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Summary

The design of automatic systems for steering a ship presents difficult challenges 
because of their dynamic properties which vary considerably within the range of sailing 
conditions. Automatic steering of ships has its origin at the beginning of the century and 
was prompted by the introduction of the gyrocompass. Until the earlier 70s almost all 
autopilots for a ship were based on the proportional-derivative-integral (PID) controller. 
The main disadvantage with PID controllers is that the optimal parameters setting can 
be achieved only for a particular sailing condition. This shortcoming was and is still 
dealt with in the framework of adaptive theory where the controller parameters are 
adjusted in the attempt to seek the optimum of a pre-set performance function. Despite 
such a potential advantage, at present adaptive control theory is limited to linear plants 
and requires a certain amount of a-priori information for a successful application.

This thesis is concerned with the applicability of intelligent control techniques to the 
problem of designing course-keeping and course-changing autopilots for ships. For this 
reason the framework of intelligent control theory is introduced and a pragmatic 
definition of intelligent controllers is stated. The learning and adaptive features of 
neural networks and fuzzy logic systems are exploited and used to solve advantageously 
the control design problem. Adaptive networks are used as a unifying structure where 
different kinds of neural networks and fuzzy logic paradigms can be described. In this 
framework, comparisons between neural networks and fuzzy logic systems are made 
and results from one field can be easily extended to the other.

Although the use of such systems for the design of autopilots is in its early stage, the 
majority of the contributions which have appeared in literature have focused on the use 
of feedforward networks trained with the back-propagation algorithm. The main 
contributions of this thesis are the critical analysis of the feedforward network controller 
trained with the back-propagation algorithm, the proposition of an alternative controller 
architecture based on the use of radial basis function networks and to give conditions 
under which the stability analysis of the intelligent controllers so designed can be 
evaluated.
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Glossary and Terms

The use of the same notation has tried to be avoided, however where the some notation 
is used in different presentations its correct meaning will be evident from the context it 
is used in.
If not otherwise specified in the particular context the following symbol assume the 
corresponding meaning:

S Rudder angle
if/ Yaw angle
<p Roll angle
\f/ -r Yaw rate
p Roll rate
M Surge velocity
v Sway velocity
T Time constant
NN Neural Network approximator
0 Parameters vector
V Gradient
e Error
k Time step
£ Wave amplitude
Vw Wave velocity
co Frequency in radiant/second
coe Encounter frequency

Aw Wave length
J3 Wave encounter angle
Tw Wave period

hy Significant wave height

Sf Wave spectral density

Szz Spectral density of the ship induced motion
Rzf Response operators

vwind Wind velocity

Sw Wind spectral density

% w Wind encounter angle

Xlll



Chapter 1 Introduction and overview

1.1 Introduction

This thesis investigates the applicability of intelligent control systems for the design of 

autopilots for ships. The main difficulty in defining what it is meant by intelligent 

control stems from the fact that there is not general agreement upon definitions for 

human intelligence and intelligent behaviour. One of the earliest definitions of "machine 

intelligence", is that by the British mathematician A. Turing. Turing was convinced that 

if a computer could do all mathematical operations, it could also do anything a person 

can do, which is still a highly controversial opinion. To argue from this position a 

criterion of intelligence was needed. Turing expressed this criterion as a test. The test is 

undertaken in the following manner: A person communicates with a computer through a 

terminal. When the person is unable to decide whether he/she is talking to a computer or 

another person, the computer can safely be said to possess all the important 

characteristics of intelligence. Turing was convinced that the building of such a machine 

was possible.

The Turing test clearly emphasises the external behaviours requested from a computer 

(or machine) to be safely defined as an intelligent machine. These external behaviours 

do not have to be distinguished from that of a human being and most importantly this 

has to happen from a human point of view (that is the observer). The problem of 

differentiating between an external manifestation of such behaviours and the internal 

mechanism that produces it, is also mentioned by (Zadeh, 1963) as the main reason why 

a clear definition of adaptation is still lacking.
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The viewpoint adopted throughout the thesis is that intelligent control is the discipline 

that involves both artificial intelligence and control theory. The design of intelligent 

control systems should be based on the attempt to understand and duplicate some or part 

of the phenomena that ultimately produces a kind of behaviour that can be termed 

"intelligent", i.e. generalisation, flexibility adaptation etc. All these characteristics, to a 

differing extent are appreciated in what are recognised as intelligent species. For 

instance, when a virus is difficult to neutralise, it is usually labelled as an intelligent 

virus. This is also in accordance with the Turing experiment, where the intelligent 

classification of a machine is observer dependent.

In (Astrom and McAvoy, 1992), a very demanding definition of intelligent control is 

stated as follows: "An intelligent control system has the ability to comprehend, reason 

and learn about process, disturbances and operating conditions". Clearly with such a 

demanding definition, it appears that current control systems have a long way to go 

before they can qualify for this attribute. However, in the above paper a framework for 

intelligent control is discussed. For this purpose, a multidimensional space constituted 

by rules, objects and algorithms is introduced. Each artificial intelligent technique 

therefore, is seen as a subspace where the appropriate combination of the different 

attributes is defined. It is argued then, that in designing intelligent control systems the 

goal should be to locate the appropriate region where the intersection of fundamental 

attribute is achieved in an optimal way. In other words, the designer has to decide, 

based on her/his experience of the problem, about the combination of different design 

techniques that will lead to the attainment of the control objects. From this point of 

view, the design of intelligent control can be reduced to the combination of different 

techniques for the purpose of achieving more sophisticate and reliable control systems. 

This is probably why traditionally, intelligent control has embraced classical control
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theory, neural networks, fuzzy logic and a wide variety of search techniques (i.e. 

backpropagation, genetic algorithms simulated annealing etc.). Based on this point of 

view, the theoretical foundation of intelligent control system can be found at the 

intersection of disciplines like cybernetic artificial intelligence and informatics (Zi- 

Xing, 1997). Adaptive neurofuzzy control is such an example, where ideas germinated 

in the field of neural networks are used for the design of optimal fuzzy logic based 

controllers.

1.2 Autopilots for ships: brief overview

1.2.1 Earlier approaches

The introduction of automatic autopilots for steering a ship can be traced back to the 

1922 with the pioneering work of (Sperry, 1922) and (Minorsky, 1922). According to 

(Bennet, 1979), the major contribution of Sperry, compared to the simple proportional 

autopilots proposed by other inventors of the time, was the inclusion of a derivative 

term in the control law. In fact, as emphasised in (Bennet, 1979), Sperry observed that 

an experienced helmsman would also, "meet" the helm, that is, back off the helm and 

put it over the other way to prevent the angular momentum of the ship carrying it past 

the desired heading. Therefore he proposed the use of an "anticipator" to build into his 

autopilot the "intuition" of an experienced helmsman. The name "Metal-Mike" given to 

the new automatic system by an officer of the ship which had been used for the trials, 

emphasis both the purpose (replace the helmsman) and the origin of the proposed 

system. Apparently, Sperry went further and argued that the amount of "anticipation" 

should be proportional to the overshoot which would occur in the absence of the 

"anticipator". Since this overshoot will vary for different sailing conditions he proposed
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a mechanism to adjust the amount of anticipation. However, it is not certain whether or 

not the full "adaptive" mechanism was included in the commercial production of Metal- 

Mike.

Minorsky's contribution was of more theoretical basis. He was interested in solving the 

problem of controlling the motion of a ship analytically rather then practically 

(Minorsky, 1922). With respect the linearised equation of motion (Bennet, 1979):

Ad 2 a Bda 
dt 2 dt

where A is the moment of inertia of the ship, B is the viscous damping coefficient, K is 

a constant, a is the heading error, p is the rudder angle and D is the disturbances force, 

he argued that the control problem is completely solved when the rudder angle p and its 

derivative are obtained as a function of a. He proposed several methods of regulation, 

one of this is expressed by equation (1.2):

^P =ma + n da. + p ^« a2) 
dt ' ' dt ' dt 2

which nowadays is the celebrated proportional-integral-derivative (PID) controller. 

Minorsky went further and by substituting (1.2) into (1.1) he managed, by applying the 

Hurwitz theorem, to find the condition under which the motion of the controlled ship is 

stable. According to (Bennet, 1979) this was the first theoretical analysis of a control 

system.
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1.2.2 Classical approaches

Subsequent enhancements of the autopilot proposed by Minorsky were the inclusion of 

a limiter in order to prevent rudder saturation. A dead band and a filter were also 

included in order to smooth the control effort preventing calls from not compensative 

disturbances (i.e. high frequency yaw motion due to waves). Manual adjustment of the 

PID parameters was introduced in order to account for the different sailing conditions 

(i.e. different load, speed and weather conditions). To this aim a suitable terminology 

close to the mariner was developed, so that typical autopilots posses the Rudder Action 

button to regulate the proportional action, the Counter Rudder button to regulate the 

derivative control action and the Automatic Permanent Helm to regulate the integral 

action. In addition to the above buttons, for preventing rudder angle saturation and 

excessive rudder movement the two buttons Rudder Limit and Weather were 

introduced, regulating respectively the maximum rudder angle allowable and the dead- 

band width.

Mainly due to its relatively simplicity, these kinds of autopilots dominated the scenario 

until the early 1970s. Although the use of an appropriate nomenclature made the manual 

setting of the autopilot parameters much more suitable for non control experts, such as 

crew members, the impetus to move towards a more sophisticated autopilot, can be 

explained by the need to maintain optimal performance in all different sailing 

conditions. In fact, the optimal achievement of the two main steering modes of an 

autopilot, namely course-keeping and course-changing, can be properly defined only 

with respect a particular sailing conditions. For instance, with respect the course- 

keeping mode of operation, the autopilot has to select the best trade-off between 

precision (which will minimise the elongation of the sailed distance) and control effort
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(rudder movement, which will produce additional drag force and consequent loss of 

speed and increase of fuel expenditure). However, this trade-off is not always the same 

and more importantly is difficult to be deduced heuristically by crew members. In 

different sailing conditions a different priority (or weight) can be assigned to the 

precision and control effort. For instance, when the ship is sailing in restricted water 

precision is of main concern, while in open sea fuel consumption is of major interest.

The most popular approach for dealing with the above mentioned autopilot demands, 

was the Linear Quadratic (LQ) Controller, in which the controller parameters are 

selected in order to satisfy certain optimal criteria expressed as a quadratic cost 

function. Different cost functions taking into account yaw and rudder deviation, fuel 

consumption, etc., were proposed (Norrbin, 1972), (Broome et al, 1980). Although the 

LQ technique fits very nicely in the formulation of the ship's course-keeping control 

problem and appeared to be robust for parameter changes, other researchers were 

investigating the applicability of adaptive control techniques such as model reference 

(Honderd and Winkelman, 1972), (Amerongen and Udink Ten Gate, 1975) or self- 

tuning adaptive controller (Kallstrom et al, 1979), (Brink et al, 1978), which are much 

appropriate for the formulation of the ship's course-changing problem. In parallel to the 

adaptive approach, where the controller parameters are constantly adjusted in order to 

seek the optimum of a cost function, robust methods were applied in the attempt to find 

the set of control parameters able to guarantee acceptable performances in a wide range 

of operation conditions, (Grimble and Katebi, 1999), (Katebi et al, 1987).
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1.2.3 Intelligent approaches

Prompted by advances in computing technology, more sophisticated control algorithms 

became applicable. Neural networks and fuzzy logic paradigms, represents the most 

popular of these approaches, where the principle aim in the controller design is to 

emulate some intelligent behaviours such as learning and adaptation.

The most popular neural network structure used to solve the ship autopilot design 

problem is the multilayer perceptron network with the back-propagation algorithm. 

Different controller structures such as supervised control, direct inverse control, indirect 

and direct controls were employed for training the controller parameters (Hearn et al, 

1997). An alternative possibility is to train the same neural network for different 

operating conditions in such a way that while in a particular situation the neural 

controller can extrapolate the proper control actions (Burns and Richter, 1995). In 

(Balasuriya and Hoole, 1995) it is shown how a feedforward neural network can be 

trained, in a supervised fashion using the back-propagation algorithm. The contribution 

of the paper is that the training data are collected from manoeuvres performed by an 

helmsmen. It is concluded therefore, that the proposed feedforward neural network is 

able to reproduce the behaviours of a skilled helmsman. The feedforward neural 

network can also be used to solve the multivariable problem. In (Tiano et al, 1994) it is 

shown how a rudder roll damping controller can be trained using back-propagation.

One of the first autopilot designed with fuzzy set theory was presented in (Amerongen 

et al, 1977). The proposed autopilot was using two different inputs with five linguistic 

variables and a fixed rule base. It was shown that compared to a PID controller the 

proposed fuzzy autopilot showed a significantly enhanced performance in a noisy
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environment with fewer rudder calls. However, the tuning of the fuzzy controller 

parameters was based on an extended trials and error procedure. A different application 

of fuzzy set theory was pursued in (Sutton, 1987) were fuzzy logic is proposed and used 

to design a cognitive model of a helmsman. Following this work it was argued that the 

fuzzy system so achieved could have been used to replace the helmsman. However, it 

seemed that in order to guarantee acceptable performances in different operating 

conditions, the proposed controller needed further adjustment. This led to different 

adaptation and learning structures. One of these is the self-organising controller 

proposed in (Sutton and Jess, 1991). Usually, the problem of parameter optimisation for 

a fuzzy controller has been addressed in the framework of neural networks where back- 

propagation algorithm has been used (Sutton et al, 1997) or in the general framework of 

optimisation theory (Sutton and Marsden, 1997). However, all of the above optimisation 

approaches are based on the similarity between neural networks and fuzzy systems 

when the latter are described in the framework of adaptive networks.

All of the papers cited in section 1.2.3, shown the possibility to pose and solve the 

autopilot design problem in the framework of intelligent control theory. However, none 

of them addresses the problem of stability of the overall system and more importantly 

all of them rely on a heavy computational effort to guarantee the proper learning of the 

controller. At the present the last points represent the two main drawbacks of intelligent 

autopilots. It is argued that, until these two issues are properly addressed and solved, the 

design of intelligent autopilots for ships cannot be fully developed.
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1.3 Steering criteria for course-changing and course-keeping

As mentioned in the previous section, the definition of optimal performance criteria, for 

the design of autopilots is not always a trivial task. There may be conflicting objectives 

for a particular sailing condition. In this respect, for the design of ship's autopilots, 

traditionally it has been distinguished between two main modes of operating, course- 

changing and course-keeping.

Course-keeping: In the course-keeping mode of operating, the control system has to 

maintain a fixed direction of sailing, compensating for the different external 

environmental disturbances (i.e. wind, waves and current). The controller has to select 

the best trade-off between precision (which will minimise the elongation of the sailed 

distance) and control effort (rudder movement, which will produce additional drag force 

and consequent loss of speed). It seems natural therefore, to formulate this control 

design problem in the framework of Linear Quadratic optimal theory, where the cost 

function to be optimised can be expressed as follows:

(1.3)

where £ = (y/d -\j/} denote the heading error, 8 is the rudder angle and /I is a 

weighting factor. (Koyama, 1970), first proposed equation (1.3) for the solution of the 

course-keeping control problem. In equation (1.3), the term e 2 translates the elongation 

of the distance due to course errors into a loss of speed, while S 2 account for the 

increased resistance introduced by the rudder motion. The proper choice of the 

weighting factor is made with the aid of full scale experiments or model based tests,
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however Koyama and further (Norrbin, 1972) proposed values for A, based on two 

different analytical approaches. Koyama considered that the loss of speed is mainly due 

to the increased distance to be sailed and to the rudder motion. Based on this hypothesis 

he suggested values of /I approximately between 8 and 10. Norrbin totally neglected 

the contribution on the loss of speed from course errors and elongation of the sailed 

distance. He considered the loss of speed mainly due to the increased resistance of the 

rudder movement and to the centrifugal force. As shown in (Blanke M. 1981), the 

relative increase in drag and in path elongation due to steering should be expressed as:

R T *

f

[v r £

\

"0 // 0"

ju 0 0
00^

v

r

e

\

-AS2

/

dt (1.4)

where ju, y and A. are positive numbers. (On page 250 of Blanke thesis the sign of the

terms AS2 is incorrect. The correct form is as above.)

The above criterion expresses the work necessary to bring the ship from an initial state

vector [v r s]T to the zero state vector. This is the integral over time of the added 

resistance plus the contribution from the elongation of the path sailed due to the heading 

error. It is worth noting that the existence of an optimal state feedback control law is not 

affected by the weighting matrix being negative defined.

Although the cost function expressed by equation (1.4) has a strong physical 

motivation, its minimisation involves three weighting factor ju, y and A, to be assessed. 

As pointed out in (Kallstrom and Norrbin, 1980) the proper choice of the weighting 

factors can be properly done with the aid of sea or model based trials. For this reason
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the Koyama criterion given in equation (1.3), which by far is easier to be assessed, has 

received more attention for the autopilot design.

Course-changing: During a course-changing manoeuvre the heading angle of the ship, 

is changed in such a way that the ship can sail in the new direction specified by a new 

(desired) heading angle. Although the purpose is still to change the sailing direction, 

according to the actual circumstances this manoeuvre can be performed in different way 

i.e. by minimising the overshoot of the manoeuvre or by maximising the settling time. 

In any case, as discussed in (Amerongen and Naute Lemke, 1980), this kind of 

manoeuvre can be described by the step response of a second order linear system with 

transfer function:

C-f \S(s)
(16)
V '

From this response, shown in figure 1.1, it is possible to distinguish three different 

phases of the manoeuvre as: 1) the start of the manoeuvre, where for safety reasons, the 

intention of the manoeuvre must be clearly indicated to others ships, 2) a stationary 

turning, characterised by a constant slope (turning rate), and 3) the end of the 

manoeuvre, where again for safety reasons it is important to be able to control the 

overshoot in order to avoid dangerous paths. The realisation of each of the three phases, 

will depend upon the particular situations, for instance in the stationary phase, the roll 

angle induced by the rudder rate can be kept under certain values. Alternatively, if in 

restricted water, the turning radius should be minimised, but in any cases the optimal 

parameters of the desired manoeuvre (equation (1.6)) should be chosen keeping in mind 

the dynamics of the particular ship.
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Figure 1.1: Course changing manoeuvre

Having represented the desired manoeuvre as the response of a second-order transfer 

function, the design of the autopilot for course-changing manoeuvre, can be formulated 

in the framework of the model reference control approach. Model reference adaptive 

technique can be used to automatically tune the resultant controller parameters to 

account for the different sailing conditions (Amerongen, 1982).

1.4 Adaptive approach: objectives and motivations

During the last twenty years the fields of artificial neural networks and fuzzy logic 

systems have witnessed a growing interest in control applications (Hunt et a/, 1992) 

(Sugeno, 1985). The primary characteristic that rendered these systems attractive, is the 

fact that under certain conditions, the parameters of the network can be adjusted from 

input/output data. This has led to the use of such systems, under different conditions of 

uncertainties, as adaptive or learning systems. As pointed out in (Farrell and Baker, 

1996), the main difference between an adaptive system and a learning one relies on the 

spatial emphasis of the later in the approximation of the functional mapping 

representing the controller. In fact, adopting the viewpoint of approximation theory, the 

controller design reduces to finding an appropriate functional mapping from the 

measured and desired system's output, to a control action that will produce a satisfactory
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behaviour of the closed-loop system. A control system that, during functional 

approximation, treats every distinct operating situation as a novel one is limited to 

adaptive operation, whereas a system that correlates past experiences with past 

situations, and that can recall and exploit those past experiences, is capable of learning 

(Baker and Farrell, 1992).

Although a comprehensive definition of an adaptive system is still lacking, the emphasis 

in the above distinction is in the two different behaviours required by an intelligent 

controller. For instance, the compensation of external disturbances, achieved by local 

optimisation, does not account for unmodelled dynamics, which require a global 

optimisation approach. A well-known drawback of adaptive systems is their relatively 

slow transient response, due partially to the fact that they do not exploit past experience. 

For example, in the presence of time invariant non-linearities not accounted for in the 

controller structure, the adaptation process will not converge. Recent work in this 

respect by (Narendra and Balakrishnan, 1997), consider the use of multiple models with 

switching criteria in order to guarantee a good initialisation of the adaptive system for 

every different operating conditions. The choice of models, either fixed or adaptive, 

with different orders accounts for parameter uncertainties as well for structural 

uncertainties. In this respect, the use of multiple models introduces the spatial emphasis 

of learning algorithm mentioned in (Farrell and Baker, 1996).

Traditionally, the design of adaptive control systems, as introduced in (Astrom and 

Wittenmark, 1995), deals primarily with the problem of controlling a plant in the 

presence of structural or parametric uncertainty. The approach to follow in designing 

such systems is not unique and mostly will depend upon the kind and the degree of 

uncertainty presents in the problem definition.
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One of the earlier definitions of adaptive systems, introduced by (Bellman and Kalaba, 

1959), outline the adaptive process as the last of three stages in the evolution of control 

process. According to Bellman and Kalaba, the first stage of the control process, 

appears when the plant to be controlled is fully characterised and the controller has 

complete information about its signals. In this situation the control process is labelled to 

be a deterministic control process. When unknown factors, such as noise or parameters 

uncertainty are present in the process and they appear mathematically characterised by 

random variables with known spectral density, the control process is labelled as a 

stochastic control process. Finally, when even less information about the uncertainty is 

available and the controller has to learn how to improve its performances by 

input/output measurements the control process is labelled as an adaptive control 

process.

The adaptive control process definition given above is entirely qualitative and though it 

states when an adaptive controller has to be used, it does not give any information about 

the extent of uncertainty that the system is able to manipulate. Even in less rigorous 

definitions, especially those borrowed from biological fields where adaptation i.e. is 

defined as "an advantageous conformation of an organism to changes in its 

environment", the appreciation of truly adaptive behaviour of a plant is not well 

understood. An example of adaptive definition which clearly germinates from that used 

in biology is given by Eveleigh 1967 (as described in (Narendra and Annaswamy, 1989) 

page 9). "An adaptive system is a system which is provided with a means of 

continuously monitoring its own performance in relation to a given figure of merit or 

optimal condition and a means of modifying its own parameters by a closed-loop action 

so as to approach this optimum".
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With respect to the last definition, it is difficult even to distinguish between a 

conventional feedback controller and an adaptive one, since the former may also be 

considered as a controller that monitors its behaviour for improving the overall system's 

performances. According to (Zadeh, 1963), the difficulty in finding a comprehensive 

definition of adaptivity, relies on the lack of clearly differentiating the external 

manifestation of adaptive behaviours and the internal mechanism by which the 

adaptivity is achieved. By concentrating on the former Zadeh gave the following 

definition of adaptation.

"Denoting with S a system, with P its performances and with W the set of 
acceptable performance. Specifying with [S^ \ the family of function which the

system is subjected to and with P^ the correspondent performances, the system S 

is said to be adaptive with respect to \S^ } and W, if it performs acceptably well 

with every source in the family [S^], that is P G W . In other words, S is 

adaptive with respect to [S^ } and W if it maps \S^ } into W. "

Although this definition clearly states what is demanded from an adaptive system, 

literally map [S^ } into W, it is clear that by a proper choice of the family [S^ \ and the

set W, any system can be adaptive. In fact, it is well known that if a feedback linear time 

invariant system is stable in XQ, then it is also asymptotically stable in some 

neighbourhood of xo. This may answer the question whether a feedback system is also 

adaptive or not. Moreover, the definition given by Zadeh, is similar to the definition 

used for robust systems.

According to (Narendra and Annaswamy, 1989) and (Landau, 1999) the difficulty in 

clearly distinguishing between adaptive behaviours and robustness is due to the present 

limitation encountered in the non-linear analysis. This fact is particularly true if it is 

bare in mind that, no matter how complex an adaptive systems is, it can be seen merely
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as a feedback system where the two steps of identification and control are repeated 

according to the circumstances. The difficulty in analysing such systems lie on the 

fundamental fact that a subset of the system's parameters are adjusted according to an 

adaptation law, making them (these parameters) part of the state variable for the 

successive step of control. Finally, the complexity of the adaptation law increase when 

the family [S^ } (introduced in the above definition of Zadeh) is enlarged and the set W 

is reduced.

Because of the above mentioned difficulties, at the present day, the analysis and 

synthesis of adaptive systems is generally restricted for linear plants with unknown 

parameters. While the overall control system is non-linear, its behaviour asymptotically 

approaches that of a linear time invariant system.

Landau in (Landau, 1999), speculates about the relationship and similarity that adaptive 

and robust system gained during the last decade. The advance in closed loop 

identification methods recently used to enhance the performance of robust controllers is 

one of the examples where the two approaches are merged for better performance 

achievement (Landau and Karini, 1997a) (Landau and Karini, 1997b). The successful 

use of supervisory control (or model-switching) as a way to ensure good adaptation 

transients, in the presence of large parameters change, is another example where the two 

control design techniques share common results (Morse et al, 1992) (Narendra et a/, 

1995). Although these recent examples shown that a unified treatment of the robust and 

adaptive approaches will clearly produce some advantages in the achievement of better 

control systems, the two approaches in the classical control literature are treated 

separately. It is believed, that, when a more comprehensive theory for the analysis and
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synthesis of non-linear time variant systems is established, the gap between robust and 

adaptive approach will be bridged.

The motivations for using an adaptive control approach for the design of ship motion 

control systems, is primarily related to the considerable changes in the dynamical 

response that a ship manifests with respect to different sailing conditions (i.e. speed, 

load trim and weather conditions). Motivated by the need to guarantee acceptable 

performances in divers operating conditions, different adaptive autopilots have been 

proposed. In (Amerongen and Udink Ten Gate, 1975) is emphasised how, in a certain 

range of depth of water, ships with a poor course stability characteristic can even 

become course unstable. An adaptive autopilot, based on model reference technique, 

that can cope with such situations ensuring course stability for all ranges of water depth 

is therefore proposed. In (Kallstrom et al, 1979) two adaptive autopilot based on 

velocity scheduling and self tuning regulator for course-keeping and high gain turning 

regulator are proposed. These autopilots are proved to work excellently under different 

load, speed and weather conditions. In (Tiano et al, 1980) an extended self-tuning 

controller that minimises a preset cost function, whose form depends on the operational 

situations and the environmental conditions is proposed and tested for different ships. 

All the simulation results indicated that the proposed autopilot is a feasible and efficient 

solution for the automatic steering of ships in different sailing conditions. In (Fortuna 

and Muscato, 1996), an adaptive Linear Quadratic controller is proposed for the 

compensation of the waves induced roll motion for a high-speed passenger monohull 

ship. The results obtained both by see trials and computer simulation revealed the 

superior performance that can be achieved by the adaptive approach compared to 

traditional lead-lag compensator. Finally (Astrom, 1980) presents an analytical analysis 

describing why it is beneficial to use adaptive controllers for the design of ship's
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autopilots. Although the analytical treatment is based on the linear theory, it still gives 

the flavour and motivation of why adaptive techniques should be used. It is shown that 

indeed it is possible to design a constant gain controller which guarantees stability for 

the different sailing conditions, but at the cost of poor performance. An adaptive 

approach, where the gain is automatically tuned to optimise a performance function, is 

therefore desirable.

1.5 Structure of the thesis

The structure of the remainder of the thesis follows broadly that of this chapter. 

Prompted by advances in computing technology and motivated by the need to produce 

more efficient ship control systems, the design of course-changing and course-keeping 

autopilots in the framework of intelligent control theory (as defined in section 1.1) is 

investigated. The aim and contribution of the thesis, is to exploit the adaptation and 

learning properties of intelligent paradigms based on neural networks and fuzzy logic 

systems for an efficient solution of the ship autopilots control design problem. The latter 

properties are studied in the framework of adaptive control theory, where well-known 

results can be adopted and applied to the particular case. The advantages of fuzzy 

algorithms, in easily representing and exploiting heuristic knowledge will be also 

discussed. However, all the proposed control algorithms have their foundation in the 

control theory framework where the analytical analysis of the proposed control 

algorithms will be attempted. In particular it is shown how this can be achieved within 

the framework of linear adaptive theory, when some constraint on the structure of the 

autopilots is fulfilled.

The outline of the thesis is as follows:
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Chapter two presents a review of neural networks and fuzzy logic based systems. As 

stated in the introduction these systems represent the major tools on which intelligent 

controllers are based. Chapter three describes the framework of adaptive networks, 

where neural networks and fuzzy logic systems are described in a unified fashion. This 

will allow comparisons and similarities between the control algorithms based on neural 

networks and fuzzy logic systems that are presented in Chapters six and seven. In 

particular in the former Chapter it is emphasised the major difference between neural 

network and fuzzy logic system and how fuzzy set theory can be used advantageously 

for the design of autopilots for ships. Chapters four and five, describes respectively, the 

ship's dynamics, and the mathematical model of a containership used during the 

simulation of the proposed control algorithms. Finally, Chapters eight summarises the 

conclusions and highlights some recommendation for future work. 

In appendix A the main data of the containership are given while appendix B describes 

the environmental disturbances and their analytical description. Appendix C gives the 

analytical proof of the stability of the intelligent autopilot presented in Chapter 7. 

Finally appendix D gives the papers which are related to the work of this thesis.

The work carried out in the course of this thesis has produced the following 

contributions.

  A working definition of intelligent systems is given.

  Neural Networks and Fuzzy Inference Systems are described under a unifying 

theory.

  A comparison between Radial Basis Function and Multilayer Perceptron Networks 

is given.

  Software for the implementation of the non-linear model of a containership was 

designed.
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  A description in the frequency domain of the rudder sequence used for the course- 

keeping control problem is presented.

  The use of the indirect method of adaptation for the autopilot implemented with 

Mltilayer Perceptron Networks within the comparison with the direct method of 

adaptation.

  The proposition of a different controller structure for which the on-line 

implementation of the control algorithm can be guarantee.

  Sufficient conditions under which a detailed analysis of the closed-loop systems 

performance can be made and stability of the overall system can be proved.

  Conditions under which the proposed control structure can be implemented either 

with Fuzzy Inference systems as well as with Neural networks.

The following list of papers relate directly with the work presented in this thesis and

they have been or are accepted for publication.

Journal paper

A. Zirilli, G.N. Roberts, A. Tiano and R. Sutton, "Adaptive Steering of a containership

based on Neural Networks". Accepted for publication in International Journal of

Adaptive Control and Signal Processing, January 2001

Conference papers

ZIRILLI, A., ROBERTS, G., TIANO, A. and SUTTON, R. 1999. A model-reference 
neural autopilot for ships. IMarE Conference: Computers and Ships, London, pp 25-35

ZIRILLI, A., ROBERTS, G.N., TIANO, A. and SUTTON, R. 1999. A Neuro-Fuzzy 
Model Reference Autopilot for Ships. Twelfth ship control systems symposium. The 
Hague, Netherlands.

ZIRILLI, A., ROBERTS, G.N., TIANO, A. and SUTTON, R. 2000. An adaptive 
autopilot for ships based on neural networks controller. International Conference & 
Exhibition on Gearing, Transmissions and Mechanical Systems. 3-6 July 2000, 
Nottingham, UK. Pp.493-502
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Chapter 2 Neural networks and Fuzzy logic systems 

2.1 Introduction

This chapter introduces neural networks (NN) and fuzzy logic (FL) based systems. 

After a brief introduction the description of these systems is focused on those particular 

structures that are used for control purposes. In fact as stated in the previous chapter 

regardless of the definition of intelligent systems, NN and FL can be seen as the 

traditional tools used for the design of intelligent controllers.

In section 2.2, after a brief introduction on artificial neural networks, the perceptron 

network, the multilayer perceptron network, radial basis function network and the 

cerebellar model articulated controller are described in some details. These particular 

neural network configurations are in fact present in a wide range of control applications. 

At the end of the section, a brief comparison between multilayer perceptron networks 

and radial basis function networks is addressed.

In section 2.3, fuzzy systems used for control applications are presented. Each block 

component of a fuzzy logic system is described in its purpose and mathematical 

formulation. Two particular fuzzy systems used in control applications, namely the 

Mamdani and the Sugeno fuzzy model, are presented at the end of this section.

Section 2.4 finally summarises the chapter.
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2.2 Artificial Neural Networks

An artificial neural network (ANN or simply NN), is a massively parallel connected 

network, the structure of which is mainly inspired by the human biological neural 

system. Historically, much of the inspirations for the field of NNs came from the desire 

to produce artificial systems capable of sophisticated, perhaps "intelligent", 

computations similar to those that the human brain routinely performs. The basic 

element of artificial neural networks is the neuron, which represents a very simple 

model of the neuron of the human brain. Figure 2.1 shows a schematic representation of 

biological neurons. In this figure the four main parts of the neuron, (dendrites, cell 

body, synapses and axon) are specified.

Dendrites

Fig. 2.1: Biological neuron structure

The dendrites are tree-like receptive networks of nerve fibres that carry electrical signals 

into the cell body. The cell body, effectively sums and thresholds these incoming 

signals. The axon is a single long fibre that carries the signal from the cell body out to 

other neurons. The point of contact between the axon of one cell and a dendrite of 

another cell is called synapse. It is the arrangement of neurons and the strengths of the 

individual synapses, determined by a not well-know complex chemical process that 

establishes the function of the neural network.
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A block diagram representing the simplified biological neuron is shown in figure 2.2.

f(l*W
Output

B 

Fig.2.2: Basic structure of a neuron.

The input signal multiplied by a weight is added to a bias, this operation in the above 

description of the biological neuron, is performed in the cell body. The output of the 

artificial neuron then is calculated through a function (linear or non-linear) also known 

as the activation function, that accounts for the synapse connections in the biological 

neuron. By itself the artificial neuron of figure 2.2, is not able to perform particular 

tasks. It is the connection of different neurons and the choice of different activation 

function that classify different artificial neural networks i.e. perceptrons neural 

networks, radial basis function neural networks, to name just two.

Once the structure of a neural network is chosen, its behaviour is determined by the 

values of its weights and biases. The way to determine the proper values for those 

parameters is termed learning. There are three different type of learning, namely 

supervised learning (or with a teacher), unsupervised learning and reinforcement 

learning. In supervised learning, the learning rule is provided by a set of inputs and 

corresponding desired targets. The difference between the desired target (or network 

output) and the actual network output is used to drive the change in the network's 

parameters. Reinforcement learning is similar to the supervised learning, except that the 

learning rule is provided with a measure of the network performance. This measure is 

used to drive the network's parameter changes. Finally in the unsupervised learning rule,
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the network's parameters are changed in response only to its input signals. The research 

effort, since the first introduction of ANNs, was to develop different structures of 

neuron connection (neural networks) with associated learning rules capable of 

performing different tasks, such as classification and pattern recognition. The most 

widely used ANNs for control purpose are the multilayer perceptron network (MPN), 

the radial basis function neural network (RBFN) and the cerebellar model articulated 

controller network (CMAC). All these neural networks share the ability to be universal 

approximator. The ability to approximate any continues function in a compact set, in 

conjunction with the ability to learn this approximation from data (using appropriate 

learning rule), rendered these systems attractive as adaptive or learning systems under 

different conditions of uncertainties. In the next section, the structure and the analytical 

formulation of MPNs, RBFNs and CMAC is presented. The later in fact are used as 

building blocks for the design of the ship's autopilots presented in this thesis.

2.2.1 Perceptrons

The perceptron neural network is one of the first artificial neural networks proposed by 

(Rosenblatt, 1958). Like the basic neuron, the perceptron produces a weighted sum of 

the input signals that is compared with a threshold to determine its output. When the 

weighted sum of the input is greater then or equal to the threshold the output is 1, while 

it is 0 if the sum is less then the threshold. This can be achieved by an hard limit 

function as the activation function. The major contribution of Rosenblatt was the 

definition of a learning rule for training the perceptron parameters to solve pattern 

recognition problems. The perceptron learning rule proposed by Rosenblatt is expressed 

by equation (2.1):
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+ e(k)x(k) (2.1)

where the parameter vector include the input weights and biases (0 = [w,b\) and the

input vector/? is extended to the vector x = [/?,l] (since the threshold can be considered 

as an input to the networks always equal to 1). The error e, in equation (2.1) is defined

as:

e = d-a (2.2)

where d is the desired output value and a is the output of the network. The learning rule 

expressed by equation (2.1) falls in to the so-called supervised learning rule, since the 

desired output has to be available to compute the output error. Although the perceptron 

network can solve many pattern classifications, its limitation stems in the fact that the 

input space can only be linearly separate. This problem was emphasised in the book 

Perceptron (Minsky and Papert, 1969), where it was shown that the perceptron network 

cannot implement the logical OR function. This intrinsic limitation of the perceptron led 

to a diminishing in the interest about neural networks. It was felt that this limitation 

could have been solved with the use of a connection of different perceptron neurons. 

However, it was not clear how to train such a network. It was after the formulation of 

the backpropagation learning rule (Rumelhart et al, 1988), that this problem was 

overcame and the introduction of the multilayer perceptron networks produced new 

interest in the field of neural networks.
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2.2.2 Multilayer Perceptron Networks

The structure of three layered MPN with « inputs and m outputs is shown in figure 2.3. 

It was proved by many authors that such a neural network structure with non-linear 

activation function in the hidden layer is able to approximate any non-linear functions 

defined in a compact set (Cybenko, 1989), (Hornick et al, 1989). The same result holds 

if the network is formed by more then one non-linear hidden layer. Since one hidden 

non-linear layer is sufficient to approximate any non-linear function, whether it is 

necessary to use multiple hidden layers is still not completely clear.

Fig. 2.3: Three layer neural network

The relationship between the input u and the output vectors y is represented by equation 

(2.3).

In the particular case of one hidden layer, equation (2.3) reduces to:
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where 9t with / = 1,2,3 is the vector parameter of each layer (i.e. Ot - ^,6,, where w 

are the weights and b are the biases) u is the input vector and / are the activation 

functions of each layer of neurons. In order to allow the output of the network to be any 

real number within a certain bound (i.e. to take account for actuator saturation), the 

activation function of the output layer is usually chosen to be a linear saturated function 

or simply a linear function. In order to guarantee the approximation properties of the 

network, the hidden layer activation function is chosen to be any non-linear function 

with known derivative. (The requirement on the derivative of the activation function is 

due to the backpropagation algorithm). Two of the commonly used non-linear functions

in the hidden layer are: the logaritmic sigmoidal function, y =      with values in
\ + e *

2
[0,1] and the tangent sigmoidal function, y =    ̂— - 1 with values in [-1,1].

1 + e

Since the earlier days of research into artificial neural networks, it was expected that 

such a network of neurons massively interconnected could perform many tasks that a 

simple neuron cannot. Moreover, due to the parallelism in the network structure, 

computation can be performed simultaneously for different nodes leading to a speed up 

in the overall computational time. Due to the connections between neurons, failure in an 

internal node does not result in major changes in performance. As a consequence, 

artificial neural networks have the potential for being useful components in the design 

of complex systems. However, the major problem encountered with such networks is 

due to the inability to find appropriate learning rules to train the parameter values for a 

specific task. This problem was solved by different authors during the 1980s. The most 

referenced and promulgated one is due to Rumelhart and his colleagues of the Parallel 

Distributed Processing laboratory and termed backpropagation learning algorithm 

(Rumelhart et al, 1988).
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2.2.3 Cerebellar Model Articu lated Controller

The cerebellar model articulated Controller (CMAC) was first proposed by (Albus, 

1971) after studying the functions of the cerebellum. A structural description of the 

CMAC is presented in figure 2.4, where the three main steps of the information process 

are highlighted. The input vector space, represented by the set U, is mapped through a 

non-linear function into what is called the conceptual memory. This mapping assigns to 

each point of the input space a set of C points in the conceptual memory. The mapping 

occurs in such a way that near points in the input space are mapped into sets of the 

conceptual memory that overlaps. Closer the input vectors bigger will be the overlap of 

the corresponding sets in the conceptual memory. On the contrary, if the two points in 

the input space are far from each other, no overlapping in the corresponding sets of the 

conceptual memory will occur. The sets of points so far activated in the conceptual 

memory will be combined (possibly in a linear weighted fashion) in the final stage to 

produce the output of the CMAC. The definition of the sets in the conceptual memory 

and of the non-linear mapping will determine the non-linear behaviours of the network 

and are usually based on heuristic knowledge.

In (Miller et al, 1990), it is claimed that this network, due to its fixed non-linearity, can 

be trained easier then MPNs. The training consists of just adjusting the weights of the 

output layer by well-known least mean square algorithms. A number of successful 

applications of this network are also reported. However, the problem to design the 

conceptual memory and the non-linear mapping, especially for high dimensional input 

space, is still the major drawback encountered for the CMAC.
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The CMAC can be seen as a network that performs a look-up table in the input space. 

