1,886 research outputs found

    Genetic programming for the automatic design of controllers for a surface ship

    Get PDF
    In this paper, the implementation of genetic programming (GP) to design a contoller structure is assessed. GP is used to evolve control strategies that, given the current and desired state of the propulsion and heading dynamics of a supply ship as inputs, generate the command forces required to maneuver the ship. The controllers created using GP are evaluated through computer simulations and real maneuverability tests in a laboratory water basin facility. The robustness of each controller is analyzed through the simulation of environmental disturbances. In addition, GP runs in the presence of disturbances are carried out so that the different controllers obtained can be compared. The particular vessel used in this paper is a scale model of a supply ship called CyberShip II. The results obtained illustrate the benefits of using GP for the automatic design of propulsion and navigation controllers for surface ships

    The problem of automation: Inappropriate feedback and interaction, not overautomation

    Get PDF
    As automation increasingly takes its place in industry, especially high-risk industry, it is often blamed for causing harm and increasing the chance of human error when failures occur. It is proposed that the problem is not the presence of automation, but rather its inappropriate design. The problem is that the operations are performed appropriately under normal conditions, but there is inadequate feedback and interaction with the humans who must control the overall conduct of the task. When the situations exceed the capabilities of the automatic equipment, then the inadequate feedback leads to difficulties for the human controllers. The problem is that the automation is at an intermediate level of intelligence, powerful enough to take over control that which used to be done by people, but not powerful enough to handle all abnormalities. Moreover, its level of intelligence is insufficient to provide the continual, appropriate feedback that occurs naturally among human operators. To solve this problem, the automation should either be made less intelligent or more so, but the current level is quite inappropriate. The overall message is that it is possible to reduce error through appropriate design considerations

    Robust Adaptive Control of an Uninhabited Surface Vehicle

    Get PDF
    In this paper, we develop a novel and robust adaptive autopilot for uninhabited surface vehicles (USV). In practice, usually asudden change in dynamics results in aborted missions and the USV has to be rescued to avoid possible damage to other marine crafts inthe vicinity. This problem has been investigated in our innovative design, which enables the autopilot to cope well with significant changes in the system dynamics and empowers USVs to accomplish their desired missions. The model predictivecontrol technique is employed which adopts an online adaptive nature by utilising three algorithms. Even with random initialisation,significant improvements over the gradient descent and least squares approaches have been achieved by the modified weightedleast squares (WLS) method, which periodically reinitialising the covariance matrix. Extensive simulation studies have been performed to test and verify the advantages of the proposed method

