probability to detach (unbind) from a zone on the Front of a load after

encountering a Detached robot

e pyp, the probability to attach (bind) to an encountered unbound zone on the

Back of a load

e p,p, the probability to detach (unbind) from a zone on the Back of a load after

encountering a Detached robot

Once attached to a load, a robot lifts with a small force F,. A Front robot will
additionally pull in the desired direction with a time-varying force described by the
control law K (v¢ — v (t)), where K is a proportional gain, v{ is a set point for the

load velocity, and vy (t) is the measured load velocity at time ¢. Thus, robots have
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Figure 5.2. State-transition diagram of robot controller for collective transport.
The diagram outlines a program that would run on a single robot. The states shown
as circles represent Detached robots that are unbound and free to move. The state
shown as a rectangle represents either Front or Back robots that are attached to
the leading or trailing edge of a load with respect to its motion and executing a
side-specific transport behavior (Front robots lift and pull, and Back robots only
lift). The Detached robots execute a space-filling random motion primitive, such
as a correlated random walk, and avoid obstacles as necessary. The robots employ
a simple obstacle-avoidance algorithm: if a robot senses an object that it will not
attach to, then it chooses another direction until it does not sense any interference.
The subscript S € {F, B} represents the identified side of the load, Front or Back.

three additional parameters that characterize the transport of the load:
e [}, the lifting force exerted by a robot that is attached to a load
e v¢, the desired velocity of the load

e K, the proportionality constant between the pulling force of a robot attached

to the Front of a load and the error between the load velocity and v¢
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5.2 Load Dynamical Model

As done in [78], the load dynamics are formulated using a double-integrator model
that describes the relationship between the time-varying force inputs applied by the

robots and the load acceleration. The model is fully characterized by two parameters:
e my, the mass of the load
e i, the kinetic coefficient of linear sliding friction

To prevent robots from switching directly between the Back to Front states due to
load reorientation, it is assumed that rotational friction is sufficiently high to prevent
load rotation. Even with the possibility of rotation, theoretical models of fixed teams
of robots [119] show that rotation is only transient. Moreover, observational evidence
of ants and simulated ant models [17, 78] show very little load rotation once smooth
persistent load transport has begun. Thus, between attachment and detachment
events, the time evolution of the load position x;, and load velocity vy, is modeled as
linear translational motion:

Zt‘L:UL

(5.1)
mpip =npK ) —vy) — p(mrg — (nr +np) Fr)

where ng denotes the number of Front robots and np denotes the number of Back

robots.

5.3 Robot Controller Design for Mimicking Ant Behaviors during Collective

Transport

In previous experimental work with N. cockerelli [78], data was obtained on the

mean transport team dynamics and fit to a stochastic hybrid system (SHS) model in
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which ants switch between Back, Front, and Detached states at constant rates that
signify probabilities per unit time. The state-transition system parameterized by these
rates is a Markov process on a fully connected graph. Thus, the time evolution of the
states is described by a third-order linear time-invariant (LTT) system, which consists
of three coupled linear ordinary differential equations with constant coefficients. The
system converges at an exponential rate to the following mean numbers of Front and

Back ants at equilibrium:

[Front]* ~ 5.78 ants and [Back|* ~ 3.54 ants with time constant 7 ~ 52.08s.
(5.2)
From this data, three controller design methods are created for swarm-robotic mimicry
of different aspects of the collective transport behavior exhibited by the ants. In Sec-
tion 5.3.1, the equilibrium population matching method (EPMM) is described, which
reproduces the average steady-state Front and Back populations from the ant data in
the multi-robot scenario but does not necessarily reproduce the transient population
dynamics. Section 5.3.3 introduces the transient matching method (TMM), which
shows how the transient population dynamics can also be controlled when the aver-
age distributions of environmental features around the swarm do not change. Finally,
Section 5.3.4 describes the rate matching method (RMM), which reproduces the ant
Back- Front transition rates rather than the equilibrium allocations or system conver-
gence rate. Results are provided in Section 5.4.2 that compare the outcomes of using
these different methods.
In the EPMM, a control policy can be designed using predicted or experimentally
determined values of the ratios of encounter rates, as opposed to the absolute values
of these rates. These ratios will be invariant to changes in parameters such as robot

density or speed, and so the equilibrium population distributions around loads will
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also be invariant to such changes. However, the transient dynamics of the system
will be sensitive to changes in the absolute encounter rates. Thus, in both the TMM
and RMM, the absolute encounter rates will need to be estimated in order to control
the transient dynamics. Toward this end, Section 5.3.2 demonstrates how the EPMM

can be used as a tool for inferring the encounter rates.
5.3.1 Equilibrium Population Matching Method (EPMM)

Here, a modeling and control approach is outlined that simplifies the design of
the attachment-detachment probabilities discussed in Chapter 4, so that it is possible
to guarantee that the mean Front and Back robot populations match those observed
in the ant data. Adapting the work described in Chapter 4, the Detached-Front
robot transitions and the Detached-Back robot transitions are modeled as two parallel
chemical reaction networks (CRNs). The species in the CRNs are defined as r, a free
(Detached) robot; Ur (Ug), an unbound zone on the Front (Back) side of a load,;
and Br (Bg), a bound zone on the Front (Back) side of a load. Here, e,r (e,5) are
defined as the mean per-robot rate of encounters between a single free robot and a
single unbound zone on the Front (Back) side of a load, and eyr (epp) are defined as
the mean per-robot rate of encounters between a single free robot and a robot that
is attached to the Front (Back) side of a load. A reaction 7 4+ Up 25 By signifies

the following:

e The notation r + Up represents the event of a free robot r encountering an

unbound zone Ur on the Front side of a load.

. PbFeuF
e The notation —— B represents how often such encounter events occur and

result in the free robot r binding to the unbound zone Up to produce a new

bound zone Bp.
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The full CRN model is given by:

PoFe€uFr PvBEuB

r+Up — Bp r+ Up — Bp
and : (5.3)
o+ Bp DT [ 4 o 7+ Bp ZE28 Up + 2r
Frm;t, side Bac?crside

Strictly speaking, the Front and Back CRNs are coupled by the shared pool of free
robot (r) reactants. However, for catalytic allocation to multiple task types, the
equilibrium population for each type can be determined independently so long as there
are more total robots than required for the desired equilibrium allocation as shown
in Section 4.3. So in this application, the equilibrium Front and Back populations
are independent of each other so long as there are more total robots than the desired
number of attached robots. Consequently, Front and Back control strategies can be
designed independently. The desired mean equilibrium quantities of unbound zones
and bound zones on side S € {F, B} are denoted as U and BY, respectively, and
define the target allocation ratio as By, /(Uj+Bj). For example, if the Front boundary
of every load is desired to be half covered with robots, then Uy = B} and the target
allocation ratio is 0.5.

Due to the fact that the loads considered have a continuum of unbound zones
(robots can attach anywhere on the loads), two attached robots on a load can have
too little room between them to allow another robot to connect. This leads to a
macro-scale model complication in which the presence of a unit of unbound space
in the system does not necessarily imply that there is space available for further
robot attachment. Consequently, the equilibrium of the well-mixed CRN model in
Equation 5.3 must be appropriately adjusted to account for this non-well-mixed effect

in the same fashion as described in Section 4.3.3. The relationship between the control
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pair (pps, pus) and the target equilibrium bound-to-unbound zone ratio B /Uj is:

14 of B3 B3
Pos _ +—ge‘i 5 with 85 £ 5 (—5> (5.4a)
Pus 11— 6572 €us Us Us + By
S
where the function dg : [0, 1] — [0, 1] is given by
ds(r) = Acos (27TL + c> (5.4b)
Ts

and the parameter Tg is the largest value that ensures that dg(y) = (1 — )/ for
the parking constant v ~ 0.7476 [53, 127]. The value of d5(r) represents the mean
length of the unbound zones along sides S as a function of the target allocation ratio.
The extremes of this function are ds(1) = 0 and 0s(0) = Lg/[Ls| ~ 1. The quantity
[Ls] represents the total number of unbound zones, including the slack zone, on an
empty side S. Thus, Lg/[Ls| & 1 is the average length of an unbound zone on an
empty load. The parameter Ts is fixed by the value of Lg/[Lg] and can be solved
for during the design process. In general, Ts € [4.1,4.77], which can be verified by
solving for Tg over a range of Lg € [1,00). When robots are very small relative to
the load (i.e, Lg ~ 00), then T = 4.76.

Equation 5.4 constitutes a control law that maps the target bound-to-unbound
zone ratio, B /U¢, to the ratio of probabilities, pps/pus, which can be set by the con-
trol designer. Equivalently, Equation 5.4 maps the target allocation ratio, BS/(U& +
BY), to the ratio pys/(pus + prs), which will be referred to as the control factor. Each
control factor has an extra degree of freedom that can be used for optimization. For
the EPMM, p,s = 1 is chosen for control factors less than 0.5 and p,s = 1 otherwise.
This enforces a one-to-one mapping between control factors and (pyg, pus) pairs.

The relationship between control factors and allocation ratios is plotted in Fig-
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ure 4.3. The figure shows that for a given encounter rate ratio e,s/e,s, this relation-
ship is described by a monotonically increasing curve that is anchored by zero on the
left and the parking constant on the right. If it is easier for a robot to detect a bound
zone than an unbound zone (due to the extra size that a bound robot adds to an
unbound zone), then allocations will be lower for the same control factor due to the
increased frequency of robot-catalyzed unbinding. Conversely, if unbound zones are
easier to detect than bound zones (because the motion primitive of recently unbound
robots makes it very likely that they immediately re-encounter unbound zones), then
the allocations will be higher for the same control factor. Hence, the relationship in
Figure 4.3 is governed by the motion and sensing characteristics of the robots and not
by environmental parameters that can change over time, including the robot density
and the number and sizes of loads. The encounter rate ratio can be estimated in two

ways:

e If robots detaching from a load are no more likely to re-encounter that load than
other robots in the nearby vicinity, then the ratio eyg/e,s may be estimated as
the ratio of the area of a bound zone to the area of an unbound zone. That is,

for sides S that are shaped like half-circles,

TR?
ebSN_2M +A_1+2AM (55)
e -~ mR? o TR2’ ’
uS BYVi

where R is the radius of the load, A is the area of a circular robot, and M is the
length of a side after normalizing to the arc length occupied by a single robot.
However, it is often the case that robots that have recently detached from a
load will have a higher encounter rate with unbound zones than robots that are
randomly searching. Under these circumstances, estimation of the ratio eys/e,s

would require the method described below.

90



e An empirical estimate of e,5/e,5 can be fit to a sampled version of Figure 4.3
that consists of data from robot simulations or experimental trials in which the
control factor is varied. For example, Figure 5.3 shows the actual allocation
ratio of a side S over time for (pps, pus) = (1,0.11). The data were generated in
NetLogo from simulations of 300 robots in an arena with three loads. The solid
line plots the allocation ratio of the side over time during one trial. The asterisks
show the mean allocation ratio across 10 trials, with bars showing one standard
error of the mean. The mean converges to the allocation ratio B%/(Ug + BY)
corresponding to the control factor pys/(pus + pps) = 1/1.11 = 0.90. In this
particular case, the control factor 0.90 results in an equilibrium allocation ratio
of 0.4. In Figure 4.3, the pair (0.90, 0.4) lies on the curve for e,g/e,s ~ 4. This
process can be repeated for additional control factors to gain more confidence

in the e,g/e,5 estimate.

5.3.2 Using the EPMM to Estimate Absolute Encounter Rates

As discussed at the beginning of Section 5.3, the TMM and RMM approaches
described in Section 5.3.3 and 5.3.4 require the estimation of absolute encounter
rates in order to precisely control the transient dynamics and transition rates of the
robotic swarm. Analytical predictions of encounter rates based on geometry are not
feasible for scenarios where robots are significantly smaller than loads, and estimating
encounter rates from empirical data is typically very difficult [68, 63]. There are
typically unpredictable, nonlinear effects from motion primitives of the robots and
the non-uniformly randomly distributed spacing of attachment points on the loads

through the environment. However, as shown in Section 5.3.1, swarms that follow
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Figure 5.3. Time evolution of the allocation ratio on a side S € {F, B} from
simulation trials in NetLogo (for simulation details, see Section 5.4.1). The solid line
shows the trajectory of the allocation ratio for a single trial and the dot with error
bars show the mean +1 standard error of the mean (SEM) across ten trials with the

same control pair. Each simulation used 300 initially unbound robots in an arena

with three loads.

the control policies encoded in the CRN (Equation 5.3) will converge in the mean to
allocations which are only sensitive to the ratio eys/e,s of the encounter rates e,s and
eys. This section discusses how measuring the convergence rate of a system designed
using the EPMM allows for indirect inference of the encounter rates.

If the initial number ry of free robots is significantly larger than the number of
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robots needed to attain the desired allocation levels on the loads, then the likelihood
of a free robot finding an unbound zone or bound zone will not vary over time, as
described in Section 4.3.1. In other words, if the fraction of robots that are in the
Detached state does not change appreciably over time, then the bimolecular CRNs in

Equation 5.3 can be replaced by reversible unimolecular CRNs:

PbFEuFTO PbBEuBTO

UF BF and UB BB. (56)
PuFEbFTO PuBE€bBTO
NS >y NS
vV Vv
Front side Back side

That is, because the system effectively has a buffered capacity of ry robots, the free
robot species r in Equation 5.3 has been replaced with the scalar ry, which is included
in the rate constants in Equation 5.6. So although all reactions in Equation 5.3
are irreversible, they approximate the reversible system in Equation 5.6. It is easy
to show [15, 106] that the mean-field dynamics of a set of unimolecular reversible
reactions are linear and time-invariant (LTT). In particular, for each side S € {F, B},
the set of two LTI ordinary differential equation for the Us = Bg CRN has two
eigenvalues,

A =0 and A1 = — (PpseusTo + Pus€ssTo) ,

where )¢ represents the conservation of the sum Ug + Bg, and —)\; is the sum of

the two mass-action rates. Moreover, the time constant 7¢ = —1/A; for each side
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S € {F,B}is

1
o (Pbseus + Pusess) To (5.7a)
N 1 (5.7b)
<Pbs + puseezis) €usTo
_ 1 (by Bquation 5.4a) Ui — 05B% 1 (5.7¢)
<zii_i T :Z_i> CusPusTo Us+ B €bspusto

where three equivalent forms have been provided in Equation 5.7 for application-
-specific convenience. In general, the relationship between 7¢ and the control factor
s/ (Pus + pus) depends on the absolute encounter rates e,s and e,s. However, as
shown in Equation 5.7, the shape of the 7 curve is fixed by the e,s5/e,s ratio and the
absolute encounter rates only scale that relationship. Some example 7¢ curves are
shown in Figure 5.4 for five different encounter-rate ratios. Hence, for each of several
(Pbs, Pus) pairs, a mean step response like Figure 5.3 can be generated to determine
the equilibrium allocation ratio Bf/(U§ + BY%) and time constant 7¢ for that pair.
By the methods described at the end of Section 5.3.1, the allocation ratio data will
determine the effective eyg/e,s ratio. Then, Equation 5.7 can be solved to yield an
estimate of encounter rate e,s (and thus eyg as well). Using this method, encounter
rates do not need to be known or solved for prior to simulating the system, but rather
can be inferred from the observed behavior of the swarm.

