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Abstract  

 

A robust adaptive autopilot for uninhabited surface vehicles (USV) based on a model 

predictive controller (MPC) is presented in this paper. The novel autopilot is capable of 

handling sudden changes in system dynamics. In real life situations, very often a sudden 

change in dynamics results in missions being aborted and the uninhabited vehicles have to be 

rescued before they cause damage to other marine craft in the vicinity. This problem has been 

suitably dealt with by this innovative design. The MPC adopts an online adaptive nature by 

utilising three algorithms, individually: gradient descent, least squares and weighted least 

squares (WLS). Even with random initialisation, significant improvements over the other 

algorithmic approach were achieved by WLS by maintaining the intermittent continuous 

values of system parameters and periodically reinitilaising the covariance matrix. Also, a time 

frame of 25 seconds appears to be the optimum to reinitialise the parameters. This novel 

approach enables the autopilot to cope well with significant changes in the system dynamics 

and empowers USVs to accomplish their desired missions.  
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1 Introduction 

 

For a number of years Predator unmanned air vehicles have been involved in strike missions 

using air-to-ground Hellfire missiles. However, surprisingly, the first missiles launched by 

the US Navy from an uninhabited surface vehicle (also known as unmanned surface vehicle) 

(USV) took place during trials in late October 2012 [1]. During these trials in total six Rafael 

Spike missiles were fired which equates to a total payload displacement of approximately 204 

kg. Clearly if a pod of such missiles was to be launched in a salvo then there would be an 

abrupt change in the dynamic characteristics of the vehicle owing to the sudden decrease in 

its overall mass. Whereas, the mass of the vehicle would gradually alter over a period of time 

should the missiles be discharged individually at a spasmodic rate.  

 

*Manuscript
Click here to download Manuscript: IJIRS Paper_v07Nov2013.docx 
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Besides coping with changing payloads, as illustrated above, multi-role USVs also have to 

contend with amendments to mission requirements and objectives, and varying 

environmental conditions whilst being employed in the commercial, naval and scientific 

sectors. Hence all USVs have a common need for robust adaptive control (autopilot) systems. 

Thus, to date, in order to meet the testing demands being imposed by these various sectors, 

autopilots have been designed based on fuzzy [2], gain scheduling [3], H infinity [4] linear 

quadratic Gaussian [5], sliding mode [6], neural network [7] and local control network [8] 

techniques that have met with varying degrees of success. 

 

Since management and monitoring of the environment is a major issue worldwide, an USV 

named Springer, depicted in Fig 1, has been specifically built and continues to be developed 

to be a cost effective and environmentally friendly vehicle primarily for undertaking pollutant 

tracking, and environmental and hydrographical surveys in rivers, reservoirs, inland 

waterways and coastal waters, particularly where shallow waters prevail. An equally 

important secondary role is also envisaged for Springer as a test bed platform for other 

academic and scientific institutions involved in environmental data gathering, sensor and 

instrumentation technology, control systems engineering and power systems based on 

alternative energy sources. 

 

        

Fig 1 Springer USV 

 

Thus for the reasons outlined above this paper reports a study into the application of gradient 

descent, least squares and weighted least squares in-conjunction with MPC techniques in the 

design of adaptive autopilots for the Springer vehicle. In particular the study investigates the 

capabilities of the autopilots to cope with a sudden change in the mass of the USV.   
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With regards to the structure and content of the paper, on completion of this introductory 

material, section 2 outlines the Springer vehicle hardware, and presents the yaw dynamic 

model used in simulation studies. Whilst section 3 describes the autopilot designs, and in 

section 4 results and discussion are presented. Finally concluding remarks are given in 

section 5. 

 

 

2 The Springer uninhabited surface vehicle 

 

As full details of the Springer’s hardware have already been reported in [9], only an outline 

will be presented here. The Springer USV was designed as a medium waterplane twin hull 

vessel which is versatile in terms of mission profile and payload. It is 4.2m long and 2.3m 

wide with a displacement of 0.6 tonnes. Each hull is divided into three watertight 

compartments. The sensor and computer systems are carried in watertight Peli cases. This 

facilitates the quick substitution of systems on shore or at sea. In order to prevent any 

catastrophe resulting from a water leakage, leak sensors are utilized within the motor 

housing. A mast has also been installed to carry the GPS and wireless antennas. The wireless 

antenna is used as a means of communication between the vessel and its user and is intended 

to be utilized for remote monitoring purposes, intervention in the case of erratic behaviour 

and to alter the mission parameters.  