To each inputs, representing certain information, the network associates possible 

decisions in the conceptual memory. These decisions are then weighted to produce the 

final output. When the problem to be solved dictates a high level of quantization of the 

input space, the dimension of the conceptual memory can became numerically 

intractable.

combination of the 
receptive fields

output

input space

conceptual memory 

Fig.2.4: Block diagram of CMAC

2.2.4 Radial Basis Function Networks

A radial basis function neural network with n inputs u = [A:, ,...,# ] and m outputs >> is

shown in figure 2.5. It can be considered as a two layers network, in which the first 

layer performs a non-linear transformation of the input space, through the basis 

functions, into a new vector space. The output of the hidden layer is then combined in a 

linear fashion to produce the output of the network y. The equation describing the 

input/output relation of the RBFN is as follows:
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where the non-linear functions, O y performs the input vector transformation and are of 

the form:

9?" (2.6)

-, has its maximum value at the origin and drops off rapidly as its argument increase. 

A possible choice for the functions CK is then the Gaussian function, which has the 

form of equation (2.7):

(2.7)

When the Gaussian functions are specified in terms of its parameters Cj (centre) and 

ffj (deviation), the only adjustable parameter of the network are the weights of the 

output layer 9} .
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Fig. 2.5: Radial Basis Network

The similarity to the CMAC is then clear. In both the non-linearity of the network is 

confined to the input layer. When the parameters of this layer are fixed, a 

straightforward least mean square algorithm can be used to adjust the output parameters 

that are linear in the network output (equation (2.5)). For high input space 

dimensionality both the RBFN and CMAC can became numerically intractable.

A brief comparison of MPNs and RBFNs can be made by considering some advantages 

and disadvantages of both. From equation (2.3) it is clear that the parameters of a MPN 

are related in a non-linear fashion with respect to the output. Hence, derivative based 

algorithms are mandatory for the adjustment of the parameters. This, in turn, implies 

that the parameters can converge to local minima unless other derivative-free methods 

are used which in general, due to their low speed of convergence, are not well suited for 

on-line implementation. Moreover, the adjustment of a single parameter of the network 

affects the output globally. For this reason, all the weights have to be adjusted 

simultaneously for each training data set, reducing the effect of previous learning and 

slowing down the convergence rates of the algorithm. On the contrary, in the RBFN,
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once the parameters defining the basis functions are fixed, the adjustable parameters are 

related in a linear fashion to the output. This allows the use of the least mean square 

algorithm which is considerably faster then the derivative based algorithms. Moreover, 

when the input vector is close to the centre of the ith basis function, the response of this 

is large while it is virtually zero when the input vector is very far from the centre. It is 

possible to consider this local behaviour of the network in order to speed up the learning 

and to retain previous learned patterns. However, the overall behaviour of the network 

is highly affected by the choice of the basis function parameters.

Some heuristic methods exist in order to ensure good approximation properties of the 

network and a good rule is to ensure a sufficient overlapping of the basis function in the 

input domain. Other non-heuristic methods based on cluster analysis can be used only if 

a significant amount of data can be collected. As a consequence of this, for a high 

dimensional input space, the number of the basis functions that are needed to ensure 

good approximation properties may became numerically intractable.

2.3 Fuzzy systems for co ntrol

Traditional control designs are usually based on physical models of the system to be 

controlled. A set of differential equations (linear or non-linear) characterising the 

mathematical model of the system, have to be solved in order to determine the 

relationship between the input values and the corresponding output values of the control 

system. If mathematical models are difficult to be defined, i.e. due to the complexity of 

the system or to the kind of available information (rather vague and uncertain), 

cognitive modelling represents a more viable alternative.
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Using a cognitive based modelling approach, the aim is to design control system based 

on a model of the expert, who is able to specify the general properties of the system, 

rather than on a model of the system to be controlled. In this respect, fuzzy logic has 

proved to be a powerful tool. The control strategy is specified by a set of rules deduced 

by a-priori knowledge of the system, that constitutes the rule knowledge base of the 

controller. Based on this stored knowledge, the actual situation is evaluated in order to 

infer the appropriate control action. The deduced control action, performed by the so- 

called inference machine, is based on fuzzy logic where uncertainties are easily handled. 

In fact, fuzzy logic as introduced in the paper of (Zadeh, 1965), is based on an extension 

of the classical idea of set inclusion. While in crisp set theory, an element of a universe 

of discourse either belongs or not belongs to a set, in fuzzy logic each element of the 

universe of discourse belongs to a set with a different degree of belonging defined by a 

membership function.

Figure 2.6 shows the basic structure of a fuzzy logic system used for control purpose 

with its four principal blocks. These four principal blocks are named 1) fuzzy rule 

knowledge base, 2) fuzzy inference engine, 3) fuzzifier and 4) defuzzifier and constitute 

the four building blocks of a fuzzy inference system.

Fuzzy Logic System

Crisp I 
Inputs !

FUZZIFIER

RULES

DEFUZZIFIER

! Crisp 
i Outputs

INFERENCE

Fig.2.6: General Fuzzy Logic System structure
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The fuzzy rule knowledge base represents the block were heuristic knowledge in the 

form of IF-THEN rules can be stored. The rules for a multi-input-single-output (MISO) 

system are expressed in the form of equation (2.8), (it can be proved that any multi- 

input-multi-output (MIMO) system, with m outputs, can be represented by m MISO):

R W :IF x} is A\ and     and xn is A'n THEN y is B' (2.8)

where / is the number of rules, 3c = (x, , x2 ,..., xn )r e U is the input vector, y e 9? is the 

output, A'n and B' are fuzzy sets defined in U and f( respectively.

Each rule of equation (2.8) defines an implication from A] x A'2 x---x A'n into B' that 

is a fuzzy set defined in the Cartesian product space U x SH . There are different fuzzy 

implication rules proposed in the literature. The two following rules are an extension 

from the crisp implication rules to the equivalent fuzzy logic counterpart:

y) =l ~ mink* ~

(2 ' ! 0)

The above equations are obtained from the following tautologies respectively:

(2.1 1) 

(2.12)

where the symbol ~ represents the not operator (or negation), ^ and n are the union 

and interception respectively and <-> represents equivalence. Equation (2.1 1) and (2.12)

2-14



states the isomorphic equivalence between set theory and prepositional logic. It is 

possible to prove that the use of the above implication rules lead to a fuzzy system that 

is not causal (Mendel, 1995). This is the reason why in engineering applications the two 

used implication rules are the min and product implication rules, expressed in equations 

(2.13) and (2.14), introduced by (Mamdani, 1974) and (Larsen, 1980) respectively: 

  Min-operation rule of fuzzy implication:

(2-13)

Product-operation rule for fuzzy implication:

In the equations (2.13) and (2.14), u , , (x) represents the degree of certainty of the
/M x'"x/In

antecedent part of the ith rule and is expressed as:

(2-15)

The symbol * denotes the t-norm which correspond to the conjunction term "and" in 

the antecedent part of (2.8). Three commonly used operations for the t-norm are: 

1) Fuzzy intersection or minimum operator defined as:

Ha (*1 )*Hp (X2 ) = /W (*) = mm "« (^1 )' Hp (*2 ) (2 - ! 6)

2) Algebraic product operator defined as:
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Pa (*1 }*Pp (X 2 ) = /W (*) = /"« (*1 ) ' P ft (X2 ) (2- 1 7)

5) Bounded product:

- 1 8)

As be seen from the equations (2.16), (2.17) and (2.18), the degree of certainty assigned 

to the antecedent part /^axfl (x), is always less or equal to the lowest degree of certainty 

of each membership functions that constitute the premise. This is in accordance with the 

meaning of the logical "and" operator.

The construction of the rule knowledge base has a great impact on the behaviour of a 

fuzzy system. Two main aspects of the rule base to be considered carefully are the 

consistency and the completeness. Consistency of the rule base refers to the condition in 

which there are no rules with the same antecedent and different consequent part leading 

therefore to contradiction. While completeness refers to the property where for any 

input value within the domain of the input variable there is at least one rule with a 

degree of certainty different then zero. A sufficient condition for the completeness of 

the rule base is that:

3i,such thatjU, x ^,x*Q, VxeE/ (2.19)

The fuzzy inference block, performs the logical functions evaluation on the rules 

specified in the knowledge base equation (2.8). The generalisation of the classical 

inference rules (i.e. modus ponens, modus tollens and hypothetical syllogism), to the
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fuzzy counterpart, is based on the so-called compositional rule of inference (Zadeh, 

1973). In contrast with the classical Boolean logic, where the logical functions may be 

either true or false, in fuzzy logic each rule is true with different degree of certainty. In 

others words, if A is a fuzzy set describing the current inputs, each rule R 'in (2.8)

determine a fuzzy set A°R' in SR based on the following compositional rule of 

inference:

where fj.A (jc) is the membership function describing the fuzzification of the input x , * 

is the t-norm and JU A, X xA^Bi(x,y) is computed by one of the above fuzzy implication

rules (equations (2.13) or (2.14))). The final fuzzy set describing the entire set of i rules 

is obtained from the fuzzy sets juAaRl (y) for i= !,...,« (number of rules) using the fuzzy 

disjunction operation defined as:

/W,...,,r W = "** W® P*# (y]®.-.® VAaR ~ (y) (2-21)

where /u ,   (y) is the aggregated fuzzy set of the consequent (that represent the

deducted inferred reasoning) and the symbol ® denotes the t-conorm. The three most 

commonly used t-conorm operations are: 

1) Fuzzy union or maximum operator:

= max[//a , fjp ] (2.22)

2) Algebraic sum:
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= [/"a +Pp-PaVp\ (2 '23 )

3) Bounded sum:

(2 - 24)

Equation (2.21) is the mathematical statement of the approximate reasoning capability 

of the fuzzy logic systems.

The fuzzifier performs the fuzzification operation that consists in mapping the crisp 

input x into a membership function defined in the interval [0,l]. As stated above the 

fuzzy inference engine performs deductive reasoning applying logical function 

evaluation on fuzzy sets instead of crisp values. The fuzzifier therefore is used to 

transform the crisp input J in a fuzzy set while the defuzzifier performs the opposite 

operation, it transforms the output of the fuzzy inference engine (which is a fuzzy set) 

into a crisp value.

For the fuzzification process at least two methods exist:

1) singleton fuzzification: which define the fuzzy set for the crisp value x} as:

= l for*-*, (225)

Note that with this fuzzification method, equation (2.20) simplify in:
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GO= SUP-</ VA (*)* /v..,^*' (x>yn= SUP^/ L1 * /^;x..,^ (*» ^0] = v*^...*^*
(2.26)

whether minimum or product operation is used for the t-norm, (equation (2.16) or

(2.17)).

2) general fuzzification: which define the fuzzy set for the crisp value x, as:

= ! for *=*, 

f*A (x) decreases from 1 as 3c moves away from x, . (2.27)

For control purposes, due to its computational efficiency, a singleton fuzzifier is 

normally used, however in the presence of noisy input the general fuzzification methods 

may be useful. In fact the general fuzzification method can be interpreted as a pre- 

filtering of the noisy input signal. As an example, consider a SISO fuzzy system. Using 

the product for both, t-norm (equation (2.17)) as well for the implication rule (equation 

(2.14)), equation (2.20) that represents the inferred fuzzy set will have the follows form:

.* GO = suP**u \?A (*)* M^^B' (*'->0] = sup,el/ \pA (x)• //^ (x) • //B , (y)] (2.28)

Since the superior is calculated over all jc e. U, equation (2.28) can be rewritten as:

' GO=/v (y)™p«v VA (*)   ^ W] (2-29)

Suppose now, that the membership function associated to the crisp input x (during the

fuzzification process), is a Gaussian function defined as JU A (x) = e 2a* , with centre x
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and standard deviation cr- . If the membership function associated with the antecedent 

part of the ith rule is chosen as well as a Gaussian function of the form

, (x) = e 2cr' , defining the membership function product such as:

PR'

It can be proved that the point:

_ i*max - ————2————2—— C2"31 )

will maximise the function jupRl (x) expressed in equation (2.30). Equation (2.29) then 

reduces to:

(2-32)

Equation (2.31) can be interpreted as a pre-filtering of the noisy data x achieved by the 

fuzzification process (Mouzouris and Mendel, 1997a) (Mouzouris and Mendel, 1997b).

For the defuzzification process different strategies exist, based either on the implied 

fuzzy sets (equation 2.20) or on the overall implied fuzzy set (equation 2.21). With 

respect the implied fuzzy sets the two most common defuzzification methods are: 

1) Centre of gravity, defined as:
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(2-33)

where 6; is the centre of area of the membership function of the consequent part 

associated to the ith rule. Note that the fuzzy system must be defined so that:

This value will be not zero if there is a rule that is on for every possible combination of 

the fuzzy system inputs (the rule base is complete) and the consequent fuzzy sets have a 

nonzero area. 

2) Centre-average defined as:

(2.34)

where 6. is the point in SK at which the output membership function achieves its 

maximum value. Also with this defuzzification formula it is necessary that:

With respect the overall implied fuzzy set (equation 2.21) three possible defuzzification 

formula are:
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1) Max criterion defined as:

y(x) = argsup, {//^, ^ (y)} (2.35)

This criterion returns the value of y that result in the supremum of the overall implied 

fuzzy set. Sometimes the supremum can occur in more then one point in 9?. In this case 

a different strategy can be specified in order to choose the proper point. One of these 

criteria is the mean of maximum.

2) Mean of maximum defuzzification criterion is defined as the mean value of all 

elements whose membership is maximum:

,_.  <2 - 36)

where fiAoR!x x/r (y) is a new membership function defined as:

[O otherwise \

Here also \frAaRi x xR», (y]dy * 0, moreover this integral has to be computed each time

instant since it depends on // which changes with time. This can require excessive

computational resource for continuous universe of discourse.

3) Centre of Area defuzzification method selects the crisp value of the output as the

centre of area of the overall implied fuzzy set. For a continues output universe of

discourse the formula can be expressed as:
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(2,7,

Also, here it is necessary that the integral j/^o/flx x/r (y)dy * 0, moreover similar to the 

previous method it can be computational expensive.

As a result of the above discussion, the fuzzy system given in figure 2.6 represents a

very rich class of static systems mapping U d 9?" into 9? , because within each block 

there are many different choices. Different combinations of these choices may result in 

different subclasses of fuzzy logic systems with interesting properties. For instance, the 

fuzzy logic systems with center-average defuzzifier, product inference and singleton 

fuzzifier have the following form:

(2-38)

The above statement follows straightforward from the application of the equations 

(2.14), (2.27) and (2.34).

An interesting parameterisation of equation (2.38) can be achieved considering the 

parameters of the input membership functions fixed, therefore defining:

;and 0 T =[b,,....,bm ] (2.39)
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as regressor and parameters vectors respectively, the fuzzy systems of equation (2.38) 

can be linearly re-parameterised with respect bt as:

(2.40)

The main reasons for considering the fuzzy system expressed in equation (2.38) as a 

building block for the design of adaptive fuzzy systems are: 1) It has been proved that 

equation (2.38) is a universal approximator function, 2) the fuzzy logic systems 

expressed by equation (2.38) is constructed from a set of IF-THEN rules, therefore 

linguistic information from human experts can be easily incorporated into the system, 3) 

the parameterisation of equation (2.40) allow for the application of well-known result in 

linear adaptive control theory 4) by comparing equation (2.5) with (2.40) it is clear the 

relationship between RBFN and FIS of the form expressed by equation (2.38). The last 

point allows the generalisation of results from the field of neural network to that of 

fuzzy logic systems and vice versa.

To summarise, the design of a fuzzy logic system involves the specification of the

following operations:

AND operator: for calculating the firing strength of a rule with and antecedents.

(usually t-norm).

OR operator: for calculating the firing strength of a rule with or antecedents, (usually t-

conorm).

Implication operator, for calculating the inferred consequent of each rule (usually t-

norm).

Aggregate operator: to aggregate the inferred consequences of each rule in an overall

membership function (usually t-conorm).
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Fuzzification operator: to associate a membership function to the measured crisp value. 

Defuzzification operator, to associate a crisp value to the inferred fuzzy set.

Two of the most well known fuzzy logic systems used for control purpose are the 

Mamdani and Sugeno fuzzy inference systems. These are briefly described in the 

following section.

2.3.1 Mamdani fuzzy models

Mamdani first used the idea of fuzzy sets to design a control system for a steam engine, 

based on linguistic interpretation of rules specified by a human expert operator 

(Mamdani and Assilian, 1975). Mamdani used the min operator to perform the and and 

implication and the max operator to perform aggregation. Figure 2.7 shows the steps 

involved in a two inputs one output Mamdani fuzzy inference system with singleton 

fuzzification.

/ A3

A2

X] X2

mm

W]

W2

max

Fig.2.7: Two rules, two inputs Mamdani fuzzy model
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In the Mamdani fuzzy model of figure 2.7, the two singleton membership functions 

associated to the inputs xi and X2 are mapped into the membership functions describing 

the antecedent part of each rule. These firing strengths are combined with the min 

operator to give the degree of belief of each antecedent rule (wi and W2). These are used 

to shape the output membership function of each rule to give the membership function 

of the consequence. Each consequent membership functions are then aggregated using 

the max operator to represent the inferred fuzzy set (represented in bold in the bottom- 

right of the figure).

In general, for a Mamdani fuzzy model, is intended any fuzzy systems with min or 

product operator to define the t-norm, with aggregation as defined in equation (2.22) 

and defuzzification as defined by equations (2.35), (2.36) or (2.37). The computational 

complexity of this fuzzy inference system will finally depend upon the particular choice 

of the different operators.

2.3.2 Sugeno fuzzy models

The peculiarity of the Sugeno fuzzy model (also known as the Takagi Sugeno Kang 

model), is that while the antecedent part is still defined in terms of linguistic fuzzy sets, 

the consequent part is defined by a crisp function. Equation (2.41) is an example of the 

Sugeno's type rules:

R(i) :IF x, is A( and ••• and xn is An THEN y = f(x} ,..,xn ) (2.41)
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In general, f(xj, ...,x^) can be any function, however usually it is a polynomial function 

of the input variables. When the polynomial is of the first-order the resultant fuzzy 

system is termed first-order Sugeno fuzzy model. When the function/^ is a constant 

the resultant fuzzy system is termed zero-order Sugeno model. In general the advantage 

of the Sugeno fuzzy model is its numerical computability compared to the Mamdani 

model. In the Sugeno model, in fact the defuzzification process is reduced to the 

weighted combination of the functions defining the consequent part of each rule. It is 

important to note, that while in the Mamdani model the output is always a fuzzy set that 

can be further defuzzified, in the Sugeno model the output is always a crisp value. In 

other words, the Sugeno model is a mapping from fuzzy sets defined in the antecedent 

part to crisp values defined by the consequent functions. Figure 2.8 is a graphical 

representation of a Sugeno fuzzy model with two inputs and one output.

A2
B2

fi=pix+qiy+ri
Wi

f = W l fl+ W 2 f2

W,+W 2

f2=p2x+q2y+r2

Fig.2.8: Two rules, two inputs fuzzy Sugeno model

From a brief comparison with figure 2.7 it is clear that the main difference between the 

two fuzzy models are in the consequent part. In the Sugeno type fuzzy model the 

consequent part of each rule is represented by a function. Therefore, the defuzzification 

in more straightforward.
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2.4 Summary

In this chapter a review of neural networks and fuzzy logic systems has been presented. 

Both, the analytical formulation and as well the structure of the systems have been 

discussed. When focusing on the analytical representation, similarities between the two 

systems are highlighted. An example for a particular configuration of fuzzy logic 

system and radial basis function neural network was given.

Neural networks and fuzzy logic systems germinated from the aim to emulate and 

reproduce peculiar characteristics of what are recognised as intelligent species. The 

neuron that is the basic element of any neural networks is in fact nothing more then a 

simplified model of the biological neuron. On the contrary, fuzzy logic based systems 

have had the aim to extend the rigid two value Boolean logic, on which all the digital 

systems are based, to a way of inferring which is much closer to the human being. 

Fuzzy logic can be seen as a way to translate imprecise and vague statements in a 

precise mathematical formulation. In this sense, neural networks and fuzzy logic 

systems can be seen as two complementary systems. On one hand, neural networks tries 

to emulate the hardware on which intelligent behaviours are based (the brain), and on 

the other hand fuzzy logic tries to manipulates and quantify imprecision and fuzziness 

that characterises the real world.
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Chapter 3 Adaptive networks

3.1 Introduction

Adaptive networks, as introduced in (Jang et al, 1997), are used as a unifying 

framework that subsumes different kinds of neural network paradigms with supervised 

learning capabilities. Within this framework, different kinds of neural networks and 

fuzzy inference systems (NN and FIS) can be represented by an interconnection of basis 

nodes with adjustable parameters (adaptive networks). By focusing on the functional 

evaluation performed by each node, the two systems (NN and FIS) can be combined in 

a synergistic fashion. Well-established learning paradigms introduced in the context of 

neural networks can be easily extended to fuzzy systems and new architectures 

combining advantages of both fields can be proposed. In this extent the most well- 

known neural-fuzzy architecture proposed by Jang in the earlier 1990s is the ANFIS 

(Adaptive Network Based Fuzzy Inference System), (Jang, 1993). This architecture is 

discussed next as an example of a combination of neural network and fuzzy logic 

paradigms.

3.1.1 Adaptive Network Based Fuzzy Inference System

Figure 2.8 (section 2.3.2 of Chapter 2) shows, the graphical representation of the 

inference mechanism of a two rules first order Sugeno fuzzy model, with two inputs and 

one output. Singleton fuzzification, weighted averages defuzzification and product and 

is used. With respect to figure 2.8, the knowledge base is specified by the following two 

rules:
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1. If x is AI andy is BI Then fi=pix+qiy+ri

2. If x is A2 and y is 62 Then fa=p2X+q2y+r2 

The steps performed by the inference mechanism can be summarised as follows:

1. The firing strengths of the input singletons are calculated for each membership 

functions of the antecedent part.

2. The firing strengths of each rule's antecedent are combined by the and operator in 

order to quantify the degree of belief of the antecedent part (wi and W2).

3. The consequence of each rule is weighted according to the associated degree of 

belief to quantify the inferred consequent (wifi and W2f2).

4. The consequences of each rule are combined to quantify the inferred result (f).

An adaptive network can be designed in order to perform each of the above four steps. 

Figure 3.1 shows such a feedforward network. Each node of layer one performs the 

function evaluation of the membership function associated to the antecedent part of 

each rule. The output of this layer is therefore the firing strength of the antecedent 

membership function. This operation corresponds to step 1 in the inference mechanism 

described above. In layer two the antecedent part of each rule is combined according to 

the selected t-norm (product or minimum operation). The output of this layer is 

therefore the degree of belief associated to the antecedent part of each rule. This 

operation corresponds to step 2. In layer three, the consequent part of each rule is 

weighted according to the degree of belief associated to the antecedent part. This 

corresponds to step 3. Finally, in the fourth layer and output layer, the weighted average 

defuzzification is applied to the consequence of each rule. This corresponds to step 4 in 

the inference mechanism described above.

3-2



Fig.3.1: ANFIS architecture for the first order Sugeno model.

The convention adopted in the representation of figure 3.1 is that square nodes 

represents nodes with adjustable parameters (adaptive nodes), while circular node have 

fixed parameters. Any optimisation or learning methods (i.e. back-propagation) can be 

applied to the network of figure 3.1 in order to identify the optimal parameters of the 

membership function and/or the parameters of the consequent part. In principle each 

node in the network of figure 3.1 can be adaptive, in the sense that the optimisation can 

be carried out with respect the t-norm as well, which is represented in layer two. A least 

square learning algorithm, a back-propagation algorithm and its modification can be 

applied to this adaptive network which in fact is functionally equivalent to the Sugeno 

fuzzy inference system of figure 2.8. Other fuzzy inference systems, different from the 

one used in the above example, can be represented by an equivalent adaptive network 

(Kung et al, 1999) (Jang and Sun, 1993). In particular in the latter paper it is 

emphasised how RBFN and a particular class of FIS can be implemented by the same 

adaptive network. This is a consequence of the functional equivalence of the two 

systems which emphasised in the paper (Jang and Sun, 1993) and has already been 

mentioned in section 2.3 of Chapter 2.
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3.2 Adaptive networks fo r control

The idea of adaptive networks, introduced in section 3.1, is to design a network (defined 

as the interconnection between bases nodes) such that it is functionaly equivalent to the 

system used to implement the controller. The learning properties of the adaptive 

networks can then be used in order to automatically synthesis (or optimise) the 

controller parameters.

The principal benefits of intelligent control stems on the ability of NN and FS, to 

automatically synthesise mappings that can be used advantageously within a control 

system architectures. Examples of such architectures that employ approximation 

mappings are shown in figures 3.2, 3.3, 3.4 and 3.5.

reference
^- Controller 

Mapping
Plant

outpu
k-w

Fig.3.2: Controller mapping

They include:

1) a controller mapping that relates measured and desired plant outputs to an 

appropriate set of control actions (figure 3.2). Different neural networks and fuzzy 

systems have been trained in a supervised fashion in order to replace proportional 

plus integral plus derivative (PID), linear quadratic gaussian (LQG) and other 

traditional controllers.

2) A control parameters mapping that generates parameters for a controller from 

measured system's performance (i.e. direct adaptive control shown in figure 3.3).
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3) A model state mapping that produces state estimation (i.e. identifier or estimator 

shown in figure 3.4).

4) A model parameters mapping that relates the plant operating conditions to an 

accurate set of model parameters (i.e. indirect adaptive control shown in figure 3.5).

All these control architectures have their foundations in traditional control theory. In 

accordance with the definition of intelligent control given in section 1.1, neural 

networks and fuzzy logic systems are used to solve the analytical part of the control 

design problem which now consist of approximating a suitable control mapping.

output
reference

Desired 
performances

Fig.3.3: Direct adaptive control

reference
Controller Plant

State 
estimation

output

Fig.3.4: State estimation mapping
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Fig.3.5: Indirect adaptive controller

In general, the problem to approximate a multivariate function f(x) by an 

approximating function or functional mapping NN(0,x), is dealt with in the framework 

of approximation theory and the related fields of system identification and system 

estimation. Its raises three main questions (Poggio and Girosi, 1990):

1) What kind of approximator has to be used? In other words, what classes of 

functions /(*) the selected functional approximator NN(0,x} can 

approximate?

2) What kind of algorithm has to be used for finding the optimal parameters 6" for 

a given choice of NN(0, x) ?

3) Is the selected approximator with the selected algorithm realisable in practice?

The proper answers to the above questions are application dependent. However, the 

above questions motivate the choice of the particular controller structure and 

adaptation/learning algorithm. They also represent a systematic procedure to find the 

most suitable combination of different identification and control design techniques. In
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the context of neural networks and fuzzy systems, the first question refers primarily to 

the problem of choosing a particular network, (i.e. MPN, RBFN, CMAC, Mamdani, 

Sugeno etc.), while the second question is related to the particular parameterisation that 

can be achieved. For instance, as mentioned in 2.2.4, for a RBFN with fixed parameters 

in the input non-linear layer, least mean square algorithm can be used. Finally, the last 

question dictates the hardware specification and whether or not the adaptation can be 

performed on line.

To measure the quality of the approximation, the idea of distance between the function 

to be approximated /(*) and the approximator NN(0,x) is used. A function p is 

defined in order to quantify such distance. A common choice for the function p is the 

Euclidean norm. Once the function p has been defined and the approximator NN(0, x) 

has been chosen, the approximation problem reduces to find the parameter 6* for

which:

< p[NN(e,x\f(x)] (3.1)

for any 9 belonging to the set of admissible values.

A solution to this problem, if it exists, is said to be the best approximation. It is clear 

that the existence of the best approximation depends ultimately on the class of the

functions to which NN(0,x) belongs.

Since other more conventional approximator methods, such as orthogonal functions, 

splines and polynomial, enjoy the characteristic to be universal approximators the 

question why neural networks or fuzzy systems should be used is legitimated.
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Ultimately, the choice of which approximator to be used is dictated by practical 

considerations, however, it is possible to highlight some advantages that both MPN, 

RBFN and Fuzzy logic systems have over conventional approximation methods. One of 

these advantages is that all signal levels always lies in amenable bounds. On the 

contrary, for example when a polynomial of high-order is used to approximate a 

function and the magnitude of the input variable exceeds unity, the output can be very 

large, causing numerical problems for the determination of the parameters. The basis 

functions for orthogonal series are usually given in terms of look-up tables. For some 

application a good resolution may dictate a large number of samples requiring a large 

memory for storing the look-up table. All these practical disadvantages are not present 

in neural network and fuzzy logic based systems. Moreover, due to their parallel 

strongly interconnected structure, neural networks and fuzzy systems posses hardware 

robustness. For instance, the failure of one single component of the network will not 

produce major changes in the overall system's performances. These advantages in 

conjunction with the objective to mimic the most sophisticated controller ever designed, 

the brain, represents the major reasons for the research efforts made during the last 

twenty years in the field of intelligent control.

3.3 Universal approximation capability

The universal approximation capability of the selected approximator, is a fundamental 

requirement in order to guarantee the existence of a solution (i.e. the existence of the 

best approximator). This property, characteristic of some specific networks, will ensure 

that the network can approximate, with any degree of accuracy, any continous function 

defined in a compact set. The analytical proof of this characteristic is based on the 

fulfilment of the Stone-Weierstrass theorem. Originally used to prove the approximation
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capability of polynomial functions, the Stone- Weierstrass theorem can be stated in 

different forms. The one more useful for applications, is as follows (Jin Liang et al, 

1996):

Stone-Weierstrass theorem:

Let S be a compact set with TV dimensions and let Q ID C(s) be a set of continuous real- 

valued functions on S satisfying the following conditions:

a) Identity function: The constant function f(x) = 1 is in Q .

b) Separability: For any two points jc, * x2 in S, there exist an / e Q such that

c) Algebraic closure: For any / and g e Q and a and /?   9? , the functions fg and

Then Q is dense in C(S) , which implies that, for any £ > 0 and any function 

g e C(s), there is a function / e Q such that:

g(x) - f(x\ < £ for all x e S (3.2)

The accomplishment of conditions a) and b) is simple to be verified, while condition c) 

will depend on the particular non-linear function used to implement the activation 

function. Examples of neural networks that can satisfy the Stone-Weierstrass theorem 

are reported in (Cybenko, 1989), where networks with sigmoidal activation functions in 

the hidden non-linear layer are used. (Hornick et al, 1989) shows that with squashing 

activation functions in the hidden layer the same approximation capability, of the 

sigmoidal networks, can be achieved.

3-9



The above results obtained for neural networks have been applied by (Wang, 1992), to 

prove that a fuzzy system with product inference, centroid defuzzification and Gaussian 

membership function satisfies the Stone-Weierstrass theorem. The result obtained by 

Wang however is a natural consequence of the functional equivalence between RBFNs 

and FISs of the type defined above (Jang and Sun, 1993). A different proof of the 

approximation capabilities of a fuzzy system has been given by Kosko based on the idea 

of fuzzy patches (Kosko, 1992).

Although all the above papers have a great practical importance and have contributed to 

a better understanding of network functions approximation, none of them provide a way 

on how many nodes (networks parameters) are needed to achieve a desired 

approximation error. These have to be determined by trials and error in a specific 

context. However, too small a network may not be able to sufficiently approximate 

accurately the observed input-output data, while too large a network may not be able to 

sufficiently generalise (i.e. interpolate) accurately.

3.4 Adaptation and learning in intelligent control

The way the adjustable parameters 9 of the adaptive network are changed specify the 

learning or adaptation algorithm. The problem to find the best approximator, as defined 

above, can be formulated as an optimisation problem to find the minimum of a specified 

cost function. Least mean square and back-propagation algorithms are the two most 

used optimisation algorithms, originally formulated in the content of neural networks. 

More recently hybrid combinations of those approach are being used. These are briefly 

discussed in the following sections.
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3.4.1 Least square and least mean square algorithm

Least mean square (LMS) algorithm, also known as delta rule or Widrow-Hoff learning 

algorithm, is an approximated steepest descent optimisation algorithm, used for the 

minimisation of the mean square error for linear networks (networks for which the 

input/output relationship is of the form: y(0,u)-u0). LMS algorithm falls in the 

supervised learning rule type. It is assumed therefore that a set of desired targets and 

outputs are available. The optimisation criteria to be minimised is the mean square error 

defined as the sum of the squares of the differences between the actually observed and 

the computed values and expressed in equation (3.3),

0.3)

where k is the number of data pairs J, and y are the desired and measured output 

respectively. Since the measured variable is linear in the parameters 9 , and the criterion 

(3.3) is quadratic the minimisation problem admit an analytical solution of the form: 

(Astrom and Wittenmark, 1995):

(3.4)

In equation (3.4) A e 5R* X" is the matrix of input signals, n is the number of inputs and 

6opl is the vector of optimal parameters in the mean square sense. In order to be able to 

account for new data pairs a recursive version of the mean square algorithm expressed 

in equation (3.4) is also available (Astrom and Wittenmark, 1995).
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The problems of the least square estimator algorithm are related to the computational

effort in calculating the matrix \A T A) especially when A is not quadratic (that is when 

the number of measured data exceed the number of inputs k > n ). The LMS algorithm 

proposed by (Widrow and Lehr, 1990) overcame this problem using a steepest descent 

algorithm to minimise an estimate of equation (3.3), defined by equation (3.5):

J(9)=(dk -yk (e,u))2 =e 2 (k) (3.5)

where the sum of the squared error has been replaced by the squared error at iteration k. 

The gradient of equation (3.5), is then calculated at each iteration as follows:

VJ(6}= Ve 2 (k) = -2(dk -yk (o,u)}-yk (o,u) (3.6)
Otf

In the simple case of a linear network, where the output is expressed as yk (0,u) - 0uk , 

equation (3.6) reduces to:

= Ve 2 (k}=-2(dk -yk (0,u))uk =-2e(k)uk (3.7)

The iterative optimisation of equation (3.3) based on the approximated function 

(equation (3.5)) and the gradient method is expressed by equation (3.8):

4+, - 4 = -r?Vj(0) = 7je(k)uk (3.8)
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where rj is an adaptation gain. The beauty of equation (3.8) is its simple 

implementation due primarily to the available signals uk and e(k). It is possible to 

prove that under a proper choice of the adaptation gain and some condition on the input 

signals the steady state solution of equation (3.8) converges to the solution of the least 

square estimator (equation (3.4)). However, the main drawback of this adaptation 

algorithm is that it relies on the assumption that the network is linear in its parameters 

(equation (3.7)). If this assumption is relaxed, as in the case of MPN and general FS, the 

calculation of the partial derivative of the cost function (equation (3.6)), is not a trivial 

task. The lack in learning algorithms that could be applied to non-linear networks and 

the inherent limitation of the linear networks, were the main reasons for a loss of 

popularity of artificial neural networks techniques in the middle of the 70s. This 

problem was solved with the introduction of the back-propagation learning algorithm.

3.4.2 Back-propagation

The LMS algorithm or the perceptron learning rules (briefly discussed in Chapter 2 

section 2.2.1) were designed to train single-layer perceptron-like networks. These 

networks, as pointed out in (Minsky and Papert, 1969), are able to solve only linearly 

separable classification problems. The awareness that this limitation could have been 

overcome with the use of multilayer networks was frustrated by the inability to develop 

efficient learning algorithms.

The major difficulty in designing a steepest descent adaptation algorithm for these class 

of non-linear networks, is represented by the calculation of the gradient of the 

approximated cost function expressed by equation (3.6), due to the non-linear 

relationship between the output of the network and its parameters. This problem was
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efficiently solved and advertised within the neural network community by the work of 

(Rumelhart et al, 1988) and co-worker. The calculation of the partial derivative of the 

error signal with respect to the parameters of each single neurons of the network is 

solved by the use of the chain rule of calculus.

Fig.3.6: Three layer adaptive network

Suppose that a given adaptive network has L layers and N(l) nodes in layer 1 (see figure 

3.6 with 1=3). The output and function of node / of layer 1 can be represented as s' and

fl respectively. Since the output of a node depends on the incoming signals and the 

parameter set of the node, the general expression for the output s' is as follows:

' - f l (s 1'1 s'~l 0'
i ~ Ji VI '" '''H '^i (3.9)

In equation (3.9) 0' is the parameter vector of the node and s'~} with / = !,...,« are the 

outputs of the n nodes of the previous layer. The error signal e\ defined as:
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can be interpreted as the sensitivity of the cost function (equation (3.6)) with respect the 

output of node / of later 1. Applying the chain rule to equation (3.10), the error signal 

can be rewritten:

_ W a/-1

where N(l+l) is the number of nodes in layer 1+1. Equation (3.11) states how the error 

signal is back-propagate from layer 1+1 to layer 1. At the output layer L ef =t. k -ylk

where tik and yilt , are the desired and the actual value respectively of the ith output at 

time k. To calculate the partial derivative of the cost function with respect the node's 

parameters 6t , it is possible to apply again the chain rule of calculus as follow:

80, 8s 80, '80,
0.12)

8s 1
Provided the existence of the partial derivative  -, the iterative optimisation of

80,

equation (3.3), based on the approximated function of equation (3.5) and the gradient 

method is then expressed by the following equation:
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Equation (3.13) is the back-propagation learning algorithm. It is implemented in two 

steps, a forward step where, in order to compute the output error of the network, the 

input uk is propagated through the network and a back word step where the error, 

calculated at the output layer, is back-propagated through the network in order to 

calculate the partial derivative of the cost function with respect to each node parameter 

(equation (3. 12)).

A graphical interpretation of the backpropagation learning rule can be explained by 

studying the single layer non-linear network represented in figure 3.7, where the non-

1   e~2Sk 
linear function is represented by an hyperbolic tangent yk = lanh(sk ) =    -^  ands

The instantaneous error to be minimised is defined as:

et =tt -tania.(st ) (3.14)

Equation (3.6) becomes:

(3 ,5,

From equation (3.14), the partial derivative of equation (3.15) becomes:

dOk
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where tanh' is the differential function of tanh. Substituting equation (3.16) into (3.15) 

yields:

VJ(0) = 2sk -j±- = -2sk tanh'(s k K (3.17)

Equation (3.17) represents the equivalent of equation (3.7) when the output of the 

network is the tanh non-linear function. Applying the steepest descent method, the 

iterative optimisation of equation (3.3), based on the approximated function (equation 

(3.5)) becomes:

(3.1 8)

which is the equivalent of equation (3.8) when the output of the activation function is a 

non-linear function. It should be noted that in order to implement equation (3.18) the 

derivative of the activation function has to be known. This constrains the applicability 

of the above adaptation rule (equation (3.13)) and all back-propagation based rules to 

networks with non-linear differentiable functions. The extension of the back- 

propagation algorithm, shown in figure 3.7, to an adaptive network with two inputs and 

two outputs is shown in figure 3.8. The network represented inside the dotted line, also 

known as the sensitivity network, is used for the calculation of the partial derivatives 

and represents the backward step in the computation of the adaptation algorithm.
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Fig.3.7: Back-propagation for one layer non-linear network

Sensitivity network

Fig.3.8: Two inputs two outputs adaptive back-propagation network
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3.4.3 Hybrid learning

A combination of the back-propagation or general steepest descent methods and least 

square algorithm, can be used in order to speed up the learning process. By noting that 

all the parameters in the output layer of the adaptive network appears linear, it is 

possible to use the least mean square algorithm, which is faster then back-propagation, 

to update such parameters. Once the optimal output parameters, in the least square 

sense, are found back-propagation can be used to adapt the other parameters in the 

network. In general, as expressed in equation (3.19), the output of an adaptive node is a 

function of its inputs and a set of modifiable parameters.

y = f(x,6) (3.19)

If a suitable transformation T can be applied to the function/such that the new output, 

which is the composition of T and y (written asT o y ) results to be linear in some of the 

network parameters 6, these parameters can be adapted by least square method. It is 

important to note, that with this method the optimality in the choice of the linear 

parameters is guaranteed with respect to the transformed space parameters. However, in 

practical application this seams not to be of major concern. Different combination of the 

two learning algorithms leads to a variety of adaptive systems. For instance, it is 

possible to consider a first optimisation of the linear parameter only using least mean 

square algorithm to bootstrap the learning process based on back-propagation algorithm 

or it is possible to use back-propagation for the non-linear parameters while least-square 

for the linear ones.
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3.5 Summary

In this chapter adaptive networks has been introduced. In this framework, the 

similarities between neural networks and fuzzy logic based systems can be exploited. In 

section one an example on how RBFN are functionally equivalent to a particular 

structure of FIS is shown. In section 2.2 it is shown how these networks can be used for 

solving control problem. Also the pragmatic definition of intelligent control given in the 

first chapter is enhanced by the presentation of few control architectures where adaptive 

networks can be employed. In section 2.3, the universal approximation capabilities of 

these networks is stated and briefly discussed. Motivated by this characteristic, the 

control design process reduces to finding an approximation mapping from the 

performance measurements to command signals. The last section describes in some 

detail the most widely used learning algorithms for adjusting the nodes parameters of 

the adaptive network.
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Chapter 4 Ship dynamics

4.1 Introduction

For the design of control systems the importance of a mathematical model, describing 

the system to be controlled, is well recognised. In the case of a ship, modelling is quite a 

complex task. Generally the model should describe, acceptably well, the relevant 

dynamics of the ship. The more complex a model is, the more difficult the controller 

design will become. For this reason, it is common practice to distinguish between 

models used for control design purposes from those used for simulation purposes. In the 

former, only the relevant dynamics are represented, often in a way that are compatible 

with the selected control design technique, while in the later it is important that the 

discrepancies between the real plant response and the model response is reduced. When 

the model used for simulation purposes is closer to the real dynamics of the ship, the 

simulation results will be closer to the real system performance.