    A Study on the Automatic Ship Control Based on Adaptive Neural Networks

    Get PDF
    Recently, dynamic models of marine ships are often required to design advanced control systems. In practice, the dynamics of marine ships are highly nonlinear and are affected by highly nonlinear, uncertain external disturbances. This results in parametric and structural uncertainties in the dynamic model, and requires the need for advanced robust control techniques. There are two fundamental control approaches to consider the uncertainty in the dynamic model: robust control and adaptive control. The robust control approach consists of designing a controller with a fixed structure that yields an acceptable performance over the full range of process variations. On the other hand, the adaptive control approach is to design a controller that can adapt itself to the process uncertainties in such a way that adequate control performance is guaranteed. In adaptive control, one of the common assumptions is that the dynamic model is linearly parameterizable with a fixed dynamic structure. Based on this assumption, unknown or slowly varying parameters are found adaptively. However, structural uncertainty is not considered in the existing control techniques. To cope with the nonlinear and uncertain natures of the controlled ships, an adaptive neural network (NN) control technique is developed in this thesis. The developed neural network controller (NNC) is based on the adaptive neural network by adaptive interaction (ANNAI). To enhance the adaptability of the NNC, an algorithm for automatic selection of its parameters at every control cycle is introduced. The proposed ANNAI controller is then modified and applied to some ship control problems. Firstly, an ANNAI-based heading control system for ship is proposed. The performance of the ANNAI-based heading control system in course-keeping and turning control is simulated on a mathematical ship model using computer. For comparison, a NN heading control system using conventional backpropagation (BP) training methods is also designed and simulated in similar situations. The improvements of ANNAI-based heading control system compared to the conventional BP one are discussed. Secondly, an adaptive ANNAI-based track control system for ship is developed by upgrading the proposed ANNAI controller and combining with Line-of-Sight (LOS) guidance algorithm. The off-track distance from ship position to the intended track is included in learning process of the ANNAI controller. This modification results in an adaptive NN track control system which can adapt with the unpredictable change of external disturbances. The performance of the ANNAI-based track control system is then demonstrated by computer simulations under the influence of external disturbances. Thirdly, another application of the ANNAI controller is presented. The ANNAI controller is modified to control ship heading and speed in low-speed maneuvering of ship. Being combined with a proposed berthing guidance algorithm, the ANNAI controller becomes an automatic berthing control system. The computer simulations using model of a container ship are carried out and shows good performance. Lastly, a hybrid neural adaptive controller which is independent of the exact mathematical model of ship is designed for dynamic positioning (DP) control. The ANNAI controllers are used in parallel with a conventional proportional-derivative (PD) controller to adaptively compensate for the environmental effects and minimize positioning as well as tracking error. The control law is simulated on a multi-purpose supply ship. The results are found to be encouraging and show the potential advantages of the neural-control scheme.1. Introduction = 1 1.1 Background and Motivations = 1 1.1.1 The History of Automatic Ship Control = 1 1.1.2 The Intelligent Control Systems = 2 1.2 Objectives and Summaries = 6 1.3 Original Distributions and Major Achievements = 7 1.4 Thesis Organization = 8 2. Adaptive Neural Network by Adaptive Interaction = 9 2.1 Introduction = 9 2.2 Adaptive Neural Network by Adaptive Interaction = 11 2.2.1 Direct Neural Network Control Applications = 11 2.2.2 Description of the ANNAI Controller = 13 2.3 Training Method of the ANNAI Controller = 17 2.3.1 Intensive BP Training = 17 2.3.2 Moderate BP Training = 17 2.3.3 Training Method of the ANNAI Controller = 18 3. ANNAI-based Heading Control System = 21 3.1 Introduction = 21 3.2 Heading Control System = 22 3.3 Simulation Results = 26 3.3.1 Fixed Values of n and = 28 3.3.2 With adaptation of n and r = 33 3.4 Conclusion = 39 4. ANNAI-based Track Control System = 41 4.1 Introduction = 41 4.2 Track Control System = 42 4.3 Simulation Results = 48 4.3.1 Modules for Guidance using MATLAB = 48 4.3.2 M-Maps Toolbox for MATLAB = 49 4.3.3 Ship Model = 50 4.3.4 External Disturbances and Noise = 50 4.3.5 Simulation Results = 51 4.4 Conclusion = 55 5. ANNAI-based Berthing Control System = 57 5.1 Introduction = 57 5.2 Berthing Control System = 58 5.2.1 Control of Ship Heading = 59 5.2.2 Control of Ship Speed = 61 5.2.3 Berthing Guidance Algorithm = 63 5.3 Simulation Results = 66 5.3.1 Simulation Setup = 66 5.3.2 Simulation Results and Discussions = 67 5.4 Conclusion = 79 6. ANNAI-based Dynamic Positioning System = 80 6.1 Introduction = 80 6.2 Dynamic Positioning System = 81 6.2.1 Station-keeping Control = 82 6.2.2 Low-speed Maneuvering Control = 86 6.3 Simulation Results = 88 6.3.1 Station-keeping = 89 6.3.2 Low-speed Maneuvering = 92 6.4 Conclusion = 98 7. Conclusions and Recommendations = 100 7.1 Conclusion = 100 7.1.1 ANNAI Controller = 100 7.1.2 Heading Control System = 101 7.1.3 Track Control System = 101 7.1.4 Berthing Control System = 102 7.1.5 Dynamic Positioning System = 102 7.2 Recommendations for Future Research = 103 References = 104 Appendixes A = 112 Appendixes B = 11