 

The Springer propulsion system consists of two propellers powered by a set of 24V 74lbs 

(334N) Minn Kota Riptide transom mounted saltwater trolling motors. As will be seen below 

in Fig 2, steering of the vessel is based on differential propeller revolution rates. The vehicle 

has a differential steering mechanism and thus required two inputs to adjust its course. This 

was simply modelled as a two input, single output system in the form depicted in Fig 2. 

  

 
 

Fig 2 Block diagram representation of Springer USV 

 

where n1 and n2 being the two propeller thrusts in revolutions per minute (rpm). Clearly, 

straight line manoeuvres require both the thrusters running at the same speed whereas the 

differential thrust is zero in this case. By letting nc and nd represent the common mode and 

differential mode thruster velocities defined then they are defined by 

 

 

 1 2
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n n
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d

n n
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
                                              (2) 

  

In order to maintain the velocity of the vessel, nc must remain constant at all times. The 

differential mode input, however, oscillates about zero depending on the direction of the 

manoeuvre. Please note that whilst the actual steerage system operates using rpm. 
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Furthermore, the block diagram of the autopilot and the USV are shown in the following Fig 

3. The guidance system based on line of sight generates the reference angle whereas the 

autopilot keeps the vehicle on-course. Since it is based on MPC the actuator limitations are 

inherently taken into account. The output of the USV is compared against the reference and 

the error generated is further utilised to generate a better control action.  

 

 
Fig 3 Autopilot of Springer USV 

 

The dynamic model of the Springer vehicle was obtained in state space form as shown in 

equation (3).  

 

 
( 1) ( ) ( )

( ) ( ) ( )

k k u k

y k k u k

  

 

x x

x

A B

C D
 (3) 

 

Where 

 

0.0372 1 0 0

0.1002 0 1 0

0.3781 0 0 1

0.471 0 0 0

A =

 
 
 
 
 
 

, 

0.3235

0.8218

0.8819

0.3031

B

 
 

 
 
 
 

,  

  

 1 0 0 0C = ,             0D =   (4) 

 

This model was obtained from offline data and does not reflect the current true dynamics of 

the system at all times during its operation. Environmental changes, wear and tear and mass 

changes all attribute to the change in system dynamics and can offset the autopilot 

performance if it is based on an offline model obtained from prior trials / experiments. Hence 

to improve the overall performance, it was contemplated to update the model of the plant at 

each sampling instant. The next section illustrates how this is achieved and implemented on 

Springer USV.  

 

3 Autopilot Designs  

 

The autopilot is concerned with keeping the vehicle on course. In this research, the MPC has 

been utilised as an autopilot, as it offers considerable benefits by enforcing various types of 

constraints on the vehicle. The concepts and developments of MPC, over the past three 

decades are covered in [10]. 

 

Mission 

plan  

ref. 

angle  

heading Guidance 

system 
 MPC based 
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Authors such as in [11], [12], [13], [14] and [15], epitomise the recent adaption of MPC in 

marine control system design. The techniques of MPC have been well established in the 

process and petrochemical industries for eons as illustrated by [16], [17], [18], [19].  

 

MPC employs a model of the vessel internally to predict the output (as shown in Fig 4a). The 

accuracy of the model determines the efficiency of the controller and the controller effort 

required to keep the vehicle on course with a minimum effort [20]. When there is a sudden 

change in the plant dynamics, employing a static internal model would have a fatal flaw in 

the autopilot design and severely undermine the success of the missions undertaken by the 

USV. To overcome this problem, adaptive algorithms as mentioned previously were 

employed to construct an internal model of the vessel (which reflects the vessels current 

dynamics as accurately as possible) at any given point in time.  

 

This model was utilised to generate predicted output against set reference trajectories. A cost 

function of the following form is used to define how well the predicted vessel output was able 

to track the set reference point.  