This chapter introduces the Newton's equations describing the kinetics of a rigid body. 

Assuming the ship as a rigid body moving in six degrees of freedom, the equation 

describing the ship dynamics are formulated in section 4.2. In section 4.3, the 

hydrodynamic derivative theory is used for the formulation of the hydrodynamic forces 

and moments acting on the hull while criteria for the definition of different motion 

stability are formulated in section 4.4 (stability index and lateral stability respectively). 

Section 4.5 deals with the effects produced by control surfaces such as a rudder and 

fins, and finally in section 4.6 the most common ship mathematical models used for 

control design purposes are discussed.
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4.2 Equation of motion in six degrees of freedom

Considering the ship as a rigid body moving in six degrees of freedom, for the 

description of the different motions, Newton's law can be utilised. For this purpose it is 

convenient to define two system frames. The inertial system frame fixed with the earth 

and a second system frame fixed with the rigid body. Figure 4.1 shown the two system 

frames while table I summarises the terminology adopted by naval architects for the 

description of the different motions.

Roll 
P,K

=
Surge

Sway Heave

Figure 4.1: Ship's system frame

With respect the system frame shown in figure 4.1 with the origin corresponding to the 

centre of gravity the Newtonian equation are written as in equation (4.1) and (4.2):

?= dQ
dt

dK ~d7

(4.1)

(4.2)

where F and M are the total force and moment acting on the hull with components:
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(4.3)

while Q and K are the momentum and the angular momentum respectively defined as:

Q = imu + jmv + kmw
(4.4)

In equation (4.4) m is the ship's mass while I x ,I y and I z are the moments of inertia of

the body about the x, y and z axis, i, j and k are the versors (unity vector) of the 

system's frame fixed with the body.

Table I (Motions terminology)

Surge

Sway

Heave

Roll

Pitch

Yaw

Translation along x-axis

Translation along y-axis

Translation along z-axis

Rotation along x-axis

Rotation along y-axis

Rotation along z-axis

The vector representation of the linear and angular velocities is respectively:

U = iu + jv + kw

A A «.

co = ip + jq + kr

(4-5) 

(4.6)
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Using the following Poisson's formulae (equation 4.7):

di

(4.7)

dk r -   = iq-jp 
dt

it is possible to prove that equation (4.1) and (4.2) become (Abkowitz, 1964):

X = m(u + qw - rv)

Y = m(v + ru - pw) (4.8)

Z = m(w + pv   qu)

K = I x p + (l z -I y )qr

M = I y q + (l x -I z )rp (4.9)

N = I z f + (l y -I x )pq

Usually, it is convenient to choose the origin of the system's frame not corresponding

_ . t\ /\ SI

with the centre of gravity. Denoting with R g = ix g + jyg + kz g the vector distance from 

the centre of gravity to the new origin, equation (4.8) and (4.9) become:

m[ti + qw- rv - xg (q 2 + r 2 )+ yg (pq - r) + zg (pr + q)] = X 

[v + ru - pw - yg (r 2 + p 2 )+ zg (qr - p) + xg (qp + r)] = Y 

[w+pv-qu-zg (p 2 +q 2 )+xg (rp-q) + yg (rq + p)]=Z

Ixp + (/z - / }qr + m[yg (w + pv- qu) -zg (v + ru- pw)\ = K

m 

m

Izf + (ly -Ix )pq + m[xg (v + ru-pw)-yg (u + qw-rv)] = N
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One of the difficulties in modelling dynamics of a ship is the way in which the 

hydrodynamic forces and moments acting on the hull, represented on the right hand side 

of equation (4.10), are characterised. A classification of these forces and moments is 

(Fossen, 1994):

1. Inertial-Induced Forces: 

added inertia 

hydrodynamic damping 

restoring forces

2. Propulsion Forces:

Thrust / propeller forces

Surface control / rudder, fins forces

3. Environmental Forces: 

Ocean current 

Waves 

- Wind

In the above classification two different types of force can be distinguished; 

deterministic forces (types 1 and 2) and probabilistic forces (type 3). The deterministic 

forces are usually regarded as a polynomial expansion in terms of state variable control 

action and hydrodynamics coefficients. Hydrodynamic derivative theory can be applied 

in order to quantify the parameters of the polynomial expansion. On the contrary, the 

environmental forces, due to their intrinsic random nature, are usually represented as the 

output of a stocastic process of a known spectral density.
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4.3 Hydrodynamic derivatives

The deterministic forces and moments acting on the hull (i.e. propeller thrust, rudder 

and fins induced forces and moments) can be represented as a function of linear and 

angular velocity of the ship as well as a function of control surface position (rudder and 

fins angles). The right hand side of equation (4.10) can be expressed as:

X = X(u,v, w,p,q,r,u,v,w,p,q,r,8,...) 

Y = Y(u,v,w,p,q,r,u, v,w,p,q,f,6,...) 

Z = Z(u,v,w,p,q,r,u,v,w,p,q,f,6,...) 

K = K(u,v,w,p,q,r,u, v, w,p,q,f,6,...) 

M = M(u,v,w,p,q,r,u,v, w,p,q,r,6,...) 

N = N(U, v, w,p,q,r,u, v, w,p,q,f,5,...)

It is possible therefore to consider a Taylor series expansion of such forces and 

moments around an equilibrium point. By limiting attention to the ships motion in the 

horizontal plane (x-y plane) the linear velocity w and angular velocity p and q can be 

neglected. Assuming fixed control surface (i.e. 5 = 0), equation (4.11) reduces:

= X(u,v,r,u,v,r)

= Y(u,v,r,u,v,r) (4.12)

= N(u,v,r,u,v,f)

Under the hypothesis of stable straight-line course with constant surge speed ( 

u = u 0 and v = v = r = r = 0), the Taylor expansion of equations (4.12) limited to the 

first order terms yields (Mandel, 1967):
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„ dX . dX . dX dX . dX dX .X — —— Au + —— u + —— v + —— v + —— r + —— r 
du du dv dv dr dr

v A 8Y . dY dY . 3Y dY . Y = — Aw + — u + — v + — v + — r + — r (4.13) 
du du dv dv dr dr

xr dN A dN . dN dN . dN dN . N = —— Aw + —— u + —— v + —— v + —— r + —— r 
du du dv dv dr dr

Considering the motion of the ship in the x-y plane with the centre of gravity in its 

longitudinal plane of symmetry, (yg=0), the linearisation of the left hand side of 

equation (4.10) becomes i.e.:

X = mu
Y = m(v + ru + x g f) (4.14) 
N = I z f + mx (v + ru)

The partial derivatives of equation (4.13) are the so-called hydrodynamic derivatives 

and are defined as:

r- <4 - i5> x =

Combining equations (4.13) and (4.14), the linearised equations of motion of a ship 

moving in the horizontal plane are rewritten (Abkowitz, 1964):

(X, - m)u + X u Au + X,v + X v v + X,f + X r r = 0
Ya u + Yu Au + (Y*-m)v + Yv v + (Yf-mx g )r + (Yr -mu 0 > = 0 (4.16)
N li ii + N u Au + (N^ -mxg )v + N v v + (N. -I z )r + (N r -mx g u 0 )r = 0
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It is interesting to note that the coefficients of the acceleration terms u and v have the 

mass increased by the amounts X a and Yv respectively. As well the coefficient of

angular acceleration r has the inertia increased by the amount N. . These terms, that 

results from the hydrodynamics forces are called added mass and added inertia 

respectively. The combination of the added mass and inertia with the mass and inertia of 

the ship, are called virtual mass and virtual inertia. The name is due to the fact that the 

ship behaves in water with respect to acceleration as if the mass and inertia had these 

increased values.

It is important to note that equation (4.16) represents the dynamic of a ship moving in 

the horizontal plane with a surge velocity u and without considering any control or 

environmental effects. As will be considered later, these effects (i.e. rudder, fins etc.), 

will be represented by proper hydrodynamic derivative terms. The determination of the 

hydrodynamics derivatives can be conducted with different techniques and/or 

experiments. For simple geometry, for instance, strip theory can be used for the 

determination of the first order hydrodynamic derivative (Mandel, 1967). Special 

facilities named rotating arm and planar motion mechanism, are used for the 

determination of those parameters using a ship model in manoeuvring and towing tank 

test. An accurate identification of the high order hydrodynamic derivatives, for an 

accurate model that accounts for the cross-coupling between different motions, requires 

in general, an expensive test facility and sea trials.

4.4 Stability index and Lateral stability

The ability of a ship to maintain a straight-line course is strictly related to the notion of 

stability. Figure 4.2 shows the path of a ship, before and after a disturbance occurred
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(Mandel, 1967). With respect to this figure, it is possible to distinguish between three

types of stability.

Straight-line stability: a ship is straight-line stable when, after the disturbance has

occurred, the ship by itself is able to regain a straight course, even though the final

direction is different. (Case I in figure 4.2)

Directional stability: A directional stable ship, when the disturbance has disappeared, is

able to regain the initial direction of sail. Case II and III of figure 4.2 shows this kind of

stability with two different transitions, oscillatory and smooth transition respectively.

Positional stability: With this kind of stability the ship is able to regain the same path,

as it would have if the disturbance had not occurred.

Case I
Straight-line stability

Case II
Directional stability
(with complex stability index)

Case III 
Directional stability 
(with real stability index)

Case IV 
Positional stability

Fig. 4.2: Different kinds of stability

Without automatic control action, the best that can be obtained, for powered vessels, is 

straight-line stability. Directional stability, is however an intrinsical property of sailing 

vessels where restoring forces due to the wind blowing on sails maintain the 

longitudinal orientation of the ship with respect the wind direction. Control surfaces
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such as rudder and/or fins are used to guarantee both stability and manoeuvrability. It is 

important to note in fact, that stability properties and manoeuvrability are two 

conflicting characteristics. A strong stability attitude implies a poor manoeuvrability 

characteristics and vice versa. The aim of naval architects and control engineers is to 

find a good compromise between stability properties and manoeuvrability 

characteristics for different kind of vessels.

With respect to the simplified equation of motion described by equation (4.16), 

considering the equilibrium in surge, the equation describing the ship' dynamic reduces 

to:

The standard solution of the system equation (4.17) is of the form:

+v 2 e°2t
(4.18)

Here a, and a 2 are the so-called stability indexes. According to their values and sign 

the ship will manifest one of the different stability characteristic mentioned above. It is 

also possible to relate the solution of equation (4.18) to the value of the hydrodynamic 

derivative and therefore infer from these values the stability properties of the vessel. In 

(Abkowitz, 1972) it is proved that if the quantity:

C = Yv (N r -mx g )-N v (Yr -m) (4.19)
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is greater then zero, the ship is straight-line stable. Equation (4.19) is also known as the 

stability criterion from the hydrodynamic derivative theory and is valid in the linear 

region of operation.

The stability index discussed above, refers to the motion of the ship in the x-y plane. 

Another important motion for the ship control problem occurs in the y-z plane and is 

labelled lateral motion (roll and heave motions). The rotation around the longitudinal x- 

axis (roll motion) and translation along the vertical z-axis are in fact of major concern 

for the safety and manoeuvrability of the ship. Considering the roll motion uncoupled 

with the other motions it is possible to define the lateral stability of a ship by simply 

considering its geometrical properties.

According to figure 4.3, for a body of mass m it is possible to define the centre of 

gravity (G) as the point where the total force of gravity is applied. Similarly the centre 

of buoyancy (indicated by C) is defined as the point where the resultant of the buoyancy 

force is applied. The position of the centre of gravity depends on the body's geometry 

while the position of the centre of buoyancy depends on the geometry of the wetted 

body's surface. For a body with a longitudinal symmetry (like that in figure 4.3) the 

two centres are located in the longitudinal plane of symmetry.

Water line

Fig.4.3: Fully symmetric buoy.
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A body is lateral stable when the centre of gravity is located above the centre of 

buoyancy (as drawn in figure 4.3). Because of its full symmetry, a ball has its centre of 

buoyancy always located under the centre of gravity. That is the reason why the ball is 

completely stable. Figure 4.4, shown a lateral section of a ship heeling over an angle a 

to starboard. Owing to the non-symmetry from bow to stern of the ship, when it heels 

over a certain angle the centre of buoyancy goes out of the plane y-z. For small angles 

of heel (i.e. < 10°), it is possible to consider that the new centre of buoyancy is still in 

the transversal plane (C'). If no change in the load occurs, the centre of gravity does not 

change its previous position. In this new condition, the two forces (the gravitational 

force P, due to the displacement of ship, and the buoyancy force S due to Archimedes'

principle) generate a righting arm moment proportional to the distance GH shown in 

figure 4.4. The point M, in figure 4.4, is the so-called metacentric point, and it is 

possible to prove that as long as it is over the centre of gravity the ship is lateral stable, 

but when it goes below the centre of gravity the ship turns over.

The righting arm formula can be expressed as:

MS=S (r - a)sin a =Sr sin a -Sa sin a (4.20) 

Where S=P is the displacement of the ship and GH = (r - a)sin a .

The term (Srsina) is the so-called momentum of stability due to the ship's shape. The 

term (Sasin#) because of its sign is the so-called heel momentum. The term S (r-a) is 

the so-called stability coefficient, and it depends on the distance GM=(r-a) that is 

defined as the metacentric height.
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It is now clear how the dynamics of the roll motion is strictly related to the metacentric 

height. If a ship has a small metacentric height, the response to a heeling force is slow, 

and vice versa if the ship has a large metacentric height, its response to a heeling force 

is fast.

Fig.4.4: Lateral ship's section

Also for the lateral motion, a strong lateral stability implies a poor turning characteristic 

(high turning radius). Once more a compromise between stability properties and 

manoeuvrability is needed.

4.5 Models used for control

Considering the ship as a rigid body, the steering equations of motion can be deduced 

applying Newton's law, (Abkowitz, 1964). With respect the systems frame of figure 4.1, 

the motion of the ship in the x-y plane can be described by the system equation:

m(u-vr-xsr 2 }=X
I • • 1 __ T/-

lzr + mx (v + ur) - N
(4.21)
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The right hand side of equation (4.21) represents the deterministic force and moment 

produced by the propeller thrust, control action and hydrodynamic effects. It is 

commonplace to consider an equilibrium situation in surge in which propeller thrust 

outbalances the hull resistance therefore the first equation in the system (4.21) is usually 

disregarded in the description of the steering dynamic. The modelling problem then 

resolves to determine a suitable expression for the force Y and moment TV. Under the 

hypothesis that a linear model is satisfactory, hydrodynamic derivative theory suggests 

the following series expansion for the terms Y and TV respectively:

Substitution of equation (4.22) into (4.21), leads to the well-known linearized equation 

of motion expressed by equation (4.23):

Equation (4.23), describe the motion of a ship moving in the horizontal plane, in 

unrestricted deep water with constant speed.

4.5.1 Nomoto's model

By elimination of v and v, equation (4.23) can be transformed in the second order 

linear differential equation proposed by (Nomoto et al, 1957);
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A J. .. A ' v I C* C1 I //I O /I \— + — «/• +—— t^ =—— (TiS + S) (4.24)
T T \ T T T T I, I -, I L l !• l * l * 7

where \jt = r , and

r,r2 (7, - mX^, - I,)-(Y> - inx,

f ty V C/

7V (A^r - mxg w 0 )- A^v (r, - mu0 )
r,r2 , -m>- : -, -mx, -mxg

,

(4.25)

The coefficients — + — , —— and r3 of equation (4.24) for a conventional ship

during manoeuvre at a fixed speed remain fairly constant, whereas the coefficient —

changes resulting in the non-linear nature of the ship dynamics.

4.5.2 Bech's model

(Bech and Wagner-Smitt, 1969), in order to account for the change in the above 

parameter, proposed to include in equation (4.24) a non-linear term defined as:

(4.26)
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in such a way that equation (4.24) becomes:

1 1
r,r2

(4.27)

In (Bech, 1968) there is also described a practical way to gain some knowledge 

information about the non linear function expressed by equation (4.26), which led to the 

well-known Bech's reverse spiral test manoeuvre. In particular, under the hypothesis 

that the ship can be kept at a nearly constant rate of turn i/s0 with relatively small 

fluctuation of 8 and i// , the time average of both sides of equation (4.27) gives:

0 for,T ->oo

and

1 'f k r A c-"U k x f T d + Styt-* —— 80 for,T

leading to:
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where S0 is the mean rudder deflection necessary to steer the ship with a constant rate 

of turn. The plot of the values S0 against the mean rate of turn can result in the two 

functions reported in figure 4.7 for directionally stable and unstable ships.

Yaw rate [ °/sec]

Stable

Rudder [ ° ]

Fig. 4.7: Reversal spiral test for stable and unstable ships

4.5.3 Norrbin's model

Another well-known non-linear model describing the steering dynamics is the one 

proposed by (Norrbin, 1970) who proposed the following non-linear equation:

= kS (4.28)

where again the non-linear function H(I//} describes the non-linear nature of ship 

dynamics and can be expressed in terms of a polynomial expansion as:
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Norrbin suggested that, due to hull symmetry the parameter «0 has zero value, the 

parameter a, can be set equal to unity for course stable ships and equal to (-1) for 

course unstable. For traditional ships, the parameter «2 is very small so that the non- 

linearity of the ship dynamics can describe by the parameter a3 . Therefore equation 

(4.28), for a course stable ship reduces to:

p + y> + a3 </s 3 = k5 (4.29)

The justification of the Norrbin's model can be traced to the second-order linear model 

of Nomoto (equation (4.24)). In fact, Nomoto further reduced the linear model of 

equation (4.24) to a first-order linear model of the form:

+ \(/ = k5 (4.30)

where the time constant r is defined with respect equation (4.25) as:

~ T3

It is clear that equation (4.28) differs from the first-order Nomoto model because the 

non-linear function //(^), which according to Norrbin tries to describe the 

nonlinearities of the ship steering dynamics.

The above presented steering models, have some limitations in the description of the 

ship manoeuvring, due primary to the fact that the ship's dynamics are influenced as 

well by the forward speed. The Nomoto model, described either by equation (4.24) or
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(4.30), is obtained under the assumption of constant ship speed. When the ship is 

involved in tight manoeuvres, the centripetal force and the rudder movement will 

introduce an additional drag force that changes the ship speed and therefore the 

dynamical response. As a consequence a Nomoto model with fixed parameters can 

describe only the stationary part of a manoeuvre where the speed remains fairly 

constant. Moreover, the parameters of the model have to be changed for different rudder 

angles. The model of Norrbin described by equation (4.28), being a first-order model, 

has the same limitation as the Nomoto model. However, having introduced the non 

linear function of the yaw rate it is able to describe, with constant parameters, 

manoeuvres with different rudder angles. Finally the Bech's model (equation (4.27)), 

being a second-order model that also uses a non-linear function of the yaw rate, is able 

to describe non-linear manoeuvres with different rudder angles. However, different 

parameter settings are necessary for the description of different transition manoeuvre 

behaviours (i.e. with or without overshoot).

4.6 Summary

In this chapter, the basic mathematical modelling approach for the description of the 

dynamics of a ship is presented. Considering the ship as a rigid body, the description of 

the different motions is achieved by applying the Newton's law. Hydrodynamic 

derivative theory can be used for the inclusion of the deterministic forces and moments 

produced by the propeller and control surfaces. These have been described in section 

4.2 and 4.3 respectively and represent the background material used for the 

implementation of the mathematical model used for testing the control algorithms in a 

simulation study. Section 4.4, discussed stability concepts which will characterises the 

manoeuvrability and the dynamical properties of the ship. For simplicity the discussion
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considered the motions in the longitudinal plane (x-z plane) and in the lateral plane (y-z 

plane) separately. The main observation of this section is that a strong intrinsic stability 

will imply poor manoeuvrability. The importance of good and effficinet control systems 

that can guarantee a good balance between motion stability and manoeuvrability is 

therefore apparent. Finally in section 4.5, mathematical models describing the yaw 

dynamics used for control design purposes have been discussed. These models will be 

used during the control design process to describe both, different situation of a-priori 

knowledge about the system as well as to justify the choice about controller and 

identifier structure.
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Chapter 5 Non-linear model of a containership 

5.1 Introduction

The linear equations of motion presented in chapter 4 are valid, for the description of 

the ship's dynamics, under the restrictive hypothesis of linearity (small perturbation 

around the linearisation point). When the dynamics involved in tight manoeuvres are of 

interest i.e. turning circle or zig-zag manoeuvres or when sailing in rough sea, the 

mathematical model used for simulation studies, should account for both the non- 

linearities as well for the cross coupling existing between the different ship's motions. 

The analytical development of such non-linear mathematical model is based on a Taylor 

expansion of equation (4.11) given in Chapter 4, which will include high-order terms. 

Of course equation (4.11) can be extended in order to include terms due to the presence 

of other control surfaces such as fins or T-foils. However, only the rudder angle is 

considered as control surface in the development of the mathematical model describing 

the dynamics of the containership used in this simulation study.

The series expansion of equation (4.11) is usually truncated to third order terms, 

because experience has shown that accuracy is not significantly improved by inclusion 

of terms higher than third order. The series expansion is also strongly simplified by 

exploiting the symmetry of the ship's hull. For instance, with respect the force acting on 

the x direction and considering the motion of the ship in the x-y plane, equation (4.11) 

can be rewritten as:

X = X(u,v,r,u,v,r,5) (5.1)
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where 5 is the rudder angle. Considering the equilibrium point characterised by a 

constant surge velocity (U=UQ) and zero for the other linear and angular velocities and 

accelerations (v = r = v = r = 0), the complete Taylor expansion, up to the third order 

terms of equation (5.1) is:

l[xuu Au 2 +X w v 2 +X ri r 2
2!

..... + X 55 6 2 + 2X uv Auv + 2X ur Aur

i[xuuu Au 3 +X wv v 3 +... + X 888 5 3

(5.2)

where X 0 is the force in the x-direction at the equilibrium condition.

It is possible to prove that due to the geometrical symmetry of the ship along the x-z 

plane, the relationship between X and v, must correspond to one of the three curves 

shown in figure 5.1 (Mandel, 1967).

Fig. 5.1: Three possible relationships between X and v 
(Mandel 1967)

All the three curves of figure 5.1, are symmetrical to the X axis, which implies that in 

the Taylor expansion only the even terms are different from zero while the odd terms
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are all equal to zero. (Abkowitz, 1972) has showed that as a result of symmetry about x- 

z plane, X is also an even function of r, 5, v and f. With the above consideration, 

equation (5.2) simplifies to:

2

(5.3)

X v8u v8Au + X r8u r8Au

This way of proceeding (exploiting the symmetry of ship's hull) simplifies the Taylor 

expansion and therefore the formulation of the forces (X, Y and Z) and moments (N, M 

and K) acting on the hull. It also reduces considerably the number of model parameters 

(hydrodynamics derivatives) that have to be identified. In the next section the non-linear 

model of a containership, used in this thesis for the simulation study of the proposed 

controllers, is presented.

5.2 Non-linear model of a containership

The identification study of a fast containership, the main parameters of which are given 

in Table I of appendix A, is described in detail in (Blanke and Jensen 1997) and (Tiano 

and Blanke, 1997). During the identification study, the heave and pitch motions were 

neglected in comparison with the others principle four motions. This is a common 

assumption for the identification of large tanker. In fact, due to their size, these ships 

will manifest a negligible coupling between heave and pitch motions with the others 

four principle motions. Equation 5.4 represents the non-linear equation describing the 

ship's dynamics in four degrees of freedom, deduced from Newton's law.
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ml u- vr - x r 2 + z pr = X + Xw

m\ v+ ttr - zg p+ xg r \ = Y + Yw

(5.4)
r+ mxg \ur + v = A''

The above equations with reference to the co-ordinate system shown in figure 4.1 of 

Chapter 4, describes the coupled surge, sway, yaw and roll motions, where D is the 

displacement, g the gravity constant, p the water mass density, Rz (<p) is the action of

the rightening arm that depends on the roll angle <p , while (XG,O,ZG) are the co-ordinates 

of the mass centre. The mass is denoted by m whereas Lex and Izz are the inertial 

moments about x and z, respectively. The linear velocity of surge and sway are u and v 

and the angular ones of yaw and roll are respectively r and p. The Tightening arm 

function can be expressed as:

<p (5.5)

where GM is the ship metacentric height and BM is the distance from the centre of 

buoyancy to the metacentre.
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5.2.1 Deterministic forces and moments

In equation (5.4), terms X, Y denote the deterministic forces acting along x and y while 

N and K are the deterministic moments around z and x, which take into account the 

hydrodynamic effects from the hull movements and forces exerted on the ship by the 

rudder and by the propulsion system.

By combining physical insight with hydrodynamic consideration and experience in ship 

modelling, (Blanke and Jensen, 1997) proposed the following expansion for the forces 

and moments:

Surge equation:

(m-Xa )u a =X u u a +X uu u a u a + X uuu u 

X5u +X8u 2 +Xv + Xv2 +X5u
X TO92 +X pp p 2 +X ppu p 2 ua+ X >

X vr )vr + (mx

X 5vv 5v 2

X 88 5 2

(5.5)

Sway equation:

Yvv+Yv

YV(p vcp + YV(p(p v(p

Y5v 5v + Y8vv 5v 2

Y68u 5 2 u a + Y5S5u 6 3 u a + YpP + Ypppp 3 + Ypu pu a + Ypu|pu| pua pu

Y0 + Y0u u a + Yw

(5.6)
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Yaw equation:

Nvv +N +Nr + Nrr +Nrv + N8v8v
N8vv6v 2 +N8u 8ua +N88u 8 2 ua +N558u 8 3 u a +N pp + N ppp p 3 +N pu pu a +Npu|puj pu a pu, 

N 99 + N v<p v9 + N vwvcp 2 +N (pvv cpv 2 +N 0 +N 0u u, +N W

(5.7)

Roll equation:

K vr| vr+K VIT vr 2

KS3 +K 6u Su a +K 85u 8 2 u a +K 566u 8 3 u a Kpp|

K pppp 3 + K pu pu a + K pu pu pu a pu a | + K V(p v<p + K vw v<p
pp 

K 0 + K 0u u a + K

(5.8)

The values of the hydrodynamic derivatives are given in Table II of appendix A in non- 

dimensional form, according to which, the ship length L is the linear measure unit while 

the time unit is U/L (the time required for travelling a distance equal to the ship length). 

The normalised velocity ua is defined as:

U-U,
U

(5.9)

where U = Vu 2 + v 2 is the ship's absolute velocity vector and Ucru ise is the nominal 

cruise speed. The normalised velocity ua can become negative for a non-zero sway 

velocity v. This condition will correspond to a decreasing in the longitudinal speed. 

Forces and moments are made non-dimensional by:
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'x'~
Y
N'

K

1
Q.5pU 2 L2

X
Y

(I/L)N
_(I/L)K

(5.10)

Linear and angular velocity and acceleration are made non-dimensional by:

, v .. . L . L . L2v = — , v =v—-, r = r—,r -r—-u u 2 u u 2 where U = Vw 2 + v 2 * 0 (5.11)

The values of the above hydrodynamic derivatives were identified in the RPMM (Roll 

Planar Motion Mechanism) towing tank test facilities of the Danish Maritime Institute 

(DMI) by the authors of the original paper. Cross validation and fine-tuning of the 

model parameters were carried out by identification study (Tiano and Blanke, 1997) and 

by full scale and model scale sea trials. During model validation in sea trial tests, some 

differences between the model predictions and sea results were reported. For instance, 

the ship was found marginally stable in heading while the model was unstable and the 

roll damping factor of the ship was higher than predicted. It was reported that these 

discrepancies, between the model and the ship's response are mainly due to scale effects 

and some small changes in the appendages between the model and the real ship. To fit 

the full scale measurements to the model predicted, a re-tuning of some of the model 

parameters was necessary. Table III of appendix A gives the set of adjusted parameters. 

However, as mentioned in the original paper, these parameter adjustments cannot be 

taken as unique due to the fact that the multifrequency test, adopted for validation, only 

allowed for the adjustment of the high frequency part of the manoeuvre. The low 

frequency part of the sea trial manoeuvres, responsible for estimating the steady state 

motion, had to be adopted without change. As a consequence, validity of the model in 

describing manoeuvring regime cannot be guaranteed, while the dynamical response,
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which is essentially for the control system design can be considered as being quite 

accurate.

The above equations have been implemented within the Matlab package and solved 

with a modified Euler method for [u,v,r,p]. The roll and yaw angles are obtained by the 

relations r = vj; and p = (p while the position of the ship in the x-y plane is obtained 

from the relations u = x and v = y. The inclusion of the disturbances and the steering 

dynamics is described next.

5.2.2 Disturbances modelling

The external disturbances, i.e. wind and waves, are represented by the terms Xw, Yw , Nw, 

Kw in the corresponding right hand parts of equation (5.4). Such terms, owing to their 

intrinsically random nature, are generally quite difficult to be characterised through 

explicit mathematical relations. For example, as to the waves, they should be calculated 

by integrating the wave pressure over the immersed surface of the hull, on the 

assumption that the pressure within the waves is unaffected by the presence of the ship. 

As it has been shown in (Lewis, 1967), a reasonable simplifying assumption consists in 

applying a linear superposition principle, which makes it possible to separate the ship 

motion due to the environment from the motion induced by the rudder and by the 

propeller thrust.

As described in Appendix B, the wave effects have been modelled using the response 

operator approach, by which it is possible to reconstruct the motion of the ship induced 

by the waves. Response operator for different speed (U = [0,10,15,20,22] ml sec) and
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different encounter angles (% = [0°,45°,90°,135°,180°]) were available for surge, sway 

roll and yaw. The induced yaw rate and roll rate can be computed by noting that from 

equation (B.21) of appendix B:

follows:

(5.12a)

(5.12b)

therefore the response operator for the rate of change can be calculated as:

(5.13a)

, («,„, ft, U)) = ~ + aigfc, (a>n , J3, (5.13V)

The sea spectrum formula used for this simulation study is the Pierson-Moskowitz 

spectrum reported in equation (B.I6) of appendix B. Equation (B.27) therefore 

becomes:

— exp -691, (5.14)

The tabulated response operators are interpolated each sample time according to the 

actual velocity and encounter angle. Equation (B.25) of appendix B can be used 

therefore in order to reconstruct the motion of the ship induced by the waves.
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The wave induced ship's state so reconstructed (denoted by xwave = [u,v,r,p,g>,y/,x,y]) 

is then added to the state vector deduced by solving the differential equation (5.5), (5.6), 

(5.7) and (5.8). Applying the superposition principle, the motion of the ship in waves is 

then represented by the state vector xlol = xwove + xdet . Where xdet is the state produced 

from the deterministic forces and moments (expressed from equations 5.5 to 5.8).

It is clear, from equation (B.21) of appendix B, that when the response operators are all 

set equal to unity, the induced ship motion spectrum reconstructed by equation (B.25) 

should be equal to the sea spectrum. Figure 5.2 shows the theoretical Pierson- 

Moskowitz spectrum expressed by equation (B.I6) (in solid line) and the spectrum 

reconstructed using the above approach (with circle), when the response operators are 

set to unity. This figure is an indirect verification of the approach's validity.

solid ISCC formula : circle recostracted

0 0.5 1 
frequency (rad/sec)

Fig.5.2: Solid Pierson-Moskowitz spectrum. With circle reconstructed 
from response operators

With respect the wind effects, this can be modelled using equations (B.34) and (B.35) of 

appendix B. The forces and moments so calculated are added to the deterministic ones
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expressed in equation (5.5), (5.6), (5.7) and (5.8). The values for the coefficients 

C X ,C Y andC N of equation (5.34) are reported in table IV of appendix A. Finally the

shallow water effects is described by equations (B.44). Although being a not complete 

model of the shallow water effects, equation (B.44) are used to test the performances of 

the proposed control algorithm with respect parameter's uncertanty.

The rudder actuator dynamics, can be included in the simulation by considering the 

simplified model given in (Amerongen, 1982). A block diagram showing the rudder 

dynamics is shown in figure 5.3.

Rudder 
limiter

Rudder rate 
limiter

Fig.5.3: steering machine dynamic

The two rudder limits (on the maximum values and the maximum rate of change) can be 

implemented by two if-then statements in the main loop of the simulation algorithm. 

The rudder angle is then considered as part of the state vector.

5.2.3 The overall system

Figure 5.4 summarise the block diagram of the overall non-linear system used for 

testing the proposed control algorithms. Here the wind effects enter as external forces 

and moments on the right hand side of equation (5.4). The wave effects are modelled as
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output disturbances and the induced ship state is added to the state vector representing 

the low-frequency hull motion, obtained by solving equations (5.5), (5.6), (5.7) and 

(5.8) with inputs rudder angle and surge velocity. The shallow water effects will 

produce a change in the values of some hydrodynamic derivatives according to equation 

(B.44) of appendix B.

U 
Speed

Wind 
Spectrum

Wind
Response
Operator—r~

h,T

Height 
Period

Wave 
Spectrum

Wave
Response
Operator

Relative angles to waves and wind

Commandec 
rudder

Rudder and 
Steering gear

Motion from 
waves

Surge 
velocity

Ship f 
Manoeuvring 
Equation /

Water depth

Hydrodynamic 
derivative values

Ship's 
State vector

Fig.5.4: Block diagram of the complete simulated system

5.3 Manoeuvring characteristics

The manoeuvring characteristics of a ship are determined in sea trials by performing 

standard manoeuvres. From these manoeuvres, naval architects, can infer about the 

efficiency of the control surfaces (rudders and fins) and about the performance and 

limitation of the ship control systems. The most used manoeuvres for this purpose are 

the turning circle manoeuvre, the zig-zig manoeuvre and the Bech's reverse spiral test.
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The turning circle manoeuvre is mainly used to identify the steady turning radius of the 

ship and how well the steering machine performs for course-changing manoeuvre. The 

turning circle manoeuvre is performed by deflecting the rudder of a certain amount 

(typically 15° to 30°) while the ship is sailing in a straight course with constant speed. 

Figure 5.5 shown a simulated 30° turning circle manoeuvre for the containership 

discussed earlier. The yaw rate (shown in fig 5.5d) after about 250 seconds, ends its 

transition. At this point the manoeuvre is in its steady state phase. In figure 5.5b, the 

longitudinal speed is plotted against time, as a consequence of the drag introduced by 

the rudder deflection, the initial speed from 12.5 m/sec decrees to 6.5 m/sec. Figure 5.5c 

shows the roll angle during the manoeuvre where it is possible to appreciate the inverse 

response. In linear theory this effect is described by a zero in the right half s-plane of the 

roll-rudder transfer function. The presence of this zero, which produces a delay in the 

rudder/roll response, is a problem when the rudder is used for roll damping. In fact the 

non-exact compensation of a positive zero can compromise the stability of the overall 

system.

(a) trajectory

SOO 1 0OO 1 5OO
x-coordinate in m 

(c) roll angle

1OO 2OO 3OO 
time in sec

14

12

U
| 1O

8

e 

o
-02

-O 4

-O6

-O8

-1

(b) longitudinal speed

1OO 2OO 3OO 
time in sec 
(d) yaw rate

100 200 300 
time in sec

Fig.5.5: 30° course changing manoeuvre

Different papers have shown the effectiveness of the rudder roll damping system for a 

particular application (Klugt, 1987) however, it has been shown that the resultant 

control system suffers from poor robustness property (Blanke and Christiansen, 1993).
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The zig-zag manoeuvre consists of deflecting the rudder of a certain amount i.e. 15° to 

starboard from an initial straight course with a constant speed. When the ship's head 

angle has changed of an amount equal to the rudder angle (15° for the previous 

example), the rudder is moved on the other side of the same amount (15° to port) until 

the ship's head angle has reached the same angle in the opposite direction (15° for the 

previous example). Figure 5.6 shown the rudder sequence and the yaw angle against 

time for a 15°/15° zig-zag manoeuvre. Figure 5.7 shown the yaw and roll, for the same 

manoeuvre. It can be seen that under this condition the motion of the ship became 

periodic.

rudder and yaw angle

200 300 400 
tim e in second

Fig.5.6: 15°/15° zig-zag manoeuvre

1
OS

o
-05 

-1

(a) yaw rate (b) yaw angle

20O 4OO
time in sec 

(d) roll angle

200 400 
time in sec

2OO 4OO 
time in sec

Fig.5.7: 15°/l 5° zig-zag manoeuvre
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The Beck's reverse spiral manoeuvre is a modification of the Dieudonne's spiral test, 

which aim to describe the non-linear relationship between rudder angle and yaw rate. 

The spiral manoeuvre is also used to determine the validity range of linear 

approximation. The reverse spiral manoeuvre consists in steering the ship in such a way 

that the rate of turn is nearly constant. Figure 5.8 shows the simulated spiral manoeuvre 

for the course-stable containership described earlier. As pointed out by (Abkowitz, 

1964), the non zero rudder angle for the zero rate of turn can be justified by 

asymmetries introduced by the single screw propeller. This is also in accordance with 

the identification study presented in the original paper of (Blanke and Jenssen 1997) 

where is pointed out that the ship under study is marginally stable.

reversal spiral test

-40 -30 -20 -10 0 10 20 30 40 
rudder angle [deg)

Fig 5.8: Bech's reverse spiral manoeuvre

A series of the above manoeuvres can be used for the identification of the model 

parameters, presented in chapter 4 for the autopilot design. The turning-circle 

manoeuvre is essentially a step response of the system. The data collected from this 

manoeuvre can be used for the characterisation of the dynamical part of the ship 

response. The parameters of a Nomoto model can be obtained by different identification 

techniques (Astrom and Kallstrom C.G., 1976) (Tiano and Volta, 1978). The reversal 

spiral test can be used for the identification of the static characteristic of the yaw 

dynamic. The non-linear function of the Norrbin model (equation (4.28)) can be
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identified by a series of turning circle manoeuvre. However, in general the problem of 

model identifiability has to be considered. Astrom and Kollstrom investigated the 

identification problem and have shown that the transfer function given by the second- 

order model of Nomoto it is always identifiable (provided there is not pole-zero 

cancellation). However, the state space representation can be properly identified if the 

sway velocity measurement is also available. (Astrom and Kallstrom, 1976)

5.4 Summary

In this chapter the mathematical model of a containership is described in some detail. 

The identification study of the above containership has been done by (Blanke and 

Jensen, 1997) and all the data are fully available in the literature. For the sake of 

completeness these data are added in appendix A while appendix B give the description 

of the environmental disturbances. The way in which the complete mathematical model 

is implemented in simulation has also been described. Manoeuvring tests are briefly 

described at the end of the chapter. These manoeuvres are used to gain some knowledge 

on the dynamical response of the system which can be exploited during the control 

design process. For instance, appendix A describes how from a turning circle 

manoeuvre a second-order transfer function of the yaw rate to the rudder angle can be 

obtained and how the main time constant of the containership can be calculated.
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Chapter 6 Autopilots designed with fuzzy set theory

6.1 Introduction

The importance of being able to exploit heuristic knowledge about the system for the 

achievement of better control system performances has been already pointed out in 

Chapter 1 section 2, about the pioneering work of Sperry. In his Metal-Mike, Sperry 

captured the fundamental characteristic of the helmsmen to anticipate the ship yaw 

motion. His engineering genius allowed him to design a commercial mechanical system 

that could reproduce the anticipative behaviour of the helmsmen. Nowadays, when the 

control system is implemented in digital computers in the form of an algorithm, fuzzy 

logic represents a major component in the design of a controller based on a cognitive 

model. In fact, when the control design process is based on cognitive models of the 

process to be controlled, the aim is to formulate a set of rules that can be representative 

of the behaviours of an expert operator, rather then to specify a set of differential 

equations that characterises the control system.

With respect to the course-changing problem, the steering actions of the helmsman are 

aimed to reduce as quick as possible the course error, without too much overshoot and 

with a not too large rate of turn (to keep in acceptable values the heeling angle). He or 

she, will base the control action on heuristic judgement of the following information:
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1) the new desired heading angle, given by the officer of the watch,

2) the actual heading angle, given by the compass,

3) the ship turning rate, judged from the compass or from observing fixed points in the 

shore or clouds.

Based on the above observations a reasonable choice for a fuzzy course-changing 

controller is the PD-like fuzzy controller. In fact, the inputs of the PD-like fuzzy 

controller are the error and the change in the error while the output is the commanded 

rudder angle. A block diagram of the PD-like fuzzy controller is shown in figure 6.1.