Small-swarm case: If, initially, there are few free robots, the transient response
to the sudden introduction of several unoccupied loads will be better described by
Equation 5.3 than Equation 5.6. Moreover, the step response will rise with a logistic
as opposed to an exponential shape. However, if the resulting equilibrium allocations
are perturbed by numbers of bound and unbound zones that are low enough to not

appreciably change the number of free robots when the system restores equilibrium,
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Figure 5.4. Effect of encounter-rate ratio on the relationship between the control
factor pys/(pus + pps) and the approximate time constant g for convergence to the
equilibrium allocation on side S € {F, B} (Front or Back). The solution of a first-
-order linear time-invariant system (an exponential curve) can be fitted to the mean
step response in Figure 5.3 to predict the time constant 7. Here, the predicted
relationship between the control factor pys/(pus + pes) and the time constant 7g
is shown, assuming that the system can be approximated as a unimolecular CRN.
Although the actual convergence rate depends on the absolute encounter rates eyg
and e,g, the shape of the time constant curve is fixed by the encounter-rate ratio
eps/eus- As in Figure 4.3, p,s = 1 is set for control factors less than 0.5 and pyg = 1

otherwise.
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then the transient response will be approximately exponential and the LTI-based

encounter rate estimates above can still be applied.
5.3.3 Transient Matching Method (TMM)

In Section 5.3.1, a method is shown to choose the pyg/p.s ratio such that a desired
bound-to-unbound zone ratio Bg/U§ at equilibrium on a side S € {F, B} is achieved.
This control policy provides one degree of freedom to the designer. Specifically,
there is a line of (pys, pus) pairs that achieve the same B%/US ratio at equilibrium.
Consequently, the control policy can be optimized over this space. In Section 5.3.2,
it was shown how convergence rate measurements can be used to infer the absolute
encounter rates e,s and e,s. Once these encounter rates are known, the precise
(Pbs, Pus) Pair can be chosen that most accurately reproduces the transient dynamics
exhibited by an ant collective transport team. In particular, the values of the robot
swarm size ro and the probability p,s (or, equivalently, pyg) can be chosen to guarantee
that the system converges with a desired time constant.

Here, it is assumed that the swarm is sufficiently large to allow the use of the
unimolecular approximation in Equation 5.6 with the time constant in Equation 5.7.
For any desired bound-to-unbound zone ratio B /U%, Equation 5.4 specifies the cor-
responding pps/pus ratio. Moreover, Equation 5.7¢ provides an expression for the
time constant 7g with free parameters e,s, p,s, and rq. As described in Section 5.3.2,
the rate e,s can be inferred from the EPMM approach. So, if 7§ is a desired time

constant, the product rop,s should be chosen so that p,s € [0, 1] and

1

Pvs €bS *
Los y &5 ) e,qT
Pus + €us > uS S

ToPuS = < (5.8)

For any swarm size ry and pys/pus ratio, the probability p,s (or, equivalently, pys)
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can be chosen to scale the convergence rate, with the fastest convergence at p,s =1
and very slow convergence at p,s ~ 0. So, to achieve any time constant 7¢, the
number of robots rq must be sufficiently high so that p,s can then be used to scale

the convergence rate to the desired value.
5.3.4 Rate Matching Method (RMM)

In Section 5.3.1 and 5.3.3, a method to achieve a desired equilibrium mean allo-
cation at a desired convergence rate is described. Alternatively, there may be some
applications where the priority is to match the fluxes of ants and robots switching
between states, as opposed to their equilibrium allocation levels. Toward this end, a
method for matching the Front-Back transition rates of the ant and robot systems is
presented.

Under the assumption of a relatively large robotic swarm with respect to the
number of bound zones at equilibrium, the robot state transitions can approximated
as a set of two unimolecular reversible reactions like Equation 5.6 with LTI dynamics.
Because it is not physically possible in this system for a robot to directly transition
from Back to Front and vice versa, transitions to an intermediate Detached state
are necessary. Figure 5.5a shows a Markov chain representing the transitions that a
robot can execute. The system has four rate constants: two for the Front-Detached
transitions and two for the Back-Detached transitions. A complication arises from the
fact that the ant data were sampled at 5-second intervals [78], and so some recorded
ants appear to transition directly from one side of the load to the other. Because of
this, the SHS model of the ant collective transport dynamics has six rate constants:
the same four as in the multi-robot scenario (rgp, "pr, gD, rpB), plus two more for
the Back-Front transitions (rgp, rpg). The resulting Markov chain followed by the

observed ants is shown in Figure 5.5b. Comparing Figure 5.5a and 5.5b, it is clear
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Figure 5.5. Single-ant and single-robot Markov chains. Each agent, ant or robot,
transitions among Front, Detached, and Back states. In a robotic implementation
with random attachment and catalytic detachment, direct transitions between Back
and Front are not possible. Consequently, in (a), only four transition rates are shown.
However, in data collected from ants, some ants appear to transition directly between
the two attached states. Consequently, the model fit to the ant data introduces two
additional transition rates, rrp and rgp, which are shown in (b) as transitions cutting
directly across the Detached state. To reconcile (a) and (b), the rgp rate can be added
to both rrpp and rpp. Similarly, the rgp rate can be added to both rgp and rpp.
In other words, in order to observe a stable rgp (or, similarly, rpr) rate in sampled
data, there must be a hidden flux of Front-to-Detached ants that matches a flux of
Detached-to- Back ants.
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that each direct transition from Front to Back could be alternatively recorded as a
transition from Front to Detached followed by a transition from Detached to Back.
Thus, this strategy incorporates the rpp and rgpr rates from the ant model into the
robot control policies by adding them to the the Front-Detached and Back-Detached

rates in the multi-robot CRN:

TDFFTBF TDBFTFB
UF BF and UB BB, (59)
rFD+TFB TBD+TBF
~~ > NS -~ >
Front side Back side

Then, equating the rate constants in Equation 5.6 and 5.9 yields the programmed

robot attachment-detachment probabilities

rFp + TFB TpB + TFB
Pur = ————, v = —,
EvrT0 €uBT0 (5 10)
TBD + TBF Tpr + TBF
pup = ————, and  ppp = ———
€vBT0 EuFTo

where e,5 and e, 5 can be determined using the methods in Section 5.3.2 for each side
S € {F, B}. To ensure that these probabilities take values in the interval [0, 1], the

swarm size ro must be chosen sufficiently large so that

ro > max { TEptTEB TDBYTFB TBDYTBF TDF+TBE % |
er ! ewp ' ep eur
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Expected RMM results and caveats:

Under the conditions above, the robotic swarm will converge to the Front and

Back allocation ratios

B; . 1 Tpr + TBF and
Up+Br  14+0prep+7rp+7DF +7BF
By 1 TpB + TFB

= ) 5.11a
Uys,+ By 1+405rep+7rer+7rpe+TFB ( )

which can be derived from the combination of Equation 5.10 and Equation 5.4. More-
over, from the combination of Equation 5.10 and Equation 5.7a, the system will

converge with Front and Back time constants

1 1
Tp = and 75 = )
rep + TP+ TDF + TBF rBp +TBF +7TDpB + TFB

Although the RMM is the most direct attempt at replicating the microscopic be-
haviors of the ants on robotic platforms, it is the least likely to match macroscopic
transport properties such as equilibrium team sizes and convergence rates. At a
basic level, there are zero degrees of freedom in Equation 5.11 and Equation 5.12.
Thus, the goal of the RMM to match rate constants across systems eliminates any
ability to control the equilibrium of the system or its convergence rate. Moreover,
fundamental differences between the SHS ant model and the multi-robot stochas-
tic implementation make equilibrium or convergence-rate matching only possible by
unlikely coincidence. The unimolecular CRN used to model the populations dynam-
ics of the multi-robot system relies on the assumption of a sufficiently large swarm
size 1o that is buffered against changes due to robot attachments and detachments.
However, the ant population sizes associated with the SHS model data were on par

with the eventual transport team sizes. Consequently, the number of free ants was
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appreciably decreased as teams formed around loads, and thus the attachment rate
was limited by the fewer available free ants for further attachment. Therefore, it
is generally expected that the TMM will produce a closer match in the population
dynamics than the RMM when the reference ant swarm is small. The TMM allows
for implementation-level dissimilarities in order to better match desired macroscopic
characteristics.

Although the TMM will better match macroscopic allocation properties, there
can be cases where fluxes from one region to another are more relevant than cover-
age around regions. In these cases, a RMM-like approach may be more appropriate.
For example, consider a case like the one described by [145] where robots have been
programmed with an algorithm to track the shapes, sizes, and movements of pud-
dles in an area by skirting the perimeter of each puddle. Similar to the collective
transport problems presented here, the boundaries of the puddles are analogous to
the boundaries of the loads with the robots “attaching” to their boundaries in each
case. If a central server is using swarm robots to find these puddles and sample their
continuous time evolution, having a high concentration of robots on the boundaries
corresponds to having a high spatial resolution of each sample. However, it may in-
stead be of critical importance to return frequently enough to the central location to
meet sampling-rate requirements (temporal resolution may be prioritized over spatial
resolution). In this latter case, controlling the transition rate between the boundary
and the central server allows for controlling the sampling rate. By using stochastic
attachment-detachment policies designed by the RMM, ingress and egress fluxes (as
opposed to boundary coverage at any given time) can be controlled, thus setting the

sampling rate of the distributed swarm sensor system.
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5.4 Validation of Collective Transport Control Strategies in Simulation
5.4.1 Simulation Setup

The control policies computed by the EPMM, TMM, and RMM were tested with
simulations of multi-robot collective transport in the agent-based model simulation
software NetLogo [139]. Each of these three methods generated a different set of
attachment and detachment stochastic control policies, (pyr, pur) and (pyg, pup); all
other parameters were held constant across the simulations. To demonstrate that the
control policies are effective even with a single load, a scenario depicted in Figure 5.6
is considered. In the simulations, rg = 200 robots with radius 1 c¢m are initially
placed randomly throughout an arena of size 125 cm x 50 cm. A rigid circular load
with radius 8 cm and mass 2.3 g is placed in the arena with the robots. During the
simulations, each robot runs the controller shown in Figure 5.2 with one of the three
sets of control policies. The Detached robots perform correlated random walks with
a turning angle of 45°. Using experimentally measured values of ant speeds and ant
forces applied to a vision-based force sensor as guidelines [17], the robot speed is set

to 10 cm/s and the maximum robot pulling force to 10.5 mN.
5.4.2 Results

Following the procedure discussed in Section 5.3, the EPMM, TMM, and RMM
is used to design transport behaviors for individual robots that replicate different
aspects of previously collected ant data [78]. As described in Section 5.3.1 for the
EPMM, the encounter rate ratio eys/e,s for each side S € {F, B} was estimated by
running a multi-robot transport simulation with different values for the control factor
Pos/ (Pus + Prs). In principle, this calibration process need only be done for a single

control factor. A range of control factor values are used here to show how well the
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Figure 5.6. A screen shot from the NetLogo simulation of collective transport. The

large blue circle represents the load, red circles are Front robots, yellow circles are
Back robots, and green circles are Detached robots. The arrow on the load indicates

its direction of motion during transport, and the white flag indicates its goal position.

microscopic multi-robot simulation matches macroscopic predictions. Like the ant
experiments, the multi-robot simulations were run with a rigid circular load. Because
the Front and Back sides of the loads have identical geometries, it is expected that
the encounter rate ratios for both sides will be identical. Figure 5.7a confirms that
this is indeed the case: eyp/e,r = 0.20 and e,p/e,5 = 0.19.

For the TMM and RMM, the absolute encounter rates e,s and e,s must be esti-
mated for sides S € {F, B} according to the procedure in Section 5.3.2. So, for each
ensemble of trials used to generate Figure 5.7a, the average step responses similar
to the one in Figure 5.3 were also plotted and their rise times were estimated. The
resulting time constants are shown in Figure 5.7b. Using the encounter rate ratios
already estimated for the EPMM, the relationships in Figure 5.4 are fit to these data
to determine that e,r = 0.503 mHz and e, = 0.458 mHz, which could then be used
with the encounter rate ratios to compute e,r and epgp. These encounter rates are

small because they represent the rate at which an individual robot (in an empty
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Figure 5.7. Encounter rate estimation results. Asin Figure 5.3, a set of 100 identical
multi-robot simulation trials were performed in NetLogo for each control factor value.
Averaging across the set produced the Front and Back mean allocation ratios plotted
in (a) with error bars showing standard error of the mean (SEM). The expected
relationships shown in Figure 4.3 were then fit to these empirical curves, yielding a
eps/eus Tatio of approximately 0.2 for each side S € {F,B}. The Front and Back
time constants estimated from the average step response for each control factor value
are plotted in (b). Using the eys/e,s =~ 0.20 relationship from Figure 5.4, these time

constants were used to infer the encounter rates eyg and e, g for each side S € {F, B}.

arena) would encounter a single specific zone of a load. This event happens rarely
per robot, but the number of encounters that happen across a swarm is significantly
larger.

Now equipped with eys/e,s, eps, and e,s for each side S € {F, B}, the control
law Equation 5.4 is applied to, 5.8, and 5.10 to find the (pys, pus) control pairs using
the EPMM, TMM, and RMM. The simulation results are shown in Figure 5.8 and
are overlayed with the ant data, the SHS ant model trajectories, and the predicted
equilibrium allocations. In all three cases, the mean equilibrium numbers of Front

and Back robots are lower than the predicted values by less than 1 robot. This small
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discrepancy may be corrected by better estimating the e,s/e,s encounter rate ratio.
Moreover, because each side of the load can only support 12 attached robots that
are optimally packed (zero free space between attached robots on a load), quantiza-
tion error can be a significant accuracy limitation in this scenario. For larger loads
or smaller robots, more accurate mean allocations can be achieved. As shown by
Figure 5.8a and Figure 5.8b, the mean equilibrium allocations from the 100 EPMM
simulations agree with those from the 100 TMM simulations. Consequently, although
the theoretical predictions can be slightly improved, the allocation results in general

are highly repeatable.
5.4.3 Discussion

This chapter has presented three methods of designing stochastic encounter-based
controllers that drive robotic swarms to transport payloads along linear trajectories.
In the EPMM used to generate Figure 5.8a, the extra degree of control freedom
was used to maximize the convergence rate to equilibrium. As a result, the time
constants 77 and 7 differ from those of the ant population dynamics, and the 7
constant results in a much faster rise in the mean Front robot population than in
the ant data. Because the transport team forms much faster, it achieves velocity
regulation more quickly. Because of this, the position of the simulated load takes an
early but bounded lead with respect to the position of the load in the ant data. These
results show that the EPMM is most suited for cases where it is necessary to achieve
steady transport of the load in the minimum possible amount of time. The EPMM
control policies can produce rapid changes in the Front population, leading to quick
fluctuations of the pulling force on the load and thus to a jerky start to the load’s
motion. However, the method guarantees the fastest convergence to the load velocity

set point and target equilibrium allocations.
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(c) Rate Matching Method (rates from [78]; expected By = 5.09, By = 3.35,
T = 20.62 s, 75 = 11.27 s)

Figure 5.8. Population dynamics and load position and velocity during collective
transport by ants and robots. The plots show results from 100 simulated trials with
robot control policies designed using each of the three methods described in Sec-
tion 5.3. The left two columns show the time evolution of the mean numbers of Front
and Back individuals; the right two columns show the trajectories of the mean po-
sition and speed of a single non-rotating load moving along a line. In each graph,
the reference data from the ant trials are shown as circles, trajectories from the SHS
model fit to the ant data are shown as dashed curves, and the multi-robot simulation
data is shown as a solid line. The horizontal dash-dotted lines in the left two columns

show the predicted equilibrium allocations based on the control approach.
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The TMM reduces the discrepancy between the transient dynamics of the ant and
robot transport teams, as evidenced by the results in Figure 5.8b. The TMM results
show the same equilibrium team sizes as the EPMM, as expected, but the rise time
of the Front robot population more closely matches that of the Front ant population.
Moreover, the rise time of the load speed is increased, and the lead of the load position
with respect to the ant team’s load trajectory is thereby decreased. However, although
the TMM is able to better match the transient population dynamics of the ants, the
load velocity still rises too quickly compared to the ant data. This disparity may
be due to differences in how nonlinearities are implemented in the SHS and NetLogo
friction models. In particular, the SHS model appears to show a delay before its
initial rise that is not reflected in the NetLogo simulation. Another factor could be
differences in the effectiveness and degree of coordination between the robot and ant
transport teams. The simulated Front robots always pull the load in the desired
direction with a force defined according to a prescribed control law. However, the
ants could be counteracting each other’s efforts by pulling in different directions, and
they may not be exerting their maximum possible forces. Unlike the EPMM, the
TMM requires information on the absolute encounter rates, but it allows for control
over the transient population dynamics. This control can effect a slower growth of
the transport team if desired, which can produce a smoother acceleration of the load.