 

1 1

( ) ( ) ( ) ( )
p c

H H
T T

i i

J e k i Qe k i u k i R u k i
 

          (5) 

subject to, 

 

( )l uu u k i u       (6) 

 

where ˆ( ) ( ) ( )e k y k r k   is the prediction error, or difference between the predicted vessel  

output ŷ and the reference trajectory r. The superscripts l and u represent the lower and the 

upper bounds respectively. Q is the weight on the prediction error, and R the weight on the 

change in the input Δu. Hp is the prediction horizon or output horizon, and Hc the control 

horizon. The general structure of MPC is shown in Fig 4a. 

 

Minimisation of J with respect to u yields the optimal controller output sequence uopt over the 

prediction horizon. This ensures that the future error is minimised. 
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(a) general structure of MPC 

 

 

 
 

(b) general strategy of MPC 

 

Fig 4 MPC (a) general structure (b) general strategy 

 

 

The general strategy of MPC is illustrated by Fig 4b. As seen in the above Fig 4, at any given 

instant of time  , the controller looks into the reference set point and exploits the internal 

model to produce USV output over a period of prediction horizon, into the future. 
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Corresponding control effort, which yields an optimum value of the cost function, is 

computed over a period of control horizon. The first control action is applied to the plant.  

 

As time progresses to the next instant of time      , a receding horizon strategy is 

employed and predicted vessel output and the corresponding control sequences are calculated 

over the period of prediction and control horizon respectively. In the above Fig 4b, the 

predicted output and the corresponding optimum input over a horizon Hp are shown, where 

u(k) is the optimum input, ŷ(k) is the predicted output, and y(k) the USV output. 

 

Autopilots based on MPC have a significant advantage over the fixed gain controllers as the 

controller is designed at every sampling instant. Previous studies by [21], [22] further 

demonstrate the improved performance of MPC in comparison with standard approaches 

such as quadratic Gaussian based controllers. The MPC controller also incorporates the 

actuator limitations of the vessel as optimization constraints. These are given by 

 

300dn rpm  and 20dn rpm   (7) 

 

that is, a limitation both on the maximum absolute value and on the change of the rpm of the 

motors from one sampling instant to the next. The parameters of the MPC algorithm used are 

Hp = 50 and Hc = 3, as these values were necessary to tune the controller, and the weights Q = 

1 and R = 0.1 for the cost function were chosen. 

 

To cope with the sudden change in dynamics, adaptive MPC schemes based on three of the 

following adaptive algorithms were investigated in this study :  

 

(i) Gradient descent 

(ii) Least squares 

(iii) Weighted least squares 

 

 

3.1 Gradient Descent 

 

The gradient descent algorithm tries to minimise a function by following its slope in small 

steps and provides an updated model of the Springer online. It can be visually summarised in 

Fig 5.  
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Fig 5 General steps involved in a gradient descent algorithm 

 

The steps involved in a gradient descent algorithm can be summarized as follows:  

 

i. Start with an estimated point  

ii. Determine a descent direction   

iii. Choose step size 

iv. Update (until stopping criteria are reached)  

 

An ARX model of the plant can be represented by the following set of equations:  

 

                                        

                            
                     

                      
                           (8)

         

Where A(z) and B(z) are the unknown coefficients of the polynomials and    represents the 

system input. The unknown parameters can be grouped together as follows :  

 

                         
                      (9) 

 

The parameter   is estimated by minimising the following criterion 

 

Cost function  

       
 

  
∑            

  
                                            (10) 

 

GD is utilised to obtain the values of θ based on the following equation:  

 

                    for k = 0 to number of iterations               (11) 

 

    is the learning rate and 
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                                                               (12) 

 

The gradient is calculated from the partial derivative of cost function at θ with respect to the 

corresponding component of θ. The numerical approximation to the partial derivative 
     

     
 is 

given by the following equation.  

 
     

     
 

 (  
 )      

  

    
       (13) 

 

Where     
   and     

   is the cost of     
  and   

  correspondingly and the values of    
  and 

  
  are computed as follows  
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      ]

 
 
 
 

   (14) 

 

 

Calculate  

    |        |     (15) 

 

While       convergence is reached (or) reached maximum number of iterations, the last 

best value is taken. This can be visually represented by a flow chart as shown in Fig 6.  
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Fig 6 Gradient descent algorithm flow chart for Springer USV 

 

A wide range of parameters were tested for gradient descent. The optimum parameters of 

gradient descent which provided a valid model of the Springer are shown in Table 1 as 

follows :  

 

Table 1 Parameters of Gradient descent for Springer USV 

Parameters  Values  

       

learning rate (Gradient 

Descent) 

0.000000001 

Max no iterations  15000 

    
1e-15 

  

Gradient descent provides a simple solution. However, it has certain drawbacks.  