    Wind Disturbance Suppression in Autopilot Design

    Get PDF
    Environmental conditions affects ship’s course. Hence, it affects velocity, and efficiency of fuel consumption, which is an important research topic nowadays. Therefore, it is important to take it into account in the design of ship’s autopilots. In this paper a method is proposed to compensate for wind’s influence, which is based on wavelet transform by introducing the so called wavelet anti-filter. The anti-filter is added to the feed-forward branch of the classic autopilot design scheme, which consists of feedback loop and PID controller. The anti-filter branch represents a modification of the classic scheme

    Intelligent Control Strategies for an Autonomous Underwater Vehicle

    Get PDF
    The dynamic characteristics of autonomous underwater vehicles (AUVs) present a control problem that classical methods cannot often accommodate easily. Fundamentally, AUV dynamics are highly non-linear, and the relative similarity between the linear and angular velocities about each degree of freedom means that control schemes employed within other flight vehicles are not always applicable. In such instances, intelligent control strategies offer a more sophisticated approach to the design of the control algorithm. Neurofuzzy control is one such technique, which fuses the beneficial properties of neural networks and fuzzy logic in a hybrid control architecture. Such an approach is highly suited to development of an autopilot for an AUV. Specifically, the adaptive network-based fuzzy inference system (ANFIS) is discussed in Chapter 4 as an effective new approach for neurally tuning course-changing fuzzy autopilots. However, the limitation of this technique is that it cannot be used for developing multivariable fuzzy structures. Consequently, the co-active ANFIS (CANFIS) architecture is developed and employed as a novel multi variable AUV autopilot within Chapter 5, whereby simultaneous control of the AUV yaw and roll channels is achieved. Moreover, this structure is flexible in that it is extended in Chapter 6 to perform on-line control of the AUV leading to a novel autopilot design that can accommodate changing vehicle pay loads and environmental disturbances. Whilst the typical ANFIS and CANFIS structures prove effective for AUV control system design, the well known properties of radial basis function networks (RBFN) offer a more flexible controller architecture. Chapter 7 presents a new approach to fuzzy modelling and employs both ANFIS and CANFIS structures with non-linear consequent functions of composite Gaussian form. This merger of CANFIS and a RBFN lends itself naturally to tuning with an extended form of the hybrid learning rule, and provides a very effective approach to intelligent controller development.The Sea Systems and Platform Integration Sector, Defence Evaluation and Research Agency, Winfrit

    A SELF-ORGANISING FUZZY LOGIC AUTOPILOT FOR SMALL VESSELS

    Get PDF
    Currently small vessels use autopilots based on the Proportional plus Integral plus Derivative (PID) algorithm which utilises fixed gain values. This type of autopilot is known to often cause performance difficulties, a survey is therefore carried out to identify the alternative autopilot methods that have been previously investigated. It is shown that to date, all published work in this area has been based on large ships, however, there are specific difficulties applicable to the small vessel which have therefore not been considered. After the recognition of artificial neural networks and fuzzy logic as being the two most suitable techniques for use in the development of a new, and adaptive, small vessel autopilot design, the basic concepts of both are reviewed and fiizzy logic identified as being the most suitable for this application. The remainder of the work herein is concerned with the development of a fuzzy logic controller capable of a high level of performance in the two modes of coursekeeping and course-changing. Both modes are integrated together by the use of nonlinear fuzzy input windows. Improved performance is then obtained by using a nonlinear fuzzy rulebase. Integral action is included by converting the fuzzy output window to an unorthodox design described by two hundred and one fuzzy singletons, and then by shifting the identified fuzzy sets to positive, or negative, in order that any steady-state error may be removed from the vessel's performance. This design generated significant performance advantages when compared to the conventional PID autopilot. To develop further into an adaptive form of autopilot called the self-organising controller, the single rulebase was replaced by two enhancement matrices. These are novel features which are modified on-line by two corresponding performance indices. The magnitude of the learning was related to the observed performance of the vessel when expressed in terms of its heading error and rate of change of heading error. The autopilot design is validated using both simulation, and full scale sea trials. From these tests it is demonstrated that when compared to the conventional PID controller, the self-organising controller significantly improved performance for both course-changing and course-keeping modes of operation. In addition, it has the capability to learn on-line and therefore to maintain performance when subjected to vessel dynamic or environmental disturbance alterations
    corecore