Finally, the RMM results in Figure 5.8c show that control design based on rate
constant matching does not reproduce any macroscopic properties of the ant teams in
the simulated multi-robot transport system. The RMM leaves no degrees of freedom
to control the allocation ratio, and so the predicted allocation ratios differ from the
EPMM and TMM cases. However, this method is useful when it is necessary to control
the fluxes of robots that join and leave the load boundary. In the EPMM and TMM

cases, there is no control over the frequency of attachment and detachment events
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that occur during transport. The RMM controls the rate at which these events occur
and can be useful when frequent robot attachment and detachment is risky to the

transport dynamics or to the object being transported (if the load is brittle).
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Chapter 6

DESIGN OF BIOMIMETIC CONTROL STRATEGIES FOR COLLECTIVE
PAYLOAD TOWING

Source: Wilson et al. [140]

In a recent experimental study of collective towing by Novomessor cockerelli ants
[31], a species of desert ant that is capable of highly coordinated, stable transport of
large food items in teams [66], the steady-state load transport speed was observed to
decrease with increasing team size when the load weight per ant was held constant.
The objective of the work in this chapter is to develop hypotheses about the ant
behavioral mechanisms that produce this effect and test these hypotheses through
experiments on a multi-robot testbed. It is assumed that all the ants in the transport
team know the direction to the goal (the ants’ nest) and can navigate even while
moving backwards [124], but that they have no knowledge of the load characteristics,
the number of teammates, or their location on the load relative to its center of mass.

Another experimental study [30] on group transport by N. cockerelli also demon-
strated that individual ants move loads faster than teams even when the ant was
carrying the same amount of weight as the teams. However, other factors besides the
payload weight could have contributed to this drop in speed. The ants were able to
grip the load anywhere along its perimeter, and ants at different positions around the
load may have varied in their posture and behavior, and hence their applied force
and speed, depending on their orientation with respect to the transport direction.
For instance, in a previous dynamical model of these observations [78], ants on the

leading edge of the load pulled and lifted, while ants on the other half of the load
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only lifted. In the more recent study [31], this phenomenon is re-investigated for a
more constrained scenario in which the ants could only transport a rectangular load
by pulling on strings attached to one of its sides.

In this work, several Pheeno robots are used to test hypotheses about the ant
behaviors in order to gain insight into the cause of the load speed decrease with re-
spect to team size found in [31]. Section 6.1 describes the ant experimental trials
conducted in [31] and the multi-robot testbed that was designed to mimic the ant
experiments. Section 6.2 summarizes the data from [31] on the decrease in ant trans-
port speed with increasing team size, and Section 6.3 presents two candidate models
of collective towing behavior in an effort to reproduce this observed trend. The first
model assumes a team of ants with heterogeneous maximum speeds that pull on the
load with continuous, variable forces, requiring the team to move at the speed of the
slowest member for stable transport to occur. The second model assumes a homoge-
neous team of ants that pull on the load with intermittent, identical forces as they
take uncoordinated steps backward toward the nest. For both models, the average
steady-state transport speed is predicted and compared to the ant data. Section 6.4
proposes a decentralized robot controller for cooperative towing that can be imple-
mented on a team of robots with heterogeneous maximum speeds. The controller
is based on a reinforcement learning algorithm that uses only stigmergic feedback,
similar to the type of information that would be available to the ants. This controller
was implemented on teams of two to four Pheeno robots that cooperatively towed a
rectangular payload, along with a second controller that produced intermittent, un-
coordinated pulling forces. Section 6.5 discusses the steady-state transport speeds in
these robot experiments and compares them to the transport speeds observed in the

ant experiments.
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Figure 6.1. Experimental setup for tracking ant group transport of an artificial

payload.
6.1 Materials and Methods
6.1.1 Experiments with N. cockerelli Ants

Three colonies of N. cockerelli were filmed in South Mountain Park in Phoenix,
Arizona during collective transport of an artificial payload. Experiments were carried
out in June 2013 during the cooler early morning hours (05:30-07:30), when foragers
were active outside the nest. The experimental arena, shown in Figure 6.1, was a
61 cm x 46 cm x 0.5 cm Plexiglas® sheet covered in white paper. This sheet was
leveled and placed 20 cm south of the main nest entrance. To control the size of the
transport team, four artificial loads were constructed with one, two, three, and four
attachment points for the ants. The loads were fabricated from segments of drinking
straws and had dimensions of 3 cm X 4 ¢m. Along the 3 cm edge, 1 cm-long silk
threads were attached at 1 cm intervals. Pieces of ethylene vinyl acetate (EVA) foam
coated in fig paste were affixed to the free ends of the threads to attract the ants for
transport. The loads weighed 0.3 g per attachment point (e.g., a load for two ants to
transport weighed 0.6 g). This load design constrained the ants to grip only at the

free ends of the threads and pull the load while walking backward.
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Figure 6.2. Experimental setup for tracking a group of Pheeno robots during trans-

port of a payload.

The transport was filmed with a Canon G12 camera mounted on a Manfrotto 055
Series tripod. The camera’s field of view was 1280 pixels x 720 pixels, centered on
the sheet. Foragers were recruited to a whole fig placed on the edge of the Plexiglass®
sheet furthest from the nest. Once around 10 foragers were feeding on the fig, the fruit
was replaced with an artificial load. For each of the three colonies, ten experimental

trials per team size with transport teams of one to four ants were recorded.
6.1.2 Experiments with Multi-Robot Transport Teams

Collective towing experiments were conducted with teams of two, three, and four
Pheeno robots. Figure 6.2 shows an overhead snapshot of the experimental setup with
three robot transporters. The payload in these experiments was a 76.2 cm x 10.2 cm
x 10.2 em L-shaped acrylic frame weighing 500 g. A 3D-printed plastic basket at-
tached to the frame allowed different masses to be added. A sensor suite was designed
for each robot to measure the force vector that it applied to the load throughout the
transport process. The sensor suite consisted of a 3D-printed sliding pressure plate

mounted on a potentiometer that allowed 270° of rotation. A circular force-sensitive
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Figure 6.3. Details of the multi-robot towing experimental setup. (a) A close-up,

labeled view of a sensor suite attached to the payload. (b) A single robot attached
to the payload.

resistor was used to measure the magnitude of the force that the pressure plate ex-
erted due to the robot’s pulling force, and the potentiometer determined the direction
of the force with respect to the load’s orientation. The sensor suites were affixed to
the payload, and a hemp cord connected each robot to a sensor suite, as shown in
Figure 6.3. The experiments were filmed with an overhead camera (Microsoft Life
Cam, resolution of 720p) at a rate of 30 frames per second. The robots and payload
were marked with 2D binary identification tags to enable real-time tracking of their

positions and orientations by the overhead camera.
6.2 Observations of Ant Team Size versus Steady-State Payload Speed

From the video recording of each N. cockerelli experimental trial, the longest
recorded segment in which the ants were smoothly transporting the load and the
transport team size remained stable was extracted. In these segments, the position
of the center of the load was tracked at 10-second intervals using ImageJ [123] and

the Mtrack plugin [99]. The transport path was assumed to be straight between
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Figure 6.4. Blue plots: Steady-state speed of the artificial load (0.3 g per ant) with
varying team size [31]. The circles with error bars represent the average + standard
deviation across 30 experimental trials (10 trials per ant colony). Red plots: First
order statistics of a normal distribution with mean and standard deviation fit to

individual ant data on collective towing.

measurements. The steady-state speed of the load during each segment was estimated
by dividing the total transport path length during the segment by the duration of
the segment. For all segments with the same transport team size, the average and
standard deviation of the load speed estimates were calculated. Figure 6.4 plots
these statistics versus the team size. The plot shows a significant decrease in steady-
state load speed with increasing team size, even though each ant was pulling the
same amount of weight. In [17], the average pulling force of a single N. cockerelli
ant on an elastic load was measured to be 10.5 mN; therefore, one ant would likely
have been capable of overcoming static friction and pulling the heaviest load in the
experimental trials (0.12 g, with a weight of 1.2 mN). Hence, the observed decrease in
speed indicates that a transport team is less powerful than the sum of its members’

efforts.
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6.3 Two Models of Ant Behaviors and the Resulting Payload Speed
6.3.1 Ants with Continuous, Adaptive Pulling Forces

Figure 6.4 shows a large variance in the steady-state speed of a load that is towed
by a single ant. This suggests that an ant transport team can be modeled as a
heterogeneous group whose members are capable of different maximum speeds and
pulling forces. Such a team would be able to cooperatively tow the load only as fast
as the speed of its slowest member, requiring coordination among the teammates.

In this model, it is assumed that an ant’s maximum towing speed is distributed
according to a Gaussian probability density function (pdf) ¢(v) with corresponding
cumulative density function (cdf) ®(v) (Appendix A). Under this assumption, a
Gaussian distribution was fitted to the data in Figure 6.4 on the steady-state towing
speed of a single ant (¢ = 0.7 cm/s, 0 = 0.36 cm/s). The expected speed of the
slowest member of a transport team with N members was then computed using order
statistics [41]. The expected first moment of the 7 order statistic from n samples of

the distribution ¢(v), where 0 < r < n, is given by:

n' > n—r r—1
E(r,n) = CESCE /Oov[l — O(v)]""P(v)" p(v)dv. (6.1)
The variance of the r*" order statistic is:
Var(r,n) = /_oo (v — E(r,n))?[1 — &))" "®(v)" " 'p(v)dv. (6.2)

The speed of the slowest member of a team is distributed according to the first order
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statistic (r = 1), for which Equation 6.1 and Equation 6.2 simplify to:

B(1,n) =n /_ 7ol — ()" (v)dv, (6.3)
Var(l,n) = /_oo (v — BE(1,n)2[1 — ()" 6(v)dv. (6.4)

To enforce realistic constraints on the range of possible ant speeds, the support
of ¢(v) was truncated to [0, Vmaz|, Where vy, = 1.2 cm/s is slightly higher than the
fastest towing speed measured during experiments with a single ant. The integrals
Equation 6.3 and Equation 6.4 were evaluated over the range of v € [0, U], after
being renormalized to have a total probability of 1, for team sizes n = 2,3,4. The
computed values of F(1,n) + Var(1,n)"/? for n = 2,3,4 are plotted alongside the
statistics of the ant data in Figure 6.4. The figure shows that the average and standard
deviation of the measured towing speed for each team size are very close to those
of the corresponding first order statistics. This similarity supports the hypothesis
that ant transport teams move at the speed of the slowest teammate, which implies
that the ants can coordinate transport in a decentralized fashion without explicit
communication, information about the payload, or knowledge of the team size and

configuration.
6.3.2 Ants with Intermittent, Constant Pulling Forces

Besides the ants’ variability in speed, their unsynchronized gaits during transport
could have contributed to the decrease in load speed with increasing team size. The
ants in a transport team were observed to step backward while towing the load, and
their out-of-phase stepping could have coincided with their application of intermittent,

uncoordinated forces on the load. In this section, a dynamical model is developed
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to investigate the effect of this hypothetical behavior on the steady-state transport
speed.

Collective transport behaviors have previously been studied with the Kilobot
robotic platform [119] and the Bristlebot, Hexapod, and pTug platforms [35]. Ruben-
stein et al. [119] found that the transport speed remains the same regardless of team
size when the payload mass per robot is kept constant. However, this paper did not
take into account out-of-phase stepping by the robots. Christensen et al. [35] investi-
gated the effect of uncoordinated stepping on effective force per robot during group
towing. They found no effect for the case where the robots’ gait is non-impulsive;
e.g., the case where each robot’s contact time with the ground, during which it exerts
a pulling force on the load, is not extremely short compared to the stride period of
its gait. This section combines the dynamic model presented in [119] with the gait
consideration discussed in [35] to predict the effect of out-of-phase stepping on the
steady-state transport speed.

During the experiments, the ants transported the load along an approximately
straight path and produced very little load rotation. Hence, the load dynamics can

be modeled as translation in the plane using Newton’s second law of motion:

N
> Fi+F;=ma, (6.5)

=1

where F; € R? is the force applied by ant i, F; € R? is the kinetic frictional force
on the load, m is the load’s mass, and a € R? is the load’s acceleration. Using an
ideal motor assumption to relate force to velocity, the force applied by ant ¢ can be

modeled by the linear relation
F;, = K(Umam — Vi fc)f(? (66)
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where K > 0 is a constant gain, v, is the maximum ant speed under no load,
v; € R? is the velocity of ant 7, and X € R? is the direction of the load transport.
Under the assumption that the load is in static equilibrium in the vertical direction,

the frictional force is given by,
F; = —pumgx, (6.7)

where py is the coefficient of kinetic friction of the load on the ground, and g is the
acceleration due to gravity.

In this model, all ants move at the same speed. Since the ants pull on strings to
tow the load, they are rigidly attached to the load when applying force (e.g., the ants
may not move faster than the load). This model assumes that a transporting ant will
not accumulate enough slack in its string such that its pulling effort does not affect
the payload. During transport, the load stops immediately when the ants stop pulling
it. This allows for the use of the quasi-static motion assumption [110, 135], implying
that the load velocity v, € R? is in the same direction as the net force applied by

the ants. These assumptions simplify Equation 6.6 to,
N
> Fi = NEK(vpar — VLI (6.8)

=1

Solving Equation 6.5 for ||vy|| at steady state (a = 0) yields,

jimyg
||VL||SS = Umaz — NK (69)

To include the effect of asynchronous ant gaits, the model can incorporate a prob-
ability py = t./ts that an ant applies a pulling force at any given time, where . is its

contact time with the ground and ¢; > ¢. is the period of its gait, as defined in [35].
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In the case where N ants pull in parallel with their steps beginning at independent,
uniformly random drawn starting times between 0 and ¢, the number of transporters
n < N that apply force at the same time is described by the binomial distribution,
n ~ B(N,pys). Then, the average total force exerted by the ants on the load is given
by:

ZF PiNK (Upaw — [VLI)X. (6.10)

Inserting this total applied force into Equation 6.5 and solving for the steady-state

load velocity results in an equation similar to Equation 6.9:

pmg
pNEK

(6.11)

”VLHss = VUmaz —

What is important to note in Equation 6.11 is that the term producing a slowing

effect, “’“](,"I%, includes the load mass m in the numerator and the team size N in the
denominator. Therefore, if the ratio m/N of the load mass to the team size is kept
constant, as was done in the ant experiments, then the steady-state load speed should

remain the same regardless of the team size, as observed in [119]. This contradicts

the observed trend in load speed from the ant experiments.
6.4 Design of Robot Controllers for Adaptive, Continuous Pulling

One possible method for a heterogeneous transport team to adjust to the speed
of its slowest member is through learning based on stigmergy, a mechanism by which
agents communicate indirectly through modifications to their environment (in this
case, the payload). As stated previously, it is assumed that the ants all know the
direction to their nest and that they tow the load in this direction along a straight line.
Under these assumptions, the ants’ configuration on the load during the experiments

(see Figure 6.1) would have resulted in a net zero moment on the load if all ants
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pulled with identical forces. Any disparities in towing force would produce differences
in the ants” maximum possible steady-state towing speeds as well as rotation of the
transported load. However, significant rotation of the payload was not observed in
the ant experiments (e.g., the load oscillated slowly but did not rotate indicating one
ant was moving faster than the others).