1. Starting point: the starting point determines, how long the algorithm takes to converge 

to a solution and usually this point is chosen arbitrarily.  

2. Step size: if large step sizes are chosen, the algorithm might miss the minima point 

and provide a bad result. On the other hand, if too small step size is chosen, too many 
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unnecessary steps of computation have to be repeated and the whole process becomes 

inefficient.  

3. Despite all these issues, the major drawback of this method is that the solution can get 

stuck in local minima at times and there is no guarantee that the solution reached was 

the global minima.  

 

3.2 Least Squares :  

 

A common and natural way to obtain a model from a set of data is least squares (LS). The 

model of the plant can be expressed by the following linear regression model 

 

                       (16) 

 

 Where   is the unknown parameter vector,  
      = observation / system output 

     = regressor  

     = noise processes / sequences  

 

The parameter   is estimated by minimising the following criterion 

 

       
 

 
∑            

  
          (17) 

 

An ARX model of the plant can be represented by the following set of equations:  

 

                                        

                            
                     

                      
                         (18)

         

Where A(z) and B(z) are the unknown coefficients of the polynomials and    represents the 

system input. The unknown parameters can be grouped together as follows :  

 

                         
                  (19) 

 

The recursive LS algorithm is as follows  

 

                       
                 (20) 

 

             
    

    
     

              (21) 

 
 

            
      

   

    
     

                    (22) 

 
                                

                (23) 

   
    
The standard parameter of least squares     is one and it has been utilised with Springer 

USV. 
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Some of the issues regarding the standard LS are as follows:  

 

1. The estimates may not converge (or even may not be bounded). i.e., LS does not have 

self-convergence property.  

2. The estimated models may not be uniformly controllable.  

 
3.3 Weighted least squares :  

 

One of the key advantages of weighted least squares (WLS) is that it has a self-convergence 

property [23]. Irrespective of the control law design, this algorithm converges to a particular 

arbitrary vector. The ‘universal convergence’ result eliminates the analysis of stochastic 

adaptive control systems. This is achieved by slowly decreasing the weights of the system. 

Then the model hence obtained is uniformly controllable and enables to create a general 

framework for an adaptive robust control system design for Springer.  In this method, the 

parameter   is estimated by minimising the following criterion 
 

       
 

 
∑              

  
        (24) 

 

 

where      0 is a weighting sequence. It enables allocation of different weights to different 

measurements. In a closed loop, the values of actual observation (                  are 

unknown. Decreasing    decreases the effect of instability and lack of excitation. Moreover, 

decreasing the rate of    ensures that WLS enjoys similar good asymptotic properties as the 

standard LS. If the ARX model of the plant are represented by the equations (3) and (4).  

 

The recursive WLS algorithm is as follows  

 

                   
                  (25) 

 

    
    

  
     

     
                (26) 

 

         
      

   

  
     

     
                   (27) 

 

                                
                      (28) 

 

    
 

     
               (29) 

     

       ‖  
  ‖  ∑ ‖  ‖

  
                               (30) 

 

 

The optimum parameters of WLS which provided a valid model of the Springer are in Table 

2, as follows:  

 

Table 2 Parameters of WLS for Springer USV 

Parameters  Values  

     
0.5 

     
1 
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4 Results and discussion  

 

As stated earlier, Springer offers a standard displacement of 0.6 tonnes. Under the present 

circumstances, the dynamic model of the Springer vehicle is given by the equations (7) and 

(8). The objective of this study has been to develop a robust adaptive autopilot for the 

Springer USV which will be capable of handling changes in the mass of the USV.  

 

4.1 Step response  

 

Before attempting to use the models obtained from the above methods in closed loop with a 

model predictive controller, it is imperative to ensure its integrity. Hence, the step responses 

were obtained as follows:  

 

The step response of the original plant in closed loop as described in equations (3) and (4) is 

shown in the following Fig 7 and the corresponding step response characteristics are 

summarised in Table 3.  