Fuzzy PD-like controller

Fuzzy logic 
system

Fig.6.1: Fuzzy PD-like controller

The course-keeping problem is in general more difficult to formulate. The aim of the 

helmsmen is to keep the course error as small as possible, and at the same time 

minimising the number of rudder calls in order to reduce the induced drag force and 

consequent loss of speed. A possible strategy is to produce a sequence of rudder pulses 

with period and amplitude which are dependent on a suitable compromise between 

precision and loss of speed. Figure 6.2 shows a possible rudder sequence during course 

keeping.
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T: period 
w . w: width

n U 7^
time

Fig.6.2: Rudder sequence during course-keeping

In the following sections of this chapter, fuzzy logic systems will be used in order to 

exploit the above mentioned heuristic description of the course-keeping and course- 

changing manoeuvres. Simulation results are reported in each of the sections while 

conclusions are summarised at the end of the chapter.

6.2 Fuzzy course-keeping controller

As mentioned in section 6.1 of this Chapter, a possible control strategy for the course- 

keeping problem is to produce a sequence of rudder pulses with period and amplitude 

determined by a suitable compromise between induced drag and course precision. For 

the determination of the period of the rudder calls, the low-pass nature of the yaw 

dynamics has to be considered. Too fast a rudder sequence must be avoided. Provided 

that the course error is in acceptable bound, the control action produced by the rudder 

movement should be aimed at compensating the yaw acceleration induced by the 

external disturbances (mainly the wave's effects). A rudder angle which is proportional 

and in counter phase with the yaw rate is then a possible solution.
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The above control strategy can be expressed by the following set of rules:

1) IF course_error is Small and yaw_rate is Positive_Big THEN rudder=-Ky *(yaw 

rate) and width is Big

2) IF course_error is Small and yaw_rate is Positive THEN rudder=-Ky*(yaw rate) and 

width is Normal

3) IF course_error is Small and yaw_rate is Zero THEN rudder=0

4) IF course_error is Small and yaw_rate is Negative THEN rudder=-Ky*(yaw rate) 

and width is Normal

5) IF course_error is Small and yaw_rate is Negative_Big THEN rudder=-Ky*(yaw 

rate) and width is Big

6) IF course_error is Big and yaw_rate is Any THEN rudder=-Kp*(error)

Rules from one to five produces rudder angles which are proportional and in counter 

phase with the yaw rate and at the same time specifies the duration of the pulse (width). 

The action of these first five rules, is aimed to produce a control action which respond 

as quickly as possible to deviation from the straight course. These rules apply when the 

course error is in an acceptable bound. When the course error increases rule six takes 

over and the rudder angle is determined by a proportional type controller. In such a 

case, if the external disturbances are particularly strong, the control action can 

degenerate into a bang-bang controller. The period of each sequence in the above 

strategy is considered fixed and only the width is determined (see figure 6.2), however a 

set of rules can be introduced in order to determine this variable too.
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An interpretation of the above control strategy can be attempted by considering the 

series expansion of the pulses sequence. Equation (6.1) and (6.2) express the Fourier 

transformation and its coefficients respectively.

Fn = \*8\$y& = 2Sm!ai w———> (6.2) 
/2 ncot

From equation (6.2) it is clear that the amplitude of the Fourier coefficients is 

proportional to the width (w) of the pulses while the number of harmonic in the first 

lobe are inversely proportional to w. Increasing w therefore will increase the amplitude 

of the harmonics while the number of the significant harmonics will be reduced. For a 

fixed period T this is equivalent to increasing the low frequency contribution. On the 

contrary if roll damping is attempted, higher frequencies of the control signal are of 

interest. The value of w therefore should be reduced. However, this will reduce the 

amplitude of each harmonics that can be re-amplified by increasing the value of £max . 

This is why, for roll damping faster and larger rudder movements are needed. The 

constrains on the steering machine dynamics therefore play a major role for the 

achievement of this objective (Klugt, 1987).

In order to guarantee that phase lags between the rudder angle and the yaw rate signal 

are not introduced by the limited rudder speed, the rudder angle has to be limited to a 

maximum value. It has been suggested (Amerongen and Naute Lemke, 1980) that in 

order to avoid the saturation of the rudder rate the following inequality must hold:
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< 0.2r (6.3)

where r is the main time constant of the ship. For a value of T «15 seconds and 

^max = 2 -5 deg/sec the maximum allowed rudder angle is approximately 7.5°.

The membership functions associated to the linguistic variables course_error, width and

yaw_rate are represented in figure 6.3, figure 6.4 and figure 6.5 respectively. As pointed

out in Chapter 2, a two outputs fuzzy system can be implemented by two single output

fuzzy systems. This is due to the fact that the output of rule one is equivalent to the

outputs of the two rules implemented by two different fuzzy systems i.e.:

l.a)IF course_error is Small and yawjrate is Positive_Big THEN rudder=-Ky*(yaw

rate)

l.b) IF course_error is Small and yaw_rate is Positive_Big THEN width is Big

S A B

0.5 course-error

Fig.6.3: Membership functions for the 
absolute value of the course error

N B

10 20 width

Fig.6.4: Membership functions 
for the pulse width

NB N

-0.04 -0.08

P PB

0.04 0.08 yaw rate

Fig.6.5: Membership functions for the 
yaw rate
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Two Takagi-Sugeno fuzzy systems, with singleton fuzzification, product inference and 

centre average defuzzification, are used for implementing the control strategy expressed 

by the above rules. For simplicity the value of Kp is set equal to unity while Ky is 

determined heuristically from the following considerations. From the reversal spiral 

curve, shown in Chapter 5 section 5.3, it is seen that a steady rudder angle of 10° will 

produce a steady turning rate of about 0.5 degree/sec. There is therefore a gain of 

approximately 20 seconds between the rudder angle and the rate of turn. However, this 

applies to steady conditions only, and to have an effective response to the rudder angle, 

the gain has to be increased by a factor which is proportional to the main time constant 

of the yaw dynamic. A factor of 5 can be chosen for the containership used in this study, 

leading to values of K on the order of one hundred. Figures 6.6 and 6.7 show the surge 

speed with the yaw angle, and the rudder angle with the yaw rate for a course-keeping 

manoeuvre.

The disturbances are defined, with respect the Pierson-Moskowitz spectral density, by 

an average period of 9 seconds and a significant wave height of 5 meters. The angle of 

attack for the waves is 90° (beam sea). From these figures it is possible to appreciate the 

effectiveness of the controller in terms of loss of speed and course error.

The controller described above was tested for a change in the ship speed and for 

different angles of attack. While in head sea at cruise speed the performances were still 

acceptable, in following sea conditions the course-keeping controller performed poorly. 

Figures 6.8 and 6.9 shown the surge velocity with the yaw angle, and the rudder angle 

with the yaw rate respectively for the course-keeping manoeuvre when the angle of 

attack is 30°.
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Fig.6.6: Surge velocity and yaw angle for a course-keeping in beam sea

rudder angle
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lim e in seconds

Fig.6.7: Rudder angle and yaw rate for a course-keeping in beam sea

The performances of the course-keeping autopilot can be improved by further 

adjustment of the controller parameters as well as by expanding the rule base 

knowledge. However, the final performances of such a control system will be much 

dependent upon the skill and experience of the designer. Therefore, an automatic 

procedure to deal with the above mentioned problems is desirable and can be achieved 

by exploiting the adaptive and learning properties of the adaptive networks discussed in 

Chapter 3.
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Fig.6.8: Surge velocity and yaw angle for course-keeping in following sea
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Fig.6.9: Rudder angle and yaw rate for a course-keeping in following sea

6.3 Fuzzy course-changing controller

As discussed in the previous section, a fuzzy PD-like controller, for implementing the 

course-changing autopilot, represents a viable choice for the controller structure. In 

order to simplify the parameters setting of the fuzzy controller, a normilised universe of 

discourse for the inputs and output variables is chosen. To re-scale the inputs and output 

of the fuzzy controller, to the proper domain, inputs and output gains are used. When no
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a-priori knowledge, on the dynamics of the system to be controlled are assumed, the 

input and output universe of discourse are uniformely divided in different regions. To 

each of these regions a fuzzy membership function is associated. In the particular case 

of the fuzzy course-changing autopilot, seven linguistic variables have been defined 

such as "Zero", "Positive-Small", "Positive", "Positive-Big", "Negative-Small", 

"Negative" and "Negative-Big". Each linguistic variable is described by a triangular 

membership function, with centres uniformely distributed in the interval [-1, +1] and 

width such that a 50% overlapping is achieved.

-1 -0.6 -0.3

N

-1 -0.6 -0.3 0.3 0.6 1 ce

Fig.6.10: Input membership functions fired for e(t)=0.2 and ce(t)=-0.8

Figure 6.10 shown the seven triangular membership functions in the normilised 

universe of discourse for both the error and the change in the error. With two inputs and 

seven linguistic variables the number of rules in the base-knowledge are 49. In order to 

implement the PD-like fuzzy controller, a zero-order Takagi-Sugeno fuzzy system is 

used so that the output controller parameters are reduced to 49. The PD-like fuzzy
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controller described above with singleton fuzzification, product inference and centre 

average defuzzification is described by equation (6.4):

(6.4)

where m=49 and n=2. The complete rule-base knowledge is given in table I when the 

output membership functions are uniformly distributed in the normalised output 

universe of discourse.

Table I (49 rules base knowledge for the fuzzy controller)

Error 

C_error

NB

N

NS

Z

PS

p
PB

NB

-1 

-1

-0.6

-0.6

-0.3

-0.3

0

N

-1 

-0.6

-0.6

-0.3

-0.3

0

0.3

NS

-0.6 

-0.6

-0.3

-0.3

0

0.3

0.3

Z

-0.6 

-0.3

-0.3

0

0.3

0.3

0.6

PS

-0.3 

-0.3

0

0.3

0.3

0.6

0.6

P

-0.3 

0

0.3

0.3

0.6

0.6

1

PB

0 

0.3

0.3

0.6

0.6

1

1
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In order to optimise the performance of the resultant fuzzy controller the learning 

techniques discussed in Chapter 3 can be used. An alternative, described in the 

following, is to attempt the optimisation of the fuzzy controller based on the heuristic 

knowledge of the system to be controlled. (Procyk and Mamdani, 1979) were the first to 

use the linguistic information of the controlled process to perform the optimisation of 

the controller parameters. (Layene and Passino, 1998), subsequently extended this idea 

to the model reference adaptive approach, the structure of which is represented in figure 

6.11.

¥a

Fuzzy adjustment 
mechanism

ref.

Fiizzy 
Controller

Ship's 
Dynamics

Fig.6.11: Model reference adaptive fuzzy autopilot

The objective in the model reference adaptive fuzzy autopilot, is to design a fuzzy logic 

system that can infer about the changes upon certain controller parameters in order to 

improve the performance of the closed loop system. Similarly to the adaptive control 

framework, where the adaptation is produced by the so-called adjustment mechanism, 

here the block that produces the adaptation is referred to as the fuzzy-adjustment- 

mechanism.
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For the design of such a fuzzy adjustment mechanism, knowledge of the dynamic 

system to be controlled is needed. For instance, in the particular case of a course- 

changing autopilot it is possible to define the following adaptation strategy.

Suppose that with the input S(kT) the tracking error at time T 

(el (kT)=y/(kT)-y/m (kT)) is positive. If the input at time kT would have been 

S(kT)+ £, where s represents an extra effort from the controller, it is expected that the 

error at that time would have been less. Therefore £ represents the correction that the 

controller has to produce in its output as a consequence of the adaptation. In others 

words, £ can be seen as a measure of the correction (adaptation) that has to be 

produced by the fuzzy adaptation mechanism. A rule that can represent this situation is:

IF tracking error is Positive THEN s is Positive

In principle the fuzzy adjustment mechanism can also include rules which account for 

saturation of the rudder angle or rules which account for the coupling between yaw and 

roll motion. However, in this case the design of the overall system will be complicated.

For the fuzzy system described by equation (6.4), in order to increase the output value 

(by the amount e ) it is sufficient to increase the value of 8,. By changing 8t into 

St + s the output of the fuzzy controller will increase of an amount proportional to £. It 

is possible therefore to use a fuzzy logic system in order to infer about the amount of 

change to be made on the output parameters of the PD-like fuzzy controller. Using a 

fuzzy logic system with the same structure as the PD-like fuzzy controller, described by 

equation (6.1), with inputs the tracking error and the change in the tracking error and
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output the amount of change in the controller parameters, with the same seven linguistic 

variables defined before, the 49 rules describing the adaptation strategy are as follows:

IF et is Z and ce, is Z THEN e = E.

IF e, is P and cet is P THEN s = s49

where e, and ce, are the error and change in the tracking error respectively. The input 

and output membership functions of the fuzzy adjustment mechanism are uniformily 

distributed in the normilised universe of discourse. However, for the tuning of the inputs 

and output gains there are not explicit guidelines and the tuning is based entirely on 

heuristic judgement of the system performance (Layene and Passino, 1998).

It is important to note, that at each time (kT) with inputs e(kT) and ce(kT) the output of 

the fuzzy controller is mainly determined by those rules with the antecedent part 

described by membership functions with centre close to the inputs value. This is shown 

schematically in figure 6.10, for input values defined as e(t) = 0.2 and ce(t) = -0.8.

For the condition expressed by figure 6.10, the subset of rules which will contribute to 

the output are:

If e is PS and ce is NB Then u is J6 = -0.3

If e is PS and ce is N Then u is 51 = -0.3

If e is Z and ce is NB Then u is £u = -0.6

If e is Z and ce is N Then u is 8n = -0.3
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It is possible to consider this local behaviour of the system in order to speed up the 

adaptation process by changing only the parameters that belong to those rules for which 

the actual contribution to the output is greater then a certain threshold. The subset of 

controller parameters that will be adjusted in the above example is represented therefore 

by {56 ,S7 ,8n ,Su }. If in the system to be controlled a time delay is present, (i.e. the 

actual output is produced by previous input values), it is important that the parameter 

adjustment is referred to those rules that contributed to the present output. In the 

particular case of the ship's dynamics, motivated by the Norrbin or Bech's model, a time 

delay of one time step has to be considered. In other words, the amount of change 

inferred by the fuzzy adjustment mechanism refers to the set of rules which were fired 

in the previous time step. With this approach, the optimisation of the system's 

performances is achieved by a non-linear equation defined through a set of linguistic 

rules.

The above control algorithm was tested in simulations involving the containership 

described in Chapter 5. Different environmental conditions, as described in Appendix 

B, as well as different initial conditions for the controller parameters were tested, i.e. all 

the output controller parameters being set to zero or uniformly distributed in the output 

universe of discourse. Figure 6.12 shows a 30° course-changing manoeuvre performed 

with wave conditions defined, with respect the Pierson-Moskowitz spectral density 

(equation (B.I6)), by a significant wave height of 3 metres, average period of 8 seconds 

and starting angle of attack of 60°. The dotted line represents the reference manoeuvre 

while the solid line represents the ship's heading angle. The time history of the rudder 

angle is shown on the right side of the figure. Figure 6.13 shows the time history of 

some of the state variables (yaw rate, roll rate and roll angle) as well as (top left corner) 

the output of the fuzzy adjustment mechanism.
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Trial and error adjustment to the gains of both the controller and fuzzy adjustment 

mechanism resulted in the manoeuvre shown in figure 6.12. However, when the same 

set up was used to perform a different sequence of course-changing manoeuvres for 

different surge velocities, the controller performed poorly.

solid-ship yaw angle dottel-reference rudder angle

Fig.6.12: 30° course-changing manoeuvre

correction yaw rate
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Fig.6.13: State variables and correction signals for the 30° course-changing 
manoeuvre
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A significant improvement of the controller performances was achieved by increasing 

the number of rules in the knowledge base. Considering eleven linguistic variables such 

as "Negative-very-big", "Negative-big", "Negative", "Negative-small", "Negative-very- 

small", "Zero", "Positive-very-small", "Positive-small", "Positive", "Positive-big" and 

"Positive-very-big", the total number of rules becomes 121 which are shown in Table II. 

For the zero-order Takagi-Sugeno controller (given in equation (6.4)) the output 

adjustable parameters are also 121.

Table II (121 rules base knowledge for the fuzzy controller)

Error 

C_error

NVB 

NB

N

NS

NVS

Z

PVS

PS

p
PB

PVB

NVB

-1 

-1

-0.8

-0.8

-0.6

-0.6

-0.4

-0.4

-0.2

-0.2

0

NB

-1 

-0.8

-0.8

-0.6

-0.6

-0.4

-0.4

-0.2

-0.2

0

0.2

N

-0.8 

-0.8

-0.6

-0.6

-0.4

-0.4

-0.2

-0.2

0

0.2

0.2

NS

-0.8 

-0.6

-0.6

-0.4

-0.4

-0.2

-0.2

0

0.2

0.2

0.4

NVS

-0.6 

-0.6

-0.4

-0.4

-0.2

-0.2

0

0.2

0.2

0.4

0.4

Z

-0.6 

-0.4

-0.4

-0.2

-0.2

0

0.2

0.2

0.4

0.4

0.6

PVS

-0.4 

-0.4

-0.2

-0.2

0

0.2

0.2

0.4

0.4

0.6

0.6

PS

-0.4 

-0.2

-0.2

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

P

-0.2 

-0.2

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

PB

-0.2 

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

PVB

0 

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

The above controller was then tested for a sequence of course changing manoeuvres. 

Figure 6.14 shows a typical sequence of such reference angles performed with
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disturbances as defined for the previous manoeuvre, while figure 6.15 shows some of 

the corresponding state variables and the adjustment signals. Finally, figures 6.16 and 

6.17 shows the course-changing manoeuvre, when at time 500 seconds the surge 

velocity is changed from 12.5 m/sec to 7 m/sec. The tracking error shown in the last two 

course changes is due mainly to the fact that at this speed the ship is unable to follow 

the desired manoeuvre. In fact, although the rudder angle is saturated the corresponding 

yaw rate is lower than the values achieved in the previous turning.

solid-ship yaw angle dottet-referencft

0 200 400 600 800 1000 1200 1400 1600 1800 200C 
time sec

20
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0
ft
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-10
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-20

-25

rudder angle

200 400 600 800 1000 1200 1400 1600 1800 2000 
time sec

Fig.6.14: Sequence of course-changing manoeuvres
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Fig.6.15: State variables and correction signals for the sequence of 
course-changing manoeuvres
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solid-ship yaw angle dottet-reference rudder angle
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Fig.6.16: Heading and rudder angle for a step change in the surge velocity
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Fig.617: State variables and correction signals for a step 
change in the surge velocity

6.4 Conclusions

In this chapter, fuzzy logic systems have been used for the design of autopilots based on 

the heuristic information of the ship. It is seen that the ability to exploit heuristic 

knowledge, which can be easily embedded in the controller design process is the major 

advantage that fuzzy logic systems present over neural networks and any other kinds of

6-19



approximator. However, the performances of the controller, achieved with this kind of 

control design approach, are unlikely to be optimal and are dependent on the experience 

of the designer. In fact, a simple PID controller can easily obtain the same (if not better) 

performances than the course-keeping controller presented in section 6.2. Moreover the 

design process becomes more complex when the multivariable nature of the ship 

dynamics are considered and in any case the resultant controller does not posses neither 

adaptive nor learning ability.

The controller obtained with this approach can therefore be considered as a first attempt 

to solve the control problem. Further adjustment of the controller parameters can be 

done either by exploiting heuristic knowledge, as in the course-changing autopilot 

presented in section 6.3, or by any of the learning algorithms used for training neural 

networks. The latter is where the effort of the research community has been 

concentrated recently (Jang, 1993) (Sutton et al, 1996) (Sutton and Marsden, 1997) 

(Sutton et al 1997). However, it is important to note that the implementation of this 

control design technique has shown good results in problems difficult to control by 

other means. The pioneering work of Mamdani is the major reference in this content.
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Chapter? Intelligent Autopilots

7.1 Introduction

As mentioned in Chapter 1, the adaptive properties of a system constitute the 

fundamental characteristic of an intelligent controller. The design of such adaptive 

control system can be divided into two main steps. First the structure of a controller is 

chosen and then the parameters of the controller are adjusted in such a way that a 

suitable performance criteria is met. For the selection of the controller structure a-priori 

knowledge, if available either in terms of mathematical models or in terms of linguistic 

rules, can be exploited. On the other hand, the choice of the adaptive algorithm, for the 

adjustment of the controller parameters, is determined both by the numerical tractability 

and the selected controller structure. Different possibilities and a vast literature exist 

where controller structures (i.e. MPN, RBFN, FLS etc.) and adaptation algorithms 

(back-propagation, least mean square etc.) are combined in an attempt to solve a 

particular control problem (Miller et al, 1990). Some of these structures have been also 

discussed in Chapter 2 and in the particular case of autopilots design for ships, the 

majority of these architecture employs multilayer perceptron networks with direct 

adaptation and back-propagation algorithm (Hearn et al 1997).

In the following sections, controllers based on neural networks are proposed for solving 

the course-keeping and course-changing control problem. According to the description 

of adaptive networks given in Chapter 3, it is clear that the following controller can also 

be implemented by means of fuzzy logic systems which should be preferred when a 

cognitive model of the system is available.

7-1



The choice on the controller structure, of the proposed intelligent autopilots, is 

motivated by making some assumption on the ship's dynamics, while the selection of 

the training algorithm is motivated by numerical problems. In particular, in sections 7.2 

and 7.3 MPNs are used to employ the controller structure therefore the back- 

propagation algorithm is mandatory. On the contrary in section 7.4, for the proposed 

stable adaptive autopilot, RBFN with fixed input parameters is used, therefore more 

general adaptive laws can be employed, thereby facilitating the analytical analysis of the 

overall system.

7.2 Model-reference neural autopilots

A generalisation of the Bech and Norrbin model describing the ship's yaw dynamics, is 

represented by the non-linear auto regressive model of equation (7.1):

If the non-linear functions f and g are known, the model-following control problem 

can be solved by the control law:

(7 -2)

where ,/, is the output of a reference model. In general, the functions f and g are
• ttt

unknown or slowly time variant. It is possible therefore, to formulate the control 

problem (the implementation of equation (7.2)) in the framework of adaptive control
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theory, where neural network can be used to approximate the control mapping 

expressed by equation (7.2).

Both methods, the direct and indirect adaptive approach can be considered. Figure 7.1, 

shows the block diagram of a direct adaptive approach.

Model reference

Adaptive law
*

f • /
Neural controller 

NN/O

*

Ship's dynamics V

Fig.7.1: Direct adaptive neural controller

The neural network NN _, ( ), in figure 7.1, tries to implement an approximation of the

control law expressed by equation (7.2). When the backpropagation algorithm is used to 

implement the adaptive law, the Jacobian of the ship's dynamics is needed. However, 

this is not always available therefore, different approximation have to be considered 

(Saerens and Soquest, 1991) (Tiano et al, 1994). On the contrary, the indirect adaptive 

approach does not rely on this particular information and is therefore considered next.

With the indirect approach, the system parameters are first identified and then used in 

turn to implement the control law. For this purpose, two neural networks are used to 

identify the functions / and g of equation (7.1) and then used to implement the
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control law expressed by equation (7.2). Figure 7.2 shown the block diagram of the 

indirect neural controller.

Neural adaptive

I
I

.1z NNf()

+
y
/

,-.S-IU Ship
Dynamics

—— ̂

Fig. 7.2: The indirect neural controller

The identification of the functions f and g, achieved by neural networks, represents an 

important stage during the controller design process. Due to their universal 

approximation capabilities neural networks are good candidates for solving this 

identification task. A possible architecture representing the identification structure is 

represented by the block diagram of figure 7.3. Since the input of the network NNf is

fed with the previous output of the ship y/(k), instead of the estimated output y/(k), 

algebraic loops are avoided in the neural network and the back-propagation algorithm 

can be used.

Two feedforward neural networks with one non-linear hidden layer of 25 nodes were 

trained with the backpropagation algorithm to approximate the function f and g. The 

availability of the non-linear model makes the training of the two networks easier, since 

a significant collection of data can be measured. Figure 7.4 shows both the output of the 

identified neural model (in dotted line) and the output of the non-linear model (in solid 

line) for a 20°/20° zig-zag manoeuvre, when in equation (7.1) d=0, n=2 and m=l. The
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two signals are practically indistinguishable, confirming the validity of the above 

identifier.

Fig.7.3: Series-parallel identification block diagram

50 200 250 300 350 400 450 500
0 50 100 ISO 200 250 300 350 400 450 500

Fig.7.4: 20°/20° zig-zag manoeuvre. (Solid line ship's non-linear model. Dotted 
line neural networks model). Right figure, difference between the two signals.
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For the implementation of the control law (equation (7.2)), the inverse of the estimated 

mapping NNg is calculated from a random input/output collection of data uniformily

distributed in the interval [-35°;+35°J where the function g is defined, in such a way 

that NNg \NNg.t )= 1. Figure 7.5 shows a plot of the mapping NNg in the domain of

interest. From this figure it is possible to infer the invertibility of this mapping which is 

shown in figure 7.6.

NNg(.) NNing(.)

30

20

10

0

-10

-20

-30

-40 -30 -20 -10 0 10 20 30 40

Fig. 7.5; NNg mapping

-0.6 -0.4 -0.2 0 0.2 0.4 06 08

Fig. 7.6: NN _, mapping

According to equation (7.1), the mapping NNg , represents the relationship between the

actual rudder angle and the next yaw angle. Considering the Bech's model, this function 

can be either one of the two functions illustrated in Chapter 4 (figure 4.7) for course 

stable and course unstable ships. From this figure, it is possible to conclude that for 

course-stable ship, the mapping NNg is always invertible. However, for course- 

unstable ships, the same result does not hold. It is important to note that in order to 

ensure that zero is mapped into zero, the biases of the networks are set equal to zero, 

reducing the overall number of parameters to be trained.
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Finally, in order to implement the control law expressed by equation (7.2), the reference 

manoeuvre has to be specified. As discussed in Chapter 1 section 1.3, concerning the 

steering criteria, (Amerongen, 1984) suggested a second order transfer function of the 

form:

The time constant rm is chosen approximately 2 to 3 times smaller than the dominating 

time constant of the ship at cruise speed and must be such that the process is able to 

follow the model. If the rate-of-turn limiter is neglected, Kpm follows from the desired 

damping ratio (g) of the system:

Possible values of £, are between £=1 which corresponds to a zero overshoot condition, 

to £=0.7 which corresponds to an overshoot of approximately 5% of the desired final 

value (which may be considered acceptable in open sea). The selection of rm results 

from the following consideration: a reasonable course controller will have a rate- 

feedback gain which makes the time constant of the ship 2 to 3 times smaller with 

respect to the case of the open-loop system (without controller). By choosing a similar 

time constant for the model reference this guarantees that the process can follow the 

model.
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Due to the heavy computation involved in training the two mapping AW _, and NN f

the algorithm was tested off-line. Figure 7.7 and 7.8 shows a 10° and a 30° course- 

changing manoeuvre respectively. The waves disturbance were characterised, with 

respect the Pierson-Moskowitz spectral formula, by an average period of 8 sec and a 

significant wave height of 3 meters. The starting angle of attack was equal to 90° 

leading the second manoeuvre to a quartering sea condition. The oscillations on the 

rudder angle are due to the effects of the wave disturbances, however also in this critical 

condition the heading angle is properly maintained.

sdid-yaw angle: dottedyaw reference sdidnjdderancfe: dcttednjdder demands

I

50 100 150 200 250 300 100 150 200 250 300

Figure 7.7: A 10° course-changing manoeuvre, (x-axis time in seconds, 
y-axis degree)
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Figure 7.8: A 30° course-changing manoeuvre, (x-axis time in 
seconds, y-axis degrees)

The difficulty in implementing on-line the above control algorithm, rely on the 

assumption concerning the ship's model stated in equation (7.1). Although this 

represents a generalisation of the yaw dynamics, the numerical tractability of the 

indirect adaptive approach is compromised.

7.3 Course-keeping autopilots

As mentioned in the Chapter 1 section 3, concerning the definition of steering criteria, 

the design of a course-keeping autopilot can be formulated in the framework of Linear 

Quadratic optimal control. Different papers have shown the applicability of this 

technique for steering large tankers in different sailing conditions with a proper choice 

of the weighting matrices. However, in order to analytically solve the optimal control 

problem, the assumption that a linear model represents the ship's dynamics around an 

operating point is postulated. Such a linear model can be either represented by the first- 

order Nomoto model, (or second-order in the case of course unstable ships), or can be
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obtained by considering the first-order truncation of the power series expansion of the 

ship's equations of motion. The assumption that the rudder angle is "small" (does not 

exceed approximately 8/10 degree) therefore has to be fulfilled.

A different way to approach this problem is represented by the feedback linearisation 

theory. The problem of feedback linearisation of a non-linear system can be stated as 

follows: given the non-linear system expressed by equation (7.3a):

= f[x(k),S(k)] (7.3a)

where x e 9?" is the state, 8 e 9? is the control input and /[ ] being a smooth vector 

field in 5R" . The system expressed by equation (7.3a) is said input-state linearizable if 

there exist a region Q c= 9?" , a diffeomorphism <f> : Q -» 5R" and a non-linear feedback 

control law:

u = a[x(k),v(k)] (7.3b)

such that the new state variable z = <f>(x) and the new input v satisfy a linear time- 

invariant relation:

z(k + 1) = f[x(k + 1)] = 4/M4 «M4 v(k)))} = Az(k) + Bv(k] (7.4)

In other words, the problem is to find a suitable change of co-ordinates in the state space 

z = (f>(x) and a feedback law u(k) = a[x(k\v(k)], such that the feedback system with 

new input v(k) and state z(k) is equivalent to a linear one. The problem whether or not
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the two mapping ^( ) and a( ) exists for a particular non-linear system, has been 

studied extensively and it is a well-established subject in the non-linear system analysis 

(Isidori, 1985), (Slotine and Li, 1992). Figure 7.9 shows the block diagram of a 

feedback linearised system.

Linear system

Ship's 
Dynamics

Fig.7.9: Feed-back linearised system

For the simplified case where the ship is considered as a single input single output 

system, the yaw motion can be described either by the Bech or Norrbin non-linear 

model. For a course-stable ship with a completely symmetric hull the Norrbin model 

reduce to equation (4.29) i.e. TI/S +i// + a3 </s 3 = k8 .

From a straightforward analysis of this equation it is clear that with the control law:

k8 = +v (7.5)

the non-linear equation of motion (4.29) in term of the new input v became:
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+ \j/ - v (7.6)

which is a first-order Nomoto linear model. In other words the idea of feedback 

linearisation is to find a suitable control law (i.e. equation (7.5)) and possibly a state co 

ordinate change, such that the non-linearity of the system can be compensated for and 

the resultant system is described by a linear equation.

The problem of finding the two mapping 0( ) and a( ), is substantially complicated 

when the non-linear function / in unknown. However, provided that the two mappings 

exist, that is the system is feedback linearisable, (Levin and Narendra, 1993) have 

shown how two neural networks can be trained to approximate those mappings. In other 

words, two neural networks (or in principle any kind of approximators) can be trained in 

order to compensate for the unknown or slowly time variant non-linearity. Figure 7.10

shows the block diagram where two neural networks NNa and NN^ are trained in such 

a way that the overall system fits the input/output data collected from a linear 

approximation of the original non-linear system. In the particular case of the course- 

keeping autopilot, motivated by equation (7.5), the network NN^ can be omitted. Once

the system is feedback linearised, with respect the new system, from v to ^, it is 

possible to design any kinds of linear controller.

The linear model, from where the data for training the neural network are collected, can 

be obtained either from a Nomoto model or from a straightforward linearisation of the 

non-linear equation of motion (both are described in appendix A). In order to allow the 

use of the back-propagation algorithm, a neural model of the ship dynamics has been 

trained off-line. This model can be considered as an additional but not modifiable layer
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of the neural network NNa . The dynamic loop of the system, shown in figure 7.10, is

considered by expanding the input vector in order to include past output values. 

Therefore, algebraic loops in the neural networks are avoided and the back-propagation 

algorithm can be used for training the transformation mapping NNa .

v(*)

u(*),
— > NNI J j. V f

— > --'

x(k) /
> J/N^^ -V*-* ' j.>T'» 1 «/'

\z(k
+^-

)

| Linear system

Fig. 7.10: Architecture for feedback linearisation

The linear model of the ship's dynamics has been obtained for a surge velocity of 12.5 

m/sec and a zero value for the others state variables. With respect to the linearised 

model, a linear quadratic controller was designed and tested with respect the non-linear 

system and the feedback linearised system. Figure 7.11 and 7.12 shows a course- 

keeping manoeuvre for both the linear controller and the non-linear controller (LQ plus 

NNa ).
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Fig.7.11: Course-keeping with the linear quadratic controller (x-axis time in 
seconds
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Fig.7.12: Course-keeping with the non-linear controller (x-axis time in seconds)

From a comparison of the two responses, it is possible to say that when the initial state 

of the system is equal (or close) to the linearisation point, the two controllers (linear and 

non-linear) perform both acceptably well. However, when the initial point of the system 

is different from the linearisation point, the non-linear controller performs better then 

the linear one.
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Figure 7.13 and figure 7.14 shows the response of the two controllers for an initial yaw 

rate of 0.02 rad/sec and a surge velocity of 5 m/sec. Although the linear controller is 

still able to maintain the course of the ship, the non-linear controller in terms of rudder 

signal performs better. The simulations were done with disturbances characterised by a 

significant wave height of 5 metres and an average period of 10 sec. The ship was 

sailing in quartering sea (angle of attack 30°).
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Fig.7.13: Linear quadratic controller for initial surge velocity of 5 m/sec
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Fig.7.14: Non-linear controller for initial surge velocity of 5 m/sec
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Finally figures 7.15 and 7.16 shows the response of the two controllers when the initial 

roll rate is sets equal to 0.2 rad/sec. In this situation the responses of the linear controller 

in terms of control signal is more critical.
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Fig.7.15: Linear controller for initial roll rate of 0.2 deg/sec
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Fig.7.16: Non-linear controller for the initial roll rate of 0.2 deg/sec

To draw some preliminary conclusions, it is important to note that a fundamental 

assumption was that the state of the system was available for measurement. When this is 

not the case, the use of state observer may complicate the training of the networks for 

the feedback linearisation. Moreover, in order to allow the use of the backpropagation 

algorithm, a neural network model of the ship's dynamics was necessary. In this
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simulation study, the neural model of the ship was trained off-line, however especially 

in the adaptive approach this may not be always possible.

7.4 Stable adaptive autopilots

In the previous paragraph some adaptive autopilots based on neural networks were 

discussed. The effectiveness of the proposed control algorithms was tested by 

simulation study, where different conditions of disturbances were considered.

Bearing in mind the definition of adaptivity given by Zadeh, (reported in Chapter 1 

section 1.4), it is reasonable to state that under all the simulated conditions, (represented 

by the set W in Zadeh's definition), the proposed algorithms showed adaptive properties 

with respect the tracking error, (represented by the set P in Zadeh's definition), for both 

the course-changing and course-keeping manoeuvres. In this respect, it is also possible 

to infer about the stability of the controller algorithms, in the sense that no unbounded 

response was measured for all the different simulated conditions. Of course, these 

results are valid only for the conditions tested in simulation and nothing can be inferred 

about the conditions that were not tested.

A different approach than the one based on simulation tests, to guarantee the 

performance of the adaptive control algorithm, is to attempt an analytical analysis of the 

system. Due to the non-linear time variant nature of the adaptive algorithm, at the 

present this is a very challenging task. However, the design of stable adaptive systems 

has been solved analytically if certain restrictive conditions on the system to be 

controlled apply (Narendra et al, 1980), (Morse, 1980), (Goodwin et al, 1980). In the
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following subsections, the design of a stable adaptive autopilot based on neural 

networks is discussed.

7.4.1 Statement of the proble m

A possible representation of the yaw dynamics, motivated by the discussion about the 

models used for control in Chapter 4, is as follows:

(7.7)
>o

In equation (7.7) the yaw angle is expressed as a linear combination of (possibly) non 

linear function of the past yaw angle plus a linear combination of past and actual rudder 

angle (the last is the main difference with respect the model proposed in equation (7.1) 

for the indirect model reference approach of Chapter 7 section 2). Equation (7.7) 

represents a generalisation of the Norrbin and the Bech model. This representation of 

the yaw dynamics is particular interesting for control purposes, because if the

parameters a,, /3j and the function ft are known and the parameter 1//?0 is well 

defined, the control action, for the model following problem, can be computed by the 

equation:

N
m i /• \

(7.8)

where \i/m (k + 1) is the desired heading angle produced by a reference model. In the 

adaptive control approach, the dynamic of the ship is supposed to be either unknown or
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slowly time variant. Using an indirect approach, the unknown parameters can be 

estimated and used to implement the control law (equation (7.8)), based on the certainty 

equivalence principle. The identification of the unknown parameters can be done by 

using a model with the same structure of the plant (represented by equation (7.7)) as:

m-\

•d-j' + l) (7.9)

In equation (7.9) the unknown parameters appear linearly and linear adaptive theory can 

be applied. It is possible to prove, that under certain assumption on the function ft , 

with the normilised adaptive law:

(7.10)

the non-linear adaptive system expressed by equation (7.7) with the control law 

expressed in equation (7.8), results in all the signals uniformily bounded with the 

tracking error and the identification error approaching asymtotically to zero which is:

= 0 (7.11)

In equation (7.10), 0 = [a,, «2 ,...,£„, A» A>-, A,-J is the parameter estimation vector, 

77 is the adaptation gain, e = \j/-\i/ is the estimation error and :

(7.12)
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with:

(7.13)

the signals vector. (Narendra and Annaswamy, 1 989)

In practical situations however, not only the parameters of the model are unknown but 

also the non-linear function/ Due to their universal approximation property, neural 

networks and fuzzy logic systems are good candidates for performing the estimation of 

the functions / The universal approximation property of these systems will gurantee 

that any smooth non-linear function / can be approximated with any degree of 

accurancy over a compact region D. This is expressed by equation (7.14):

< £ VY(k) e D, ands > 0 (7. 1 4)

The error s introduced by the approximation can be treated as a state dependent 

bounded disturbance. Hence a modification of the adaptive law expressed in equation 

(7.10), in order to guarantee robustness in the presence of bounded disturbances, has to 

be considered. One such modification proposed by (Peterson and Narendra, 1982), is 

the inclusion of a dead-zone in the adaptive law. Equation (7.10) is rewritten as:

d(k)
Af,\ <,\e(k + })fo(k) , . (7.15) e(k)-r1(k) v fV otherwise

Once both parameters and non-linear functions are identified, the control law becomes:
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(7.16)

and provided that 1//?0 is well defined, the adaptation law expressed by equation (7.15) 

can be implemented.

According to the circumstances, the identification of the unknown non-linear function 

f- can be performed either on-line or off-line. However, if on-line identification is 

attempted, in order to extend the stability result of (Peterson and Narendra, 1982), it is

^

important that the parameters of the approximator fi appear as well linearly in the 

control law. This in turn constrains the kinds and structures of approximators to be used. 

As described in Chapter 2, radial basis function networks with fixed centres and 

deviation and adjustable output parameters or fuzzy logic systems with fixed input 

membership functions fulfil this requirement and can be used for the design of stable 

adaptive law.

7.4.2 Controller design

Due to the relatively high sampling rate that can be chosen in comparison to the ship's 

dominant time constant, the Bech's model expressed by equation (4.27) can be rewritten 

in the equivalent discrete time form as:

(7-17)
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( Ill k kr k — + — I, « 2 = -——, /?0 = ——, /?, = —— and 
T, T-,2

//( ) is the non-linear function defined by the reversal spiral test. The identifier 

expressed by equation (7.9) becomes:

(7-18)

where the unknown non-linear function a2 H(\j/(t -l)) is approximated by a RBFN 

j/=I 7i-K/ equation (2.5) of Chapter 2) with basis functions Rt defined as:

R,=e °' (7.19)

where c, and cry are the centre and the deviation of each basis functions and are 

considered fixed. The parameter vector to be adjusted by equation (7.15) is now defined

as 6 = [au^jA'AJ- If no a-priori knowledge on the function to be approximated is 

available, it is commonplace to divide the domain of definition of the non-linear 

function in / uniformly distributed points. In order to guarantee good generalisation 

properties of the approximator, the deviation parameters cr; of each basis functions are 

chosen such that a sufficient overlapping between the basis functions is ensured. For 

this particular application the range of the simulated manoeuvre has been sampled 

uniformly with steps of 5°. Therefore, for a manoeuvring range of 70° the total number 

of centres is / = 15 while the deviation is assumed to be the same for each basis

function and equal to or 2 = -(2.5)2 /In0.5. From equation (7.18) it is clear that a total
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number of 1 8 parameters has to be estimated in order to implement the identifier, the 

structure of which is shown by figure 7.17.

Once the parameters of equation (7.18) have been identified with the adaptive law 

expressed by equation (7.10) or (7.15), the control law, based on the certainty 

equivalence principle, described by equation (7.20) can be implemented:

2) ~ "' (' ̂ t + !) ~ 2 r, (0*, WO) - A (>X> - i) (7.20)

Because the delay of the system is d=2, the reference heading angle at time (t+2) must 

be available. In other words, in order to implement the above control law, the heading 

angle two steps ahead is needed. The overall control structure is shown in figure 7.18. 