Ants could have implicitly communicated their differences in towing speed by mea-
suring the collective effect of these differences on the load’s orientation and rotational
dynamics during transport. To illustrate, Figure 6.5 shows a cooperative towing sce-
nario with two robots. Robot R; is moving faster than robot Ry, causing the load to
rotate in the clockwise direction. If robot Ry were moving faster than robot Ry, then
the load would rotate in the counterclockwise direction. By making an association
between the load’s direction of rotation and the disparity in robot speeds, and by
measuring its own pulling force, each robot should be able to learn the conditions
under which it should speed up or slow down in order to move at the same speed as
the rest of the transport team. These conditions do not require the robot to know
its location on the load. When there is an incentive for each robot to move as fast as
possible, the competing objectives of preventing load rotation and transporting the
load quickly will cause the speeds of the faster team members to oscillate around the
speed of the slowest member when it is moving at its maximum speed.

A real-time reinforcement learning algorithm was developed to implement this
behavior on robots. The algorithm drives a team of robots with heterogeneous maxi-
mum speeds to transport a load at the speed of its slowest member. Each robot runs
the two-layer neural network shown in Figure 6.6. There is no distinction between a
learning phase and an exploitation phase; instead, an e-greedy algorithm is chosen to
adapt to the unpredictable and changing interaction forces during transport. This is

done to allow learning errors that can be made during the start of the transport to
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Figure 6.6. Block diagram of the neural network.

be corrected .

For this application, the goal is for the robots to learn the association between the
direction of the load’s rotation and the necessary adjustments to the individual speeds
of the transporters. This learning is done at discrete times, where, for simplicity, the

times are defined in unit increments. The input vector to the neural network of robot

k at time ¢, pp(t) = [pr1 Pr2 Pes Pral’ = [sign() sign(0) sign(0) sign(ix(t))]”,
contains the directions of the load’s orientation 6, angular velocity 0, and angular

acceleration 0, as well as the direction of the change in robot’s velocity Uk(t) at time
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t. The output vector of the neural network of robot & is defined as a; = [ax akg]T =
[k ve_]T, whose entries indicate a binary decision for the robot to speed up or slow
down. Each robot k& computes the value ay ;(t) of its output neuron j € {1,2} at

time t as:

ak;(t) = Zwk,zj(t)pk,i(t), (6.12)

where wy,;;(t) is the weight value of the connection between the robot’s " input
neuron and j** output neuron.

An e-greedy algorithm is applied to determine the action taken by the robot. With
probability €, the robot randomly chooses to speed up or slow down without using
the neural network to make a decision. Otherwise, the output neuron with the largest
value is chosen as the winner. If v, > wv,_, then robot k speeds up; otherwise, it

slows down, according to the following controller:

K, + K,(1 — —2—), Vgy > U or Fp =0

Uk _ ae»maa: Uk,mam (613)
_ [ y )
Ka Omazx Kv (1 Vi, maz ) ) Othel"Wlse7
where K, and K, are constant gains, 0pee = T, Ukmaz is the robot’s maximum

possible towing speed, and Fj is the magnitude of the pulling force applied by the
robot. When the robot measures F = 0 during some time period, it speeds up but
does not update its weights wy,;; (“learn”) during that period.

This velocity controller is used to avoid identical decisions by the robots to speed
up or slow down by a constant value. If robots were allowed to change their velocities
by the same amount, they would sometimes get stuck in loops of repeatedly making
the same decision as their teammates. In this case, the differences between the robots’
velocities would not change, and nothing useful would be learned about their latest

actions (e.g., identical actions by robots would not alter their difference in speeds).
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The proposed velocity controller enables all robots in the team to make the same

decisions while still learning. Equation 6.13 drives inherently faster robots with higher

maximum speeds to be more agile than slower robots, since the quantity (1 — 'Uk?)'rlriaa:)
is larger for faster robots for a given robot speed v, producing a higher acceleration.
The controller also makes larger adjustments to the robots’ accelerations when the
payload is far from its initial orientation. The gains K, and K, weight the competing
objectives of maintaining the load in its original orientation and moving the load as
fast as possible.

After taking an action of speeding up or slowing down, each robot computes a

reward that is based on the resulting change in the load’s orientation. The reward

function at time ¢ for robot k is defined as,

Oz 0] 1 T sign(06) <=0,
Ei(t) = (6.14)
o_|

| emaz

otherwise.

The difference in reward values Ey(t — 1) and Ey(t) at times ¢t — 1 and ¢, respectively,
determines the adjustments to the neural network weights according to the Instar
Rule [42]. Reward constants ry j(t) are defined at time ¢ such that only the output

neuron associated with the chosen action is rewarded or penalized:

;

1, Ek(t) — Ek(t — 1) > T and Qg j > Qg g, l 7é]
rk,j(t) = —1, Ek(t) — Ek(t - 1) S —7 and Qg 4 > Q. 1, { 7é] (615)

0, otherwise,

\

where 7 is a threshold value chosen to differentiat between sensor noise and a signifi-
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Figure 6.7. Flowchart of an individual robot’s decision process during transport.

cant reward change. Then the weights are updated as follows:

Wij (1) = (1 = 7y () w5 (t — 1) + arp j(8)pri(t), (6.16)

where v € [0, 1] is a rate of forgetting and « € [0, 1] is a rate of learning. These rates

are chosen to bound the maximum weight values of the update matrix to,

mar __ a

After updating the weights wy;;, the process is repeated. A flowchart of the robot

behavior is shown in Figure 6.7.
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6.5 Multi-Robot Experimental Results
6.5.1 Continuous, Adaptive Pulling

This learning algorithm described in Section 6.4 was implemented on teams of
2 to 4 Pheeno robots to investigate whether learning through stigmergic feedback
could cause a transport team to tow the payload at the speed of the slowest member.
In these experiments, the mass of the load was maintained at 500 g, which a single
robot is capable of towing. This was done to ensure that the decrease in payload speed
could be attributed entirely to the learning algorithm, not to the experimental setup.
To imitate the ants’ directionality of transport toward the nest, all the robots were
assigned to drive in the same direction. The robots changed their speed according
to the learning algorithm at a rate of 0.5 Hz. KEach robot was programmed with
a probability € = 0.2 of choosing a random action, a forgetting rate v = 0.02, a
learning rate o = 0.1, a significance threshold value 7 = 0.5, and controller gains
K, =1 and K, = 0.8. Ten trials were run for each team size. Teams of 2, 3, and
4 robots consisted of members with maximum speeds of [4,12] cm/s , [4,8,12] cm/s,
and [4, 6,9, 12] cm/s, respectively. The locations of the robots on the load were chosen
randomly for each trial.

The load and robot velocities during the experiments are plotted in Figure 6.8.
These results show that the robots adjust their speed to the speed of the slowest
transporter in the team. There are slight discrepancies between the robots’ reference
velocities and their actual velocities, which were measured from the robot locations
tracked by the overhead camera. These differences were caused by camera error and
tracking tag placement error which, combined with controller action that drives the
robots in the same direction, causes rotational corrections by the robots to be detected

as additional linear velocity.
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6.5.2 Intermittent, Constant Pulling

To simulate out-of-phase stepping during transport as described in Section 6.3.2,
towing experiments with 2-4 Pheeno robots were run in which the robots’ motors
were periodically turned on and off to mimic the contact and swing phases of an ant’s
gait. The robots’ motors were turned on for 1.5 s with a total step time of 3 s. The
robots’ start times for each step were randomly drawn from a uniform distribution.
Each robot "steps” with the same maximum velocity. The load mass was scaled with
the number of robots in the team, with a constant mass of 500 g per robot. Ten trials
were run for each team size.

Figure 6.9 shows that the average steady-state payload speed during these ex-
periments matches the value predicted by the model Equation 6.11. Thus, it can
be concluded that out-of-phase stepping is not the primary cause of the decrease in
steady-state transport speed with respect to team size that is observed in N. cockerelli.

In addition, out-of-phase stepping was tested on teams of Pheeno robots with
different maximum speeds. Under these conditions, the robot teams exhibited unco-
ordinated transport in which the load was pulled into the slowest robot, which was
then dragged along by the efforts of the other robots. This type of behavior was never
observed during the ant towing experiments. Wheel slip ultimately stalled the robots

or made them uncontrollable and prevented further transport of the load.

6.6 Discussion

The statistical analysis in Section 6.3.1 of data on collective towing by Novomes-
sor cockerelli ants and the results of the multi-robot towing experiments described
in Section 6.5.1 support the conclusion that ants adjust their speeds during collec-

tive transport to accommodate the slowest member of the transport team. Hence,
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robotic implementation of ant-like transport strategies could enable adaptive, decen-
tralized transport by teams of robots with heterogeneous capabilities, manufacturing
variations, differences in charge state, and other dissimilar properties.

Previous studies have addressed other scenarios where group efficiency is a sublin-
ear function of group size. Krieger et al. found that in a group of robots mimicking
an ant foraging behavior, the contribution of each individual to the foraging process
decreased as the group size increased due to more time spent avoiding collisions [76].
Lerman et al. also discovered this sublinear relationship in foraging behaviors and
predicted an optimal group size for foraging before interference among individuals
begins to lower the net group performance [83]. In contrast to these group foraging
examples, the sublinear relationship between transport speed and team size that has
been investigated here appears to be caused by heterogeneity of teammate capabil-
ities rather than interference arising from uncoordinated individual behaviors (e.g.,
out-of-phase stepping, unaligned pulling angles, or avoidance of fellow transporters).

The differences in individual N. cockerelli speeds could be caused by physical vari-
ations among ants that are related to age, fatigue, or general fitness. It is also possible
that the differences are behavioral, as observed in other species [69]. These behav-
ioral disparities may arise from varying genotypes within the colony that resist the
spread of disease, environmental differences which can naturally cause developmen-
tal or learned differences, or social differences which cause discrepancies in behavior
through interactions within the shared living environment [70]. Previous work has
shown that colonies with a mixture of aggressive and passive members are more fit
than colonies comprised of entirely one behavior type. This is because a particular
behavior type can be more productive in some scenarios than others: for instance, ag-
gressive members benefit in confrontational settings (e.g., foraging and defending the

colony), but their behavior is a detriment when they interact in social settings (e.g.,
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hiding from predators and brood care) [126]. Differences in speed among individual
N. cockerelli ants could be a consequence of a similar behavior dichotomy.

Cooperation among ants allows colonies to harvest large food items, thus requiring
less time and energy to be spent searching for individually transportable food items
[30]. Other ant species, such as FEciton burchellii (army ants), exhibit collective
transport that is superefficient in that groups can lift more weight per ant than
solitary transporters [38, 55]. Unlike E. burchellii, N. cockerelli forage in low-density
groups and are monomorphic, i.e., they do not have major variations in physiology. N.
cockerelli also must compete with ants from the Forelius genus that use mass-raiding
strategies to acquire food items. This competition may not afford N. cockerelli the
opportunity to wait for the fastest foragers to retrieve a food item before it is claimed
by other ants.

A heterogeneous transport team that adapts to its slowest member will move the
load more slowly as the team size increases; however, this strategy also has various
benefits. If this adaptation did not occur, the fastest individuals would need to
overwhelm the efforts of the slowest members and handle a heavier portion of the load,
possibly dragging the slower teammates during the transport. By accommodating the
slowest member, large transport teams can utilize the strength of all teammates, not
just the fastest ones, and thus can transport heavier loads. Another advantage may
arise when the load must be transported over different types of terrain. A large
transport team could apply a high net force to a load in order to pull it up a hill or
over an obstacle. The presence of slow members in the team could potentially stabilize
this maneuver, since from a control-theoretic perspective, less aggressive systems are
easier to control. Thus, an ant-like strategy could potentially increase the robustness

of the transport to changing, unanticipated environmental conditions.
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Figure 6.8. Results of towing experiments with the reinforcement learning algo-
rithm. The plots display the time evolution of the load and robot velocities for each
team size. In all plots, the black line is the maximum reference speed of the slowest
team member. The first row shows the average load velocity across ten trials, with
the solid blue line and shaded area representing the mean and standard deviation,
respectively. The second row shows the measured velocities of the robots and the
load during a single experimental trial, and the third row shows the corresponding

reference velocity that was calculated by each robot using the learning algorithm.

129



(o]

o
&)
i

[¢)]
T
I

Velocity(cm/s)
o »
P
—
—

w
]
—
[EESNS——
| ——
L

w
T
I

N
&)
T
i

15 2 25 3 . 3.5 4 45
Team Size
Figure 6.9. Results of towing experiments with out-of-phase robot stepping. Blue
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Chapter 7

CONCLUSION AND FUTURE WORK

This thesis has presented approaches to designing controllers for stochastic bound-
ary coverage and collective payload transport by robotic swarms that respect the con-
straints on such systems, outlined in Chapter 1. Chapter 4 described a decentralized
stochastic strategy to solve a boundary coverage problem, and Chapter 5 extended
this strategy to solve a collective transport problem in a way that reproduces the
previously modeled dynamics of group retrieval observed in Novomessor cockerelli
ants. Finally, Chapter 6 develops a real-time reinforcement learning-based controller
that experimentally replicates the observed payload speed drop-off with respect to ant
transport team size that was observed in colonies of N. cockerelli. To validate these
swarm robotic control strategies and others, a low-cost, open-source, customizable
robotic platform Pheeno was designed and tested, as described in Chapter 3. The
following sections describe conclusions and possible future research directions that

pertain to the work in Chapter 3 to Chapter 6.

7.1 Coverage Tasks for Robotic Swarms

Chapter 4 presents a rigorous methodology for designing control policies that
distribute a swarm of robots among a set of boundaries. The control policies rely
only on local information obtained by the robots and have probabilistic guarantees
on steady-state performance. This work investigates the effect of robot interactions
on the actual steady-state allocations that are achieved with the use of control policies
derived from an abstraction of the swarm population. The simulation results illustrate

that the actual system behavior follows predictable and controllable trends when
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robot interactions at the boundaries and in the free space are introduced. In this way,
a foundation is built for further work on encounter-based swarm robotic allocation
that obviates an analytical characterization of encounter rates.