 
Fig 7 Step response with original parameters of the plant as described in equation (4)  

 

Table 3 Step response of original Springer USV 
Parameters  Values  

Rise Time (s) 27.35  

Settling Time (s)  47.62  

Settling Min (s) 45.13  

Settling Max ( ) 0 50.00  

Overshoot ( ) 0 5.99e-13 

Undershoot (%) 10.63 

Peak ( ) 0 50.00  

Peak Time (s) 481  
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As discussed in the earlier sections, in the event of change in mass of the system, usually it 

ranges from 0% to 20% of the total mass of the USV. However, during extreme weather 

conditions or sudden change in mass of the USV as in search and rescue operation (or 

payload deployment from USV) the worst case scenario could offset the system parameters 

considerably. Whilst it is imperative to push the limits of robustness of the autopilot, it will 

become a fallacy to endeavour a solution for practically impossible situations (such as 100% 

change in mass for example). Hence, to test the endurance of the robust adaptive autopilot, 

different changes were studied. Initial trials conducted at Roadford reservoir, Devon, UK 

indicate that the following system matrix A represented by equation (31) represents a case for 

50% change in mass of the Springer. This system matrix was chosen to highlight the 

effectiveness of different methods to cope with such a change (should such a severe change 

occur in reality). When such a change in dynamics of the plant occurs, corresponding 

significant changes in the step response were also observed as illustrated in Fig 8 and the 

corresponding step response characteristics are summarised in Table 4. 

 

 0.0186 1 0 0

0.0501 0 1 0

0.1891 0 0 1

0.4710 0 0 0

A =

 
 
 
 
 
 

        (31) 

 

 

Fig 8 Step response for the new system dynamics of the plant 

 

 

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20

40

60
heading

 

 

actual heading

reference

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300
nd

H
ea

d
in

g 
(d

eg
) 

n
d

 (
rp

m
) 

Time (s) 

Time (s) 



Robust adaptive control of an uninhabited surface vehicle  

Journal of Intelligent and robotic systems  15 | P a g e  
 

Table 4 Step response of Springer USV after the change in system dynamics 

 
Parameters  Values  

Rise Time (s) 14.75  

Settling Time (s)  29.51  

Settling Min (s) 42.75  

Settling Max ( ) 0 50.00  

Overshoot ( ) 0 2.66e-13  

Undershoot (%) 11.94  

Peak ( ) 0 50.00  

Peak Time (s) 335  

 
The closed loop performance of the controller and the USV was analysed against different 

reference signals and this will serve as a bench mark to compare the other adaptive 

algorithms discussed above. The results are shown in the following Fig 9.   

 

 

Fig 9 Change of system dynamics (a) plant output and three reference signals (b) controller 

action 

From the above Fig 9 it can be observed that the change of mass did not make any visible 

difference as the reference was already at zero during the change in dynamics. So a different 

reference was chosen and changes were obvious as presented in the following Fig 10   
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.  
Fig 10 Change of reference headings (a) plant output (b) controller action 

 

Once the controller performance and a frame work to compare the further results were 

established, the online models obtained from the Springer USV were utilised by the MPC 

controller and the results are presented in this section.  

 

4.2 Gradient descent and MPC 

 

Gradient descent algorithm as described in the previous section 3.1 was utilised in 

conjunction with the MPC as illustrated in Fig 4(a). The initial   values were randomly 

initialised during initiation of the algorithm. As the initial values were randomly chosen, 

several runs were carefully examined and the following two cases are presented here to 

illustrate the range of outputs obtained from this course of action.  