The model reference from where the desired heading angle i//m (t + 2} is computed, is 

the same as discussed in the previous section.
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Fig. 7.17: Structure of the identifier using radial basis network

Fig.7.18: Controller structure based on radial basis function network
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7.4.3 Simulation results

The control algorithm presented above was tested in a simulation study involving the 

containership model described in Chapter 5 with the disturbance effects as described in 

Appendix B. Appendix C gives the stability analysis of the proposed intelligent 

controller.

The shallow water effects, described by equation (B.44) of appendix B, were tested both 

by a constant change and a step change in the water depth. Figure 7.19 shows the depth 

of water at each time instant (left up corner) and the relative hydrodynamics parameter 

values as expressed by equation (B.44) of appendix B. Note that the shallow water 

effect begins to take effect at water depth from 3 to 4 times T. With respect to figure 

B.3, equation (B.44) and (B.45), when H=T the ship is running aground F will be zero 

and the coefficients K, will diverge to infinity. Therefore, in the simulations a minimum

value for the water depth was set as, H fmal = T + £ with s > 0.

The wave conditions are defined, with respect the Pierson-Moskowitz spectral density 

(equation (B.I6)), with a significant wave height /z,/3 of 3 metres and an average period 

T of 8 seconds. Figure 7.20 shown the heading and the rudder angle for a sequence of 

course-changing manoeuvres with wave disturbances and shallow water effects defined 

as above and starting angle of attack of 60°. Figure 7.21 shows the parameter values 

during the adaptation with the tracking and estimation error. All parameters, of equation 

(7.18) where initialised to zero, except for /?0 which in order to avoid unbounded

control signal is constrained to be |/?0 > 0.1.
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Fig. 7.19: Water's depth and hydrodynamics parameters

From the simulated change of water depth, shown in figure 7.19, it is seen that the step 

changes occur at time 500, 900 and 1500 seconds. While in correspondence to the two 

first steps, the heading angle shown in figure 7.20 presents a marked oscillatory 

behaviour the response of the adaptive controller to the third step is clearly better. This 

is due to the fact that the first two step changes in water depth occur in a transition 

phase of the manoeuvre while the controller is still learning. The third step disturbance 

occur when the transition of the manoeuvre is completed and the controller has already 

experienced a series of course-changing manoeuvres. This learning ability is shown 

better in figure 7.22 where the same sequence of course-changes as shown in figure
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7.20 is performed, with the controller parameters initialised with values inherited from 

the previous manoeuvre.
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Fig. 7.20: Heading and rudder angle for course-changing
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Fig. 7.21: Controller parameters, tracking and estimation error for 
the course changing manoeuvre

The oscillatory behaviours of the heading angle is related to the robustness properties of 

the adaptive algorithm. As discussed in section 7.4.1 it is possible to consider a dead- 

zone in the adaptive law to prevent adaptation when the identification error is below a 

certain threshold. The dead-zone of the adaptation law is set proportional to the
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approximation error introduced by the RBFN and as well proportional to the effects of 

the external disturbances.
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Fig.7.22: Heading and rudder angle for the course-changing

Figures 7.23 and 7.24 shown the same course-changing manoeuvre as defined above 

with a dead-zone in the adaptive law (equation (7.15)). Due to the presence of the dead- 

zone in the adaptive law, it is not guaranteed that the tracking error will converge to 

zero. This is shown in the Appendix C where the stability of the overall system it is also 

proved.
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Fig. 7.23: Heading and rudder angle for a dead-zone in the adaptive law
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Fig. 7.24: Controller parameters, tracking and estimation error for the dead-zone 
in the adaptive law
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A fundamental aspect of this approach is therefore the initialisation of the controller 

parameters. A good initialisation of the controller parameters will clearly enhance the 

transient response of the controller. With respect to this problem of adaptive controllers, 

the application of multiple models and switching criteria is worth considering. For 

instance, (Narendra and Balakrishnan, 1997), propose different switching and tuning 

schemes combining fixed and adaptive model where the stability of the overall system 

is still guaranteed. However, all simulation results showed that the proposed controller 

is able to deal with the dynamic changes that a ship will encounter due to different 

sailing conditions.

Figures 7.25 and 7.26 shown the same manoeuvre defined above where the controller 

parameters are initialised from the previous manoeuvre and when at time 500 seconds 

the surge velocity is changed from 12.5 m/sec to 7 m/sec. Although the adaptive 

autopilot is still able to steering the ship along the entire manoeuvre, the transient 

response of the ship's heading angle can be improved by considering a proper re 

initialisation of the controller parameters. Gain scheduling with respect to the speed of 

the ship can be considered as a simplified alternative to the multiple models with 

switching criteria already mentioned. However, it is important to remind that as a 

consequence of the change in the dynamical response of the ship, the reference 

manoeuvre should be adjusted too.

Finally figures 7.27 and 7.28 shown the complete course-changing manoeuvre 

performed with a surge speed of 7 m/sec after the controller parameters have been 

trained for two complete manoeuvres. Figures 7.29 and 7.30 shown the course-changing 

manoeuvre for a surge velocity of 12.5 m/sec in the conditions of no disturbances and
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with only three basis functions which lead to a total number of six adjustable 

parameters. These last figures shown clearly that the design of intelligent autopilots for 

ships can be solved on-line with an indirect adaptive approach by mean of RBFN for 

which the analytical analysis of stability properties is also achieved.
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Fig. 7.25: Heading and rudder angle for the step change in the surge velocity
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Fig.7.26: Controller parameters, tracking and estimation error for the step 
change in the surge velocity
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Fig.7.27: Heading and rudder angle for a surge velocity of 7 m/sec
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Fig.7.28: Controller parameters, tracking and estimation error for a surge velocity 
of 7 m/sec
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Fig.7.29: Heading and rudder angle for the course change manoeuvre 
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Fig.7.30: Controller parameters, tracking and estimation error foe the course 
change without disturbances

7.5 Conclusions

In this chapter, autopilots based on neural networks for the course-keeping and course- 

changing problem have been presented. Within the framework of adaptive networks the
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results achieved using neural networks can be extended to the fuzzy counterpart. The 

latter should be used when heuristic information of the system to be controlled is 

available.

The majority of the papers presented in the literature proposes a solution for the 

intelligent ship autopilot design, based on the direct adaptive approach based on the 

back-propagation algorithm. Although the motivation for this controller structure is 

based on the need to guarantee on-line implementation of the proposed algorithm, the 

proper implementation of the back-propagation requires the knowledge of the Jacobian 

of the ship system equation. When the Jacobian is not available a simplification is to 

consider the sign of the unknown partial derivative (Saerens and Soquest, 1991). 

However, as pointed out in (Tiano et al, 1994) when the sign of the partial derivative is 

not properly determined, convergence of the adaptation algorithm may be 

compromised. As a consequence, in section 7.2 the indirect model reference adaptive 

approach was proposed for the course-changing problem. Moreover, in the attempt to 

generalise the result, the ship's dynamics were represented by a non-linear auto 

regressive model. With this choice on the model structure, the numerical computation 

involved during the identification step increased, rendering the proposed control 

algorithm not suitable for on-line implementation. The on-line implementation of the 

algorithm is moreover complicated due to the requested identification of the ship 

dynamics in closed loop.

For the course-keeping manoeuvre, the feedback linearisation technique has been 

investigated. In (Levin and Narendra, 1993), it is shown how the feedback-linearisation 

of a non-linear plant can be achieved with the use of neural networks. However the 

problem is only addressed when the state of the system is available for measurement.
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Due to the non-linear time variant nature of the proposed autopilots based on MPNs 

trained with the back-propagation algorithm, the performance (in terms of tracking error 

and control signal) can be tested only in simulations. Prompted by this limitation, in the 

final section, it is shown how an analytical solution to the stability problem of the 

indirect adaptive systems can be formulated, when neural networks are used for the 

approximation of unknown non-linear function. When the adjustable parameters of the 

neural network appear linearly, well-known results of linear adaptive theory can be 

applied and the control algorithm can be implemented on-line. This in turn pose some 

constrains in the kinds of approximator structure that has to be used. It has been shown 

that Radial basis function networks with fixed parameters in the input non-linear layer 

are suitable for this task. However, with this approach the transient response of the 

adaptive algorithm cannot be guaranteed being the optimal in all the possible situations. 

Further enhancement of the intelligent controller can include multiple models with 

switching criteria or a simpler gain scheduling. This is also in accordance with the 

discussion given in Chapter 1, where the design of intelligent controller have been 

defined as a combination of different techniques for the purpose of achieving more 

sophisticated and reliable control systems.

It is believed that the lacking of experimental results concerning intelligent controllers 

is partially due to the difficulty in finding an analytical solution for the stability analysis 

of the overall system. Radial basis function networks and fuzzy inference systems with 

fixed input membership functions have been proved to be advantageous in this respect. 

However, until now the design of ship autopilots using this architecture have received 

little attention.

7-35



7.6 Reference List

Amerongen, J. van 1984. Adaptive steering of ships- A model reference approach. 

Automatica, 20 (1), pp. 3-14.

Goodwin, G. C.,Ramadge, P. J., and Caines, P. E. 1980. Discrete-Time Multivariable 

Adaptive Control. IEEE Transactions on Automatic Control, AC-25 (3), pp. 

449-461.

Hearn, G. E.,Zhang, Y., and Sen, P. 1997. Alternative designs of neural network based 

autopilots: A comparative study. 4th IF AC Conference on MCMC '97. pp. 54- 

59, Brijuni, Croatia.

Isidori, A. 1985. Nonlinear Control Systems: An Introduction. Berlin: Springer-Verlag. 

3-540-15595-3.

Levin, A. U., and Narendra, K. S. 1993. Control of Nonlinear Dynamical Systems 

Using Neural Networks: Controllability and Stabilization. IEEE Transactions on 

Neural Networks, 4 (2), pp. 192-206.

Miller, W. T. III,Sutton R.S., and Werbos PJ. 1990. Neural Networks for Control. 

U.S.A.: The MIT Press. 0-262-13261-3.

Morse, A. S. 1980. Global Stability of Parameter-Adaptive Control Systems. IEEE 

Transactions on Automatic Control, AC-25 (3), pp. 433-439.

Narendra, K. S., and Annaswamy, A. M. 1989. Stable Adaptive Systems.

7-36



Narendra, K. S.,Lin, Y. H., and Valavani, L. S. 1980. Stable Adaptive Controller 

Design, Part II: Proof of Stability. IEEE Transaction on Automatic Control , 

AC-25 (3), pp. 440-448.

Narendra, K., and Balakrishnan, S. 1997. Adaptive control using multiple models. IEEE 

Transaction on Automatic Control, (AC-42), pp. 171-187.

Peterson, B. B., and Narendra, K. S. 1982. Bounded error adaptive control. IEEE 

Transactions on Automatic Control, (27), pp. 1161-1168.

Saerens, M., and Soquest, A. 1991. Neural controller based on back-propagation 

algorithm. IEE Proceedings Radar and Signal, 138 (1), pp. 56-62.

Slotine, J. J. E., and Li, W. 1992. Applied Nonlinear Control. Prentice Hall.

Tiano, A.,Mort, N.,Derradji, D. A.,Cuneo, M.,Ranzi, A., and Zhou, W. W. 1994. 

Rudder Roll Stabilisation by Neural Network-Based Control Systems. Proc. 3rd 

Int. MCMC '94. pp. 33-44

7-37



Chapter 8 Conclusions and further recommendations

8.1 Review

In this thesis the problem of designing autopilots for ships based on intelligent control 

approaches has been investigated. The motivation for this and the challenges have been 

briefly addressed in the introductory chapter where also a pragmatic viewpoint that 

intelligent control theory is the discipline that involves both intelligence and control 

theory is presented.

The motivation for considering this control design approach for solving the ship motion 

control problem, is based on an attempt to produce control systems that can guarantee 

acceptable performance in a wide range of operating conditions. This control design 

problem is traditionally defined in the framework of robust and adaptive control theory. 

In the robust approach, the aim is to design a controller with fixed parameters which 

perform acceptably well in different sailing conditions while in the adaptive approach 

the controller parameters are constantly varied in an attempt to seek the optimum of a 

suitable performance function.

Control algorithms that possess the ability to learn about and adapt to the disturbances 

and the different operating conditions represents a very appealing alternative solution 

for the control design problem. Prompted by advances in computing technology, 

algorithms with some of the above mentioned characteristic can run on-line in standard 

computer systems and can be used /or an efficient solution of the intelligent control 

problem. However, to fulfil the computational requirements, according to the particular 

control problem, some assumptions on the controller structure and the learning 

algorithm has to be assessed.
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Chapter two introduces the two main system structures used for implementing 

intelligent control paradigms developed in this thesis, namely artificial neural networks 

and fuzzy logic systems. When focusing on the functional evaluation, it is shown that 

these two systems can be described in the common framework of adaptive networks. In 

this framework, a synergistic comparison between neural networks and fuzzy logic 

systems is made.

Chapter three briefly describes adaptive networks with their universal approximation 

capability and some of the most traditional control architecture structures. The universal 

approximation capability of these networks will guarantee that a solution to the problem 

of approximating the control mapping does exist. This essentially has motivated the use 

of such systems in different conditions of uncertainty as learning or adaptive systems. 

Two of the most popular and standard learning algorithms, namely the least mean 

square and the back-propagation algorithms, are presented at the end of this chapter.

Chapters four, and five describes in some detail the system to be controlled, namely the 

ship. In particular, chapter four introduces the Newton equations of motion used for the 

mathematical description of the different motions of a ship. Hydrodynamic derivatives 

and stability criteria for the lateral and vertical motions have been also discussed, the 

latter characterises the manoeuvrability and the dynamical properties of a ship. In the 

final section of chapter four, mathematical models describing the yaw dynamics used 

for control design purposes have been discussed. These models have been used for the 

description of different situations of a-priori knowledge and for the justification of the 

proposed controller and identifier structures.
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Chapter five describes the particular containership used in the simulation study, the 

main parameters of which are reported in Appendix A. This chapter describes the way 

the non-linear equations of motion are implemented and the disturbances accounted for 

to make the simulation of the overall systems. Standard manoeuvres are also described 

at the end of the chapter. Appendix A describes how from these manoeuvres, 

knowledge on the dynamical response of the systems can be gained while Appendix B 

describes the formulation of the environmental disturbances. The quality of the 

mathematical model used for testing in simulation the proposed controllers facilitate the 

extension of the achieved results to practical applications.

Chapter six introduces control algorithms that are motivated by a description which an 

expert would give about the manoeuvre. In this context, fuzzy logic systems represents 

a very powerful tool where heuristic knowledge in terms of if-then rules can be easily 

incorporated in the control design process. Examples of the course-changing and the 

course-keeping autopilots have been shown in section 6.2 and 6.3 respectively. The 

difficulty of this control design approach is that the performances of the resultant 

controller will depend on the experiences of the designer. Therefore, the control system 

performances cannot be guaranteed to be optimal. Further adjustment of some or all of 

the controller parameters is needed. This successive adjustment can be achieved by any 

of the learning algorithms introduced in the framework of adaptive networks or by 

exploiting heuristic knowledge through the use of another fuzzy logic system. As a 

consequence, the control system designed with this approach can be seen as a first 

attempt to solve the control problem based on which further optimisation can be 

applied.
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Chapter seven describes the proposed intelligent control algorithms. For the solution of 

the course-changing control problem, an indirect model reference adaptive approach has 

been proposed. In this approach, the assumption on the ship dynamics is made more 

general by assuming a non-linear regressive model of known order. The unknown non 

linear functions are approximated by means of neural networks and then used in turn to 

implement the controller. Although the indirect approach does not rely on the 

information of the system's Jacobian, it suffers from excessive computational effort. 

Moreover the on-line implementation of the algorithm is complicated by the fact that 

the unknown non-linear function describing the ship's dynamics has to be identified in 

closed-loop.

The course-keeping control problem has been formulated in the framework of feedback 

linearisation theory. Although the proposed algorithm showed better performances 

when compared with a traditional linear quadratic controller, an on-line implementation 

has not been attempted.

In the last section of chapter six a stable adaptive autopilot based on neural networks is 

presented. In this context the aim is to extend results of linear adaptive theory to the 

case where unknown or time variant non-linearity characterises the system's response. 

The choice on the structure of the approximator as well as the learning algorithm are 

motivated both by the need to guarantee an analytical solution for the stability analysis 

and also to guarantee an on-line implementation of the control algorithm. It has been 

shown that the design of an intelligent autopilot can be posed in the framework of 

adaptive theory where the analytical analysis of the control system can be attained. The 

performances of the resultant controller have been tested with respect a non-linear
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model of a containership and it has been shown that the proposed controller responded 

satisfactory to all the dynamic changes for which it has been tested.

8.2 Discussion and Conclusions

Continuous development in computing technology will clearly move the computational 

barrier further, allowing more general control algorithm to be implemented. A field of 

control system that is strictly related to the computing technology is the field of 

intelligent control. Here, peculiar characteristics of intelligent species are emulated and 

translated in algorithms in order to design advantageous and efficient control systems.

The most used control system structures for the design of intelligent autopilot for ships, 

is the feedforward networks trained with the back-propagation algorithm. The 

motivation for this structure is based on the universal approximation capability of this 

system which will guarantee the existence of the approximation mapping.

At the present time, the use of the direct adaptive approach compared to the indirect 

approach is mainly motivated from the less computational effort involved in training the 

controller parameters. However, due to the non-linear nature of the overall system, 

analytical analysis of stability properties are not addressed. When focusing on the 

functional evaluation of the network nodes, neural networks and fuzzy logic systems are 

comparable. Therefore, the difficulties encountered in the analytical analysis of such 

systems are the same. At the present, major effort in the research community has been 

concentrated on developing training algorithms to guarantee the successful learning of 

the proposed neural and fuzzy based autopilots.
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Sections 7.2 and 7.3 of Chapter 7, describes respectively the indirect adaptive approach 

for the design of course-changing autopilots and the feedback linearisation technique for 

the design of a course-keeping autopilot both implemented with feedforward neural 

networks and back-propagation algorithm. It may be argued, that the difficulty in 

implementing the above control algorithms on-line may be overcome by using a more 

powerful computing system. However, research in the field of artificial intelligence and 

learning systems, has to be focused on developing new learning algorithms for an 

efficient training of dynamical networks. At the present time, this problem is mainly 

solved with the use of dynamical filter, whereby by expansion of the input vector to 

include past values of the input and output signals, algebraic loops in the network are 

avoided allowing the use of the back-propagation algorithm. The need for a neural 

network model of the system to be controlled also represents a computational drawback 

which is usually overcome by considering a fixed neural model of the plant trained off 

line. In this case the truly adaptive properties of the systems are not achieved.

It is important to notice that all the systems discussed herein, are non-linear and time 

variants. Therefore, following the historical evolution of control theory, another 

important field of research is represented by the non-linear control theory. A better 

understanding of non-linear systems can advise in different aspect, i.e. how many 

parameters are necessary in the controller, which of them can be considered fixed and 

which are adjustable. An example where analytical results of adaptive control theory 

can be used advantageously for the design of stable intelligent controller is given in 

Chapter 7 section 7.4. Here, both the structure and the adaptive law are motivated by the 

need to guarantee on-line implementation and stability analysis of the overall system
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and are driven by the theory of adaptive linear systems. An efficient adaptive autopilot 

based on neural networks is then achieved.

It has been already mentioned, that an important characteristic of fuzzy logic systems, is 

their ability to incorporate heuristic knowledge expressed in terms of if-then rules. This 

characteristic, which differentiate fuzzy logic systems from any other approximators can 

be used advantageously during the control design process. This has been shown in the 

particular case of the ship autopilots, in Chapter six. The investigation of the non- 

singleton fuzzification as a way to pre-process and pre-filter noisy measurements 

following heuristic information is another area of future investigation that deserves 

some attention.

Finally, the question whether intelligent control design techniques should be used in 

place of conventional approaches for the design of autopilots for ships, especially in 

practical applications, is of particular interest. Although the full advantages of these 

control techniques can be appreciated better when the multivariable control design 

approaches are considered, it has been shown that indeed it is possible to design 

efficient autopilots for ships based on an intelligent control approach. However at the 

present time the on-line implementation is not always guaranteed for a general structure 

of the approximator. Moreover, to be able to solve analytically the stability analysis of 

the resultant system some constraint on the approximator structure as well as on the 

adaptive law has to be fulfilled.

The main contribution of the thesis is to address the design of intelligent autopilots for 

which an analytical analysis of the overall system can be attempted. Following the 

historical development of adaptive systems, it is believed that one of the reasons why
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intelligent autopilots are not yet widespread in practical applications is the lack of 

theoretical results concerning the stability analysis of these systems. By carefully 

choosing the controller structure it has been shown how an analytical analysis of the 

system's performance can be achieved and at the same time the on-line implementation 

of the control algorithm is guaranteed.
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Appendix A

This appendix reports the main data of the containership used in the simulation study 

described in Chapter five.

A.1 Geometrical data and hydrodynamics coefficients

Table I: Containership main data

Length

Beam

Draught

Mass

Displacement

Metacentric height

Block coefficient

Propeller diameter

Rudder area

Rudder rate (one pump)

Cruising speed

Transverse area of superstructure (AY)

Transverse area of superstructure (Ax)

231 m

32 m

10.81 m

47 106 Kg

46000 m3

0.83 m 

0.56

8 m

60 m2

2.3 deg/sec

12.7 m/sec

5200 m2

1100 m2
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Table II: Hydrodynamic coefficients for the containership

X-Coefficients * 10s
Xv=-24
.A.VV — 1

X,=-1.4
X^ =-116.8
Xu=-226.2
Xuu=-64.5
Xuuu=- 137.2

X0=0
X =124.5vS

XVS5 =341
Xvv^ =0

X =-17.2&
X^ =224.9
X,=-5.9
Xw =-42.2

X =108.1vip

X =01<p<f

X,w =0

Xr=43.1
Xrr=4.4

Xrv=607.2

X. =-124.4
u

Xpp=7.2

Xppu=3.9

Y-Coefficients* 10s
Yv=-725
Yvv=98.6
YvM=-5801.5
Ytf =248.1
Y^=13.4
Y«=-193

Y^ =-379.4
Y^SS.e
Y^ =232.3
Y0=4.7
Y0u=-5.3
Y^-100
Y^v = 189/2
Y,, , =0^|v|

Y =37.7
V

Y^=0

Y =144.9v<p

Yvw, =2459.3
Y^ =177.2
Yr=118.2
Yr| r|=0
Ym=-158
Yr| V |=-409.4
Yrvv=-994.6
Yv|r|=-l 192.7
Yvrr=-1107.9
Y=-48.1

r

Y^ =-878
Yp=-3.4
Yp|p|=0
Y =-9 3
YP!=23.6
Ypu | pu|=-52.5
Y=23.3

N-Coefficients * 10s

Nv=-300.0
Nvv=- 109.6
NvM=-712.9
N^-128.9
Nw =-11.9

tf«=101.4
N & =196.9
N«u= 12 ' 8

N^ =-125.4
N0=-0.6
N0u=6.5
N <5.=24.6
N^ =-349.1
N =0

5|v|

N,=-17.9
Nw =o
N =17.8\ip

N =-0.9
Mlflp

N^ =-933.9
Nr=^280.0
Nr,rrO
Nm=-224.5
Nr, v|=-778.8
NrvV=- 1287.2
Nv|r|=-174.4
Nvrr=36.8
N.=-30

r

N v =42.3
Np=-8
NP|p,=0
Nppp=-5
Npu=12.8
Npu | pur-12.4
N p =0.2

K-Coefficients *105

Kv=25.0
Kvv=0.0
KvM=99.2
K,=-6.5

K^^-0.8
K^=4.1
K^=8.9
K^ =1 - 3
K^—4.8
K0=-0.1
K0u=l.l
K,,^5 -4
K^-0.9
K =0*l v l

K =-14.7\(p

K. =-103.9\(p(f>

K^v =-6.2
Kr=8
Kr| r|=-20.0
Km=0
Kr| Vr41.1
Krvv=-34.6
Kvlrl=10.4
Kvrr=22.2
K.=-l

r

K,=0
Kp=-3.0
KP | P |=-1.0
Kppp=0.8
Kpu=0
Kpu| pu |=-l-4
K =-0.7p
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Table III 
(Hydrodynamics parameters re-tuned to match the full scale experiments)

Hydrodynamic 
derivative

Nr
Kv
Kv
Kr

Krr
Krrr
Kvv
Kr

KP
KP\P
K*

RPMM model* 10'5

-282.3
-356.0
35.6
-44.7
0.0

15.9
-4.6
-2.7
-2.0

0.0
-5.1

Tuned to full scale test *10°

-280.0
-300.0
24.0
8.0

-20.0

0.0
0.0
-0.7
-3.0
-1.0
-6.5

Table IV

(Wind coefficients)

A* w

0

20

40

60

80

100

120

140

160

180

Cx

-0.778

-0.852

-0.482

-0.111

-0.222

-0.185

0

0.556

0.963

0.815

CY

0

-0.297

-0.52

-0.93

-0.93

1

-0.93

-0.52

-0.297

0

CN

0

-0.0518

-0.11

-0.11

-0.03

0.006

0.155

0.1703

0.11

0
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200

220

240

260

280

300

320

340

360

0.963

0.556

0

-0.185

-0.222

-0.111

-0.482

-0.852

-0.778

0.297

0.52

0.93

1

0.93

0.93

0.52

0.297

0

-0.09

-0.163

-0.145

-0.0518

0.0037

0.126

0.126

0.006

0

A.2 Linear model

A multivariable linear model, in state space representation, can be obtained from a 

straightforward linearisation of the non-linear equation (6.4) considering only the first- 

order terms in the Taylor expansion (equation (6.5), (6.6), (6.7) and (6.8)). The 

following state vector representation:

x - Ax + BS 

with state x = [v,r,p,q>,if/], is obtained for: A = (M)"1 N and B = (M)" 1 b, where:

(m-rj (mxg-Y,)
(mxg-N,) (izz-N,)

-(mzg + K,) -Kf
0 0
0 0

A-4

'8 + Yt,
NP

0
0

) °
0
0
1
0

0
0
0
0
1

(A.1)



N

'Yv (Yr -mu) Yp
Nv (Nr -mxgu) Np
Kv (Kr +mzgu) Kp
001
010

Y<p
Ncp
mxgGh

0
0

0"

0
f) 0

0
0

(A.2)

b =
0
0

(A.3)

For a ship speed of 12.5 m/sec and GM=83 cm the parameters of the state space 

equations re-tuned to meet the full scale measurement are (Blanke & Jensen, 1997):

-0.0115 -3.2325
-0.0010 -0.2216
0.0037 0.0960

0 0
0 1

0.1112

0.0066
0.0752

1
0

-0.0694 0"
-0.0010 0
-0.0552 0

0 0
0 0

V

r

P
<P

y.

+

' 0.1217 "
-0.0050
-0.103

0
0

(A.4)

Figure A.I and A.2 shown the Bode plot for the turning rate and the roll angle 

respectively for the model of equation (A.4).
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Bode plot for the turning rate/rudder angle

m 
B
<u

o5o>
T3

m
TJ
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<n
2 a.

10 10 10"" 10' 

Frequency (rad/sec)

10' 10

Fig.A.I: Bode plot, turning rate/rudder angle

bode plot for the roll angle/rudder angle

10

Frequency (rad/sec) 

Fig. A.2: Bode plot, roll angle/rudder angle

10

Note the different scale in the two figure above.
A-6



Figure A.3 and A.4 shows the state variables for a 5°/5° and 15715° zig-zag manoeuvre 

respectively. In dotted line is the response of the linearised model while in solid line is 

the non-linear model response. The error of the linear model increase as the manoeuvre 

becomes more tight.

0.4 

0.2

, 0

-0.2

-0.4

0.4 

0.2

, °

-0.2

-0.4

(a) yaw rate

100 200 300

20

10

-10

(b) yaw angle

100 200 300
time in sec 
(c) roll rate

time in sec 
(d) roll angle

100 200 
time in sec

300

-5

-10
100 200 
time in sec

300

Fig.A3: 5°/5° zig-zag manoeuvre. Dotted linear model, solid non 
linear model
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Fig.A.4: 15°/15° zig-zag manoeuvre. Dotted linear model, solid non-linear 
model
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A linear model of the yaw dynamics, from the knowledge of the hydrodynamic 

derivatives, can be obtained from equations (4.24) and (4.25). However, a different way 

to proceed is to consider the response of standard manoeuvres briefly described in 

Chapter 6. Figure A.5, shows the time sequence of the rudder angle and the turning rate 

for a 10° course-changing manoeuvre.

10

8 -

¥

-0.4

-0.8

rudder angle

[III
/III
/III
/III
I I I I

I I I | ! i
! ! I I ! I ...... .-4....... . . ~~ ' ' ...._. 4.. ... .. . * * ...—
I I I I I !
I I ! ! I I
I I I I ! I

0 20 40 60 80 100 120 140 160 180 200 

yaw rate for rudder 10

0 20 40 60 80 100 120 140 160 180 200 
time in seconds

Fig.A.5: 10° course-changing manoeuvre

By inspection of figure (A.5) it is clear that a first-order system with time constant 

T « 18 seconds, can describe such response. However, when the manoeuvre becomes 

more tight as in the case of a 30° course-changing manoeuvre a second-order system is 

more precise.
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20

10

rudder angle

!

0 20 40 60 80 100 120 140 160 180 200 

yaw rate for rudder 30

-0.2

-0.4

, -0.6

-0.8

0 20 40 60 80 100 120 140 160 180 200 
time in seconds

Fig.A.6: 30° course-changing manoeuvre

Figure A.6 shows a 30° course-changing manoeuvre, where it is possible to appreciate 

the overshoot of the yaw rate. By writing the second-order system in the general form of 

equation A.5:

= k (A.5)

and applying well-known results of linear theory, from figure A.6, the parameters of 

equation (A.5) can be deduced as follows:

. -0.82 „„_ k = ——— = 0.027;
30

Sv =0.12——= 14.6%; 
% 0.82

= 0.5;
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Figure A.7 shows the response of the linear model of equation A.5 with the above 

parameters (in dotted line) and the response of the non-linear model (in solid line). The 

main time constant of equation A.5 is:

T = • •« 17 seconds.

dotted linear model; solid non-linear

-0.1

-0.2

-0.3

-0.4

-0.5 

> -0.6

-0.7

-0.8

-0.9

50 100 
time in seconds
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Fig. A. 7: 30° step response of the linear (dotted 
line) and non-linear (solid line) model
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Appendix B Disturbances Modell ing 

B.1 Introduction

The motion exhibited by a sailing vessel is the result of different factors some of which 

are produced by the environmental conditions (i.e. wind, waves, current, water depth). 

In general all the factors that have an effect on the ship's motion and are not voluntarily 

determined by any control systems are labelled disturbances. For modelling purposes, it 

is possible to distinguish between two main categories of disturbances that are relevant 

for the control system design:

Additive disturbances'- Environmental effects (i.e. wind, waves and current) can be 

considered as additive input signals to the process. Usually for modelling purposes, the 

superposition principle is applied in order to separate the ship motions induced by 

environmental effects from the motions produced by propeller thrust and control 

surfaces (i.e. rudder, fins etc.). Despite the non-linear nature of the ship's dynamics, the 

superposition principle allows a quite accurate and numerically reliable simulation of 

the environmental induced ship's motions (Lewis, 1967).

Multiplicative disturbances'- These disturbances (i.e. depth of water, load and speed 

change), will affect the transfer function of the process making the overall system time 

variant.

There are different ways to account for the above mentioned disturbances during a 

simulation study. In this Appendix, sections B.2, B.3 and B.4, will discuss the effects 

induced by the waves, wind and current respectively. It will be shown how these effects 

can be modelled and accounted for during the control system design process. Section 

B.5 briefly describes the shallow water effects. However, due to its dominant effects on
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the ship's dynamics, the waves induced disturbances will be described in more detail 

(Lewis, 1967).

B.2 Waves effects

(This section is mostly paraphrased from (Lewis, 1967))

Wave effects on ship motions are of great importance for naval architects in terms of 

safety and the overall system performance. A vessel sailing in a rough sea will manifest 

an undesirable acceleration that can lead to critical situations. For instance, an aircraft 

carrier in order to fulfil its mission of safely launching and landing aeroplanes must 

maintain a minimum speed into the wind, while at the same time the amplitudes of 

vertical motion or acceleration at the catapult or in the landing area must not exceed 

acceptable values. The ship's acceleration induced by the wave motion ultimately will 

affect the manoeuvrability therefore the safety of the ship. For these reasons the 

modelling of wave motion is of particular importance during the control system design 

process.

The method to describe how waves are generated is very complex, it is related to many 

different conditions like wind, sea depth and fetch (distance over which the wind 

blows). Two methods for wave motion modelling are reported in naval literature. The 

trochoidal method that is basically a geometrical approach for the description of the 

waves propagation, and the theory of simply gravity waves, where the sea motion is 

seen as a simple two-dimensional sinusoidal wave train over an infinite water surface 

with infinite depth. Although the trochoidal wave theory is the earlier approach, the 

theory of simply gravity waves is more suitable for statistical interpretation of waves 

motion and can be easily extended to the description of the irregular sea waves.
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B.2.1 Simply Gravity Waves Theory (Regular waves)

The fundamental hypothesis under the simply gravity waves theory is that the waves in 

a fully developed sea have a strong periodic component. It is also assumed that the 

crests are straight, infinitely long, parallel and equally spaced, and the wave heights are 

constant. Under these hypothesis the wave profile can be described by a cosine function 

as in equation (B.I):

C 0 =C.cosk(x-Vw t) (B-l)

where r is the surface wave amplitude (half-height from crest to trough), x is the 

direction of wave propagation, y is the wave velocity sometimes referred as celerity

to emphasise that it is the wave form rather then the water particles that advances. 

Finally, k is the wave number defined as:

(B-2)

where j, is the wave length. The expression for the wave celerity can be obtained by
w

energy considerations of the water mass. In shallow water (roughly h < A. w /25)> ^ 

deep water (h > A, 125) such expressions are respectively reported in equations (B.3) 

and (B.4):

V 2 =gh
w O

(B.3)
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V 2 =1 = 1. (B.4)w , « xh 27t

where h is the water depth and g is gravity acceleration. A more convenient form for the 

equation of a simple harmonic wave (equation (B.I)), can be obtained by using the 

circular frequency defined as:

<D = - (B.5)

The period -p is the time required for the wave to travel one wave length and hence the

relationship between wave length and period in deep water can be derived from 

equation (B.4) as:

""i ^11 \/2
w = w (B.6)v 1 g I

Equation (B.I) describing the wave profile become:

(B.7)

When the wave is observed at a fixed point, with x = Q equation (B.7) yields:

= cos(- cot) = C a cos(cot)

Alternatively, if the wave profile is studied at t = Q , equation (B.7) yields:
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= ^ cos(kx) (B.9)

The slope of the wave surface is obtained by differentiation:

dx

The slope is maximum when sin(kx)=l, then:

dx
(B.ll)

This maximum slope occurs midway between a crest and a hollow.

The observation that real waves have sharper crest and flatter hollows than the simple 

cosine wave described by equation (B.7) can be accounted for by the inclusion of a 

second-order term into a series expansion. The wave profile represented as a function of 

x at fixed time f=Q, in deep water can be expressed with the so-called Stokes equation:

(B.I2)

In other words, the simple cosine curve is modified by a harmonic that is half the length 

of the fundamental. The velocity of the harmonic wave, however must be the same as 

for the fundamental.
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B.2.2 Harmonic waves theory (Irregular waves)

The Stokes equation is a good approximation for describing regular waves in fully 

developed sea under the assumptions of the simple gravity wave theory. Irregular 

waves, however are more complex. Generally produced by a combination of different 

factors, like limited fetch, influence of a different storm, abrupt change in water depth 

etc. A possible description of the irregular sea waves derives from the application of 

generalised harmonic analysis. The fundamental idea is to represent the irregular sea 

surface by the superposition of a very large number (theoretically infinite) of small- 

amplitude (infinitesimal) sine waves of different periods, amplitude and directions. 

Each of the individual components following the simple harmonic wave theory 

regarding wave length, period and speed. The elevation of the sea surface, r , as a 

function of time can be expressed by equation (B.I 3).

n )][2sc K )aco]^ (B. 1 3>

In equation (B.I3) s(co n ) is a random phase between [o,27t]> while S c (co n ) is tne 

spectral density of the sea and represents the energy carried from the n* harmonic. In 

practice the summation in equation (B.I3) is limited to the first 10 to 15 components. 

Different spectral formulae have been proposed for the statistical description of sea 

states. Earlier formulation of the spectral density included wind speed as a parameter. 

The spectral formulation due to Neumann (1952) and described by equation (B.I4) is 

one of these examples.
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where C is an empirical constant and V is the wind speed. Bretschneirder (1959), who 

considered the spectral density formulation as a function of the significant waves height 

), proposed a more sophisticated spectrum described by equation (B.I 5).

At present, the modified Pierson-Moskowitz spectrum is the formulation more widely 

used for prediction of responses of marine vehicles and offshore structures in open sea. 

It is also recommended by the International Towing Tank Conference (ITTC) and the 

International Ship and Offshore Structures Congress (ISSC) and the formula is given in 

equation (B.I6):

173h 2

On A n

where j is the average period between successive crests while h (the significant
n /3

waves height) is defined as the average of the 1/3 highest waves measured in a fixed 

period of observation.

Figure B.I shows the spectral density for different significant wave height and average 

period calculated using equation (B.16). As the significant wave height increases the 

bulk of energy is shifted to a lower frequency.
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PM spectral density
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O 1-

Fig.B.l: Pierson-Moskowitz spectral density for different 
values of T and hi/3

B.2.3 Waves forces and moments

To derive the expressions for the forces and moments induced by the waves pressure on 

the ship's hull, a set of simplifying assumptions should be specified:

1. The forces and moments acting on the hull, result from the water pressure acting on 

the wetted surface,

2. The wave field is not affected by the presence of the ship's hull,

For a ship where the wetted part is a rectangular parallelepiped with length L, breadth B

and draft T, Kallstrom proposed the following formulae (from (Fossen, 1994)):
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X wave (t)=|]pgBLTcoS ps i (t) 

Ywave (t)=X-pgBLT Sinp Si (t)

where P is the angle of encounter defined as the angle between the travelling direction 

of the wave and ship. S; (t) is the wave slope calculated by differentiation of the wave 

profile and N is the number of harmonic considered for the description of the irregular 

wave (typically 10 to 15). When a fixed point of observation is assumed (x=0 for 

simplicity) the ith component of the irregular wave can be described by equation (B.8), 

its derivative become:

When the ship has a velocity different from zero, it experiences the wave effects with a 

different frequency and a different power. The spectral density therefore has to be 

modified according to the actual ship's velocity and angle of encounter as defined 

above. Equation (B.18) is modified as follows:

where o> is the frequency of encounter defined by equation (B.20).

(B.20)
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Applying the superposition principle the forces and moment expressed in equation 

(B.I7) are added to the right hand side of the Newton's equation describing the 

dynamics of a ship.

B.2.4 Response operators

A different way to simulate the environmental effects, is to regard directly to the 

response of the ship at a certain wave conditions. The purpose is to reconstruct the 

motion of the ship induced by the waves in terms of the state variables. The spectral 

density of the ship's induced motion can be calculated from the wave spectral density 

by the use of the so-called receptance operator. Figure B.2 and equation (B.21) illustrate 

this idea.

R2C (con ,j3,U)

Fig.B.2: Spectral density of the ship's induced motion

The receptance operator or response operator R^, represents the relationship between 

wave height C, to the ship's motion z. The spectral density for the moving vessel in term 

of its frequency of encounter co e is obtained by observing that wave energy in a 

frequency interval is unaffected by the observer speed. This is expressed by equation 

(B.22):
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,, =S zz (<o e ,p,U)d<o e (B.22)

From equation (B.20) follows:

- = l-2co n — cos (3 (B.23) 
n g

therefore from (B.21) and (B.22) the spectral density as a function of the encounter 

frequency can be expressed as:

x ,, n,,, , 
SB (cD..P.U) = n?? T C "' (B.24)

l-2co n — 
g

The problem with equation (B.24) is that in a following sea (0° </?<90°) the

o
denominator can be zero, (when a>n = ————— ), introducing infinite peaks in the

2Ucosj3

spectral density of the ship's induced motion S^. This problem can be avoided by 

considering an approximation of the sea spectrum by a finite sum of sinusoids with 

random initial phase:

. 
CPini«) (B ' 25 >
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For a different response operator, z(t) will be a particular induced motion (surge, sway 

or roll). The coefficients a ; can be calculated from the relation between the power 

spectrum as:

R a^p.U.pta,, (B.26)

Using the variance definition:

ai(cD I ,a> 2 )= f S c (co n )do> n (B.27)*>,

from equation (B.26) the sine amplitude can be computed as:

a, =V2|R zC (co nl ,p,uy^(co2 ,co3 ) (B.28)

Applying the superposition principle, the induced motion z(t) can be added to the state 

vector computed from the Newton's equation.