In future work, these investigations will be repeated for more general boundary
shapes and for time-dependent boundaries. Analysis is also needed to gain a better
understanding of the relationship between actual allocation ratio and the mean space
between robots. This control approach can be extended to other scenarios in which
robotic swarms must allocate among both static and dynamically moving regions,
such as surveillance and target-tracking applications. Finally, this control scheme

will be experimentally validated on a physical multi-robot testbed.
7.2 Collective Transport Tasks for Robotic Swarms

Chapter 5 extends and applies work presented in Chapter 4 on stochastic alloca-
tion of robotic swarms around boundaries to mimic collective-transport data obtained
from Novomessor cockerelli ant teams [78]. This design framework allows for control-
ling the equilibrium demographics of multi-robot transport teams (EPMM) as well as
how fast they converge to this equilibrium (TMM). Although the presented scenario
focuses on two-sided loads, the approach could be used for achieving other robot
distributions that can be approximated by further dividing a load into different re-
gions with region-specific desired allocations. Alternatively, this design approach also
allows for equilibrium robot fluxes to be controlled (RMM) instead of macroscopic
demographic properties. In all three cases, the equilibrium allocations of robots are
robust to environmentally-induced changes to the encounter rates, including changes
in swarm size and number of loads. This robustness allows the development of a
calibration method that provides a novel way to estimate robot encounter rates with-

out using geometrical parameters or measurements of times between events across an
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ensemble of robots.

One possible criticism of the current approach is that the attachment-detachment
process never “turns off.” Even after reaching equilibrium team demographics, free
robots continue to attach and detach at random. A feature of this approach is that
the system continues to adapt to environmental changes. For instance, if more loads
are added, then teams will continue to form around those loads. However, in scenarios
where this is not a concern, it seems more efficient for the system to detect when the
desired allocation has been reached and transition to another system-level mode (e.g.,
from “allocation phase” to “transport phase”). Chemical reaction networks (CRNs)
have already been constructed to implement oscillators [81, 129], counters [128, 129],
and algorithms which are sensitive to the macroscopic state of the system [129].
Therefore, it may be possible to augment this approach to either detect a time when
the system has likely converged or to directly detect the equilibrium condition and
transition to a more efficient transport behavior. In fact, there are existing CRNs
implemented with irreversible reactions that achieve distributed consensus [34, 125].
These CRNs are able to detect which chemical species is in the majority and switch all
entities in the mixture to that species. Because they are implemented with irreversible
reactions, the equilibrium of each trial is a true fixed point of the system (i.e., it
is not a thermodynamic equilibrium that fluctuates around a mean). Although the
presented method is built using intuition from reversible processes that reach dynamic
equilibria, the underlying implementation presented here uses irreversible reactions.
Consequently, a future direction could similarly leverage these irreversible reactions
to reach truly static equilibria similar to the consensus cases.

In future work, these methods can be extended to control two-dimensional motion
of non-circular loads that can rotate. Whereas this study focused on the allocation dy-

namics of robots around mobile loads, future studies will focus on other behaviors that
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are needed during multi-robot transport. A particularly interesting case is decentral-
ized multi-robot collision avoidance for multiple transport teams that are surrounded
by free robots. It would also be useful to develop analytically tractable models of sys-
tems with attachment-detachment probabilities that depend on the speed of the load.
Using speed-dependent probabilities, it may be possible to replace the proportional
velocity controller used in this paper with a simpler constant-force behavior. Such
an implementation may be more suitable for microrobots and nanorobots that derive
their applied forces via externally generated fields. Finally, experimental validation
of these transport control strategies will be implemented on a physical multi-robot

testbed to eliminate any numerical artifacts of imperfect simulation tools.

7.3 Biomimetic Swarm Control Strategies for Collective Transport

Chapter 6 investigated the observation that the transport speed of a load towed
by several Novomessor cockerelli ants decreases as a function of the team size, even
with the same load mass per ant. A control approach in which a homogeneous team of
robots pull on the load with intermittent, constant forces was tested as a possible ant
towing behavior. A dynamical model was used to predict the steady-state speed of a
load that is transported in this manner by a team of known size. The predicted load
speed was independent of team size, as long as the mass per transporter remained
constant, and the prediction was verified through experiments with teams of 2, 3, and
4 Pheeno robots. Using order statistics, it was found that the load speed decrease can
be attributed to the heterogeneous abilities of individual ants. Since ants within a
given colony may move at a range of possible speeds, as a result of differences in age,
energy, ability to orient during transport, and other factors, it was hypothesized that
an ant transport team must move at the speed of the slowest member for successful

load transport. Due to their biological limitations, the ants would need to identify
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the slowest member without explicit communication or global information. To imple-
ment a multi-robot towing strategy with these constraints, a real-time reinforcement
learning algorithm was developed that relies on implicit communication through the
load and local measurements by each robot. This algorithm was tested on teams of
2 to 4 Pheeno robots with significantly different individual maximum speeds. The
experimental results supported the hypothesis that the ants are towing the load at
the speed of the slowest team member.

The experiments on collective transport described in this thesis have focused on
one-dimensional payload transport by both ants and robots in flat environments with
no obstacles. In the future, experiments and analyses should be conducted for trans-
port along two-dimensional trajectories through more complex environments. To
more closely emulate the ant behaviors, multi-robot experiments can be performed
using legged robots that are closer in design to the ants’ anatomy. In addition, a rigor-
ous analysis of the reinforcement learning algorithm presented in this work is needed
to characterize the existence and stability of equilibrium payload speeds. This anal-
ysis would provide theoretical guarantees on the transport dynamics, and thus more

confidence in the algorithm’s effectiveness in a wide range of scenarios.

7.4 Validation of Swarm Control Strategies with the Pheeno Robotic Platform

Pheeno is a new mobile robot platform that is designed to be accessible to students
for educational use, while still incorporating sensing and manipulation capabilities
that are sophisticated enough for multi-robot research experiments. The robot’s
modular design allows users to develop custom attachments that suit their specific
applications. Chapter 3 focuses on the design of the core robot module and a gripper
module that enables Pheeno to manipulate objects, either individually or in groups.

The robot’s capabilities were demonstrated with proof-of-concept experiments on
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Figure 7.1. Group of 30 Pheeno robots operating concurrently.

trajectory tracking, image processing, and collective transport, and the robot was
used to validate new strategies for confinement control, topological mapping, and
collective transport based on sliding mode control.

In the future, Pheeno will be used for larger-scale swarm robotic experiments
on performing mapping, coverage, manipulation, construction, and excavation tasks.
Currently, 30 Pheeno platforms have been fabricated and deployed at the same time
(Figure 7.1). The Pheeno fabrication process must be optimized in the future for
efficient mass production of the robot. Although at this time the Pheeno robots must
each be programmed individually, work is currently in progress on programming a
large group of Pheenos over Wi-Fi or Bluetooth. Communication-based strategies
can currently be emulated through a central router. To test these strategies in more

realistic scenarios (outside of a lab), local wireless communication will be implemented
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between robots without the use of a central router. For experiments that last longer
than Pheeno’s battery life, autonomous recharging capabilities will be developed for
the robot. In addition, new modules are currently being designed for Pheeno to enable

its operation in different types of environments.
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APPENDIX A

STATISTICAL ANALYSIS OF LOAD TOWING SPEEDS IN NOVOMESSOR
COCKERELLI ANTS
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Figure A.1. Left, histogram (blue) of data of the individual transport speeds from
N. cockerelli experiments, with a Gaussian fit (red). Right, quantile-quantile plot of

the same data.

This appendix provides a justification for the assumption that individual transport
speeds observed in Novomessor cockerelli ants are normally distributed, as stated in
Chapter 6. Figure A.la shows a histogram of data on the transport speeds of individ-
ual ants. Both the Anderson-Darling and Kolmogorov-Smirnov tests for normality
find no significant departure from normality (p = 0.05). The quantile-quantile (q-q)
plot in Figure A.1b also shows a relatively linear relationship. However, this data has
a skewness value of 0.4985, which is evident in both Figure A.la and Figure A.1b.
This is present due to the inherent lower bound of the data (e.g., the magnitude of
the transport speed cannot be negative.).

The order statistics analysis presented in Chapter 6 relies on the assumption that
the data is normally distributed. Although this assumption is not violated, it is
important to check whether the order statistics prediction still holds when the data
does not have this skew present. To eliminate the skew in the data, a Box-Cox
transformation [26, 122] is performed on the data. This reduces the skew of the
data to —0.0499. The transformed data with a Gaussian fit is shown in Figure A.2a,
with the associated g-q plot shown in Figure A.2b. The figures confirm that the
transformed data is no longer subject to the inherent lower bound of the original
data. The first order statistic is applied to the Box-Cox transformed Gaussian fit of
the ant transport data. This is compared to the Box-Cox transformed ant transport
data for each team size in Figure A.3. The order statistics prediction still exhibits the
trend of reduced steady-state transport speed with increasing team size. However,
analysis using the transformed speeds is not as intuitive as the original data, and thus
the original data are presented in Chapter 6.
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Figure A.2. Left, histogram (blue) of data of the individual transport speeds from
N. cockerelli experiments after Box-Cox tranformation, with a Gaussian fit (red).

Right, quantile-quantile plot of the same data.
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Figure A.3. Blue plots: Steady-state speed of the artificial load (0.3 g per ant)
with varying team size [31] after applying the Box-Cox transformation. The circles
with error bars represent the average + standard deviation across 30 experimental
trials (10 trials per ant colony). Red plots: First order statistic for each team size of
a normal distribution with mean 4 standard deviation fit to individual N. cockerell:

transport speed data after applying the Box-Cox transformation.
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APPENDIX B

DESCRIPTION, CALIBRATION, AND FUSION OF THE PHEENO ROBOT’S
SENSOR SUITE FOR RELIABLE FEEDBACK
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Figure B.1. The reference frame of Pheeno. Ideally, this should be the same

reference frame as the inertial measurement unit.

This appendix is meant to help new robotics users and specifically users of the
Pheeno robotic platform get used to onboard sensing typically used as feedback in
control theory. Typically when learning the theory behind controllers the feedback
term is assumed to be perfect and known. In reality, these feedbacks are based on
sensor measurements that must be calibrated properly with limitations that should
be known. There are many different types of sensors with large ranges of precision
and cost. Here, the focus will be put on the sensors onboard the Pheeno platform
and fusing their measurements to produce reliable feedback.

Section B.1 will provide a high level introduction to the sensors on board the
Pheeno robotic platform, their strengths and weaknesses, and how they should be
used. Section B.2 will go into how and why to calibrate sensors on board the robot.
Section B.3 will introduce different methods to combine sensor measurements into
reliable, robust position and orientation estimates for the robot. It will also briefly
go into the pros and cons of each fusion.

B.1 Getting to Know the Onboard Sensors.

Pheeno is equipped with a MinilMU-9 v5 made by Pololu. This little board con-
tains a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer. Figure B.1
shows the ideal reference frame of the MinilMU-9 v5 aligned with Pheeno’s reference
frame. Pheeno is also equipped with 6 infrared (IR) distance sensors, a quadrature
encoder on each motor, and an RGB camera. Each of these sensors alone are very
powerful, however, they each have critical weaknesses which will be explored below.
Together, with the help of a little mathematics, these sensors make up for each other’s
weakness and allow Pheeno to figure out where it is in space and what its surroundings
are like.

One thing that will not be covered in this document is converting raw data/voltages
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provided by the MinIMU-9 v5 or any of the sensors on the robot. For reference, sen-
sors typically output analog or digital voltages which must be converted to digital
signals that may then be transformed to standard units by a micro processor. Other,
more complex sensors, have micro chips on board that use communication protocols
like Inter Integrated Circuit Communications (I*C) and Serial Peripheral interface
(SPI).

A typical inertial measuring unit (IMU) like the MinilMU-9 v5 will not output raw
data in any units that are useful to the operator. IMUs like this typically have different
operating ranges that can be set by the user. For whatever range is chosen by the user,
a conversion factor is typically given in the datasheet associated with the IMU. It is
important to note however, all sensors on a robot are quantized at some resolution
(meaning whatever continuous source they measure will be represented at discrete
increments). Typically there is a trade off between the resolution of measurements
and the range of values that can be measured. For example, the standard setting
for the gyroscope on Pheeno is set to measure an angular rotation rate range of
+245°/s. This allows for a measurement resolution of 0.00875°/s. This is fine for
determining rotations on a small robotic platform like Pheeno but this concept should
not be ignored. The resolution and range of any sensor on board should be chosen as
appropriate to the application.

B.1.1 Accelerometer

An accelerometer measures its linear acceleration along several principle direc-
tions. In Pheeno’s case the MinilMU-9 v5 has a 3-axis accelerometer allowing the
user to know how the robot’s linear acceleration in all three possible dimensions.
From this sensor alone the user can infer the direction the robot is accelerating as
well as its pitch and roll angle (if you are unfamiliar with roll and pitch angles, refer
to Figure B.12, they will be further explained later). If Pheeno drives off a cliff, it will
be very apparent from the accelerometer’s sensor measurements that it is tumbling
to its doom.

To explain what an accelerometer should be used for, raw accelerometer data from
a resting and rotating Pheeno will be analyzed. First, Pheeno was placed onto a table
top and 60 seconds of accelerometer data was recored at a rate of 100 Hz (every 10
ms). Figure B.2 shows the raw time series data of the the acceleration felt along each
axis of the accelerometer. This data shows the readings are noisy but very stable.
The accelerometer is currently just measuring gravity which should be only in the
z-direction. However, from this plot it is apparent there are slight measurements in
the x and y direction as well. This is due to slight misalignment between the IMU
board orientation and Pheeno’s resting orientation caused during manufacturing of
the robot. A misalignment similar to this should be present in every robot. From
this data, it is possible to calibrate the accelerometer and determine how tilted the
board is relative to the robot, thus aligning their reference frames.

Figure B.3 shows the acceleration along the Y-Direction of the accelerometer after
the time averaged bias has been subtracted. this plot shows most of the noise in the
raw sensor measurements (black line) is around +1lem/s. If the sensor is moved
around quickly, the accelerations of the motion will be measured and the vibrations
during the motion will amplify the noise. It should be noted how the 100 sample
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running mean of the signal (red line) provides a much more stable signal. This shows
the noise content of the signal is at a high frequency and a low pass filter can be used
to get reliable measurements from the accelerometer. However, a low pass filter will
not track quick acceleration changes well by its design. This will be addressed later.

Figure B.4 shows the velocity approximated from the accelerometer if the ac-
celerometer measurements are integrated. Over small time intervals this works rea-
sonably well but over long time periods integration error overwhelms the approx-
imation. Recall, this is from an accelerometer at rest on a table. During the 60
second interval pictured, the at rest accelerometer yields non zero velocities. Note
this happens even when the signal is averaged and the noise is not as severe.

Figure B.5 shows the position approximated from integrating the accelerometer
measurements twice. As expected this leads to compounded integration error which
causes this position approximation to be 7.5 cm from its original location in 60 sec-
onds. If left to rest for a longer period of time, the accelerometer’s estimation of
position will only get worse.

From these results, an accelerometer should really only be used to determine the
angle of orientation of the robot (pitch and roll), the acceleration of the robots motion,
and sometimes the velocity of the robot over short time periods. These become tricky
when the robot is actually being driven around since acceleration from the motion of
the robot and interaction between the robot and its environment is measured by the
accelerometer. If the robot is in a terrain where the ground changes the orientation
of the robot drastically this challenge becomes even more difficult but not impossible.
Later the accelerometer’s readings will be combined with other on-board sensors to
give an accurate measurement of the robot’s orientation and linear acceleration. An
accelerometer should almost never (really never) be used to approximate the robot’s
position through integration, especially over longer time scales. Integration error adds
up very quickly and throws off a robot’s localization significantly.