 

 The following Figs extol the impact of initial values of θ. As explained the flowchart (Fig 6), 

the algorithm obtains a new model of the USV at every sampling instant. In effect, it runs 

15,000 iterations for every sampling instant and hence to complete one set of algorithm; it 

took 1 hour and 18 minutes approximately.  
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Fig 11 case 1; Gradient Descent and MPC controller (a) plant output (b) controller action 

 

 

 Fig 12 case 2; Gradient Descent and MPC controller (a) plant output (b) controller action 

Despite being computationally expensive, the results from the gradient descent were not that 

promising. Due to the true random nature of the initial values chosen, no two runs were the 

same. The impact of the initial random values can be clearly illustrated in the 2 above cases 

represented in Fig 11 and 12. This implied that the initial θ value assignment had a significant 

effect on subsequent behaviour. Hence the standard gradient descent was modified slightly as 

follows. Instead of total random assignments of the initial θ values, 25% of the true values of 

the original plant were chosen as initial θ. This implies that the system will still cope with 

75% error in the initial θ values. Moreover, instead of computing the gradient algorithm for 

every sampling instant, it was initiated only once for every 100 seconds. The changes in the 

results were dramatic as can be seen in the following Fig 13.   
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Fig 13 case 3; Modified Gradient Descent and MPC controller (a) plant output (b) controller 

action 

The improvements in the performance of the autopilots are visually evident from the Fig 11 – 

13. However, to measure the improvements numerically, the average controller energy(ACE) 

and mean square error (MSE) were utilised. In a discrete form, these two parameters can be 

calculated by the following equations  

 

     
 

 
∑       
 

   

 

(32) 

     
 

 
∑            
 

   

 

(33) 

 

where u(t) is the controller effort at an instant of time t, M is the total number of samples, y(t) 

is the output from the USV in degrees and r(t) is the reference angle which the USV is 

supposed to track in this study.  

 

The corresponding values of ACE and MSE were calculated for the different options 

illustrated by Fig 11-13 and the results are summarised in the Table 5. In pursuit of further 

improvements, the next section details the results obtained by utilising LS with MPC. 

 

4.3 Least squares and MPC 

 

Given, its simplicity and lean computation, least square is seen as a natural choice to obtain 

model of the vessel for a given set of input, output data. Initial performance was satisfactory 

and was able to work well in conjunction with MPC controller. However, as soon as there 

was a change in the dynamics of the plant, then it was no longer able to track the reference in 

a satisfactory manner. This can be clearly observed from the following Fig 14.   
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Fig 14 Least squares and MPC controller (a) plant output (b) controller action 

The corresponding values of ACE and MSE were calculated and the results are summarised 

in the Table 5.   

 

4.4 Weighted least squares and MPC   

 

Weighted least squares certainly has theoretical advantages over the least squares, as 

mentioned in previous section 3.3. In reality, there was only a marginal improvement of the 

results and hitherto, the change in the dynamics had offset the reference tracking ability of the 

autopilot. This can be seen from the following Fig 15.  

 

 
 

 

Fig 15 Weighted least squares and MPC controller (a) plant output (b) controller action 

To tackle this problem, the WLS algorithm was reinitiated when there was a change in the 

dynamics of the system. In the real world it may not be possible to have a priori knowledge 

of the change in the system dynamics. Hence decision making logic was implemented to 

detect the change in the dynamics and reinitialise the WLS algorithm, only when these 

conditions were satisfied.  
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From the values of the individual components of θ, it was observed that a change of 80 to 

120% or more signified a sudden change in system dynamics. At the same time, the system 

was still being initialised with random θ values and huge changes of    were common during 

the initialisation. If this was wrongly detected as change in system dynamics, the algorithm 

will be reset continuously and yield very poor results. Hence, to ensure that the algorithm was 

only reinitialised when there was a change in system dynamics, the above criteria of    was 

used in conjunction with the following two additional criterions 

  

                              (35) 

 

                              (36) 

 

The values of       and       was usually detected to be approximately zero or it reached a 

maximum value of 10% in some cases. Once the above three conditions were satisfied, it was 

deemed appropriate to reinitialise the WLS algorithm.  

 

This allows time for the WLS algorithm to reach a steady state with the random initial 

conditions and reinitiates the algorithm when there is a change in the dynamics. This is 

indicated by the following Fig 16 where the norm(P) indicates that it has been reset only once 

after initialisation.  

  
 

  
 

 

Fig 16 Weighted least squares and MPC controller (a) plant output (b) controller action   

 (c) re-initialised covariance matrix (P) (d) θ values  
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Once improved results were obtained by reinitialising the algorithm, it was contemplated, if 

reinitialising the algorithm periodically might improve the performance further. These results 

can be seen in the following Figs, where the system was reset periodically for every 50 s. Re-

initialisation caused the θ values and the covariance matrix P (equation (25)) to be reset every 

time. Hence spikes at change of dynamics reached values more than 100. So this approach 

was deemed unfit for real-time application. Nevertheless, it paved the way to obtain the 

subsequent steps.      