B.3 Wind effects

(This section is mostly paraphrased from (Fossen, 1994))

The wind induced forces and moments on a ship can be described by a combination of a 

mean wind speed and a turbulent component describing the effect of gusting. The mean 

component of wind exposes the ship to a quasi-steady force although non-stationary in a
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long period of time. The turbulent component is random in magnitude and direction, 

and can be characterised by an appropriate spectrum. One of the most popular 

formulations for the wind gust is the Davenport spectrum:

(B.29)

where:

k is the turbulent factor* 0.05

Fw (lO), is the average wind speed, expressed in knots, at a level often metres

above the water surface,

a> is the frequency of the wind oscillations expressed in rad/sec.

Another formulation for the wind gust is the so-called Harris spectrum:

(B.30)

In order to calculate the local velocity of the wind at a certain height z of the sea 

surface, it is possible to apply the boundary-layer profile given the formula:

(B31)

The spectrum formula, used by the Danish Maritime Institute, describing the high wind 

speeds over the North Sea is for the surge component (Blanke M. and Jensen A.G., 

1997) and is given by:
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v- < fnozV 5/3
1 + (0\ ————

(B.32)v '

while for the sway component, the Kailman formula is:

Fw ( 1 f 9 - 5 -1 + ol ——
(B.33)

The forces and moment on the ship due to the wind effect, can be expressed as 

(Isherwood, 1972):

/, I- air ~ A \/v

' ' ,2 A (B-34)2^a'r

where Vw is the local wind velocity in knots, pair is the air density in kg/m3, Ax and A Y are 

the transverse and lateral projected areas in m2 , Cx CY and CN are the forces and moment 

coefficients which are a function of the relative angle of attack (% w ) and Lpp is the 

overall length of the ship. The forces and moment coefficients are calculate by 

experimental tests. Due to the difficulty in determine the coefficient CK from 

experimental test, the roll moment induced by the wind can be expressed by the 

empirical formula:
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(B.35)

where z^ is the distance from the water surface to the geometrical centre of the cross

section. When the ship is moving with surge speed u and sway speed v, the components 

of the relative wind are:

-t/-« + M c (B.36) 

- if/} + vw cos(y/w - ̂ ) - v + vc (B.37)

where uc and vc are current velocity components, ug and vg are the gust velocity 

components, ^w and \y are the wind and ship direction respectively. The relative angle 

of attack can be computed thus:

(B.38)

and the square of relative wind speed, which is used for calculation offerees, is:

(B-39)

Note that in calculating the gust components, the apparent frequencies of the turbulent 

components are affected by the Doppler effect. The encounter frequencies are then:

="e
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' w
(B41)

Since the energy contained in a certain interval of wavelengths of the turbulence is not 

dependent on the velocity of the observer:

dG(coe ]dcoe = dG(a>]da> (B.42)

the Doppler effect is just a linear compression or expansion of the spectrum, with an 

associated change in spectral density to give unchanged total power.

B.4 Ocean Current

Ocean currents can be generated by many phenomena, such as wind blowing to the sea 

surface, isotherms (regions with different water temperature), Coriolis acceleration due 

to the earth rotation, tidal current due to gravitational effects. In any case the ocean 

currents have a strong steady component, that allow its modelling by considering the 

relative velocity between the ship and current. The modified velocity vector due to the 

presence of current is therefore expressed as:

v r =v-vc (B.43)

where v is the ship velocity vector and v c is the current velocity vector. For simulation 

purposes it is sufficient therefore to compute the new surge and sway component of the 

ship velocity according to equation (B.43) and substitute these new component in the 

Newton equation of motion.
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B.5 Shallow water effects

When a ship sails in open sea, the lines of the flow water goes not only around the sides 

of the ship but also down and along the bottom of the ship. However, when the water is 

shallow, the flow under the hull is restricted, causing more flow along the sides. This in 

turn changes the forces and moments distribution acting on the ship and hence the 

values of the hydrodynamic derivatives describing those forces. In order to properly 

account for these effects it is therefore necessary to perform apposite trial tests in 

shallow water. The new hydrodynamic derivatives values, identified in this condition, 

are then used for the simulation of the ship dynamics sailing in shallow water.

Although specific of hydrodynamic derivative values exist for a particular ship model, 

(Sheng, 1981) and further (Clarke, 1983) proposed, the correction of the following 

hydrodynamic derivatives based on the geometry of the ship's hull to account for 

shallow water effects.

Y' ° 3 'T 15 \T) N' " 5 1 TV,

— = Kn +-K, —— — K2 \ — \ (B.44) 
r ° 3 r 15 \T)

—— JVf\ T —— JV| I Jl-9 t U/^IT-T ^ i T-ty^ ° 3 1 T 15 \rj ^ 2 7 3 ^T, 

where
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*„=!• 0.0775 0.0110 
F 2 F^~

0.0643 0.0724 0.0113 
' F + F 2 F 3

0.0342

and

In the above formulae the subscript oo refers to the hydrodynamic derivative's values in 

depth water. The parameters H, B and T are specified in figure B.3.

The correction proposed by Sheng and Clarke and reported in equation (B.44) are based 

on linear theory and clearly are not an exhaustive model of the shallow water effects. 

Nevertheless, because of their generality they represent an easy and general way to 

account for the shallow water effects for control systems simulation purposes.
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Sea surface
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r Sea bottom

Figure B.3: The ship in shallow water
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B.6 Summary

In this Appendix the environmental effects on the dynamics of a ship are described. 

Waves, wind, current and shallow water effects have been described in section B.2, B.3, 

B.4 and B.5 respectively. The former three disturbances are considered as additive 

while the latter will affect the parameters of transfer function making the overall system 

time variant. Due to its major effects for the control systems performances, the 

modelling of wave effects has been considered in more details. The proposed control 

algorithm will be tested with respect different of disturbances and sailing conditions.
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Appendix C

In this appendix the stability proof of the adaptive autopilot based on neural networks 

presented in section 7.4 of Chapter 7 is presented.

C.1 Stability proof

The adaptive law expressed by equation (7.15) is motivated by the linear adaptive 

theory, in which it has been proved that if:

1 . the relative degree d, of the system is known,

2. the non-linear functions /"satisfy a global Lipschitz condition and

3. the output of the system does not grow faster than the input,

then the non-linear system expressed by the equation (7.7), with the adaptive law 

expressed by equation (7.15) and the control law (7.16) results in all the signals being 

uniformly bounded and there exist an integer j( and a non-negative constant C such

that:

and

A detailed proof of this result can be found in the original paper (Peterson and 

Narendra, 1982) or in chapter 8 of (Narendra and Annaswamy, 1989). Here the main 

steps involved are briefly highlighted.

Step 1.
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Considering a bounded disturbance £ , equation (7.7) can be rewritten:

(C.I)

the identification error becomes:

(C.2)

where fi(k)= d(k)-0 ls the parameter error. Using the direct method of Lyapunov it is

proved that:

i)

ii)

the parameter error ^^) = 0(k)-0 is bounded,

the identification error either does not grow faster then the signal vector co(k] or

is bounded (k\ <e < s

iii) the parameter error converge limA£ = 0

This can be done by choosing the Lyapunov candidate function v(k) = (f) T (k\f>(k) • The 

time derivative evaluated along equation (7.15) is:

2-!?(*)- \(O (C 3)

If >e with the flrst term of the ri§ht hand side of

(C.3) dominates the second term therefore &y(k) < 0 - If on the contrary e(k + 1) <
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the parameter vector is not updated therefore AF(fc) = 0 • Hence in any case for all % is

i) Because the sequence v(k) ls bounded and non-increasing, it must converge as

£ _> oo therefore |U(A;)jj is bounded.

ii) Since \im Av(k) = Q, either K, exist sucr» that for k > K e(k\ < £ , or the
^_>00 ^ f ' I \ f\ max

sequence e(t +\\, with / defined as t (i- e (i + \}>£ \ are tne ^me instants where
\ A / « Ar (. * V / max )

the identification error is greater then e , cannot grow faster then the signal vector at 

the time f :

which implies:

(C-4)
l<k

Equation (C.4) can be rewritten e(k + 1) = er(k)\eo(k)\ where lim er(k) = 0 • 

iv) From the adaptive law equation (7.15) it follows that:

which leads to lim AA: = 0

Step 2.
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Using arguments based on the input-output relationships, it is shown that the state 

vector of the non-linear systems (7.7) is bounded and the tracking error converges.

This is achieved first considering hypothesis three, for which the output of the system 

\l/(k\ cannot grow faster then the input fihA , this is expressed by the order relation:

For hypothesis two and equation (C.5) the output cannot grow faster then the vector 

signal (o(k\ which is:

co(k)=0\sup V/(k}\ (C.6)
\_i<k+d J

Because of the use of the dead-zone in the adaptive law, the estimated parameter vector 

is bounded. Hence, to conclude the proof, it is necessary to show that the output y/(k\ 

and the estimated output /£ are also bounded.

The control law (7. 1 5) based on the certainty equivalence principle has to satisfy:

Now studying the tracking error:
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k+d-2
0-0(k + d-l)+ $><?(/) a>(k + d -i)+s = -e(k

k+d-2

For equations (C.4) and (C.6) it is possible to infer that the tracking error grows more 

slowly than the output:

o sup ^
\_l<k+d

c (C.7)

where C is a non-negative constant depending on s . Since „, (^) i§ a bounded signal, 

\f/(k\ cannot grow in an unbounded fashion and this implies that

The estimation error also converges to:

= e~

Finally since u/Y#is bounded from (C.2) also £#is bounded.

The knowledge on the relative degree d, required by hypothesis 1, is fulfilled by the 

analysis outlined in section 4.5 of Chapter 4. Hypothesis 2, is guaranteed by the choice 

on the radial basis function, while hypothesis 3, implies that the ship is directionally 

stable. Based on the above argument, it is possible to conclude that the control law
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described by equation (7.16) with the adaptive law of equation (7.15), guarantees that 

all the signals in the adaptive loop are bounded and that the tracking and estimation 

error converges.
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Summary

This paper describes the design of an adaptive autopilot for a containership. Well- 
known results of linear adaptive theory are extended trough the use of neural network to 
the case where the plant dynamic is described by a non-liner equation. The desired 
behaviour of the containership during course-changing manoeuvre is defined by the 
response of a reference model. Using an indirect approach, the controller parameters are 
adjusted based on the definition of an estimation error. The proposed adaptive controller 
is tested by a simulation study based on a non-linear model, describing the dynamics of 
a containership in four degrees of freedom. In order to take into account the wave 
effects, a stochastic model of the ship wave induced motion is considered. Shallow 
water effect is also considered by changing some of the hydrodynamics parameters.

1. Introduction

The introduction of automatic autopilot for steering a ship can be traced back to the 
1922 with the pioneering work of Sperry and Minorsky. The simple proportional 
autopilot, suggested in Sperry 1 and Minorsky2, was supplying a corrective signal to the 
rudder proportional to the heading error. Subsequent enhancements were the inclusion 
of a derivative term for the heading error and a further integrating term leading to the 
more sophisticated PID controller. Due to its relatively simplicity, these kinds of 
controller dominated the scenario until the early 1970s. The need to move from fixed 
PID controller, to more sophisticated adaptive autopilot, can be explained by the fact 
that the ship's dynamics is influenced by factors such as load and trim conditions, 
weather conditions and deep of water. Moreover, the optimal achievement of the two 
main steering modes of an autopilot, namely course-keeping and course-changing, can 
be properly defined only with respect a particular sailing conditions. For instance, with 
respect the course-keeping mode of operation, the autopilot has to select the best trade 
off between precision (which will minimise the elongation of the sailed distance) and 
control effort (rudder movement, which will produce additional drag force and 
consequent loss of speed). However this trade-off is not always the same. In different 
sailing conditions, different priority (or weight) is assigned to the precision and control 
effort. When the ship is sailing in restricted water precision is of main concern, while in 
open sea fuel consumption is of major interest.

The most popular approach for dealing with the above mentioned autopilot demands, 
was the Linear Quadratic (LQ) Controller, in which the controller parameters are 
selected in order to satisfy certain optimal criteria expressed as a quadratic cost 
function. Different cost functions taking into account yaw and rudder deviation, fuel 
consumption, etc., were proposed Norrbin3 , and Broome4 et al. Although the LQ
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technique fits very nicely in the formulation of the ship's course-keeping control 
problem and appeared to be robust for parameter changes, other researchers were 
investigating the applicability of adaptive control techniques such as model reference 
Honderd and Winkelman5 , Amerongen and Udink Ten Gate6 or self-tuning adaptive 
controller Kallstrom7 et al, Brink8 et al, which are much appropriate for the formulation 
of the ship's course changing problem.

In this paper the design of an adaptive autopilot based on neural networks concept is 
described. Because of the excellent approximation capability of neural networks such 
kinds of approximator can be used to account for the non-linear nature of ship 
dynamics. The paper is organised as follows: section 2 describes the non-linear 
mathematical model of a containership used in this simulation study. The waves and 
shallow water effects are also described. Section 3 reviews some well-known steering 
models used for control design purposes. These models are used to motivate the choice 
on the controller structure. In section 4, three neural networks structures used for control 
purposes are briefly introduced and discussed. In section 5, the adaptive control 
problem as introduce in linear adaptive theory is discussed and extended to the case 
where the system is described by non-linear unknown functions. The adaptive law and 
the design of a model reference is also described. In section 6, the design of the ship's 
autopilot is considered while in section 7 simulation results are presented. Finally 
section 8 concludes the paper with some remarks.

2. Mathematical Model of a Containership

The mathematical model of a container ship used in this study is described in detail in 
Blanke and lessen 10 and Tiano and Blanke 11 . Equation 1 represent the non-linear 
equation describing the ship's motion in four degree of freedom, deduced by the 
Newton's law.

m| u-vr-xg r 2

m\v+ur-z p+x r = Y + Yw 8 J
(1)

r+mx,\ ur + v\ = N + Nu
* I

-.K + Kw -pgDR,(p)

The above equations with reference to the co-ordinate system shown in figure 1, 
describe the coupled surge, sway, yaw and roll motions, where D is the displacement, g 
the gravity constant, p the water mass density, Rz(p) is the action of the Tightening arm 
that depends on the roll angle (p, while (xG,0,zo) are the co-ordinates of the mass centre. 
The mass is denoted by m whereas Ixx and Izz are the inertial moments about x and z, 
respectively. The linear velocity of surge and sway are u and v and the angular ones of 
yaw and roll are respectively r and/?. The Tightening arm function can be expressed as:

= sin <p{ 2GM + — -tan 2 (p (2)
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where GM is the ship metacentric height and BM is the distance from the centre of 
buoyancy to the metacentre.

Terms X, Y denote the deterministic forces acting along x and y while N and K are the 
deterministic moments around z and x, which take into account the hydrodynamic 
effects from the hull movements and forces exerted on the ship by the rudder and by the 
propulsion system. Such forces and moments are usually described by regarding X, 7, 
N and K as polynomial expansion in terms of state variables, control actions and 
hydrodynamic coefficients Lewis 12 .

The external disturbances, i.e. wind and waves, are represented by the terms Xw, Yw , Nw , 
Kw in the corresponding right hand parts of equation (1). Such terms, owing to their 
intrinsically random nature, are generally quite difficult to be characterised through 
explicit mathematical relations: for example, as to the waves, they should be calculated 
by integrating the wave pressure over the immersed surface of the hull, on the 
assumption that the pressure within the waves is unaffected by the presence of the ship. 
As it has been shown in Lewis 12 and Price and Bishop13 , a reasonable simplifying 
assumption consists in applying a linear superposition principle, which makes it 
possible to separate the ship motion due to the environment from the motion induced by 
the rudder and by the propeller thrust. According to this modelling approach, waves 
and wind are regarded as finite order linear realisations of stochastic processes 
characterised by known spectral densities.

Earth

Surge

Sway

Figure:!

Heave

Ship's system frame

Ship

By limiting attention to sea waves, which are by far the dominant disturbance, it is 
possible to regard a long crested irregular sea height £(f), at time t, as described by a 
one-dimensional amplitude spectrum, the main parameters of which are the significant 
wave height, h and the average wave period T. This spectrum, accepted by the 
International Ship Structure Congress (ISSC) is given by:

C ( U 173/* 2 ex f~ 691 l

The relation between the response of each individual component of the wave induced 
ship state vector xw = [uw vw rw pw]T, can be obtained in terms of the spectrum:

(4)
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where % is the angle of encounter between ship and waves, U is the ship velocity and 
RX(I) is the receptance operator, which is assumed to be known from experimental tests,
describing the response of the ship i'h motion to the waves, Blanke and Jessen 10 . In 
order to obtain the corresponding spectrum relative to the ship centre of mass, it is 
finally necessary to express the spectrum given by equation (4) as a function of the

frequency of encounter between ship and waves co - o\ 1-——cos(^) . Once the
I 8 )

waves induced ship state vector xw is computed the total ship state vector is represented 
by:

According to this approach, it is possible to implement an accurate and numerically 
reliable simulation of sea wave induced ship motions.

As suggested in Sheng 14 and Clarke 15 , the shallow water effects can be represented by 
the correction of the following hydrodynamic derivative:

YJ- = K + -K - + —A" f-Y ^ = K + -K -+ 24
r' 0^1 rrr i f 21 rrt I •» r' 0 f I rnYif 3 ' T 15 \T) N,_ 5 ' T 105

Y., ,, ,, B r^ I B } .A/ 2. ,., B 8 ., i J5
Y^ u 1 T \T) NVx u 3 1 T 15 \T) 
(5)

YL_ = K + 1 K ?- + *-K f-Y ^ = K +-K - + l-K f-Y
' 0 /-» 1 T-T ir-^rrr j. r' 0 s+ I rri ^ ^ I T"'F 3 r is \TV TV 2 r 3 \r'„ ^ x r« x

where

0.0775 0.0110 0.0643 0.0724 0.0113, = 0.0342 
°~ + /rz p3 ' '~ F + F 2 F 3 ' 2 ~ F

and

In the above formulae the subscript oo refers to the hydrodynamic derivative's values in 
depth water. The parameters H, B and T are specified in figure 2. The correction 
suggested by Sheng and reported in equation (5) do not completely describe the effect 
of the shallow water, they are in fact limited to few hydrodynamic derivatives. 
However, these corrections are related to the geometry of the hull ship, therefore the 
above formulae represent a quite general model of the shallow water effects that is used 
in this simulation study to simulate parameters uncertainties.
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Figure 2: The ship in shallow water
3. Steering Dynamics

Broadly speaking, there are two main control design approaches termed; model-based 
and model-free control design techniques. In the model based control design technique 
it is assumed that a model of the plant to be controlled is available. However, because 
the model can describe only the main futures of the system dynamics, adaptive or robust 
techniques are used in order to guarantee acceptable performance of the overall system 
with respect the unmodelled dynamics and parameter uncertainties. Model-free design 
techniques are based on the assumption that a model of the plant to be controlled is not 
necessary. In the following of this section some ship mathematical models used for the 
control design of autopilot based on the former technique are introduced. These models 
will be used in order to justify the structure of the identifier and controller used in the 
proposed adaptive controller.

Considering the ship as a rigid body, the steering equations of motion can be deduced 
applying Newton's law, Abkowitz16 . With respect the systems frame of figure 1, the 
motion of the ship in the x-y plane can be described by the system equation:

m\u -vr — xg r
m

2 - X
(6)

I,f + mxg (v + ur) = N
The right hand side of equation (6) represents the deterministic force and moment 
produced by the propeller thrust, control action and hydrodynamic effects. It is 
commonplace to consider an equilibrium situation in surge in which propeller thrust 
outbalances the hull resistance therefore the first equation in the systems (6) is usually 
disregarded in the description of the steering dynamic. The modelling problem then 
resolves to determine a suitable expression for the force Y and moment TV. Under the 
hypothesis that a linear model is satisfactory, hydrodynamic derivative theory suggests 
the following series expansion for the terms Y and TV respectively :

Ytr + Yv v + Yrr + YS 8
+ Nf r + Nrv + Nr r +

(7)

Substitution of equation (7) into (6), leads to the well-known linearized equation of 
motion expressed by equation (8):

(mxg - < ^ r ^- *, x A, !„ \.^V (8)(/, -Ni.)r = NS S + Nv v + (Nr -mxg u 0 )r + N0 
Equation (8), describe the motion of a ship moving in the horizontal plane, in 
unrestricted deep water with constant speed.

D-6



By elimination of v and v, equation (8) can be transformed in the second order linear 
differential equation proposed by Nomoto 17 et al;

•" + (— + —)"+——• = ——(T S + s) (9) 
Ui rj r,r2 r,r2 *3

where i// = r , and 
k N Y —Y NA- J 'tj •*• A -*v-* V A

(Y, -

N,Yg -Y,Ns

(Y, - m\N, - I2 )-(Yt - mxg (, - mxg

+ = r -mu0 ) 
+ rJ (Yt ~ m\N, - /, )- ̂  - mxg \N, - mxg ) 

10)

The coefficients — + — , —— and r3 of equation (9) for a conventional ship during

manoeuvre at a fixed speed remain fairly constant, whereas the coefficient ——

changes resulting in the non-linear nature of the ship dynamics. Bech and Wagner- 
Smitt 18 , in order to account for the change in the above parameter, proposed to include 
in equation (9) a non-linear term defined as:

1 .

in such a way that equation (9) became:

T2

In Bech19 there is also described a practical way to gain some knowledge information 
about the non linear function expressed by equation (11), which led to the better-known 
Bech's reverse spiral test manoeuvre. In particular, under the hypothesis that the ship 
can be kept at a nearly constant rate of turn ^0 with relatively small fluctuation of 3 
and i// , the time average of both sides of equation (12) gives:

u/
T2

dt->
T,r2

and
1 T- * r • 1 k x f T ^-»—— S* for,T^>co

leading to:
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where S0 is the mean rudder deflection necessary to steer the ship with a constant rate 
of turn. The plot of the values S0 against the mean rate of turn can result in the two 
functions reported in figure 3 for directionally stable and unstable ships. In practice, as 
stated above, the non-linear function H(I//) can be obtained from the reversed spiral 
test.

The non-linear differential equation describing the steering dynamic expressed by 
equation (12) can be rewritten in the form:

-+—
r,r 2 l^r, T2 ) 

Due to the relatively high sampling rate that can be chosen in comparison to the ship's 
dominant time constant, equation (13) can be rewritten in the equivalent discrete time 
form as:

¥(t + 3) = -±-[(r3 6(t + \)+6(t))-H(Y(t + 1))]- f 1 + -lV(/ + 2)
^2 Ul Tl)

or,

r,r2 
finally,

y/(t + l)= ct} y/(t)+a2 H(y/(t — 1)) + /70 <5'(/ —l)+/?,<?(? — 2) (14) 

where t is the time step and:

J* K T if

; «2 =——— ' A> = —L and /?, =—— .
T T 7" 7" 7~ 7" 
*1*2 T1 T 2 T\ r2

Equation (14) represents a particular parameterisation of the ship steering dynamics. 
This parameterisation, as will be shown later, can be used in the indirect adaptive 
control problem in order to justify the structure of the identifier for the estimation of the 
unknown parameters.

Another well-known non-linear model describing the steering dynamics is the one 
proposed by Norrbin20 in 1970. Norrbin proposed the following non-linear equation:

TI/S + H(y/)=k<5 (15)
where again the non-linear function H(y>) describes the non-linear nature of ship 
dynamics and can be expressed in terms of a polynomial expansion as:
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Norrbin suggested that, due to hull symmetry the parameter a0 has zero value, the 
parameter al can be set equal to unity for course stable ships and equal to -1 for course 
unstable. Finally the parameter #3 can describe the non linearity of the ship dynamics. 
Therefore equation (15), for course stable ship reduce to:

rif/ + ^ + a^ = kd (16)
The justification of the Norrbin's model can be traced to the second-order linear model 
of Nomoto (equation (9)). In fact, Nomoto further reduced the linear model of equation 
(9) to a first-order linear model of the form:

/Yaw rate [ 7sec] 
Unstable

Stable

Rudder[° ]

Fig. 3: Reversal spiral test for stable and unstable ships

Tp + p = kS (17) 
where the time constant T is defined with respect equation (10) as:

It is clear that equation (15) differs from the first-order Nomoto model because the non 
linear function //(^), which according to Norrbin tries to describe the nonlinearities of 
the ship steering dynamics. Following the same parameterisation of the Bech's model, 
equation (16) can be rewritten as:

~\ 1 / »\ t%i i/ <\ k

or equivalently:
V,(t + l) = al r(t)+a2 r 3 (t) + fi0S(t-l) (18)

where:
. , 1 a3 k 

t is the time step, a, = — ; a2 = —— and p0 = — .
T T T

Equation (18) could also be used to justify the parameterisation of the identifier for the 
adaptive control problem.

It can be observed that, equation (14) and equation (18) are quite similar. In particular, 
in both equations the delay is equal to 1, the heading angle at time (t+1) will be affected 
by the rudder angle at time (t-1) and both contain a non-linear function, which in the 
Norrbin model is expressed by a polynomial expansion while in the Bech's model is 
defined by the reverse spiral test.

4. Neural networks for control

The last twenty years have witnessed a growing increase in the use and study of neural 
networks for control applications Hunt21 et al. The primary characteristic that rendered 
these systems attractive, is the fact that under certain conditions, the parameters of the 
network can be adjusted from input-output data. This has led to the use of such systems, 
under different conditions of uncertainties, as adaptive or learning systems. Mainly
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inspired by biological systems, different types of neural network architectures have 
been proposed. Multilayer Perceptron Networks (MPN), Radial basis Function 
Networks (RBFN) and Cerebellar Model Articulation Controller (CMAC) are few 
examples that share the ability to be universal approximator Cybenko22, Hornick23 et al. 
In the framework of control system theory, the feature to be a universal approximator, is 
strictly related to adaptation and learning ability of the network. In fact, the problem of 
learning a mapping from an input to an output space, using a set of data, can be 
formulated as the problem to find an associative memory that retrieves the appropriate 
output when presented with the input and generalises when presented with different 
input. The problem of learning as formulated above is dealt with in the framework of 
approximation theory and related fields such as system identification and system 
estimation. In general, the problem to approximate a multivariate function f(x) by an 
approximating function NN(0,x) rarises three main questions:

1) What kind of approximator has to be used. In other words, what classes of functions 
f(x) can be approximated by the selected approximator NN(0, x).
2) What kind of algorithm has to be used for finding the optimal parameters 6" for a 
given choice of NN(0,x).
3) Is the selected approximator with the selected algorithm realisable in practice?

The proper answers to the above questions are application dependent. However, the 
above questions motivate the choice of the particular controller structure and adaptation 
algorithm. They also represent a systematic procedure to find the most suitable 
combination of different identification and control design techniques. In the context of 
neural networks, the first question refers primarily to the problem of choosing a 
particular neural network, (i.e. MPN, RBFN, CMAC etc.), while the second question is 
related to the particular parameterisation that can be achieved. Finally, the last question 
dictates the hardware specification and whether or not the adaptation can be performed 
on line. To measure the quality of the approximation, the idea of distance between the 
function to be approximated /(x) and the approximator NN(0, x) is used. A function 
p is defined in order to quantify such distance. A common choice for the function p is 
the Euclidean norm. Once the function p has been defined and the approximator 
NN(0, x) has been chosen, the approximation problem reduce to finding the parameter 
0" for which:

p[NN(0\x}f(x)]< p[NN(9,x\f(x)] (19)
for any 0 belonging to the set of admissible values. A solution to this problem, if it 
exist, is said to be the best approximation. It is clear that the existence of the best 
approximation depends ultimately on the class of the functions to which NN(0,x) 
belongs to. Next three classes of approximator functions corresponding to different 
neural networks architectures are defined.

Linear networks: The classical linear network approximator is described by the linear 
equation:

NN(0,x)=0-x (20)
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where 6 and x are n+l -dimensional vectors. A representation of the neural network 
implementing equation (20) is shown in figure 4.

Ox

Fig. 4: Linear network

Where/, also called neuron activation function, is a linear function, 9 - [0t ,02 ...,0n ,b]T 

are the weights and bias parameters and x = [xl , x2 ,...,xn ,l] is the input vector.

Radial Basis Function networks: This class of approximation scheme is linear with 
respect to a suitable choice of basis functions of the original input space {oy j with 

j = !,..,«. The RBFN is represented by equation (21) and shown schematically in figure
5.

~ ',<»/(*) (21)

The basis functions can be Spline, Gaussian or orthogonal polynomial. 

x,

Fig. 5: Radial Basis Network

In equation (21), x = [x,,x2 ,...,xn f is the input vector, 0 =[0l ,02 ,...,0n Y is the 

parameter vector and <1>. are the basis functions.

Multilayer Perceptron networks are of the nested sigmoid type. They are represented by 
equation (22).

where/are non-linear functions. In the particular case of one hidden non-linear layer, 
the network can be represent by figure 4, where the function / is now a non-linear 
function. It is clear therefore that the class of linear neural networks is included in the 

class of MPN.
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A brief comparison of MPN and RBFN can be made, considering some advantages and 
disadvantages of both. From equation (22) it is clear that the parameters of a MPN are 
related in a non-linear fashion with respect the output. Hence, derivative based 
algorithms are mandatory for the adjustment of the parameters. This, in turn, implies 
that the parameters can converge to local minima unless other derivative-free methods 
are used which in general due to their low speed of convergence, are not well suited for 
on-line implementation. Moreover, the adjustment of a single parameter of the network 
affects the output globally. For this reason, all the weights have to be adjusted 
simultaneously for each training data set, reducing the effect of previous learning and 
slowing down the convergence rates of the algorithm. On the contrary, in the RBFN, 
once the parameters defining the basis functions are fixed, the adjustable parameters are 
related in a linear fashion to the output. This allows the use of the Least Mean Square 
algorithm which is considerably faster then the derivative based algorithms. Moreover, 
when the input vector is close to the centre of the ith basis function, the response of this 
is large while it is virtually zero when the input vector is very far from the centre. It is 
possible to consider this local behaviour of the network in order to speed up the learning 
and to retain previous learned patterns. However the overall behaviour of the network is 
highly affected by the choice of the basis function parameters. Same heuristic methods 
exist in order to ensure good approximation properties of the network and a good rule is 
to ensure a sufficient overlapping of the basis function in the input domain. Others non- 
heuristic methods based on cluster analysis can be used only if a significant amount of 
data can be collected. As a consequence of this, for a high dimensional input space the 
number of the basis functions that are needed to ensure good approximation properties 
may became numerically intractable.

Reference 
Manoeuvre

Controller

Adjustment 
mechanism

Ship 
Dynamics

Figure 6: Model reference adaptive system 

5. Adaptive Control Problem

Adaptive control deals with the problem of controlling the output of a plant in the 
presence of parametric or structural uncertainty. In conventional adaptive control 
theory, to make the problem analytically tractable, the plant is assumed to be linear with 
unknown parameters. A suitable controller structure is chosen, and the parameters of the 
controller are adjusted using an adaptive law, so that the output of the plant follows the 
output of a reference model asymptotically. Assuring that a set of fixed parameters in 
the controller can achieve the desired response makes the problem well-posed and 
represent the algebraic part of the problem, while the generation of stable adaptive laws 
constitutes the analytic part. A general block diagram representing such an adaptive 
system is shown in figure 6. Here the controller can be thought of as consisting of two 
loops. The inner loop is an ordinary feedback loop composed of the process and the 
controller. The outer loop adjusts the controller parameters in such a way that the error, 
which is the difference between process output and model output is small.
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Two distinct approaches, named direct and indirect adaptive approach, have been 
proposed for the design of adaptive controllers. In the indirect approach, the parameters 
of the plant to be controlled are estimated and the parameters of the controller are 
adjusted based on these estimates. In the direct approach, the control parameters are 
directly adjusted based on the observed output error.

5.1 Statement of the problem

As mentioned above, a stable reference model with input-output pair {i//d (k), i//m (k)} can 
be chosen so that \ym (k} represents the desired output behaviours for the unknown plant 
represented by the input-output pair {S(k\\i/ (k)}. The object is to determine a bounded 
control input <?(•) so that the error e(k) = \Vm (k)—y/(k]\, is bounded and tends to zero 
asymptotically. To makes the problem analytically tractable some assumptions on the 
non-linear plant dynamics must be done. In particular, it is assumed that, in the domain 
of interest the plant is identifiable with a finite input-output sequence and it is of known 
relative degree.

A possible representation of the non-linear ship's dynamics, motivated by the previous 
section is expressed by equation (23):

N m-\

rtk + \) = ^aJl \y(k\v(k-\\...,v(k-n + \)]+^pj6(k-d-j + \) (23)
/=! >0

This representation is particular interesting for control purposes, because if the 
parameters a, , p} and the function ft are known and 1/J30 is well defined, the control 
action can be computed by the equation:

A

m-\

(24)
i=l >=1

where y/m (k + i) is the desired heading angle produced by the reference model. 
However, in the adaptive control problem, the ship dynamics are unknown. Using an 
indirect approach, the unknown parameters can be estimated and used to implement the 
control law (equation 24), based on the certainty equivalence principle.

Defining therefore, an identification model with the same structure of the plant as:
N m—\

w(k + l)= ^<^/y/[v(^Xv^(^ ~~ !/>•••' Vv^ ~ n + l)J+ £_jPj&(fc ~ d — j + 1) (25)
/=! 7=0

since the unknown parameters appears linearly, it is known that under certain 
assumptions on the function/ with the normalised adaptive law:

(26)

the non-linear system (23) results in all the signals uniformly bounded and
}- l//m (k)=0 (27)

In equation (26), 9 = [d} ,d2 ,...,aN , #,,#»-, A,-if is the parameter estimation vector, 
77 is the adaptation gain, e = & - V is the estimation error and

with:
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,24is the signals vector. Narendra and Annaswamy

In practical situations however, not only the parameters of the model are unknown but 
also the non-linear function / Due to their universal approximation property discussed 
in the previous section, neural network are good candidate for performing the estimation 
of the functions f. The universal approximation property of these systems will gurantee 
that any smooth non-linear function / can be approximated with any degree of 
accurancy over a compact region D. This is expressed by equation (28):

\f[Y(k)]- f[Y(k)] <£ V7(£) e D, ands > 0 (28)

The error e introduced by the neural network approximation can be treated as a state 
dependent bounded disturbance. Hence a modification of the adaptive law expressed in 
equation (26), in order to guaranty robustness in the presence of bounded disturbances, 
has to be considered. One such modification proposed by Peterson and Narendra25 , is 
the inclusion of a dead-zone in the adaptive law. Equation (26) is rewritten as:

0(k]

otherwise

Once identified both parameters and non-linear functions, the control law:
N „ t»-\ 

>'

provided that 1//?0 is well defined, with the adaptation law expressed by equation (29) 
can be implemented.

5.2 Reference Model

It is import that the dynamic behaviour of the reference model matches the dynamics of 
the ship regardless of the magnitude of the demanded change of yaw angle. A reference 
model that is too sluggish cannot produce optimal performance since the ship cannot 
reach the required heading in the minimum time. On the contrary, a reference model 
that is too fast compared with the ship response characteristics should not be used 
because this may cause rudder actuator saturation and consequent performance 
degradation.

As suggested by van Amerongen26 a course-changing manoeuvre can be easily 
described by the step response of a second-order system. From this response, as shown 
in figure 7, it is possible to identify three different phases: 1) a start of the turn, 2) a 
steady turning, and 3) an end of the turn. The turn should have a start, which clearly 
indicates to other ships the intention of the manoeuvre. The stationary part is 
determined both by limiting the rudder angle and by controlling the rate of turn. The 
end of the turn, for safety reason, should be completed without overshoot of the heading 
angle. In terms of the Laplace operator such a reference model can be represented by 

equation (31):
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______pffl / pm______ .-« * >.

+ s/rm +Kpm /Tm

The time constant rm is chosen approximately 2 to 3 times smaller than the dominating 
time constant of the ship at cruise speed and must be such that the process is able to 
follow the model. If the rate-of-turn limiter is neglected, Kpm follows from the desired 
damping ratio (g) of the system:

(32)

Possible values of £ are between £=1 which corresponds to a zero overshoot condition, 
to £=0.7 which corresponds to an overshoot of approximately 5% of the desired final 
value (which may be considered acceptable in open sea). The selection of rm results 
from the following consideration: a reasonable course controller will have a rate- 
feedback gain which makes the time constant of the ship 2 to 3 times smaller with 
respect to the case of the open-loop system (without controller). By choosing a similar

A
if/, 8

Rudder

Start Stationary End t 

Figure 7: Course changing manoeuvre

time constant for the model reference this guarantees that the process can follow the 
model.

The choice of the reference model represented by equation (31) can be also motivated 
by the steering dynamic expressed by equation (17). With this choice of the reference 
model, it is ensured that at least in the linear range of application, the reference model 
has the same relative degree of the ship's dynamics.

6. Controller Design

As stated above the indirect adaptive control approach is considered for the steering 
control problem. The structure of the identifier is motivated from the discussion of 
section 3 and the non-linear model proposed by Bech is considered. The non-linear 
model is therefore represented by equation (14) for which with respect equation (23), 
d=2 and n=m=2 while the identifier is expressed by equation (33):

2 (33)
where, the unknown non-linear function a2 H(y/(t -l)) defined by the reversal spiral 
test manoeuvre can be approximate by the Gaussian basis functions Ri defined as:

H'-'K|f 
Rt =e~ °' (34)
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where c, and cr, are the centre and the deviation of each basis functions. If a priori 
knowledge on the non-linear function a2 H(t//(t -l)) is available in terms of data 
measurements, well-known clustering methods can be applied in order to determine the 
number and values of the parameters ct and <r, . If no a priori knowledge is available 
for the choice of the centre c, it is commonplace to divide the domain of definition of 
the non-linear function in / uniformly distributed points. In order to guarantee good 
generalisation properties of the approximator, the deviation parameters cr, of each basis 
functions are chosen such that a sufficient overlap between the basis functions is 
ensured. For this particular application the range of the simulated manoeuvre has been 
sampled uniformly with steps of 5°. Therefore with respect the manoeuvre reported in 
figure 11 the total number of lattice centre is / = 15 while the deviation is assumed to be 
the same for each basis function and equal to a 2 = 2.5/ln0.5 . From equation (33) it is 
clear that a total number of 18 parameters has to be estimated in order to implement the 
identifier, the structure of which is shown by figure 8.

Fig. 8: Identifier structure

The advantage in using this kind of approximator represented by equation (21) relies on 
the fact that the parameters to be estimated appear linearly, preserving therefore the 
validity of well known stability results obtained in linear adaptive theory when equation 
(29) is used as adaptive law. Finally, the parameters estimated in equation (33) with the 
adaptive law expressed in equation (29) are used in turn to implement the control law 
based on the certainty equivalence principle defined by the equation (35):

(35)

where y/ (/ + 2) is the output of the reference model defined by equation (31). The 
overall controller structure is shown in figure 9. Because d=2 the reference heading

D-16



angle at time (t+2) must be available. In other words the reference heading angle two 
steps ahead is needed in order to implement the above control law.

7. Simulation Results

The adaptive controller presented above was evaluated by a simulation study involving 
the containership model described in section 2. Due to the presence of external 
disturbance and the approximation introduced by the radial basis network, in the 
adaptive law represented by equation (29) the dead-zone was sets to a value 
proportional to the wave induced state vector xw . In order to avoid unbounded control 
output the parameter /70 is constrained to be outside the interval [-0.1;+0.1]. The wave
conditions are defined with respect to equation (3) by an average period of T=8 sec and 
a significant wave height of h=3 meters.

Fig. 9: Adaptive controller structure

The shallow water effect has been tested both by a constant change and a step change in 
the water depth. Figure 10 shows the depth of water at each time instant and the relative 
hydrodynamic parameter values as expressed by equation (5). With respect to figure (2) 
the coefficients are:

B=32; % Breadth [m] 
T=10.7; % mean draft [m]

The shallow water effect begins to take effect at water depth from 3 to 4 times T. Note 
that when H=T the ship is running aground, F will be zero and the coefficients Kj will 
diverge to infinity. Therefore, in the simulations was set a minimum value for the water 
depth as, Hfmal =T + s with s > 0.