B.1.2 Gyroscope

Gyroscopes measure the rotational velocity about several principle axes. In Pheeno’s
case, the MinilMU-9 v5 has a 3-axis gyroscope allowing the user to know how fast the
robot is rotating about each axis. This sensor is typically used in parallel with the
magnetometer and accelerometer to determine the angular orientation of the robot
at all times. Unlike the accelerometer and magnetometer which typically have very
accurate but noisy signals that cannot detect fast motions, gyroscopes are great at
capturing fast rotations without being affected by the accelerations, but their orien-
tation estimates will drift over time due to integration error.

To better understand a gyroscope’s output and limitations Pheeno was manually
rotated 90 degrees (~ 1.57 radians) back and forth about its z-axis for 60 seconds.
The raw data is shown in Figure B.6a. Due to the misalignment of the MinilMU-9 v5
board with the robot’s reference frame, there is noticeable rotation about the z-axis
(yaw) and y-axis (roll) and x-axis (pitch). This can be corrected in calibration which
will be discussed in Section B.2.2. The corrected data are shown in Figure B.6b.
This data shows that the gyroscope is very good at capturing consistent angular rate
data at high frequencies with a relatively small amount of noise. Figure B.7a shows
the data from Figure B.6a integrated once to determine the Pheeno’s orientation.
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Figure B.2. The time evolution of raw accelerometer data along each principle axis
measured when Pheeno is resting on a table. The blue line is along the x-direction of
the IMU, the red line is along the y-direction of the IMU, and the black line is along
the z-direction of the IMU.

Again, this data is uncalibrated and the errors from the misalignment and offset
add up quickly. After calibration this runaway integration decreases as shown in
Figure B.7b. The yaw orientation estimate is fairly consistent showing approximately
90 degrees of rotation back and forth at two different rates. Due to the nature of the
rotation (manually turning the robot back and forth and eyeballing a 90° rotation)
there is slight deviation in the periods of the rotations as well as the magnitudes. The
calibration here is not perfect as some of the rotation is captured in the roll estimate
but this is small and with more exact and thorough calibration can be suppressed
further.

The weakness of gyroscope measurements is commonly referred to as drift, where
the integration error causes the estimate to ” drift” in one direction. Figure B.7b shows
this as the yaw estimate is slowly becoming more and more negative. Gyroscopes are
great at estimating rotations over small time scales but suffer if this estimate is
done for long periods of time. While frustrating, it is important to note this is the
opposite of the accelerometer measurements which are not reliable over short time
spans but very reliable over long ones because their orientation estimate does not
rely on integration and thus will not drift. However, accelerometers are only able to
recover two angles of orientation, which have been chosen to be pitch (rotation about
the x-axis) and roll (rotation about the y-axis). In order to determine the robots yaw
angle (rotation about the z-axis) for long time spans, the robot requires an additional
sensor, the magnetometer.
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Figure B.3. The time evolution of raw accelerometer data (black) and averaged
accelerometer data (red) along the y-direction of the IMU after the time averaged

bias is subtracted. The average line is a running 100 sample average.

B.1.3 Magnetometer

The magnetometer is very similar to an accelerometer. However, in stead of
measuring a gravity vector it measures the direction of the magnetic field surrounding
it. The magnetometer on the MiniIMU-9 v5 represents the magnetic field vector
along the same axis as the accelerometer. Its readings do not drift (given there are
no magnetic anomalies) but are noisy like the accelerometer.

Typically the magnetic field being read is dominated by the earth’s magnetic
field. This field can easily be influenced by other magnetic sources like wires carrying
large currents in buildings, large motors onboard the robot, and large metal beams
in buildings. Luckily Pheeno is a small robot that uses low current micro metal
gear motors that do not produce large enough magnetic fields to really influence the
magnetometer readings. In larger robots with bigger motors, the magnetometer’s
proximity to the motors should be accounted for. Since Pheeno is typically used
indoors, it is important for the user to determine if the room the robot is being used
in has a consistent magnetic field. If the field changes too drastically in some areas
those areas must be avoided or the magnetometer cannot be used reliably.

Assuming the area the robot is in has a consistent magnetic field, when the robot
is rotated the measured magnetic field vector should point to the surface of a sphere
centered at the origin with radius equal the strength of the present magnetic field.
However, without calibration the readings from a rotating robot will look like Fig-
ure B.13a. This plot is 2D planar slices of the 3D ellipsoid showing the resulting
measurements are not a sphere centered at the origin. Typically the offset of this
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Figure B.4. The time evolution of the approximation of velocity after integrat-
ing accelerometer measurements from Figure B.3. The blue line is from integrating
the raw accelerometer data, the red line is from integrating the running 100 sample

averaged accelerometer data.

ellipsoid from the origin is referred to as hard iron error and the directional scaling
in each direction is called soft iron error. It is crucial the magnetometer is calibrated
properly to correct both these errors. If the magnetometer is not calibrated correctly,
Pheeno will be unable to reliably determine its yaw angle and thus heading angle.
This will be further discussed in Section B.2.3.

B.1.4 Motor Encoders

Motor encoders are used to count the number of shaft rotations that have occurred.
Figure B.8a is a cartoon of a simple optical encoder. The wheel that is attached to
the shaft blocks the light from hitting the sensor at set increments which creates a
signal that is able to be measured by a micro controller. This is the foundation of
all encoders. An emitter’s signal (the light source in this case) is interrupted by a
shaft attachment creating known patterns (e.g. 12 per rotation, a known pattern at
a set angle, etc). However, there are many variations of encoders which use different
emitters (e.g. magnetic, optical, electrical contact, resistance, etc.), have different
number of sensors, and should be used in different scenarios.

Encoders typically fall into two classes, incremental and absolute. Incremental
encoders, shown in the top of Figure B.8a, are only able to determine whether a
rotation of the shaft has taken place and increment or decrement their rotation count.
Absolute encoders, shown in the bottom of Figure B.8a, are able to determine the
orientation of the shaft at any time (within some angular resolution) due to a specific
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Figure B.5. The time evolution of the approximation of position after integrating
accelerometer measurements from Figure B.3 twice. The blue line is from integrating
the raw accelerometer data, the red line is from integrating the running 100 sample
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feedback at each orientation. Typically incremental encoders are less expensive than
absolute encoders but are susceptible to errors if counts are missed due to power loss
or other factors. This can be a catastrophic problem in a robotic arm assembling a
car frame but is less consequential in a small robotic platform like Pheeno.

Mobile platforms like Pheeno use encoders to count the number of rotations each
wheel has made. This can then be used as feedback to determine how fast the motor
is actually rotating the platforms wheels and how far the robot’s body has traveled
or rotated. However, this position and orientation estimates are extremely vulnerable
to non level surfaces and wheel slip. Both of these problems cannot be remedied by
absolute encoders and thus Pheeno uses incremental encoders, specifically quadrature
encoders.

Unlike standard (one sensor) encoders, which can only determine speed and dis-
placement, quadrature encoders can determine velocity and direction. The major
difference here is quadrature encoders can determine the direction of rotation of a
shaft. It is possible to use a normal encoder on a motor and trust the encoder is
rotating in the direction commanded, however, it is a horrible idea to assume your
input direction translates to your output direction. In a small robot like Pheeno if the
motors are turned off and allowed to rotate passively, this rotation will be captured
correctly by quadrature encoders and will not necessarily be captured correctly by
normal encoders.

Pheeno uses magnetic quadrature encoders that use hall effect sensors to detect
rotational motion of its motors. Hall effect sensors are used because the emitter and
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Figure B.6. The time evolution of the (a) uncalibrated and (b) calibrated rotational
velocity measurements about each axis measured by the gyroscope on board Pheeno.

The robot was rotated 90 degrees back and forth over a 60 second period.

sensor do not need to be well aligned and are not effected by lighting conditions like
optical encoders. The encoder is mounted on an extended back shaft of a micro metal
gear motor which rotates at the speed of the motor before the rotation is geared
down to the wheel shaft. This allows for higher resolution measurement of the wheel
rotation.

B.1.5 Infrared Distance Sensors

Pheeno uses six Sharp GP2Y0A41SKOF analog infrared distance sensors to sense
linear distance of objects around the robot. These sensors were chosen due to their
price instead of an expensive Light Detection And Ranging (LIDAR), sometimes re-
ferred to as Light Imaging, Detection, And Ranging, sensors. They also do not have
issues with ghost echoes like Sound Navigation And Ranging (SONAR) sensors. Five
are uniformly distributed radially along the front 180° of the robot with one in the
rear. These are made to measure 4 cm to 30 cm distances in front of the sensor. How-
ever, they can be exchanged with any other IR sensor with JST mounts for different
distance ranges (given the power, signal, and ground connections are the same).

Figure B.9 shows a cartoon representation of how a Sharp IR distance sensor
works. A light emitting diode (LED) emits a beam of light through a lens which
reflects off a surface and hits a different location on the position-sensible photo detector
(PSD). Based on the location struck by the reflected beam, a distance measurement
can be produced. This method of measuring distance has a few drawbacks that
should be recognized. The first is, small or very curved surfaces (e.g. a chair leg)
can not always be observed by the IR sensor because the initial beam will miss the
object or the reflection will miss the PSD. The second reason is, light absorbing
surfaces (e.g. darker surfaces) will absorb a lot of the sensing beam and thus will not
cause a reflected beam. The final is a common problem in most light based distance
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Figure B.7. The time evolution of Pheeno’s estimation of orientation from inte-
gration of (a) uncalibrated and (b) calibrated gryoscopic rate measurements in (a)
Figure B.6a (b) Figure B.6b. The robot was rotated 90 degrees back and forth over
a 60 second period.

sensors. The beam is very thin and thus the sensor must be aligned both in height
and orientation with the object to create a reliable measurement.

B.1.6 Camera

Pheeno has an optional Raspberry Pi Camera attached to the top of the robot
which allows visual information to be captured, processed, and/or transmitted to
other devices. This camera is a five mega-pixel fixed-focus camera that is able to
capture 1080p resolution at 30 frames per second (fps), 720p resolution at 60 fps,
or lower resolutions at 90 fps. These frame rates are possible in theory but in naive
practice these frame rates drop due to the robot’s processing capabilities (on board
the raspberry pi). When performing further processing on the robot, these frame
rates drop even further unless more advanced techniques beyond the scope of this
document are implemented.

B.2 Calibration

This section will go through the calibration required to use Pheeno’s on-board
sensor suite correctly. This is meant as a high level calibration, meaning the mis-
alignment of the sensors and their sensing ranges will be corrected. Typically these
sensors should be calibrated to deal with temperature changes and other factors but
that will not be covered.

Without calibration the on-board sensors could still be used but would yield infor-
mation with systematic errors constantly. Calibration really only needs to be done to
the IMU. The accelerometer calibration will be covered in Section B.2.1, gyroscope
calibration will be shown in Section B.2.2, and the magnetometer calibration will
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Figure B.8. Encoder diagrams. Figure from Eitel [46].

be done in Section B.2.3. Encoders typically work out of the box. Any calibration
needed to detect the changes in magnetic or optical field created by the encoder has
already been done before purchasing the sensor. Due to this, Section B.2.4 will dis-
cuss common problems that can be avoided with counting incremental encoders and
how to transform counts to linear distances traveled by the wheels of the robot. IR
distance sensors typically have a conversion factor available in the data sheet that
transforms the voltage read to distance, however, it is a good idea to not blindly
trusting data sheets and fit distance data to readings on their own. Cameras, like the
one on Pheeno, are typically plug and play. However, it should be noted there are
auto calibration functions constantly going on in the background of these web-cam
like cameras which are actively focusing the picture, letting in an ample amount of
light, and auto-balancing the colors. There are ways to do this manually but that
will not be covered here.

B.2.1 Accelerometer Calibration

The data from the accelerometer at rest in Section B.1.1 suggested the orienta-
tion of the IMU was not the same as the robot due to manufacturing errors. If this
slight misalignment was ignored, the accelerometer would pass biased acceleration
information to the robot every measurement. This would cause errors in the orienta-
tion calculations as well as acceleration measurements of the robot. A typical mistake
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Figure B.9. A cartoon representation of how an infrared distance sensor determines
distance of obstacles. A light emitting diode (LED) emits a beam of light through a
lens which reflects off a surface (S1, S2) and hits a different location on the position-
sensible photo detector (PSD).

made by new robotic users is to simply subtract off this bias measured when the robot
is at rest. This does not solve the problem as any acceleration will not be measured in
the same reference frame as the robot’s. Even worse, because the gyroscope measures
rotational velocity and the magnetometer measures the magnetic field about the same
axes, the angular rotation and magnetic field measurements would be in the wrong
reference frame as well.

To correct this, the same resting accelerometer data from Section B.1.1 will be
used. First, the bias in the data must be identified. Here, it is assumed the sensor
has additive white Gaussian noise (AWGN). This assumption means any noise in
the sensor is uniform across frequencies, can be described by a Gaussian (normal)
distribution, and is added to the true signal. To back up this assumption, the resting
accelerometer signal in the x-direction from Section B.1.1 is analyzed. Figure B.10
shows the single-sided amplitude spectrum of the resting accelerometer data along the
x-axis after a fast Fourier transform. This shows the expected spike at zero because
the measurement is just a static signal as well as spikes along the rest of the frequencies
from noise. This supports the white noise assumption as there are no significant peaks
besides the signal. Figure B.11 displays the histogram of the measurements along the
x-axis from the accelerometer at rest. While there is a small bump on the left tail of
the distribution, this still supports the Gaussian noise assumption.