   

 

 

 

 

Fig 17 WLS reinitialised for every 50 sec (a) plant output (b) controller action  

 (c) re-initialised covariance matrix (P) (d) θ values    

Instead of re-initialising the entire algorithm, much better performance was obtained by 

resetting the values of the covariance matrix P, at periodic intervals and by keeping the θ 

values continuous. The results are obvious from the following Fig 18. Additionally this 

approach eliminates the need for having a decision making process (which inherently carries 

the risk of resetting the system inadvertently). Thus by the above said modifications, the 

robust adaptive autopilot capable of handling changes in the system dynamics has been 

realised.  
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Fig 18 Covariance matrix (P) reinitialised for every 50 sec, with continuous θ  (a) plant 

output (b) controller action   

Once this approach yielded satisfactory results, it was time to retune the periodic intervals at 

which the covariance matrix (P) was reset. When the window length was increased to 100 

seconds the performance deteriorated as can be seen from the following Fig 19.  

 
 

 

Fig 19 Covariance matrix (P) reinitialised for every 100 sec, with continuous θ  (a) plant 

output (b) controller action   

 

Then the window of time was reduced to different time periods and the performance 

deteriorated below 25 seconds. Hence the optimum time to reset the covariance matrix for 

Springer USV was found to be 25 seconds. The results can be found as follows in Fig 20.  

 

 

 

 

 

 

0 100 200 300 400 500 600 700 800 900
-150

-100

-50

0

50

100

150

Time (s)

H
e
a
d
in

g
 (

d
e
g
)

 

 

reference

plant output

0 100 200 300 400 500 600 700 800 900
-300

-200

-100

0

100

200

300

Time (s)

n
d
 (

rp
m

)

0 100 200 300 400 500 600 700 800 900
-150

-100

-50

0

50

100

150

Time (s)

H
e
a
d
in

g
 (

d
e
g
)

 

 

reference

plant output

0 100 200 300 400 500 600 700 800 900
-300

-200

-100

0

100

200

300

Time (s)

n
d
 (

rp
m

)

Fig 18a (P) re-initialised Plant output Fig 18b controller action 

Fig 19a (P) re-initialised Plant output Fig 19b controller action 



Robust adaptive control of an uninhabited surface vehicle  

Journal of Intelligent and robotic systems  23 | P a g e  
 

 

 
 

 

Fig 20 Covariance matrix (P) reinitialised for every 25 sec, with continuous θ  (a) plant 

output (b) controller action   

These results from the modified WLS were benchmarked against the real values of θ and the 

results were strikingly very similar. Moreover, the WLS handled the change in the dynamics 

better than providing the real values to the controller directly.   

 
 

 

Fig 21 Weighted least squares with real θ and MPC controller (a) plant output (b) controller 

action 

The corresponding values of ACE and MSE were calculated for the different options 

illustrated by Fig 15-21 and the results are summarised in the Table 5 as follows.  

 

 

 

 

 

 

 

 

 

 

0 100 200 300 400 500 600 700 800 900
-150

-100

-50

0

50

100

150

Time (s)

H
e
a
d
in

g
 (

d
e
g
)

 

 

reference

plant output

0 100 200 300 400 500 600 700 800 900
-300

-200

-100

0

100

200

300

Time (s)

n
d
 (

rp
m

)

0 100 200 300 400 500 600 700 800 900
-150

-100

-50

0

50

100

150

Time (s)

H
e
a
d
in

g
 (

d
e
g
)

 

 

reference

plant output

0 100 200 300 400 500 600 700 800 900 1000
-300

-250

-200

-150

-100

-50

0

50

100

150
u

Fig 21b controller action Fig 21a plant output 

Fig 20a (P) re-initialised Plant output Fig 20b controller action 



Robust adaptive control of an uninhabited surface vehicle  

Journal of Intelligent and robotic systems  24 | P a g e  
 

 

Table 5 Comparison of performance of autopilots (for Springer USV) 

 