Figure 11 shown the heading and the rudder angle for a sequence of course-changing 
manoeuvres with wave disturbances and shallow water effects defined as above and 
starting angle of attack of 60°. All parameters, of equation (33) except for /?„, where 
initialised to zero. Figure 12 shows the parameter values during the adaptation and the 
tracking and estimation error. Due to the presence of the dead-zone in the adaptive law, 
it is not guaranteed that the tracking error will converge to zero. This is shown in the 
appendix where it is also proved the stability of the overall system. Finally, figure 13
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shows the same sequence of course-changes as shown in figure 11, with the controller 
parameters initialised with values different than zero. From this figure it is possible to 
understand how a good initialisation of the controller parameters will enhance the 
transient response of the controller. For this instance the application of multiple models 
and switching criteria suggested in Narendra and Balakrishnan27 is worth considering.

reference and yaw angle
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Fig. 11: Heading and rudder angle for course-changing manoeuvre
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Fig. 10: Water's depth and hydrodynamics parameters

8. Concluding Remarks

In this paper the problem of designing an adaptive autopilot for a containership is 
addressed. Non-linear models describing the steering dynamic are introduced in order to 
justify the choice of the controller and identifier structure. Based on the certainty 
equivalence principle an indirect adaptive controller is designed and evaluated by
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simulation study. The adaptive control law is motivated by well-known results in linear 
adaptive theory. During the controller design in order to take into account the non-linear 
nature of the ship's dynamics, a radial basis function neural networks is used to 
approximate the non-linear function defined by the Bech's reversal spiral test. The 
choice of the radial basis neural network upon the multilayer perceptron neural network 
is also motivated. Due to the presence of external disturbance induced by the waves and 
the approximation introduced by the neural network, a dead-zone in the adaptive law is 
introduced. As shown in the simulation results, the transient response of the adaptive 
autopilot can be enhanced by a proper choice of the initial values for the controller 
parameters. However all simulation results showed that the proposed controller is able 
to deal with the dynamics changes that a ship can encounter due to different sailing 
conditions.

reference and yaw angle rudder angle

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
time in sec

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
time in sec

I Fig. 13: Heading and rudder angle for the course-changing manoeuvre 
changing manoeuvre

Appendix

The adaptive law expressed by equation (29) is motivated by the linear adaptive theory,
in which it has been proved that if:
the relative degree d, of the system is known,
the non-linear functions/satisfy a global Lipschitz condition and
the output of the system does not grow faster then the input,
then the non-linear system expressed by the equation (23), with the adaptive law
expressed by equation (29) and the control law (30) results in all the signals being
uniformly bounded and there exist an integer K, and a non-negative constant C such
that:

A detailed proof of this result can be found in the original paper Peterson and 
Narendra25 or in chapter 8 of Narendra and Annaswamy24 or in the books of Astrom and 
Wittenmark28, loannou and Sun29 . Here the main steps involved are briefly highlighted.
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Step 1 .

Considering a bounded disturbance e , equation (23) can be rewritten:
(A.I) 

the identification error became:
e(k + 1) = &(k + \)-y(k + 1) + s(k) = </> r (k}co(k) + s(k) (A.2)

where <f>(k} = d(k)-0 is the parameter error. Using the direct method of Lyapunov it is 
proved that
the parameter error <f>(k) - d(k}-9 is bounded,
the identification error either does not grow faster then the signal vector cv(k) or is
bounded e{k < s and
the parameter error converge lim|A^(&)j[ = 0 .

-" '*-

This can be done by choosing the Lyapunov candidate function v(k) = $ T (k)$(k). The 
time derivative evaluated along equation (29) is:

V(k +1)- V(k) = <f> T (k + l)0(* + \}-(f> T (*VW =

2-i;(*)J

If e(k + 1) > £:max , with 0 < tj(k) < 2 the first term of the right hand side of equation 
(A.3) dominates the second term therefore AF(&) < 0. If on the contrary e(k + 1) < emaji 
the parameter vector is not updated therefore &V(k)= 0. Hence in any case for all k is

i) Because the sequence K(&) is bounded and non-increasing, it must converge as
k —> oo therefore ||^(^)j| is bounded.
ii) Since limAF(A:)=0 either K, exist such that for k>Kt e(k\<emwi , or the

sequence e(tk +l), with tk defined as tk {/: e(i + 1) > £maii } are the time instants where 
the identification error is greater then £max , cannot grow faster then the signal vector at 
the time tk :

e \fk + 1J = °m<av* J||J 
which implies:

r / M!e(k + 1) = o\ sup|fi)(^)(| (A.4)
L t&k J

Equation (A.4) can be rewritten e(k + 1) = cr(£)||a>(&)|| where limcr(A:) = 0.
TV/ II II A—>00

iii) From the adaptive law equation (29) it follows that

which leads to lim||A^(£J|| = 0
A—>oo

Step 2.
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Using arguments based on the input-output relationships, it is shown that the state 
vector of the non-linear systems (23) is bounded and the tracking error converges.

This is achieved first considering hypothesis three, for which the output of the system 
i//(k) cannot grow faster then the input S(k) , this is expressed by the order relation:

(A.5)
\_t<:k+d

For hypothesis two and equation (A.5) the output cannot grow faster then the vector 
signal a>(k) which is:

co(k) = O\ sup \j/(k)
\_t<,k+d J

(A.6)

Because the use of the dead-zone in the adaptive law, the estimated parameter vector is 
bounded. Hence, to conclude the proof, it is necessary to show that the output y/(k) and 
the estimated output fi(k) are also bounded.

The control law (29) based on the certainty equivalence principle has to satisfy:

Now studying the tracking error: 
• d)- ym (k + d) = e T co(k + d •d-\)+e =

k+d-2

./=*

k+d-2

j=k
co(k

For equations (A.4) and (A.6) it is possible to infer that the tracking error grows slowly 
than the output

d] - ¥m (k + dl = o sup ¥(t] + C (A.5) 
\_i<k+d J

where C is a non-negative constant depending on e . Since y/m (k) is a bounded signal, 
cannot grow in an unbounded fashion and this implies that

The estimation error also converges to:

Finally since y/(k)is bounded from (A.2) also S(k)is bounded.

The knowledge on the relative degree d, required by hypothesis 1, is fulfilled by the 
analysis outlined in section 3. Hypothesis 2, is guaranteed by the choice on the radial 
basis function, while hypothesis 3, implies that the ship is directionally stable. Based on 
the above argument, it is possible to conclude that the control law described by equation 
(30) with the adaptive law of equation (29), guarantee that all the signals in the adaptive 
loop are bounded and that the tracking and estimation error converges.
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SYNOPSIS

This paper describes the development of a new autopilot for ships, which is based upon the well-known model-reference approach, the 
optimum performance of which is achieved through the use of artificial neural networks. The system's behaviour is defined by the 
model reference through a setting of specific parameters, while the neural controller is properly trained in order to comply with the 
desired performances. So for sailing in restricted water, where the manoeuvre precision is the most important feature, it will be tuned to 
give a zero overshoot in the ship heading angle response, in order to avoid the risk of a dangerous path. A high value for the initial yaw 
rate can also be selected in order to clearly show the intention of the manoeuvre to others ships. On the contrary during navigation in 
open water, a more relaxed performance can be selected, in order to minimise fuel consumption and drag force due to the rudder motion. 
The algebraic part of the adaptive control design is formulated using the assumptions that the ship's dynamics can be represented by a 
Auto-Regressive-Moving-Average model, and that the neural network chosen for the controller can approximate the control law with any 
degree of accuracy. Finally, the analytical part of the controller design, is accomplished using the back-propagation algorithm which in 
this application is able to adapt on-line the network's controller parameters in order to guarantee the closed loop performances as 
specified by the model reference. A series model is also introduced in order to take into account the non-linearity in the ship's rudder 
dynamics.
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INTRODUCTION

Historically the first ship control system was introduced by Sperry [20] and Minorsky in 1922 [14]. The aim of this 
autopilot was to maintain the course of the ship using a simple proportional action on the heading error angle. The 
implementation and use of such a simple autopilot demonstrated that thanks to a better course keeping there was also a 
reduction in propulsion losses and therefore a saving in fuel costs. A further improvement of the control law was the 
inclusion of a derivative term for the heading error and a further integrating term leading to the better known PID autopilot. 
Due to the relatively simplicity in the implementation of PID autopilot, this kind of controller dominated the scenario until 
the early 1970s.

Because of the increasing cost of fuel, controlling the ship motion became a problem of major interest. The new challenge 
was to develop and put into operation new ship's control systems, which could perform the desired task in a safe and 
economical way. For this purpose the coupling between the different motions could not be neglected. The most popular 
approach was the Linear Quadratic (LQ) Controller, in which the controller parameters are selected in order to satisfy 
certain optimal criteria expressed as a quadratic cost function. Different cost functions taking into account yaw and rudder 
deviation, fuel consumption, etc., were proposed [16], [6], and [12]. Although the LQ technique appeared robust for 
parameter changes, other researchers were investigating the applicability of adaptive control techniques such as model 
reference [9], [1] or self-tuning adaptive controller [11], [5], in order to take into account the non-linearity in steering 
dynamics. Adaptive control is also needed to maintain optimal performances, even when the process characteristics change 
due to the changing in forward speed, load condition, water deep etc.

The fast development of small and inexpensive microcomputers and advances in computing technology have fuelled the so- 
called 'Intelligent Control' theory, in which control algorithms are developed by emulating certain characteristics of 
intelligent biological systems. The foundation of such systems can be found at the intersection of disciplines like 
cybernetics, artificial intelligence and informatics [23]. The ship autopilot presented herein is based on the well-known 
theory of model reference adaptive systems. In general, the design based on stability theory methods requires that either the 
process and reference model be linear. The solution adopted in this paper in order to deal with certain class of non-linearity 
due to the ship steering machine, is based on the work of van Amerongen (1984) [2], then the design of a intelligent non 
linear adaptive controller based on model reference theory and neural network concepts is presented.

SHIP MATHEMATICAL MODEL

The mathematical model of a container ship used in this study is described in detail in [21] and [4]. It is herein considered 
a stochastic extension of such models capable to describe the ship response in irregular sea waves, which is expressed by 
the following non-linear equations:

c . 
m\ u— vr — xg r 2 + zg pr | = X + .

m\v+ur-z l,p+x sr r\ = i + iw
^ (1)

/„ r+ mxA ur + v\ = N + Nw 
I )

l^ p- mz\ ur + v = K + Kw - pgDRz (<p)

The above equations with reference to the co-ordinate system shown in figure 1, describe the coupled surge, sway, yaw and 
roll motions, where D is the displacement, g the gravity constant, p the water mass density, Rz(cp ) is the action of the 
Tightening arm that depends on the roll angle <p, while (xG,0,zG) are the co-ordinates of the mass centre. The mass is 
denoted by m whereas Ixx and Izz are the inertial moments about x and z, respectively. The linear velocity of surge and 
sway are u and v and the angular ones of yaw and roll are respectively r and p. The Tightening arm function can be 
expressed as:

<p (2)

where GM is the ship metacentric height and BM is the distance from the centre of buoyancy to the metacentre.

Terms X, Y denote the deterministic forces acting along x e y while N and K. are the deterministic moments around z and 
x, which take into account the hydrodynamic effects from the hull movements and forces exerted on the ship by the rudder
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and by the propulsion system. Such forces and moments are usually described [13] by regarding X,Y,N,K as polynomial 
expansion in terms of state variables, control actions and hydrodynamic coefficients.

The effects of external disturbances, i.e. wind and waves, consist of related forces Xw, Yw and moments Nw , Kw acting as 
perturbation terms in the corresponding right hand parts of eq. (1). Such terms, owing to their intrinsically random nature, 
are generally quite difficult to be characterised through explicit mathematical relations: for example, as to the waves, they 
should be calculated by integrating the wave pressure over the immersed surface of the hull, on the assumption that the 
pressure within the waves is unaffected by the presence of the ship [13]. As it has been shown in [13] and [17], a 
reasonable simplifying assumption consists in applying a linear superposition principle, which makes it possible to separate 
the ship motion due to the environment from the motion induced by the rudder and by the propeller thrust. According to 
this modelling approach, waves and wind are regarded as finite order linear realisations of stochastic processes 
characterised by known spectral densities.

Earth fixed
axes

Surge

Ship fixed 
axes

Sway

Fig:l Co-ordinate system

By limiting attention to sea waves, which are by far the dominant disturbance, it is possible to regard a long crested 
irregular sea height £(t) , at time t, as described by a one-dimensional amplitude spectrum, the main parameters of which 
are the significant wave height, h and the average wave period T. This spectrum, accepted by the International Ship 
Structure Congress (ISSC) is given by:

173/z 2 -691
(3)

The relation between the response of each individual component of the wave induced ship state vector xw = [uw vw rw pw] T, 
can be obtained in terms of the spectrum:

G , Ixw
(to) i=l,4 (4)

where % is the angle of encounter between ship and waves, U is the ship velocity and RX ,„ is the receptance operator,

which is assumed to be known from experimental tests, describing the response of the ship ilh motion to the waves [4]. In 
order to obtain the corresponding spectrum relative to the ship centre of mass, it is finally necessary to express the spectrum
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given by eq(4) as a function of the frequency of encounter between ship and waves cos = an 1- —— cos(j) . Once the
{ g ) 

waves induced ship state vector xw is computed the total ship state vector is represented by:

According to this approach, it is possible to implement an accurate and numerically reliable simulation of sea wave induced 
ship motions.

MODEL REFERENCE

The model reference adaptive system was originally proposed to solve a problem in which the performance specifications 
are given in terms of a reference model [3]. This model specified how the process output should ideally respond to the 
command signal. A block diagram of the system is shown in figure2. The controller can be thought of as consisting of two 
loops. The inner loop is an ordinary feedback loop composed of the process and the controller. The outer loop adjusts the 
controller parameters in such a way that the error, which is the difference between process output and model output is 
small. Because of the model reference represents the desired plant output with respect to the specified command input, it is 
important that the dynamics of the reference model match the dynamics of the controlled ship with respect to the magnitude 
of the demanded change of reference yaw angle. A reference model, which is too sluggish, cannot produce an optimal 
performance since the ship cannot reach the required heading in the minimum time. Conversely, it should not be used a 
reference model which is too fast compared with the ship response characteristics because this may cause rudder actuator 
saturation and performance degradation.

Figu. 2: Block Diagram of a Model Reference Controller

As suggested by [2] a course changing manoeuvre can be easily described by the step response of a second order system. 
From this response, as shown figure 3, it is possible to identify three different phases: 1) a start of the turn, 2) a steady 
turning, and 3) an end of the turn. The turn should have a start, which clearly indicates to other ships the intention of the 
manoeuvre. The stationary part is determined both by limiting the rudder angle and by controlling the rate of turn. The end 
of the turn for safety reasons, should be completed without overshoot of the heading angle. In terms of Laplace transfer 
function such a model reference can be represented by equation (5):

* 2 +*l rm +Kpm' T >*
(5)

where s is the Laplace operator and if/ r is the new requested head angle. The time constant rm is chosen approximately 2-3 

times smaller than the dominating time constant of the ship at cruise speed and must be such that the process is able to 
follow the model. If the rate-of-turn limiter is neglected, Kpm follows from the desired damping ratio (^)of the system:

pm (6)
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Possible values of £, are between £ =1 which corresponds to a zero overshoot condition, to £ =0.7 which corresponds to an 
overshoot of approximately 5% of the desired value. The selection of Tm results from the following consideration: a 
reasonable course controller will have a rate-feedback gain which makes the time constant of the ship 2-3 times smaller 
with respect to the case of the open-loop system (without controller). By choosing a similar time constant for the model 
reference this guarantees that the process can follow the model. In order to include the effect of the steering machine, 
mainly the rudder saturation and limited rate of change, such a second-order model is extended to a third order in which the 
gain factor Kpm is replaced by

where/and rs are computed on-line and are defined as

STS
(7)

c

/ _ °max 
I r- I and

\6,-S

where 6^,^ is the maximum available rudder angle, S max is the maximum rudder speed and £r is the requested rudder 
angle from the controller.

Rudder

Start ; Stationary : End

Fig. 3: Course changing manoeuvre

The third order model reference equation will then be:

Yr (8)

Such a model can be seen as a pre-filter which drives the desired heading angle, in order to avoid steering machine 
saturation related to large rudder demands. With such a pre-filtering the model reference can be easily designed as a linear 
second-order transfer function in which the parameters are exactly rm and Kpm [2]

CONTROLLER DESIGN

Neural Networks for control and system analysis have been intensively investigated during the last ten years, not only in 
terms of the research being carried out, but perhaps more importantly in terms of the potential range of applications. The 
main characteristics of neural networks for control applications can be summarised as: they can be used to approximate any 
continuos mapping [10], they perform this approximation through learning, [7] parallel processing and fault tolerance are 
easily accomplished. One of the most popular and commonly used algorithms for learning in neural networks is error back 
propagation. This algorithm is based mainly on a combination of least-mean square and gradient descent methods [18].

Generally speaking there are two main approach to the synthesis of a Model Reference Adaptive Controller (MRAC), [8], 
the first one is based on the minimisation of a predefined performance index, and the second one is based on the definition 
of a Lyapunov function. In this paper the authors present an adaptive based model reference controller through the use of
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artificial neural network by means of a minimisation of a predefined performance function through the use of the back- 
propagation algorithm.

Back-propagation algorithm

The back-propagation algorithm, is a generalisation of the Least Mean Square (LMS) algorithm, used to train multilayer 
networks. As with the LMS learning law, back-propagation is an approximate steepest descent algorithm, in which the 
performance index is the mean square error. The only difference between the LMS algorithm and back-propagation 
algorithm is given by the way in which the derivatives are calculated. As mentioned above, a neural network can be used 
to approximate any continues function [10], the structure of such network is shown in figure 4, and it can be summarised 
in: an input layer with linear neurons, at least one hidden layer of non-linear neurons and an output layer. The output of one 
layer becomes the input of the following layer, the equation that describes this operation is:

+ b m+] ) form=0,l,...,M-l (9)

where M is the number of layers in the network, W and b are respectively the weight and bias matrix and/is the neurons 
function. The neurons in the first layer receive external inputs, which provide the starting point of equation (9), the outputs 
of the neurons in the last layer are considered the network outputs.

m+\

,m+\

m+\

Fig.4: Neural network diagram

The back-propagation algorithm adjusts the network parameters (the neurons' weight and bias) in order to minimise the 
mean square error:

where x is the vector of network parameters, / is the desired output (or target) and a is the actual output from the network. 
Substituting the expectation of the squared error by the squared error at iteration k, the performance function to be 
minimised can now be written :

" -«J2 (11)

The error is minimised by starting with any set of weights and biases and repeatedly changing each weight by an amount

proportional respectively to > \ for the weight and —W for the biases as follows:
d(W) d(b)

(12)
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(13)

where a is the learning rate. For practical purposes, in [18] there is proposed a way to increase the learning rate without 
leading to undesired oscillations. A momentum term is added to equations (12) and (13) to give:

(14)

(*-i) (15)
where the momentum parameter is sandwiched between 0 < y < 1.

Adaptive Controller

The overall structure of the adaptive system proposed in this paper to control the non-linear ship dynamic is shown in 
figure 5.

Vd

Parallel Vm
^ Reference-Model —————————————————————————

Adaptation ^

/ A
/

Pre-filtering + ^^^ Course Ship's

Heading A / S

Fig. 5: Block diagram of the Model-reference neural Autopilot

Because of the assumptions made in the above mentioned model reference section, about the third-order pre-filtering, the 
non-linearity in the control action due to the rudder saturation and the limited rate-of-turn can be disregarded and the non 
linear ship dynamics can be represented by equation (16), where the heading angle at time (k+1) depends on the past value 
of (// and the control action S(k):

= f[¥(k\....,y,(k -n + (16)

This equation is a particular generalisation of the Auto-Regressive-Moving-Average (ARMA) model, particularly useful 
for control purposes since the output depends linearly on the control action S(k). With respect to such a model, if the non 
linear functions/and g are known, the input S(k) at any instant can be computed as:

40 = (k - n + 01} (17)

where y/m is the desired output at time (k+1) imposed by the model reference.

A neural network in parallel with the ship model, as shown in figure 6, can perform an on-line identification of the function 
/of equation (16). Here the error at time k+1, e(k+l) will be back-propagate through the ship neural model and then 
through the neural controller. As suggested by Narendra [15], the neural ship model, also known as the sensitivity model, is 
used in order to back-propagate the error for the upgrading of the controller's parameters while the neural controller 
performs the identification of the function g, which is supposed to be invertible. The neural controller is constituted by an 
input layer of two neurons, an hidden layer of ten non-linear neurons and an output layer of one linear neuron. The 
controller inputs are the desired yaw angle at time k+1 and the actual yaw angle at time k, the output is the rudder angle at
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time k, which should drive the ship's heading to the desired yaw angle at time k+i. The adaptation law, as discussed above, 
is based on the error defined as the difference between the desired and the actual ship heading as follows:

The weights and biases changes should be proportional to:

(18)

(19)

= 2(e(k +})) 

The unknown part of equation (19) and (20), in order to solve the adaptation problem is the derivative ^WV*-

In fact the error e(k+l) is known as well the changes ^ ^/j( \ and
/ \wi,j I

(20)

x*»-
\, which can be calculated by the 

back-propagation algorithm trough the neural controller. Although Saerens et al [19] suggested the use of the 

ignl W{ + %(£(%))} instead of "^ + /jfxtfc))' tne authors preferred to identify on-line the function/as abovesign

mentioned, in such a way to mimic the ship behaviour in order to back-propagate the error e(k+l) through the model and 
then through the controller in order to upgrade the weights and bias of the controller network according to equations (14) 
and (15). This choice is motivated by the fact that, especially when the model is a non-linear, multivariable and strongly

coupled system, it is difficult to properly determine the signl "^ + (sli and a wrong sign can cause ambiguity in 

training the network.

Control 
Input vector Neural 

Controller

Ship 
Neural-Model

S(k)

Heading 
Set point

Ship dynamic

Model Reference

Fig.6: Block diagram showing the adaptive neural controller.

Ambiguity in training the network means that the neural controller establishes a "cause and effect" relationship, between 
input and output, which is contrary to what would be expected from a clear understanding of the situation being 
investigated. For instance, controlling a ship with a large inertia and subject to environmental excitation can lead to the 
particular ambiguity of learning the incorrect result that "to turn the ship to port the controller needs to instruct the rudder to 
be turned to starboard". The choice to identify a neural model of the ship in order to compute the

K a^so consistent with what is suggested in [22], in which a state space model of the ship isderivative

assumed to be available.
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SIMULATIONS AND RESULTS

The model reference neural controller presented above was tested by simulation experiments involving the containership 
described in [21]. The control algorithm can be summarised as:

Choice of the interim reference head angle from the third order series model,
Upgrade the neural ship model from the measured actual input/output,
Back-propagate the actual ship head error, in order to adapt the neural controller,
Apply the neural controller output to the ship mathematical model presented in equation (1),
Go back to step 1).

In order to improve the performance of the neural adaptive controller, only in terms of algorithm time response, an off-line 
training of the controller was performed without including the external wave disturbances. The purpose of the off-line 
training was to find the appropriate initial values of the weights and biases of the adaptive controller, which then could be 
adapted on-line with a fewer numbers of steps with respect to the case in which the off-line training was not performed. 
Although in training neural networks it is advisable to include the disturbances in the training data, it is the authors' opinion 
that in this particular case the inclusion of disturbances can not clearly demonstrate the real adaptability nature of the 
controller. In this case, off-line training was used to help the back-propagation algorithm overcome the drawback of local 
minima.

In figures 7 and 8, simulations results for a 10 degree and a 30 degree course manoeuvres are shown. The external waves 
disturbance is characterised by a significant wave height of h=3 m and a period of 7=8 sec. The 10 degree manoeuvre is 
simulated with a starting angle of attack (the angle between the longitudinal ship axis and the mean waves direction) of 45 
degree while the 30 degree manoeuvre has an initial angle of attach of 60 degree, leading to a final situation of beam sea. 
Also in this critical condition, as it can be appreciated from the simulation response, the model-reference neural autopilot is 
able to maintain properly the ship course. In the figures, the dashed lines represents the model reference output, while the 
solid line represents the actual ship response. From these figures is possible to appreciate the excellent tracking 
performance of the model reference neural autopilot.

The parameters rm and kpm of the series model for those particular manoeuvres were identified by simulating the ship's 
response with a conventional PID controller. The aim was to find those parameters values, which did not cause saturation 
in the rudder machine. An example of these values are shown in table I.

Table I. Model reference parameters

Manoeuvre 
Degree
5
10
20
30
40

is"•pm
(5% overshoot)
0.0728
0.05
0.03
0.027
0.023

T pm

(5% overshoot)
1
10
15
18
21

*^-pm
(0% overshoot)
0.041
0.035
0.025
0.019
0.016

1 pm

(0% overshoot)
6
7
10
13
15

As a final observation the authors would like to mention that although artificial neural networks have been shown to 
perform well as controllers for course-changing applications and the generalisation properties have provided robust 
performances for a range of magnitudes of reference step, much further work remains to be done. The inclusion of others 
factors in the controller design, such as water depth and load condition that clearly affect the ship dynamic, is part of the 
ongoing research. Also some insight on stability analysis will be carried out.

CONCLUSIONS

In this paper the authors presented a way for the synthesis of a model reference adaptive autopilot for a containership 
through the use of neural networks. The more relaxed assumptions on the ship's dynamic, made during the controller 
design, led to the characterisation of a controller able to dial with non-linearity produced by the environmental disturbances 
and in principal with all non-linearity that are reflected in a change in the ship's dynamics. However, the gain in 
generalisation is paid for with a lack in stability analysis and the good qualitative performance of the controller are only 
showed through simulations. In all the simulations carried out the model-reference neural autopilot was able to follow the 
desired response specified by a model reference, the parameters of which were properly settled in order to observe the 
ship's dynamics.
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As a final remark, is possible to say that this paper address a quite promising technique for the design of adaptive non 
linear controllers. However for the implementation of such technique, in the real world, it is still necessary first to prove the 
generalisation of the simulation results showed herein. Therefore investigation of stability, persistent excitation and 
robustness of such systems is mandatory in order to guarantee the success.

Head angle for £ = 0.7 Head angle for £ = 1

SO 1OO 150 200 250 300 SO 1OO ISO 20O 25O 30O

Rudder angle Rudder angle

20O 2SO 3OO

Fig.7: A 10 degree course changing with a significant waves height of h=3 meters and periodo of T=8 sec.

Head angle for £ = 0.7

ISO 2OO 250 3OO

Head angle for £ = 1

100 15O ZOO 250 3OO

Rudder angle

100 ISO 200 250 300

Rudder angle

50 100 150 200 250 300

Fig.8: A 30 degree course changing with a significant waves height of h=3 meters and period of T=8 sec.
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Abstract

This paper describes the development of an autopilot for a ship which is based upon the well-known 
model-reference approach, the optimum performance of which is achieved through a combination of 
an artificial neural network and fuzzy logic. The system's behaviour is defined by the model reference 
through a setting of specific parameters, while the neural controller is properly trained in order to 
comply with the desired performances. For sailing in restricted water, where the manoeuvring 
precision is the most important target, the model reference is tuned to give a zero desired-overshoot in 
the ship's heading angle response, in order to avoid the risk of a dangerous path. Whilst during 
navigation in open water, a more relaxed performance can be selected, in order to minimise fuel 
consumption and drag force due to the rudder motion. Moreover, the dynamic behaviour of the 
reference model should be matched to the dynamics of the ship regardless of the magnitude of the 
demanded change of yaw angle. A reference model, which is too sluggish, cannot produce an optimal
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performance since the ship cannot reach the required heading in the minimum time. On the other hand 
a reference model which is too fast compared with the ship response characteristics should not be used 
because this may cause rudder actuator saturation and a consequent performance degradation.

The data for training the neural network are generated from simulations based on a non-linear ship 
equations. In order to provide more realistic conditions a stochastic model of the environment is 
considered both during the training period and during the simulation tests. The effects of the shallow 
water on the ship's dynamics are also considered by changing some of the hydrodynamic derivatives 
of the mathematical model.

1 Introduction

Historically the first generation of ship control systems were introduced by Sperry 1 and Minorsky2 in 
1922. The aim of these autopilots was to maintain the course of the ship using a simple proportional 
action on the heading error angle. The implementation and use of such a simple autopilot demonstrated 
that thanks to a better course keeping there was also a reduction in propulsion losses and therefore a 
saving in fuel costs. A further improvement of the control law was the inclusion of a derivative term 
for the heading error and a further integrating term leading to the better known PID autopilot. Due to 
the relatively simplicity in the implementation of PID autopilot, this kind of controller dominated the 
scenario until the early 1970s.

Owing to the increasing cost of fuel, controlling the ship motion became a problem of major interest. 
The new challenge was to develop and put into operation new ship's control systems, which could 
perform the desired task in a safe and economical way. For this purpose the coupling between the 
different motions could not be neglected. The most popular approach was the Linear Quadratic (LQ) 
Controller, in which the controller parameters are selected in order to satisfy certain optimal criteria 
expressed as a quadratic cost function. Different cost functions taking into account yaw and rudder 
deviation, fuel consumption, etc., were proposed Norbin3 , Katebi4 et al, and Broome et al. Although 
the LQ technique fits very nicely in the formulation of the ship's course-keeping control problem and 
appeared to be robust for parameter changes, other researchers were investigating the applicability of 
adaptive control techniques such as model reference Honderd & Winkelman6, Amerongen & Udink 
Ten Gate7 or self-tuning adaptive controller Kallstrom8et al, Brink9et al, which are much appropriate 
for the formulation of the ship's course changing problem. Adaptive control is also needed to maintain 
optimal performances, even when the process characteristics change due to the changing in forward 
speed, load condition, water deapth etc. Astrom10 .

The ship's autopilot presented herein is based on the well-known theory of model reference adaptive 
systems. In general, the design based on stability theory methods requires that either the process and 
reference model be linear. The solution adopted in this paper is based on the assumption that an Auto- 
Regressive-Moving-Average model can describe the ship's dynamics. The structure of the neural 
controller is thus obtained indirectly from the estimation of the ARMA model parameters. As will be 
discussed further, this indirect approach has different advantages with respect the direct adaptive 
approach, especially when the back-propagation algorithm is used for the controller's parameter 
adaptation.

2 Mathematical model

The mathematical model of a container ship used in this study is described in detail in Blanke & 
Jessen 11 and Tiano and Blanke12 . It is herein considered a stochastic extension of such models capable 
to describe the ship's response in irregular sea waves, which is expressed by the following non-linear 
equations:
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mu-vr-xKr+zK pr =

m\ v+ ur - z p+ x2 r \ = Y

/,, r+ mx a I ur + v | = N +z-

(1)

The above equations with reference to the co-ordinate system shown in figure 1, describe the coupled 
surge, sway, yaw and roll motions, where D is the displacement, g the gravity constant, p the water 
mass density, Rz(<p ) is the action of the Tightening arm that depends on the roll angle cp, while 
(XG,O,ZG) are the co-ordinates of the mass centre. The mass is denoted by m whereas Ixx and Izz are the 
inertial moments about x and z, respectively. The linear velocity of surge and sway are u and v and the 
angular ones of yaw and roll are respectively r and p. The tightening arm function can be expressed as:

Rz (cp) = sin (p\ GM + —— tan 2 <p (2)

where GM is the ship metacentric height and BM is the distance from the centre of buoyancy to the 
metacentre.

Earth

Roll 
P,K-a—=-

Surge

Heave
Ship

Sway

Figure:! Ship's system frame
Terms X, Y denote the deterministic forces acting along x and y while N and K are the deterministic 
moments' around z and x, which take into account the hydrodynamic effects from the hull movements 
and forces exerted on the ship by the rudder and by the propulsion system. Such forces and moments 
are usually described by regarding X, Y, N and K as polynomial expansion in terms of state variables, 
control actions and hydrodynamic coefficients Lewis .

The effects of external disturbances, i.e. wind and waves, consist of related forces Xw, Yw and moments 
Nv, Kw acting as perturbation terms in the corresponding right hand parts of equation (1). Such terms, 
owing" to their intrinsically random nature, are generally quite difficult to be characterised through 
explicit mathematical relations: for example, as to the waves, they should be calculated by integrating 
the wave pressure over the immersed surface of the hull, on the assumption that the pressure within the 
waves is unaffected by the presence of the ship. As it has been shown in Lewis 1 and Price & Bishop 14 , 
a reasonable simplifying assumption consists in applying a linear superposition principle, which makes
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it possible to separate the ship motion due to the environment from the motion induced by the rudder 
and by the propeller thrust. According to this modelling approach, waves and wind are regarded as 
finite order linear realisations of stochastic processes characterised by known spectral densities.

By limiting attention to sea waves, which are by far the dominant disturbance, it is possible to regard a 
long crested irregular sea height £(t), at time t, as described by a one-dimensional amplitude 
spectrum, the main parameters of which are the significant wave height, h and the average wave period 
T. This spectrum, accepted by the International Ship Structure Congress (ISSC) is given by:

173/z 2 -691

The relation between the response of each individual component of the wave induced ship state vector 
xw = [uw vw rw pw]T, can be obtained in terms of the spectrum:

i=l,..4 (4)

where z *s me angle of encounter between ship and waves, U is the ship velocity and R <„ is the
receptance operator, which is assumed to be known from experimental tests, describing the response of 
the ship ith motion to the waves, Blanke & Jessen11 . In order to obtain the corresponding spectrum 
relative to the ship centre of mass, it is finally necessary to express the spectrum given by equation (4)

as a function of the frequency of encounter between ship and waves a>e = co 1 — —— cos(^) . Once the
I 8 ) 

waves induced ship state vector xw is computed the total ship state vector is represented by:

According to this approach, it is possible to implement an accurate and numerically reliable simulation 
of sea wave induced ship motions.
In order to take into account the effect of shallow water in the ship's dynamics, based on the work of 
Sheng 15 and Clarke 16, the correction of the following six hydrodynamic parameters with respect the 
deep of water are as follow:

N

where

0.0775 0.0110 „ _ 0.0643,0.0724 0.0113. _ 0-0342 = — ———— - - —— ~ + ~2
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and

In the above formulae the subscript oo refers to the deep water value of the derivative. The parameters 
H, B and T are specified in figure 2. The correction suggested by Sheng and reported in equation (5) 
do not completely describe the effect of the shallow water, they are in fact limited to few 
hydrodynamic derivatives. However, since there is not a more complete model available in the 
literature, equation (5) is used in this simulation study.

B
Sea surface

H
Sea bottom

Figure 2: The ship in shallow water

3 Adaptive Controller

Adaptive control deals with the problem of controlling the output of a plant in the presence of 
parametric or structural uncertainty. In conventional adaptive control theory, to make the problem 
analytically tractable, the plant is assumed to be linear with unknown parameters. A suitable controller 
structure is chosen, and the parameters of the controller are adjusted using an adaptive law, so that the 
output of the plant follows the output of a reference model asymptotically. Assuring that a set of fixed 
parameters in the controller can achieve the desired response makes the problem well-posed and 
represent the algebraic part of the problem, while the generation of stable adaptive laws constitutes the 
analytic part. A general block diagram representing such adaptive system is sketched in figure 3. Here 
the controller can be thought of as consisting of two loops. The inner loop is an ordinary feedback loop 
composed of the process and the controller. The outer loop adjusts the controller parameters in such a 
way that the error, which is the difference between process output and model output is small.

Reference 
Manoeuvre

V

Controller

Adjustment 
mechanism

u
Ship 

Dynamics

Figure 3: Model reference adaptive system

Two distinct approaches, named direct and indirect adaptive approach, have been proposed for the 
design of adaptive controllers. In the indirect approach, the parameters of the plant to be controlled are 
estimated and the parameters of the controller are adjusted based on these estimates. In the direct
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approach, the control parameters are directly adjusted based on the observed output error. Narendra & 
Annas wamy17

3.1 Statement of the problem

As mentioned above, a stable reference model with input-output pair {y/d (k),y/m (k)}can be chosen so 

that ym (k) represents the desired output behaviours for the unknown plant represented by the input- 

output pair {u(k),ys(k)} . The object is to determine a bounded control input u(.) so that the error 

e(k) = \Vm (k)- y(&)| , is bounded and tends to zero asymptotically. To makes the problem analytically 
tractable some assumptions on the non-linear plant dynamics must be done. In particular, it is assumed 
that, in the domain of interest the plant is identifiable with a finite input-output sequence and it is of 
known relative degree.

A possible representation of the ship's dynamics, is the non-linear Auto-Regressive-Moving-Average 
model:

(6)

This representation is particularly interesting for control purposes, because if the function /and g are 
known, the control action can be computed as:

[u(k\..,u(k-m + l)]=g- l {^m (k + l)-f[^(k\..^(k-n + l)]} (7)

where ym is the output of the reference model. 

3.2 Reference model

As suggested by van Amerongen18 a course-changing manoeuvre can be easily described by the step 
response of a second-order system. From this response, as shown figure 4, it is possible to identify 
three different phases: 1) a start of the turn, 2) a steady turning, and 3) an end of the turn. The turn 
should have a start, which clearly indicates to other ships the intention of the manoeuvre. The 
stationary part is determined both by limiting the rudder angle and by controlling the rate of turn. The 
end of the turn, for safety reason, should be completed without overshoot of the heading angle. In 
terms of Laplace transfer function such a model reference can be represented by equation (8):

+S/Tm +Kpm /Tn
(8)

where s is the Laplace operator. The time constant rm is chosen approximately 2 to 3 times smaller 
than the dominating time constant of the ship at cruise speed and must be such that the process is able 
to follow the model. If the rate-of-turn limiter is neglected, Kpm follows from the desired damping ratio 

(<£) of the system:

Possible values of £ are between £,=\ which corresponds to a zero overshoot condition, to £=0.7 
which corresponds to an overshoot of approximately 5% of the desired value. The selection of rm 
results from the following consideration: a reasonable course controller will have a rate-feedback gain
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which makes the time constant of the ship 2 to 3 times smaller with respect to the case of the open- 
loop system (without controller). By choosing a similar time constant for the model reference this 
guarantees that the process can follow the model. However, with such a linear model reference, hard 
non-linearities such as saturation in the steering machine, can produce divergence from the perfect 
model following leading to instability of the closed-loop system. Instead of introducing non-linearity 
in the model reference, van Amerongen, suggests modifying the commanded input to the reference 
model such that the reference model remains linear. In van Amerongen18 , such a command generator 
has the same structure of the model reference equation (8), with the gain factor Kpm replaced by the 
term:

(10)

where/"and TS are computed on-line and are defined as

e
f _ max.
J ~ I , and

8r -5

where£max is the maximum available rudder angle, <y max is the maximum rudder speed and Sr is the 
requested rudder angle from the controller.

\ Headi
I Rudder

Start Stationary End 

Figure 4: Course changing manoeuvre

The equation of the command generator will then be:

(11)

Although the structure of the model reference proposed by van Amerongen is retained, the design of 
the command generator, herein, is carried out through the use of a fuzzy system. The input of the fuzzy 
command generator are the requested final value of the ship's heading angle, the rudder speed and the 
maximum allowed rudder angle. The output is the interim set point for the second-order model 
reference. Figure 5 shows the block diagram of the overall system.

4 Neural-Control Design

If the functions/and g are known and g~ l exist, the output of the plant represented by equation (6), 
with the control law (7), follows the output of the reference model asymptotically. Moreover, because 
the reference model is linear means that the feedback system is also linear with the same transfer
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function as the reference model. When the functions /, g and g" 1 are unknown, two possible choices 
corresponding to the direct and indirect adaptive approach are possible.

In the direct adaptive approach, the desired control action [u(k),..,u(k-m+l)], is realised as a non-linear 
function of \ym (k + 1) and \y/(k ),..., y/(k - n + 1)] using a neural network in the feedback path. The most 
popular way to adjust the network's parameters is by the use of the back-propagation algorithm. This 
algorithm, adjust the parameters of the network in order to minimise the mean square error defined as:

F(X)=E[e 2 ]=E[(t-a)2 } (12)

where x is the vector of network parameters, t is the desired output (or target) defined by the reference 
model and a is the actual output of the plant. However, since the error is measured at the output of the 
plant, to obtain the desired partial derivatives the equations describing the plant must be known. 
Different solutions to this problem have been proposed. In Saerens & Soquest19 for instance, it is 
proposed to use of the sign of the partial derivative describing the ship's dynamics (the input-output 
relationship). However, as mentioned in Tiano20et al, especially for ships of large inertia and sailing 
subject to environmental excitation, the determination of the proper sign of the partial derivative is not 
always a trivial task. The wrong sign in the derivative could lead to ambiguity in training the neural 
network. Hence, unless further assumptions concerning the input-output characteristics of the plant are 
made, direct adaptive control under these circumstances is not possible.

The second way to determine the control action when the function/ g and g' } are not known is based 
on the indirect adaptive approach. The unknown functions are estimated using neural networks and 
used in turn to determine the control action that will lead the plant to the desired behaviours.

In the following sections the indirect adaptive control design for the containership presented in the 
section 2 is outlined. Some simulation results are also presented showing the applicability of such an 
approach.

4.1 Indirect adaptive controller

Under the hypothesis on the ship's dynamics stated in equation (6), the object is to describe a 
systematic procedure for the identification of the functions /and g which in turn will be used for the 
indirect adaptive controller design. The architecture for the estimation of those functions is presented 
in figure 6. The networks NN/ and NNg represent the estimation of the function /and g respectively. 
Since the input of the network NNf (•) is fed with the ship's output y/(-) , instead of the estimated 
output ^(-) , this estimation architecture is refereed as series-parallel identification.