From the AWGN assumption, the bias in each direction is the average accelera-
tion along each axis. This bias vector allows the user to identify the roll and pitch
angle differences between the reference frame of the IMU and the resting Pheeno’s
reference frame. Figure B.12 is a cartoon representation of Pheeno in orientations
that would create a roll, pitch, and yaw angles. From our single at rest accelerometer
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measurement it is impossible to calibrate all three angles. Any gravity measurement
will wind up on a unit gravity sphere which only requires two angle parameters to
describe fully. Another way to think about this is if the z-axis of the robot’s reference
frame and the IMU’s reference frame were aligned, any yaw rotation would cause the
same measurement of 1g along the z-axis. However from this it is still possible to
calibrate the roll and pitch offset between the IMU and the robot reference frames.
With a bit more mathematical rigor, Pheeno’s IMU oriented in Earth’s gravita-
tional field ¢ under%oing a linear acceleration a, in the earth’s reference frame will

produce a reading M of,

M =R« (d, + §) (B.1)

where R is the rotation matrix that relates the IMU’s reference frame to the
Earth’s. Since this scenario considers orientation data where the robot is at rest on
a surface parallel to the Earth’s surface, the z-axis of the robot’s reference frame is
aligned with the z-axis of the reference frame of the Earth, this equation simplifies
to,

—

M=Rxg

The rotation matrices that describe the roll, pitch, and yaw rotations shown in
Figure B.12 are described as,

rcos(¢p) 0 — sin(gb)]
Ry¢)=| 0 1 0 (B.2)
[sin(¢) 0 cos(¢)
1 0 0
R.(0) = |0 cos(h) sin(@)] (B.3)
10 —sin(#) cos(0)
[ cos(yp) sin(y) 0
R.(¢) = |—sin(¢) cos(v) 0] (B.4)
0 0 1

Using these rotation matrices there are six unique rotation orders that can be done
to produce the same rotation; R, (¢)R,(6)R.(¢) (Roll, Pitch, Yaw), R, (¢)R.(¢) R4 (0)
(Roll, Yaw, Pitch), R, (8)R,(¢)R.(v) (Pitch, Roll, Yaw), R, (0)R.(¢)R,(¢) (Pitch,
Yaw, Roll), R,(¢)R.(0)R,(¢) (Yaw, Pitch, Roll), R,(¢))R,(¢)R.(0) (Yaw, Roll,
Pitch). These rotation orders are not commutative, like most matrix multiplications,
and multiplying them out yields different matrices. To solve for roll and pitch, ex-
panding the pitch, roll, yaw matrix multiplication yields,

cos(¢) cos() cos(¢) sin(1)) — sin(¢)
cos(1)) sin(¢) si.n(ﬁ) - CQS(H) s?n(w) cos(0) Cps(w) + sin(¢) sin(0) sip(w) cos(¢) sin(0)
cos(0) cos(1)sin(¢) + sin() sin(yp) cos(8) sin(¢) sin(¢r) — cos(¢) sin(f) cos(¢p) cos(h)
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Using this matrix in Equation B.1 with § = [00 — 1]7 yields,

. sin(¢)
M = | —cos(¢)sin(0) (B.5)
— cos(¢) cos ()
which is only dependent on the pitch () and roll (¢) angles. Using the average
measurement vector, it is possible to solve Equation B.5. It should be noted that

the vector on the right side of Equation B.5 always has a length of 1, thus M =
(M, M, M.]" should be normalized. Solving Equation B.5 for the pitch and roll
angles yields,

—M,
tan(6,,,) = —My (B.6)
tan(¢gy.) = i (B.7)

Note that the pitch angle has two negatives that could be canceled. These are left
in purposefully so that when solving for the angle and using and atan2() function the
user does not get the wrong angle.

Now to determine the yaw angle offset, Pheeno is pitched at a known angle like
in Figure B.12b. The new measured gravity vector should now be g = [0 —sin(6,) —
cos(64)] where 04 is the known inclination of the robot. Substituting this into Equa-
tion B.1 yields,

—

M,

where M, is the accelerometer measurement vector when Pheeno is pitched at
angle 6,. In this equation there is no R, (y,.). This is because previously ¢,,. was
not able to be solved for. Thus, it can be chosen arbitrarily. If chosen to be . = 0,
R, (1yy) is a 3x3 identity matrix. To simplify this equation, substitute,

This allows for an explicit solution for 1),

MP.’E Py
T iUy — TV
|Mp|| ¥ ||[Mpl|| ”*

2 2
vy + vy

(B.9)

1) = arcsin

The rotation matrix which aligns the IMU’s reference frame with Pheeno’s is then,

RCalibration = (Rz (Qﬂ)Rw(eazyz)Ry((ﬁxyz))il
= Ry(_¢xyz)Rw(_9xyz)Rz(_¢) (BlO)
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Figure B.10. The single-sided amplitude spectrum of the resting accelerometer data

along the x-axis.

These angles should be saved. To use this calibration properly, any measurement
should be rotated through this matrix.

B.2.2  Gyroscope

Gyroscopes typically don’t need much calibration. Again, an assumption about
the sensor noise should be made. The gyroscope is assumed to have AGWN like the
accelerometer. The analysis supporting this assumption is the same as provided in
Section B.2.1 and will not be shown here. Calibrating a gyroscope only requires sub-
tracting a resting bias. This involves simply averaging the gyroscope measurements in
each direction when Pheeno is at rest on a level surface, then saving this information
and subtracting the average from any reading.

It should be noted that the axis the gyroscope measures rotation about are the
same as the accelerometer. This means any measurement made by the gyroscope
should be transformed to Pheeno’s reference frame through the rotation matrix found
in Section B.2.1. It is up to the user whether to subtract an average of the transformed
measurements from transformed measurements or subtract the average untransformed
measurements from untransformed measurements then transforming the result. The
latter is preferred but both are valid.

B.2.3 Magnetometer

Magnetometers are typically the sensor that requires the most frequent calibration.
Like the accelerometer, the magnetometer measures a theoretically constant magnetic
field vector with respect to the magnetometer’s orientation. However, these readings

169



800

600

400

200

Acceleration (cm/sz)

Figure B.11. Histogram of the resting accelerometer data along the x-axis.

can easily be thrown off by large metal beams or wires with large electrical currents in
buildings. For larger robots, the motors can cause throw off large magnetic anomalies,
however, Pheeno uses very small low current motors so their effects can be ignored. In
an ideal scenario, the magnetometer would just read the magnetic field of the earth,
which is different depending on the user’s location around the globe. With that said,
even if the magnetometer were calibrated at the factory it was produced in, those
calibration values would be invalid other places. For this section, it will be assumed
the magnetometer is only reading the Earth’s magnetic field. Ways to overcome or
recognize anomalies in the magnetic field are possible but will not be covered.

The ideal response surface for a 3-axis magnetometer is a sphere centered at the
origin. This means if the user rotates the magnetometer while taking readings, a well
calibrated magnetometer will produce point readings on a sphere with a radius equal
to the magnitude of the magnetic field present. Figure B.13a shows uncalibrated
data taken from the magnetometer on-board Pheeno. The data was taken at 1Hz
increments while the sensor was slowly rotated about each axis. The plot is a various
2D slices from the 3D sphere to illustrate the fact that the slices are not centered at
the origin and the response sensitivity is different along each axis (they are not equal
radius circles). These are often referred to as hard iron and soft iron errors or biases,
respectively.

Hard iron biases are typically the largest source of error and usually the easiest to
account for. To correct this, record the maximum and minimum field measurements
along each axis while rotating the magnetometer. Once the user is satisfied the
magnetometer has taken sufficient measurements in each orientation, the average
between the max and min magnetometer reading along each axis is equal to the hard
iron bias in each direction.

To correct for the soft iron bias correctly, the response surface from the raw
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Figure B.12. Cartoon of Pheeno at different orientations representing the roll,

pitch, yaw convention.

measurements of the magnetometer should be deconstructions into their elliptical
principle axis to create a 3 x 3 correction matrix to transform the general ellipsoid
to a sphere. This is pretty involved and more importantly can be approximated in
a much easier way. An explanation of the mathematics behind the full calibration
method can be found at [108].

A decent approximation for this process is to simply scale the response along each
axis with the maximum and minimum measurements already calculated previously.
First a scale factor, s, is calculated,

+ M,

 Mapy + My, + M,
3
where,
M _ Mmmaz — Mxmzn M _ Mymaz — Mymin M _ Mzmaz — Mzmzn
TLavg — YLavg — zLavg —
i 2 J 2 I 2

This average scale factor is then projected onto each axis as a gain,

S s s
Sy = Sy = S, =
M,,,, M,,., M.,

This approximation of the full calibration is a simple orthogonal rescaling; equiv-
alent to a diagonal 3 x 3 calibration matrix.

The calibrated data is then found by subtracting the hard iron bias from the
raw measurement in each axis and scaling the difference. For example the calibrated

magnetometer reading,]\fcal, of a raw measurement, M:aw = [M, M, M,], with hard
iron bias vector by = [by by b.] and scaling matrix G = diag(sz, sy, sz) would be,
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Figure B.13. Several slices of the magnetometer measurements along the principle

plains.

Mal = G(M:aw - bI;I) (Bll)

Figure B.13b shows data taken after calibration. Compared to the uncalibrated
data, the circles are now concentric and approximately circular.

B.2.4 Motor Encoders

Motor encoders do not require any sort of calibration. However, the data (which
is the number of counted rotations) has to be transformed to some usable units. For
generality, the encoders will be assumed to count n times per rotation of the extended
back shaft and there will be a g gear ratio from the measured extended back shaft to
the wheel shaft. From this assumption, the numbers of radians the drive shaft has
traveled per count, x, would be,

27‘(’£.

ng

From this transformation, the linear distance a wheel would travel (assuming no
slipping) and the rotational velocity of the wheel shaft can be calculated.

An important note that can cause some issues is these counts become very large
very quickly. Usually these counts are stored in an integer variable on board your
robot’s processor which only allows n-bit ranges (2"). In Pheeno’s case signed integers
are stored in a 16-bit variable. This means signed integers can only be stored from
[—32768, 32767] once this range is surpassed, the number will roll over. This means if
the count were supposed to increment to 32768 (outside the range) it would actually
go to —32768. This can cause velocity and position estimates to go haywire if not
expected. Standard conditional statements inside the robot’s code can alleviate this
issue but users should still be aware of this issue.

(B.12)
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B.3 Sensor Fusion for State Feedback

This section will go through complementary filters that are used on board Pheeno
to fuse the sensor measurements to determine the robot’s state (position, velocity, ori-
entation, etc.). It will also briefly go into using the sensors that sense the robot’s sur-
roundings (IR distance sensors and camera) to determine reliable information about
the environment.

Section B.3.1 will go over complementary filtering of sensors in a very basic sense
with limited mathematics to give the user an intuition. Section B.3.2 will introduce
complementary filters in a more mathematically rigorous sense. Section B.3.3 briefly
describes the complementary filters used on board Pheeno.

B.3.1 Complementary Filter (Basic)

A complementary filter is an easy to implement sensor filter that joins two state
estimates together. These estimates are required to be accurate on different time
scales. Meaning that one must be able to capture fast and aggressive changes while
the other maintains a consistent reading that will stay correct for long periods of
time after the aggressive maneuver (the measurement does not drift). For example,
to determine the robot’s orientation about one axis, gyroscope measurements can
be combined with magnetometer or accelerometer measurements. The gyroscope is
able to pick up quick motions well but after long periods of time will drift and its
angle estimates will become wrong, while the accelerometer and magnetometer will
determine the correct orientation when the motions are less aggressive.

Complementary filters are very similar to proportional, integral, derivative con-
trollers in nature. They are easy and computationally inexpensive to implement on
micro controller while still yielding extremely accurate measurements. Their major
drawback is they may only fuse two measurements and do not give any intuition
about how wrong their measurement estimates may be. The measurements are also
required to have strengths in opposite frequency domains which is not always possible.
Complementary filters are used on board Pheeno to estimate the robot’s roll, pitch,
and yaw angle as well as body linear velocity estimates. For this small, relatively
slow robotic platform, complementary filters are found to be just as effective as more
advanced Kalman filters at a fraction of the computational expense.

These filters work by using high pass and low pass filters simultaneously. High pass
filters allow high frequency signals while suppressing low frequency signals (such as
drift of the gyroscope). Low pass filters act the opposite way by allowing low frequency
signals while suppressing high frequency contents (like vibrational noise picked up by
the accelerometer). In its most simple form, a first order complementary filter takes
the form,

M filter = AMfast + (1 - a)mslow (B]-S)

where, m fijer is the filtered measurement, m g, is the measurement that is accurate
over short timescales, mg,,, is the measurement that is accurate over long timescales,
and a € (0,1) is the filter gain that is to be chosen.

Choosing a properly requires a bit of mathematics to fully understand but can be
chosen and tweaked based on some intuition as well. Equation B.13 can be looked
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at naively as an average. Two measurements are being averaged based on the users
confidence in them during short time periods. The higher a is chosen, the more
the filtered measurement will rely on the fast measurement and will take longer to
return to the slow measurement (which will be true when the aggressive maneuver
has ended). The lower a is chosen, the more the filtered measurement will rely on the
slow measurement and will be more prone to short term noise. While this is not how
these filters were formulated (the idea behind them was not averaging in this sense),
it is good intuition to design these filters. The optimal choice for a in a scenario
will result in a filtered measurement that is able to capture very fast changes in the
measurements as well as not have that measurement drift.

As a more concrete example, consider an accelerometer and gyroscope measure-
ment being fused to determine a roll angle estimate. Using the first order comple-
mentary filter, the roll estimate at time ¢ after a time step of At could be determined

by,

rollAngle(t) = 0.9(rollAngle(t — At) + gyroRoll RateAt) + 0.1accRoll Angle.

This example essentially updates the new roll angle estimate, roll Angle, by combining
90% of the gyroscopes update, gyroRoll Rate with 10% of the accelerometer’s update,
accRoll Angle. This combination will ensure the measurement won’t drift due to the
accelerometer limiting the integration error and will still be accurate in short term
estimates due to the majority of the updated estimate coming from the gyroscope.

B.3.2 Complementary Filter (Advanced)

While Section B.3.1 gives a basic understanding of the complementary filter, this
section looks at it with slightly more mathematical rigor. Figure B.14 shows an exam-
ple block diagram of a complementary filter fusing a gyroscopic angle measurement
with an accelerometer measurement. The gyroscopic measurement is integrated once
to yield an angle then high pass filtered to avoid drift. The accelerometer measure-
ment is low pass filtered to avoid the high frequency noise that plagues accelerometer
measurements during fast rotations. When added these measurements complement
each other’s weaknesses.

Using a first-order high pass and low pass filter, the transfer function in continuous
time is,

1 Ts 1. a-+Tw

eacc P ro — 5 -
T+ 75" 15 Tss ™" 14 Ts

where T' determines the cut-off frequencies. This now must be transformed to discrete
time, as robots do not operate in continuous time. Using backwards difference, s =
ﬁ(l — 2z~ 1), in Equation B.14 leads to the final equation,

0= (B.14)

Ok + 1) = a(8(k) + ByyroAt) + (1 — @)Bee, (B.15)

where, a = 7=5;. Note, this is the same as Equation B.13.
This still begs the question, how should the cut off frequency be chosen? The

answer is an optimization problem which is beyond the scope of this paper and usually
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Figure B.14. Block diagram of a complementary filter fusing a gyroscope angular

measurement with an accelerometer angular measurement.

needs to be adjusted in application if the optimization is done. The filter needs
to be designed such that there are constant amplification and small phase loss of
all measurements. More specifically, this means setting the cut off frequency high
enough such that the largest range of frequencies is measured by the accurate but
noisy sensor with slow dynamics (accelerometer, magnetometer, etc.). This avoids
the drift typical in faster sensors. When motions occur that are at higher frequencies
than the dynamics of the slow sensor, the cut off frequency should be set low enough
such that the expected phase loss of the slower sensor is compensated by the faster
sensor (gyroscope, encoders, etc.).

It should be noted on a small slow robotic platform like Pheeno, it is possible
to set only one cut off frequency and get reliable measurements. However, in faster
more agile systems like quad rotors, more advanced techniques like a gain-scheduled
complementary filter are required. This filter switches it cut off frequency or other
design parameters depending on how aggressive a measured action is (acceleration
measurements). There is also another representation of a second order complementary
filter based on the Mahoney and Madgwick filter for more agile systems that can be
used over a first order filter to capture more advanced dynamics [87, 88, 144].

B.3.3 Complementary Filter Design for Pheeno

Pheeno uses complementary filters to determine its orientation angles (roll, pitch,
yaw) as well as its linear velocity. This involves fusing the robot’s sensors with slow
dynamics (accelerometer, magnetometer) with its fast drifting sensors (encoders, gy-
roscope). Using the same convention established in Section B.2.1, the accelerometer’s
measurements is combined with the gyroscopes measurements to determine roll and
pitch angles of the robot. The magnetometer angular measurements are combined
with the gyroscopic measurements to determine the yaw angle of the robot (heading).
The accelerometer is combined with encoders to determine the robot body’s velocity.