Main 

algorithm 

used 

Different cases  ACE (rps
2
) MSE ( deg2) 

Gradient 

descent 
 

case 1; Gradient descent 1.8273 1.1968e+04 
case 2; Gradient descent 1.3253 4.6621e+03 
case 3; Modified gradient descent 2.6839 189.0032 

    

Least squares  Standard Least squares  0.6253 408.6256 
    

Weighted least 

squares 

Standard weighted least squares 0.4827 517.1449 
Reinitialised during a change in 

dynamics  

3.1483 148.2021 

Reinitialised for every 50 sec 3.4617 1.8671e+03 

Covariance matrix (P) reinitialised for 

every 50 sec, with continuous θ 

3.1026 179.6000 

Covariance matrix (P) reinitialised for 

every 100 sec, with continuous θ   

2.9731 125.5104 

Covariance matrix (P) reinitialised for 

every 25 sec, with continuous θ 

3.1332 107.5875 

WLS with real θ 3.1126 68.9770 

 

 

From the above table, it can be observed that WLS with no modifications clearly has a large 

tracking error. This is considerably reduced by reinitiating the algorithm during a change in 

dynamics of the USV. Further attempts were made to improve the performance by 

reinitialising the algorithm periodically. On the outset, it seemed counterproductive as the 

error values increased significantly. On closer analysis, it became clear that such behaviour 

was due to frequent random initialisation and the transient response characteristics. Instead of 

solving a problem, now it served as additional burden on the system. Significant 

improvements were achieved by keeping the θ values continuous and reinitialising only the 

covariance matrix. Once this behaviour was understood, then marginal gains were made by 

varying the size of the time frame window to carry out the initialisation. The values from 

these cases are also summarised in the above table 5. A time frame of 25 seconds seems to be 

the optimum time frame to the reinitialise the parameters discussed above.  

This novel approach enables the autopilot to cope well with significant changes 

(approximately 50%) in the system dynamics. Under normal circumstances, the changes in 

the system dynamics are likely to be 0 to 20%. Hence it is deemed appropriate for Springer 

and is highly recommended to design a robust adaptive autopilot for other such USVs by 

utilising this innovative approach.  

 

 

 



Robust adaptive control of an uninhabited surface vehicle  

Journal of Intelligent and robotic systems  25 | P a g e  
 

5 Conclusions  

 

The sudden change in the dynamics of a plant causes considerable deterioration (in case of 

non-adaptive techniques) in the controller performance and remains a major obstacle in 

accomplishing the desired missions. This problem has been suitably dealt in this study by 

designing a robust adaptive autopilot for the Springer USV. Initially the basic structure of the 

controller and the performance of the original offline plant dynamics were established. 

Subsequently, the performance was compared with three suitable methods namely: gradient 

descent, LS and WLS. Gradient descent is able to provide a solution with very bad tracking 

performance. Additionally, there is a risk that it might get stuck in the local minima. Hence 

LS was investigated further. The system stabilises even after the change in dynamics. 

However, the self-convergence is not guaranteed by the LS approach and the autopilot was 

not able to cope with change in dynamics. Hence WLS was investigated further. However, 

applying WLS to solve this problem posed several, severe, initial challenges. To overcome 

these issues a new approach has been presented here. Random initialisations of θ values and 

periodically reinitialise the covariance matrix P at intervals of 25 seconds, whilst keeping the 

intermittent θ values continuous offers a new approach to deal with change in dynamics. It is 

also worth mentioning that in a standard WLS the recent values are given more weightage 

and it will make the system unstable if the changes in the immediate values are large. 

Stability and controllability are guaranteed by giving less weightage to the immediate values 

and giving more weightage to the past values. Subsequent to these suitable modifications it 

was found to be the most appropriate to be incorporated in the design of a robust adaptive 

autopilot. Moreover, this approach also eliminates the need for implementing a decision 

making algorithm / logic to detect the change in dynamics. Hence by implementing such a 

technique further problems such as false trigger or no detection of changes is 

comprehensively circumvented successfully. This approach checks for changes periodically 

and at the same time manages to be computationally efficient by keeping the continuous θ 

values. This inventive approach will enable the Springer USV and other USVs to cope with 

change in dynamics and still accomplish the desired missions effectively.  
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