This design mostly comes from experience working with the sensors and in appli-
cation the best way to determine filter coefficients is to tune on a data set and gain
intuition about the sensors from their data outputs. It is possible to model the sensor
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Figure B.15. Orientation angle estimates from several sensors and a filtered com-
bination while Pheeno was manually pitched about 45° at different rates. (a) Ac-
celerometer (blue), gyroscope (black), and complementary filter (red) estimate of

Pheeno’s pitch angle. (b) A zoomed in section of (a).

and determine these cut off frequencies in a more mathematically rigorous fashion
but, when working with inexpensive robots with readily accessible parts, this method
is faster with just as valid results.

Figure B.15 shows the time evolution of the angular orientation estimate for
Pheeno about its x-axis (pitch) as it was manually pitched from a level table to
about 45° over different periods. The filter take the form of Equation B.15. To
determine the parameter of the complementary filter equation, a = ﬁ, refer to
Figure B.15b. This data was sampled at 100Hz so At = 0.01. This leaves T, the time
constant of the system. A rule of thumb used here is to determine the time when the
fast sensor, in this case the gyroscope, drifts out of the error of the slow sensor, in this
case the accelerometer, when the system is at rest and the slow sensor’s measurement
is correct. For this case Figure B.15b shows the gyroscope’s pitch estimate drifting
outside the 0.01 rad error envelope of the accelerometer after 1s. Plugging this into
the equation for a yields, a = 0.99. A similar process is done for each axis of rotation
on the robot.

Further analysis of Figure B.15 gives a good idea of how this fusion is performing.
It is very apparent the pitch estimate from the gyroscope (black line) is drifting
away from the true rotation range but is still capturing the rotation rate correctly
especially during higher frequency rotations like between t = 65s and t = 70s. The
accelerometer’s estimate (blue line) is not drifting but there are very apparent spikes
when the robot makes contact with the table again and during the high frequency
rotation between ¢ = 65s and ¢t = 70s. The complementary filter with @ = 0.99
captures the best of both of these sensors. There is no apparent spiking or noise from
the accelerometer measurements and the estimate is not drifting.
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APPENDIX C

CONTROL OF THE PHEENO ROBOT FOR NAVIGATION
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This appendix describes the controller design for the motors that drive Pheeno
as well as the higher level controller structure that navigates the robot from one
location to another. To create these controllers accurate models of the motors and
robot are needed. The choice of models and fitting will be discussed in Section C.1
and Section C.3. The controller design sections will address which sensors are used
to calculate the desired feedback but the details are discussed in the observer design
document and thus, will not be talked about here.

The simplest possible models are used to design controllers for Pheeno. To un-
derstand this choice, refer to the passage from George Box’s 1978 paper:

Now it would be very remarkable if any system existing in the real world
could be exactly represented by any simple model. However, cunningly
chosen parsimonious models often do provide remarkably useful approxi-
mations. For example, the law PV = RT relating pressure P, volume V
and temperature T of an “ideal” gas via a constant R is not exactly true
for any real gas, but it frequently provides a useful approximation and fur-
thermore its structure is informative since it springs from a physical view
of the behavior of gas molecules.

For such a model there is no need to ask the question ”Is the model true?”.
If “truth” is to be the "whole truth” the answer must be "No”. The only
question of interest is "Is the model illuminating and useful?”[25].

The better known section header of this passage is,
All models are wrong but some are useful.

There is a need for the model to capture the properties of the system that are useful
without overparamertizing or overelaborating the model. Using more intricate models
than are needed makes the controller design more complicated and, more importantly,
over fits the data used to parameterize the system which can cause this model to
describe a certain data set more than the system it is meant to represent. With
the use of feedback control, even simple models that do not describe the system
completely can be controlled in desirable fashion.

C.1 Modeling the Motors

The first and arguably most important step towards controlling Pheeno’s motion is
designing a fast controller for the motors. To do this an accurate model of the motors
must be created. Typically, this would be done by parameterizing the standard second
order transfer function for a direct current (DC) motor,

o K
ps) = 20) _ r . (C.1)
E.(s) (Js+0b)(Ls+ R)+ KgKr
where K is the gain relating the armature current to armature torque, Kp is the
gain relating the rotational velocity of the rotor to the back EMF in the armature
circuit, J is the inertial of the rotor, b is the viscous friction acting on the rotor, L
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is the inductance in the armature circuit, and R is the resistance in the armature
circuit.

However, for micro-metal gear motors, like the ones used on Pheeno, L << R.
This allows for the second order system to be approximated by a first order system
by setting L = 0 yielding,

P(s) ~ Kr K

R(Js+b)+ KpKr Ts+1 (C2)

where,

Kr RJ
Ke— 2t p___ "
Rb+ K1+ Kp Rb+ KrKp

To fit these parameters, the motors will be black box modeled using MATLAB’s
system identification toolbox [86]. Two motors attached to Pheeno were given step
voltages and sinusoidal voltages of frequencies between 0.1 and 50 Hz. The max
sinusoidal frequency was chosen following the Nyquist sampling criterion which states
a signal may only be recreated if it is sampled twice as fast as its highest frequency
component. The rotor rotational velocities were measured with its encoders at a rate
of 100Hz. The input and output time plots are shown in Figure C.1. From these
plots, it is apparent there is a large magnitude drop off as the frequency of the input
signal increases. This is expected in a natural system like the DC motor.

This data is given to the system identification toolbox to fit a first and second
order continuous model of the motor. As expected, the first and second order transfer
functions yield equal ”goodness of fit” to the data (~ 80%). This fit is a little low but
acceptable as a linear model is unable to represent nonlinear friction effects on the
motor rotor. The first and second order system both have a pole at ~ 36 rad/s with
the second order system also having a pole at ~ 60,000 rad/s. From this fitting it is
obvious the dynamics of the motor are dominated by the single pole. The location
of the pole fit also makes sense as the magnitude of the sinusoidal response begins to
decay around 30 rad/s as is expected with roll off caused by a pole.

This leaves the first order approximation of the system.

2.9876
P(s) = ——_
)= T s607
The model compared to a set of validation data can be seen in Figure C.2.

(C.3)

C.2  Controlling the Motors
C.2.1 Continuous Consideration

From this plant it is possible to design a controller so that the motor responds
in a desired way. For this application it is desirable to make the motors follow step
commands (and rejects step disturbances) as fast as possible with no overshoot. From
the internal model principle, a proprtional integral (PI) controller is enough to satisfy
these requirements.

This formulation leads to a standard feedback problem that must be solved. Fig-
ure C.3 shows a block diagram of standard negative feedback loop with the symbols
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Figure C.1. The voltage input (fop) and rotor velocity output (bottom) signals for
a DC motor.

that will be used here. The plant, P(s) = 5}386.7(?77 was found previously, a PI con-

troller, K = gs%‘l, needs to be designed, and a pre-filter, W = —i—. needs to be
incorporated to reduce the overshoot caused by the zero of the controller. Here, the
sensor dynamics, H, are assumed to be ideal.

Typically, in a classroom setting, a pole placement method would be employed
to match the nominal closed loop system to some desired closed loop system. In
this case, a slightly different method will be employed. The plant here is a nominal
representation of the system. This means there are higher order dynamics present
in the system that are not modeled so the gain chosen cannot be very high and the
dominant pole modeled here can be slightly or significantly off. First, a will be chosen
with these real world constraints in mind, then g will be chosen such that there is no
overshoot and the motors spin up as fast as possible.

First, notice the pre-filter is a stable low pass filter (presuming a > 0). This
means it will create a natural delay on the reference signal depending on how small a is
chosen. Thus a should be chosen to be large such that this delay does not significantly
slow down the motor’s response to low frequency reference commands and does not
restrict the magnitude of desired higher frequency signals. However, it should be
chosen low enough that the integral term of the controller does not become too large
and exacerbate the integral windup problem caused by motor saturation (which will
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be addressed later). Secondly, the proposed open loop system’s (K P) root locus will
result in two different looking root locus depending on how a is chosen. Figure C.4
shows an example of both root locus. Note choosing a larger than the dominant pole
of the modeled motor has two critical damping points. The left critical dampin point
requires a much larger gain and thus will not be considered. The right critical point
will shift left as a is chosen closer to the pole of P making the closed loop system’s
response faster. To make the system as fast as possible, choose a = 36.07 so it cancels
the pole of the motor. Typically, this is not a good idea because of modeling errors
that cause this cancellation to not be true in reality. However, because it is a very
stable pole, this choice does not have such severe consequences as model error will
result in one of the two root locus represented in Figure C.4.

The gain, g, is chosen such that the rise time of the system is < 0.5s. Figure C.5
shows a simulated step response of this controller and modeled plant which behaves
as expected.

C.2.2 Dealing with Integral Windup

Integral windup is a problem that occurs in controllers containing integral terms
when a large change in the reference command occurs. For example, if Pheeno is
suddenly commanded to go from rest to full speed there will be a large error initially
that will get smaller as Pheeno begins to reach its top speed. However, during this
time the integral term of the controller will be compounding this error and cause
an overshoot until enough error has occurred in the opposite direction to offset it.
This gets worse when saturation of actuators are considered. In this case, a naive
controller can require an output larger than what can be produced by the actuator.
This causes integration error to continue to compile without knowledge that the error
it is trying to rectify is beyond the capabilities of the system.

There are several ways to address this issue. In Pheeno, this issue is addressed by
adding a secondary feedback loop that limits the integral term when motor saturation
has occurred. Figure C.6 shows this feedback loop in block diagram form. This
feedback loop only kicks in if the controller’s desired output is higher or lower than
the actuator can output. When saturation occurs, the feedback loop keeps the integral
term from compounding when the error cannot be reduced. Typically the tracking
gain, Kj, is chosen to be equal to the integral gain, K;, but higher values can cause
better performance [21].

C.2.3 Discrete Time Adaptation

It would be naive to just throw this controller onto the robot and assume the
motors will respond as they were designed to. If the controller were designed in
the continuous domain without accounting for the delays created by the sampling
of the microcontroller, it is very likely the control would be unstable at worse or
not exhibit the designed properties at best. The Teensy microcontroller can easily
perform control loops at 100Hz. Thus a sampling time of 0.01 is chosen to design the
motor control around.

First, the plant should be transformed from the continuous domain to the discrete
domain. There are many options to transform a continuous plant represented in the
s-domain to the discrete time z-domain. For the plant, a zero-order hold (ZOH)
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conversion is chosen as that best represents the type of hold circuit that will be used
in sampling the motor. The controller designed in the continuous case is transformed
using the bilinear transformation to better approximate the continuous behavior of
the controller in the discrete space.

This control case is ideal as the sampling time is very fast compared to the desired
rise time. Thus, the continuous system is very close to the discrete system. Figure C.7
shows the step response of the discrete designed system with the continuous designed
system. However, in general this will not be the case and the continuous system
would need to be augmented with an additional gain to get the desired response
characteristics or redesigned entirely.

To validate this control, several known commands are given to two different mo-
tors on two different robots. The model’s prediction is compared to the motor outputs
in Figure C.8. For large jumps in the reference command, like the last two step com-
mands, the integral windup overshoot is apparent but not overwhelming. This could
be remedied with a less aggressive controller or putting a more restrictive low pass
pre-filter on the reference commands. This would slow down the response consider-
ably which is undesirable.

C.3 Modeling the Robot

Pheeno is by default a differential drive robot. This means each wheel can be
controlled independently to produce desired motion. However, this makes the robot
a coupled system resulting in a multi input multi output system which can be tricky
to control properly. To simplify this, a decoupled kinematic model is used to represent
Pheeno’s motion and control its position and orientation in a global reference frame.
This can be done since Pheeno is so light and its motion is dominated by the motor
torques. An extremely in depth analysis about when this assumption can be used is
done by Anvari [12] in his master’s thesis.

Consider Pheeno in an inertial reference frame {X,,Y,} as shown in Figure C.9.
Pheeno’s basic motion model is, what is commonly referred to as, the unicycle model.

x cosf 0
j| = [sin@ 0] H (C.4)
0 0o 1] L*

This model transforms the robot’s linear velocity, v, and rotational velocity, w, in
Pheeno’s reference frame to velocity states in the inertial frame. However, the robot’s
linear and rotational velocity cannot be controlled directly so another transformation

is needed linking the rotational velocity of the wheels, vz and vy, to v and w. This
relation is derived more thoroughly in Malu and Jharna Majumdar [91].

-1 411

Here, r is the wheel radius and L is the axle length of the differential drive robot.
Combining Equation C.4 and Equation C.5, yields the final relation between the
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wheel speeds of the robot and the velocity states in the inertial reference frame.

T % cos g cos y
yl = %Sin& 581?9 [U}j (C.6)
0 T T

However, it is much more intuitive to use the unicycle model (Equation C.4) thus
control will be done to create reference linear velocities, v, and rotational velocities,
w, for the robot to follow. These will then be transformed to motor velocity commands
using Equation C.5.

In discrete time, this unicycle model takes the form,

x 1 0 0] [« At cos(0 + A—g’“) 0 Y
[y] = [O 1 0] y| + |Atsin(0p +2%) 0 [w} (C.7)
0], oo 1], 0 At

This unicycle model has slight changes to the orientation model that can be found in
a paper by Kiriy and Buehler [73]. Using this model over the usual one showed vast
improvements in dead reckoning navigation for Pheeno.

C.4  Controlling the Robot’s Motion

The approach to using the unicycle model to navigate Pheeno from an initial
position to a goal position described here is using a layered architecture. This means
using a high level planner to design way points for the robot to pass through, which
are then translated to linear and rotational velocities of the robot, which are finally
put through the fast PI controller of the motors. This section focuses on the middle
component which decides the set points for the linear and rotational velocities.

Assume the high level planner has given an initial desired position @ = [u, u,
From a Lyapunov stability analysis in [91] the controllers which produce stable global
position tracking are,

I

v=K,pcosa (C.8)
w = K,sinacosa + K, (C.9)

where K, > 0 is a gain associated with radial distance error from the goal location,
p=+/(uz — )2 + (uy — y)?, and K, > 0 is a gain associated with the robot’s heading
error from the goal direction vector, a = atan2(;*=%). It should be noted the heading
error, «, is bounded (—m, 7] which limits how large w can get. However, the radial
distance error, p, is unbounded. Thus, it is typical in application to either know the
bounds of p when designing K, as a constant or choosing K, to be of the form,

_ p—ap?
K, = v —e™) (C.10)

p

which limits the maximum linear velocity of the robot to a designed vy. When de-
signing for any application, the gains should be chosen carefully to avoid wheel slip
caused by high accelerations. The controllers should also operate slower than the rise
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time of the motor controller (~ 0.1s) so the motors have a chance to produce the
desired linear and rotational velocities demanded by the higher order controller.

Alternatively, a PID controller can be substituted for this non-linear controller
to track high level headings and velocities. For this, the unicycle model should be
linearized as a series of short straight motions to design around. As with all applied
PID controllers, integral windup needs to be addressed and the controller should be
designed with actuator bounds in mind.
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Figure C.2. The first order DC motor model (red) compared to validation data
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Figure C.3. A block diagram representation of a standard negative feedback loop.
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Figure C.4. The root locus of Pheeno’s motors where the zero of the controller is
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