When training a neural network to approximate a continuous functions over a compact set, both 
theoretical and practical considerations arises. There will be a trade-off between the size of the 
network chosen, which directly influences learning time, and the accuracy that can be achieved. From 
a practical point of view it is of considerable interest to know how large an error can be tolerated and 
how it will affect the control of the system. If the initial state can be chosen at the discretion of the 
designer, the task to identify the proper parameters, is simplified. By choosing initial values with 
uniform distribution in the state space domain, the function representing the dynamics of the ship can 
be approximated to any degree of accuracy off-line, Hornick et al.

In many practical problems however, this is not the case and information about the function to be 
approximated, can be obtained only by the choice of suitable inputs u(k) and the observation of the 
corresponding outputs. This implies that the state space is not completely explored, thus making the 
identification tasks much more difficult, if not impossible. Moreover, in this particular case, the
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identification of the two functions/and g is also attempted through the same input-output pairs, where 
the output represent the sum of the output of the two functions. Therefore the above consideration on 
the choice of the input-output pairs is very important.

Using the mathematical model presented in section 2, a set of uniformly distributed initial states are 
chosen. Based on data collected from these simulations, the function AW/and NNg were identified off 
line through the use of the back-propagation algorithm Rumelhart22et al. After different simulation 
tests, the best compromise between size and precision led to the following choices: i) the network 
representing the function g and /, are constituted by a three layers network with a non-linear hidden 
layer of forty neurons and a linear output layer, ii) the regression in the input and in the output is 
chosen to be n=m=l. The function g' } is then computed from a random input-output collection of data, 
uniformly distributed in the interval [0 1] in such a way that NNK (NN , J= 1 (note that this is the

inverse of the estimated NNg, rather than the estimation of g" 1 ). Finally the function AW^ and AW ., are 

used to implement the controller as indicated in figure 7.

Model

^

Neural 
Controller

Identification 
Model

u(K\ Ship Dynamics

r̂

Figure 5: The Neuro-fuzzy model reference autopilot

The off-line identification of the networks NNg and NNg, has the purpose to find a suitable initialisation 
set of the network's parameters from which the on-line adaptation can be more easily accomplished. 
The on-line adaptation is demanded in order to comply with the parametric uncertainty due to a change 
in the sailing conditions (i.e. depth of water, load conditions etc.). However the use of more efficient 
identification algorithm could make this step unnecessary and an on-line identification can be directly 
realised.

u(k)
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With this approach, the difficulty with using the back-propagation algorithm to compute the partial 
derivative with respect the unknown ship's dynamics is overcome.

Neural-controller
¥.m

•

i
i

_z ^ AW (•)•f

-t
V
^ _

_ /

njr iU -1 —— >
: * '

:

Ship
Dynamics

T \- ' *>

Figure 7: The neural controller structure

5 Simulation Results

The neuro-fuzzy model reference controller presented above was evaluated by a simulation study 
involving the containership model described in Tiano and Blanke 12 . The control algorithm can be 
summarised as:

Choice of the interim reference heading angle from the fuzzy command generator,
Apply the neural controller output to the ship mathematical model presented in equation (1),
If time is equal to KTj then upgrade the neural ship model (function AWf and NNg) from the measured
input-output,
If time is equal to KTC then adapt the neural controller (function NNf and NNg^ ),
Back to step 1)

Steps three and four were settled at different sample time Tj and Tc respectively. In particular, for 
stable and efficient on-line control, the identification must be sufficiently accurate before control 
action can be initiated. Therefore the sample time Tj and Tc should be chosen with care. After different 
simulation experiments a reasonable choice seams to be Tj =5sec and Tc=10sec.

Figure 8, shows the changing in the hydrodynamic derivative presented in equation (5) (figures b, c 
and d), for a constant change in the deep of water (figure a). With respect to figure (2) the coefficients 
are:

5=32; % Breadth [m] 
7M0.7; % mean draft [m]

The shallow water effect begin to take effect at water depth from 3 to 4 times T. Note that when H=T 
the ship is running aground, F will be zero and the coefficients Kt will diverge to infinity. Therefore, in 
the simulations was set a minimum value for the water depth as, H flnal =T + e with e > 0.
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Fieure 8: Shallow water effect on the hvdrodvnamic oarameters 
The equation describing the change in the deep of water H, as represented in figure 8. a) is:

if time<T_stranding
H=C+m*time; 

else
H=T+epsilon; 

end
where T_stranding=300 sec, C=4*Tand m =

Figure 9 shows a 10° course-changing manoeuvre with shallow water effect as defined in figure 8, and 
wave condition defined by a significant waves height h=3 m, an average period T=8 sec and a starting 
angle of attack of 30°.

stranding

Solid-yaw angle : dotted yaw Solid-rudder angle : dotted-rudder

50 100 150 200 250 300 0 50 100 150 200 250 300
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Figure 9: A 10° course-changing manoeuvre in shallow water and with waves

As can be appreciate from the rudder responses in figure 9, as a consequence of the command 
generator, the steering machine (solid line) can follow the demanded control signal (dotted line) 
without saturation. Finally, figure 10, shows a 30° course-changing manoeuvre with the same 
conditions for the shallow water effect and the waves disturbances, but with a starting angle of attack 
of 60°, leading to a final condition of a beam sea.

Solid-yaw angle : dotted-yaw Solid-rudder angle : dotted-rudder

100 150 200 250 300 50 100 150 200 250 300

Figure 10: A 30° course-changing manoeuvre in shallow water and with waves

Also in this critical condition the neuro-fuzzy model reference autopilot is able to maintain properly 
the heading angle.

6 Concluding Remarks

Using the assumption that the ship's dynamics can be represented by an Auto-Regressive-Moving- 
Average model, the design of an indirect neural autopilot has been presented. The choice of the 
indirect approach for the design of the adaptive neural controller, especially when the back- 
propagation algorithm is used for the upgrading of the network's parameters, has also been 
demonstrated. In order to comply with the non-linearity introduced by the steering machine, a 
command generator has been introduced in the controller design. To test the performances of the 
controller, the mathematical equation representing the ship's dynamics have been extended in order to 
include the shallow water effects and the external disturbances due to the waves. With such an 
extension the parameters of the model become time varying. From the simulation results it is clear that 
the neuro-fuzzy controller is able to comply with such a parameter's change.

However, due to the off-line training, it can be argued that the proposed controller does not have the 
property of being truly adaptive. The off-line training, was proposed in order to overcome the 
problems related to the use of the back-propagation algorithm. The quality of such off-line training 
significantly influenced the controller performances, legitimating once more the above objection. It is 
in the authors' opinion that this problem is inherent to the back-propagation algorithm, therefore the 
investigation of new algorithms such those directly inspired from genetic behaviours could give a 
better solution to the problem.
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SYNOPSIS

Neural Networks for control and system analysis have been intensively investigated during 
the last ten years, not only in terms of the research being carried out, but perhaps more 
importantly in terms of the potential range of applications. The main characteristics of neural 
networks for control applications can be summarised as: they can be used to approximate any 
continues mapping, they perform this approximation through learning, parallel processing and 
fault tolerance are easily accomplished. This paper describes the development of a new 
Model-Reference-Adaptive autopilot for ships based on neural network controller. The 
system's behaviour is defined by a model reference through a setting of specific parameters, 
while the neural controller is properly trained in order to comply with the desired 
performances. For sailing in restricted water, where the manoeuvre precision is the most 
important target, the model reference must be tuned to give a zero desired-overshoot in the 
ship heading angle response, in order to avoid the risk of a dangerous path. A high value for 
the initial yaw rate can also be selected in order to clearly shown the intention of the 
manoeuvre to others ships, on the contrary during navigation in open water, a more relaxed 
performance could be selected, in order to minimise fuel consumption and drag force due to 
the rudder motion.

1 INTRODUCTION

Historically the first generation of ship control systems were introduced by Sperry and 
Minorsky in 1922. The aim of these autopilots was to maintain the course of the ship using a 
simple proportional action on the heading error angle. The implementation and use of such a 
simple autopilot demonstrated that thanks to a better course keeping there was also a 
reduction in propulsion losses and therefore a saving in fuel costs. A further improvement of 
the control law was the inclusion of a derivative term for the heading error and a further 
integrating term leading to the better known PID autopilot. Due to the relatively simplicity in 
the implementation of PID autopilot, this kind of controller dominated the scenario until the
early 1970s.
Owing to the increasing cost of fuel, controlling the ship motion became a problem of major
interest. The new challenge was to develop and put into operation new ship's control systems,
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which could perform the desired task in a safe and economical way. For this purpose the 
coupling between the different motions could not be neglected. The most popular approach 
was the Linear Quadratic (LQ) Controller, in which the controller parameters are selected in 
order to satisfy certain optimal criteria expressed as a quadratic cost function. Different cost 
functions taking into account yaw and rudder deviation, fuel consumption, etc., were 
proposed Norrbin (3) and Katebi et al (4). Although the LQ technique fits very nicely in the 
formulation of the ship's course-keeping control problem and appeared to be robust for 
parameter changes, other researchers were investigating the applicability of adaptive control 
techniques such as model reference Honderd and Winkelman (5), Amerongen and Udink Ten 
Cate (6) or self-tuning adaptive controller Kallstrom et al (7), Brink et al (8).

The fast development of small and inexpensive microcomputers and advances in computing 
technology have fuelled the so-called 'Intelligent Control' theory, in which control algorithms 
are developed by emulating certain characteristics of intelligent biological systems. The 
foundation of such systems can be found at the intersection of disciplines like cybernetics, 
artificial intelligent and informatic Zi-Xing Cai (9). The ship's autopilot proposed in this paper 
is based on well-known model reference adaptive approach. The solution adopted in order to 
deal with certain class of non-linearity due to the ship steering machine, is based on the work 
of van Amerongen (10) then the design of a non-linear adaptive controller based on model 
reference theory and neural network concepts is presented.

2 MATHEMATICAL MODEL

The mathematical model of a container ship used in this study is described in detail in Tiano 
and Blanke (1 l)and Blanke and Jessen (12). It is herein considered a stochastic extension of 
such models capable to describe the ship response in irregular sea waves, which is expressed 
by the following non-linear equations:

m\ u—vr — xg r 2 + zg pr \ = 

m\ v+ur - z v p+xe r
* & £

(1) 
r+mxg

The above equations with reference to the co-ordinate system shown in figure 1, describe the 
coupled surge, sway, yaw and roll motions, where D is the displacement, g the gravity 
constant, p the water mass density, Rz(cp ) is the action of the rightening arm that depends on 
the roll angle cp, while (xG,0,zo) are the co-ordinates of the mass centre. The mass is denoted 
by m whereas Ixx and Izz are the inertial moments about x and z, respectively. The linear 
velocity of surge and sway are u and v and the angular ones of yaw and roll are respectively r 
and p. The Tightening arm function can be expressed as:

(2)
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where GM is the ship metacentric height and BM is the distance from the centre of buoyancy 
to the metacentre.

Roll 
P,K

Surge

Sway Heave

Figure 1: Ship's system frame

Terms X, Y denote the deterministic forces acting along x and y while N and K are the 
deterministic moments around z and x, which take into account the hydrodynamic effects 
from the hull movements and forces exerted on the ship by the rudder and by the propulsion 
system. Such forces and moments are usually described by regarding X, Y, N, K as 
polynomial expansion in terms of state variables, control actions and hydrodynamic 
coefficients Lewis (13). The effects of external disturbances, i.e. wind and waves, consist of 
related forces Xw, Yw and moments Nw, Kw acting as perturbation terms in the corresponding 
right hand parts of equation (1). Such terms, owing to their intrinsically random nature, are 
generally quite difficult to be characterised through explicit mathematical relations: for 
example, as to the waves, they should be calculated by integrating the wave pressure over the 
immersed surface of the hull, on the assumption that the pressure within the waves is 
unaffected by the presence of the ship. As it has been shown in Lewis (13) and Price and 
Bishop (14), a reasonable simplifying assumption consists in applying a linear superposition 
principle, which makes it possible to separate the ship motion due to the environment from 
the motion induced by the rudder and by the propeller thrust. According to this modelling 
approach, waves and wind are regarded as finite order linear realisations of stochastic 
processes characterised by known spectral densities.

By limiting attention to sea waves, which are by far the dominant disturbance, it is possible to 
regard a long crested irregular sea height <£"(/), at time t, as described by a one-dimensional 
amplitude spectrum, the main parameters of which are the significant wave height, h and the 
average wave period T. This spectrum, accepted by the International Ship Structure Congress 
(ISSC) is given by:

173/z
(3)

The relation between the response of each individual component of the wave induced ship 
state vector xw = [uw vw rw pw] , can be obtained in terms of the spectrum:

i=l,4 (4)
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where % is the angle of encounter between ship and waves, U is the ship velocity and Rx^ is
the receptance operator, which is assumed to be known from experimental tests, describing 
the response of the ship ith motion to the waves Blanke and lessen (12). In order to obtain 
the corresponding spectrum relative to the ship centre of mass, it is finally necessary to 
express the spectrum given by equation (4) as a function of the frequency of encounter

between ship and waves coe = o)\ 1 - —— cos(^) . Once the waves induced ship state vector
I 8 ) 

xw is computed the total ship state vector is represented by:

According to this approach, it is possible to implement an accurate and numerically reliable 
simulation of sea wave induced ship motions.

3 ADAPTIVE CONTROLLER

Adaptive control deals with the problem of controlling the output of a plant in the presence of 
parametric or structural uncertainty. In conventional adaptive control theory, to make the 
problem analytically tractable, the plant is assumed to be linear with unknown parameters. A 
suitable controller structure is chosen, and the parameters of the controller are adjusted using 
an adaptive law, so that the output of the plant follows the output of a reference model 
asymptotically. Assuring that a set of fixed parameters in the controller can achieve the 
desired response makes the problem well posed and represent the algebraic part of the 
problem, while the generation of stable adaptive laws constitutes the analytic part. A general 
block diagram representing such adaptive system is sketched in figure 2. Here the controller 
can be thought of as consisting of two loops. The inner loop is an ordinary feedback loop 
composed of the process and the controller. The outer loop adjusts the controller parameters 
in such a way that the error, which is the difference between process output and model output 
is small.

Vd

Reference 
Manoeuvre

Controller

Adjustment 
mechanism

u
Ship 

Dynamics

Figure 2: Model reference adaptive controller
Two distinct approaches, named direct and indirect adaptive approach, have been proposed 
for the design of adaptive controllers. In the indirect approach, the parameters of the plant to 
be controlled are estimated and the parameters of the controller are adjusted based on these 
estimates. In the direct approach, the control parameters are directly adjusted based on the 
observed output error. Narendra and Annaswamy (15)

D-51



3.1 Reference model

As suggested by van Amerongen (10) a course-changing manoeuvre can be easily described 
by the step response of a second-order system. From this response, as shown figure 3, it is 
possible to identify three different phases: 1) a start of the turn, 2) a steady turning, and 3) an 
end of the turn. The turn should have a start, which clearly indicates to other ships the 
intention of the manoeuvre. The stationary part is determined both by limiting the rudder 
angle and by controlling the rate of turn. The end of the turn, for safety reason, should be 
completed without overshoot of the heading angle. In terms of Laplace transfer function such 
a model reference can be represented by equation (5):

where s is the Laplace operator. The time constant Tm is chosen approximately 2 to 3 times 
smaller than the dominating time constant of the ship at cruise speed and must be such that 
the process is able to follow the model. If the rate-of-turn limiter is neglected, Kpm follows 
from the desired damping ratio (£) of the system:

Possible values of £ are between £=1 which corresponds to a zero overshoot condition, to 
£ =0.7 which corresponds to an overshoot of approximately 5% of the desired value. The 
selection of rm results from the following consideration: a reasonable course controller will 
have a rate-feedback gain which makes the time constant of the ship 2 to 3 times smaller with 
respect to the case of the open-loop system (without controller). By choosing a similar time 
constant for the model reference this guarantees that the process can follow the model.

i Headir__
Rudder

Start Stationary End t 

Figure 3: Course-changing manoeuvre.

However, with such a linear model reference, hard non-linearities such as saturation in the 
steering machine, can produce divergence from the perfect model following leading to 
instability of the closed-loop system. Instead of introducing non-linearity in the model 
reference, van Amerongen, suggests modifying the commanded input to the reference model 
such that the reference model remains linear. In (10), such a command generator has the 
same structure of the model reference equation (5), with the gain factor Kpm replaced by the 
term:
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77TT (7)

where/and rs are computed on-line and are defined as

and TS —
5r -5

where £max is the maximum available rudder angle, J max is the maximum rudder speed and 
5r is the requested rudder angle from the controller. The equation of the command generator 
will then be expressed by equation (8):

4 NEURAL NETWORK FOR CONTROL

The ability of neural networks to approximate arbitrary well non-linear functions plays a 
fundamental role in the use of such networks as components or subsystems in identifiers and 
controller. Mainly inspired by biological systems, different types of neural networks have 
been proposed. Multilayer Perceptron Networks (MPN), Radial Basis Function Networks 
(RBFN), Cerebellar Model Articulation Controller (CMAC) are few examples that share the 
above mentioned ability to be universal approximator. However a fundamental difference 
between the different types of neural networks is represented by the way the output of the 
network is related to its parameters. For instance, when MPN are used as universal 
approximator at least one non-linear hidden layer is required, this in turns imply that the 
output of the network is related in a non-linear fashion to the network's parameters. On the 
contrary, in the RBFN with fixed parameters in the input layer, the parameters are related in a 
linear fashion to the output of the network. This fundamental difference will imply whether or 
not well-known stability results of adaptive control theory can be applied and which kind of 
learning algorithm for the adjustment of the network's parameters has to be used.

As stated previously, for the adaptive control problem two main architectures can be 
classified named direct and indirect control. In the first architecture, the plant to be controlled 
can be viewed as an additional and not modifiable layer of the network while in the indirect 
controller architecture the two steps of dynamic identification and plant control are involved. 
It is worth noting that when the direct control architecture is used, a neural model of the plant, 
that constitutes the not modifiable layer of the network, should be available. Therefore as well 
in the adaptive case, where the ship's dynamics are unknown as well in the case when the 
ship's dynamic is unstable, direct adaptive control is not possible.

With respect the neural network learning strategies, two main categories can be distinguished 
named general and specialised learning. In the former, the input space of the plant to be 
controlled is populated with training samples so that the network can interpolate for 
intermediate points. For such methods to be numerically efficient it is important that the input 
space is sampled with an appropriate interval. In the specialised learning, the controller learns
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by directly evaluating the control accuracy, which can be defined as the difference between 
the actual and the desired output of the plant. The learning procedure in both cases is aimed to 
updating (adjusting) the network's parameters.

In the following sections an indirect adaptive neural controller is presented. In order to make 
the problem analytically tractable some assumptions on the non-linear ship's dynamics are 
formulated. Based on these assumptions follow the choice of the identifier and controller 
structures that are implemented by RBFN.

4.1 Statement of the problem

As mentioned above, a stable reference model with input-output pair {y/d (k\i//m (k)}can be 
chosen so that y/m (k) represents the desired output behaviours for the unknown plant 
represented by the input-output pair {u(k\ y/(k)} . The object is to determine a bounded control 
input u(.) so that the error e(k) = \y/m (k)- y/(k]\ , is bounded and tends to zero asymptotically.
To makes the problem analytically tractable some assumptions on the non-linear plant 
dynamics must be done. In particular, it is assumed that, in the domain of interest the plant is 
identifiable with a finite input/output sequence and can be described by the non-linear 
difference equation:

/=i j=o 
This representation is particularly interesting for control purposes, because if the functions
fi (•) and the parameters or, and f3j are known the control action can be computed as:

(10)
7=1

where y/m (k + l)is the output of the reference model and the parameter /70 is supposed to be 
not equal to zero. When the functions / (•) and the parameters at and J3j are unknown as in
the case of adaptive systems, based on the above considerations it is possible to attempt a first 
estimation of those parameters by means of neural networks and then based on the certainty 
equivalence principle apply the control law:

N«w=4- (11)
1=1 7=1

where the hat denote the estimation of the parameters. 

4.2 Indirect controller design

Under the hypothesis on the ship's dynamics stated in equation (9), the object is to describe a 
systematic procedure for the identification of the functions / (•) and the parameters at and J3} 
which in turn will be used for the indirect adaptive controller design (equation 11). The 
architecture for the estimation of those functions and parameters is presented in figure 4. The 
networks NNf, that will approximate the first part of the equation (9), has selected as a RBFN 
while for the estimation of the parameters /T a linear neural network is used. Since the input 

of the network NNf () is fed with the ship's output ys(), instead of the estimated output 
this estimation architecture is refereed as series-parallel identification.
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Figure 4: Architecture for the estimation of the controller's parameters
The radial basis functions used for the purpose to approximate the functions^ are represented 
by the equation:

/,=« " (12) 
where ||x, - x|| represent the Euclidean distance between the input vector x and the centre x,

of the lattice input space while cr, is the deviation of the basis function. The input of the 
RBFN is the two-dimensional vector \y/(k\\i/(k — l)]. For this particular application it is 
assumed that the region of interest is represented by the interval [-50,50] degrees. The interval 
[-50,50] in each dimension has been sampled uniformly with sampling step of 5. Therefore 
the total number of lattice centres is N = 21 2 =441. The deviation is assumed the same for 
each basis functions and equal to 5 so that a sufficient overlapping of the basis function is 
assured. As stated above a liner network can be used for the estimation of the parameters ft]
with as input the two-dimensional vector [w(&),w(£-l)]. Choosing the bias of the linear 
neuron equal to zero the output of the network can be expressed as/?,«(&)+ f32u(k-\}. The 
weights of the network (ft , /?2 ) are then the parameters of the model to be estimated leading 
to total number of parameters to be estimated of 443. Finally, once the parameters are 
estimated by the above procedure, they are used to implement the control law defined by 
equation (11).

5 SIMULATION RESULTS

The indirect neural controller presented above with the model reference presented in section 
3.1 was evaluated by simulation involving the non-linear model of the containership 
presented in section 2. Different sailing condition by means at different wave conditions with 
varying angles of attack and a rouge of sea states were simulated. In all those conditions the 
neural controller performed acceptably well showing the viability of the proposed control 
scheme. Figure 5 shown a 30° course-changing manoeuvre with sea state characterised by an
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average period of T=10 sec, a significant wave height of h=5 m and an initial angle of attack 
of 60°, leading to a final condition of beam sea. It can be appreciated from the figure, also in 
this critical condition the controller is able to maintain properly the heading angle.

On the left hand side of figure 5 it is shown in dotted line the desired heading angle (the 
output of the reference model) and in solid line the ship's heading angle. From this figure it is

Deg
solid-yaw ange dotted-yaw reference

solid-rudder angle dotted-rudder demande

Figure 5: 30 degree course-changing manoeuvre
possible to appreciate the good tracking performance of the controller. The right hand side of 
figure 5 shown the demanded rudder angle in dotted line and the actual rudder angle in solid 
line. It is clear from this figure that as a consequence of the command generator the saturation 
of the steering machine are never reached.

It is important to note however that the two steps involved in the indirect adaptive control 
technique of identification and control, have to be properly set. In particular it is important 
that before a control action is attempted good identification of the parameters is achieved. 
This requirement can be fulfilled by either setting two different sample times for the 
identification and control or requiring that the identification error is lower then a minimum 
bound before attempting the controller design. The former approach, although more heuristic 
seems more viable for practical application.

6 CONCLUDING REMARKS

Under the assumption that the non-linear ship's dynamics can be described by the model 
presented in equation 9, the design of an indirect adaptive autopilot based on neural networks 
is presented. The motivation for selecting the indirect control approach has also given. 
However the design procedure outlined is affected by the a-priori knowledge required on the 
ship's dynamics. Namely the nature of the non-linear functions /, which has been 
approximated by a radial basis networks. This a-priori knowledge is used in order to choose 
the centre and the deviation for each basis functions that result in an acceptable 
approximation. It is clear therefore that the proper choice of these parameters are application 
dependent. In this particular case, a total number of 443 parameters has to be estimated. 
However for some application it is possible that the choice on the number of the centres lead 
to a numerically intractable number of parameters to be estimated. The use of different 
architecture like MPN can lead to few parameters to be estimated however as discussed 
earlier the stability analysis of the system became much more involved.
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Abstract: During the last few years, fuzzy controllers have emerged as a viable alternative to 
others conventional control design techniques. The primary advantage of fuzzy systems, is the 
ability to manipulate uncertainties and expert knowledge. In this paper, the problem of designing 
an indirect adaptive fuzzy autopilot for a containership is addressed. The proposed adaptation 
mechanism is based on the interpretation of a performance function by a fuzzy system, which in 
turn will infer the change (adaptation) in the fuzzy controller parameters. The main advantages of 
using a fuzzy system to perform the adaptation with respect the use of a classical adaptation 
algorithms (i.e. back-propagation, least-square, MIT rule etc.), is related to the amount and form of 
a-priori information needed about the system to be controlled. The speed with which the 
adaptation is achieved makes this approach viable for on-line implementation. Simulations on a 
non-linear model of a containership are presented for both course-changing and course-keeping 
manoeuvres in the presence of environmental disturbances. Copyright © 2000 IF AC

Keywords: Fuzzy system, adaptive controller, indirect adaptation.

1. INTRODUCTION

Historically the first generation of ship control 
systems were introduced by (Sperry 1922) and 
(Minorsky 1922) in 1922. The aim of these autopilots 
was to maintain the course of the ship using a simple 
proportional action on the heading error angle. The 
implementation and use of such a simple autopilot 
demonstrated that thanks to a better course keeping 
there was also a reduction in propulsion losses and 
therefore a saving in fuel costs. A further 
improvement of the control law was the inclusion of a 
derivative term for the heading error and a further 
integrating term leading to the better known PID 
autopilot. Due to the relatively simplicity in the 
implementation of PID autopilot, this kind of 
controller dominated the scenario until the early 
1970s.

Owing to the increasing cost of fuel, controlling the 
ship motion became a problem of major interest. The 
new challenge was to develop and put into operation 
new ship's control systems, which could perform the 
desired task in a safe and economical way. For this 
purpose the coupling between the different motions 
could not be neglected. The most popular approach 
was the Linear Quadratic (LQ) Controller, in which

the controller parameters are selected in order to 
satisfy certain optimal criteria expressed as a quadratic 
cost function. Different cost functions taking into 
account yaw and rudder deviation, fuel consumption, 
etc., were proposed (Broome 1980), and (Honderd and 
Winkelman 1972). Although the LQ technique fits 
very nicely in the formulation of the ship's course- 
keeping control problem and appeared to be robust for 
parameter changes, other researchers were 
investigating the applicability of adaptive control 
techniques such as model reference (Brink et al 1978), 
(Amerongen and Udink Ten Gate 1975) or self-tuning 
adaptive controller (Kallstrom 1979), which are much 
appropriate for the formulation of the ship's course- 
changing problem. Adaptive control is also needed to 
maintain optimal performances, even when the 
process characteristics change due to the changing in 
forward speed, load condition, water depth etc. 
(Astrom 1980).

The fast development of small and inexpensive 
microcomputers and advances in computing 
technology have fuelled the so-called "Intelligent 
Control" theory, in which control algorithms are 
developed by emulating certain characteristics of 
intelligent biological systems. The foundation of such 
systems can be found at the intersection of disciplines
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like cybernetics, artificial intelligent and informatic 
(Zi-Xing 1997). The ship's autopilot proposed in this 
paper is based on well-known model reference 
adaptive approach and fuzzy systems theory. Two 
fuzzy systems, named fuzzy controller and fuzzy 
adjustment mechanism, perform respectively the 
controller and the adaptation law for the proposed 
adaptive controller.

2. THE NON-LINEAR MODEL OF A 
CONTAINERSHIP

The mathematical model of a container ship used in 
this study is described in detail in (Tiano and Blanke 
1997) and (Blanke and Jessen 1997). It is herein 
considered a stochastic extension of such models 
capable to describe the ship response in irregular sea 
waves, which is expressed by the following non-linear 
equations:

m\ u-vr-x r +z pr \ = X + X

m v+ ur - zg p+ xg r \ = Y + Yw

I zz r+ mxg ur + v = N + N
(1)

1^ p- mz g ur + v = K + K w - pgDR, <p)

The above equations with reference to the co-ordinate 
system shown in figure 1 , describe the coupled surge, 
sway, yaw and roll motions, where D is the 
displacement, g the gravity constant, p the water mass 
density, Rz(cp ) is the action of the Tightening arm that 
depends on the roll angle (p, while (XG,O,ZG) are the co 
ordinates of the mass centre. The mass is denoted by 
m whereas Ixx and Izz are the inertial moments about 
x and z, respectively. The linear velocity of surge and 
sway are u and v and the angular ones of yaw and roll 
are respectively r and p. The Tightening arm function 
can be expressed as:

= sin J BMGM + —— tan (2)

where GM is the ship metacentric height and BM is 
the distance from the centre of buoyancy to the 
metacentre. Terms X, Y denote the deterministic 
forces acting along x e y while N and K are the 
deterministic moments around z and x, which takes 
into account the hydrodynamic effects from the hull 
movements and forces exerted on the ship by the 
rudder and by the propulsion system. Such forces and 
moments are usually described by regarding X,Y,N,K 
as polynomial expansion in terms of state variables, 
control actions and hydrodynamic coefficients (Lewis 
1988).

The effects of external disturbances, i.e. wind and 
waves, consist of related forces Xw, Yw and moments 
Nw, Kw acting as perturbation terms in the 
corresponding right hand parts of equation (1). Such 
terms, owing to their intrinsically random nature, are 
generally quite difficult to be characterised through 
explicit mathematical relations. For example, as to the 
waves, they should be calculated by integrating the 
wave pressure over the immersed surface of the hull, 
on the assumption that the pressure within the waves 
is unaffected by the presence of the ship. As it has 
been shown in (Price and Bishop 1974) and (Lewis 
1988), a reasonable simplifying assumption consists in 
applying a linear superposition principle, which makes 
it possible to separate the ship motion due to the 
environment from the motion induced by the rudder 
and by the propeller thrust. According to this 
modelling approach, waves and wind are regarded as 
finite order linear realisations of stochastic processes 
characterised by known spectral densities.

Rol

^
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Surge
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h z

Figure: 1 Ship's system frame
By limiting attention to sea waves, which are by far 
the dominant disturbance, it is possible to regard a 
long crested irregular sea height £"(/) , at time t, as 
described by a one-dimensional amplitude spectrum, 
the main parameters of which are the significant wave 
height, h and the average wave period T. This 
spectrum, accepted by the International Ship Structure 
Congress (ISSC) is given by:

173 A 2 -exi -691
(3)

The relation between the response of each individual 
component of the wave induced ship state vector 
xw=[uw vw rw pw] T, can be obtained in terms of the 
spectrum:

G^(co, X,U}= R^(a>, X,U\ Gg (co] i=l,.,4 (4) 
where ^ is the angle of encounter between ship and 
waves, U is the ship velocity and R ,,, is the
receptance operator, which is assumed to be known 
from experimental tests, describing the response of the 
ship i* motion to the waves (Blanke and Jessen 1997). 
In order to obtain the corresponding spectrum relative 
to the ship centre of mass, it is finally necessary to
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express the spectrum given by equation (4) as a 
function of the frequency of encounter between ship

and waves (. . =aJl nOnce the waves

induced ship state vector xw is computed the total ship 
state vector is represented by:

According to this approach, it is possible to implement 
an accurate and numerically reliable simulation of sea 
wave induced ship motions.

3. STEERING CRITERIA

In order to design an optimal controller, performances 
indexes have to be defined. In this respect, for a 
particular sailing condition different factors may be 
considered: 1) economy (fuel consumption), 2) safety 
(related to accuracy and manoeuvrability), 3) user 
predilections. In the design of steering control 
systems, it is common practice to distinguish between 
two main different modes of sailing. These modes are: 
course-keeping and course-changing.

Course-keeping: In the course-keeping mode of 
operating, the control system has to maintain a fixed 
direction of sailing, compensating for the different 
external environmental disturbances (i.e. wind, waves 
and current). The controller has to select the best 
trade-off between precision (which will minimise the 
elongation of the sailed distance) and control effort 
(rudder movement, which will produce additional drag 
force and consequent loss of speed). As a consequence 
of the problem definition it is clear that this 
optimisation problem fits very nicely in the 
formulation of the Linear Quadratic Gaussian control 
problem. Different papers have shown the 
applicability of this control technique for steering a 
large tanker in different sailing condition by a proper 
choice of the weighting matrices. However, the 
majority of such papers propose a solution for the 
LQG problem based on a linearisation of the ship's 
dynamics around an equilibrium point, achieved 
considering the first-order truncation of the power 
series expansion of the ship's equations of motion. The 
assumption that the rudder angle is "small" (does not 
exceed approximately 10 degrees) therefore has to be 
fulfilled.

Course-changing: During course-changing 
manoeuvres the ship heading angle is changed in such 
a way that the ship can sail in the new direction 
specified by a new (desired) heading angle. During 
this manoeuvre it is possible to distinguish between 
three main parts as: 1) the start of the manoeuvre, 
where for safety reasons, the intention of the 
manoeuvre must be clearly indicated to others ships,

2) a stationary turning, characterised by a constant 
turning rate, and 3) the end of the manoeuvre, where it 
is important to control the overshoot of the manoeuvre 
in order to avoid dangerous paths. The specification of 
this manoeuvre in the time domain, in each of its 
parts, can be done in terms of the step response of a 
second order reference model. Model reference 
adaptive technique can be used in order to design 
optimal controller for this particular mode of 
operation (Amerongen and Naute Lemke 1980). 
Generally speaking there are two main approaches to 
the synthesis of a Model Reference Adaptive 
Controller (MRAC), (Hang and Parks 1973). The first 
is based on the definition of a Lyapunov function 
which in turn is used to determine the adaptation law 
that guarantees the stability of the overall system, 
while the second is based on the minimisation of a 
predefined performance index. The most common 
choice for the performance index is represented by the 
tracking error defined with respect to figure 2 as,
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Fig.2: Model reference adaptive system 

4. ADAPTIVE CONTROLLER

Adaptive control deals with the problem of controlling 
the output of a plant in the presence of parametric or 
structural uncertainty. In conventional adaptive 
control theory, to make the problem analytically 
tractable, the plant is assumed to be linear with 
unknown parameters. A suitable controller structure is 
chosen, and the parameters of the controller are 
adjusted using an adaptive law, so that the output of 
the plant follows the output of a reference model 
asymptotically. Assuring that a set of fixed parameters 
in the controller can achieve the desired response 
makes the problem well-posed and represents the 
algebraic part of the problem, while the generation of 
stable adaptive laws constitutes the analytic part. A 
general block diagram representing such adaptive 
system is shown in figure 2. Here the controller can be 
thought of as consisting of two loops. The inner loop 
is an ordinary feedback loop composed of the process 
and the controller. The outer loop adjusts the 
controller parameters in such a way that the error, 
which is the difference between process output and 
model output is small.
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Two distinct approaches, named direct and indirect 
adaptive approach, have been proposed for the design 
of adaptive controllers. In the indirect approach, the 
parameters of the plant to be controlled are estimated 
and the parameters of the controller are adjusted based 
on these estimates. In the direct approach, the control 
parameters are directly adjusted based on the observed 
output error. (Narendra and Annaswamy 1989).

The two categories of adaptive controller defined 
above have their equivalent within the framework of 
adaptive fuzzy control (Wang 1993). In particular, if 
an adaptive fuzzy controller uses fuzzy logic systems 
as controller, it is called direct adaptive fuzzy 
controller. On the other hand if an adaptive fuzzy 
controller uses fuzzy logic systems as model of the 
plant, it is called indirect adaptive fuzzy controller.

In the remaining of this section the design of an 
indirect fuzzy controller based on optimisation criteria 
is presented. The performance index to be minimised 
is represented by the tracking error defined as 
e, (kT)=y/(kT)-y/m (kT). The optimisation is 
performed through a fuzzy logic system (the fuzzy 
adaptation mechanism), which will infer about the 
change in the controller parameters. The design of the 
fuzzy adjustment mechanism is based on some 
heuristic knowledge about the ship's dynamics.

4.1 Indirect Fuzzy Controller

Different papers have been published, concerning the 
design of stable adaptive fuzzy controller (Tang et al 
1999), (Spooner and Passino 1996), (Wang 1992). 
Although the authors in (Tang et al. 1999) claim that 
their control schema has better stability performance 
without relaying on the assumption that the tracking 
error is square integrable, (a necessary condition in 
Wang in order to prove stability), all the above 
mentioned design procedures rely on the assumption 
that a linear parameterisation of the control parameters 
is possible. Once this particular parameterisation is 
achieved the adaptive law is motivated by a Lyapunov 
based stability analysis.

Although a stability analysis of the proposed fuzzy 
adaptive controller is not addressed in this paper, the 
assumption that the unknown control parameters 
appear linearly is retained. In particular the fuzzy logic 
system used to implement the controller is the same 
proposed in (Wang 1993), with center-average 
defuzzification, product inference and singleton 
fuzzification. It is possible to prove that the above- 
defined fuzzy logic system is described by the 
following mathematical equation:

,.
(x ) = -4 (5)

Where bj is the maximum of the output membership 
function, p , is the fuzzy set associated with the
antecedent part of each rule of the base knowledge, n 
is the number of input and m the number of rules. If 
the parameters of the input membership functions are 
known and fixed, equation (5) can be reparameterised
as

Where

(6)

is the regressor vector

and 9 T = [z>,,...,6m ] is the parameter vector. The main 
reasons for considering the fuzzy system expressed by 
equation (6) as a building block for the design of 
adaptive systems, are i) it has been proved that 
equation (5) is a universal approximator, ii) the fuzzy 
logic system expressed by this equation is constructed 
from a set of IF-THEN rules, therefore linguistic 
information from human expert can be easily 
incorporated into the system, iii) the parameterisation 
(equation 6) allows for the application of well-known 
results of linear adaptive theory.

The fuzzy controller is designed with inputs as the 
reference error (e) and change in error (ce) and output 
as the rudder angle S . The universe of discourse of 
the input variables is chosen, after some experiment to 
be equal to [-^;^] [-0.5;0.5] for the error and change 
of error respectively while [-0.6;0.6] for the output 
universe of discourse. Seven linguistic variables are 
chosen to describe the input variables such as "Zero", 
"Positive-Small", "Positive", "Positive-Big", 
"Negative-Small", "Negative" and "Negative-Big".

The output fuzzy sets are chosen as singletons while 
the input fuzzy sets are described by Gaussian 
membership functions. To guarantee completeness of 
the base knowledge 49 rules are chosen of the form:

IF e is Z and ce is Z THEN 8 = 9, 
The 49 parameters 9m that define the consequent part 
of each rule, are the unknown controller parameters 
that have to be tuned by the fuzzy adjustment 
mechanism (the parameters b; in equation 5). The 
tuning of these parameters is performed trough a fuzzy 
system, named fuzzy adjustment mechanism, 
described below.

4.2 Fuzzy adjustment mechanism
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The fuzzy adjustment mechanism has to produce the 
change in the controller parameters (the adaptation 
law), in such a way that the performance measured by 
the tracking error is optimised. A possible strategy to 
enhance the performance of the fuzzy controller is 
based on the following considerations. Suppose that 
with input S(kT) the tracking error at time T 
(e,(kT)=y/(kT}-if/m (kT)) is positive. If the input at 
time kT would have been S(kT)+e, where £ 
represents an extra effort from the controller, it is 
expected that the error at that time would have been 
less. Therefore e represent the correction that the 
controller has to produce in its output as a 
consequence of the adaptation. In others words, e can 
be thought as a measure of the correction (adaptation) 
that has to be produced by the fuzzy adaptation 
mechanism. A rule that can represent this situation is

IF tracking error is Positive Then s is Positive.

Because of the particular choice made on the fuzzy 
controller, it possible to understand that in order to 
increase the output of the fuzzy controller (by an 
amount e ) it is sufficient to increase the value of b; in 
equation (5). By changing bj with b;+ £ the output of 
the fuzzy controller will increase. It is important to 
note, that at each time (kT) with inputs e(kT) and 
ce(kT) the output of the fuzzy controller is mainly 
determined by those rules whit the antecedent part 
described by membership functions with centre close 
to the inputs value. It is possible to consider this local 
behaviour of the system in order to speed up the 
adaptation process by changing only the parameters 
0, that belong to those rules for which the actual
contribution to the output is greater then a certain 
threshold. Therefore using the fuzzy logic system 
described by equation (6), with inputs the tracking 
error and the change in the tracking error, and output 
the amount of change in the controller parameters and 
the same seven linguistic variable defined before the 
49 rules describing the adaptation strategy are as 
follows:

IF e, is Z and ce, is Z THEN £ = E,

In this way, the optimisation of the performance 
function is achieved by a non-linear equation defined 
through a set of rules while in conventional adaptive 
control it is used to rely on gradient based 
optimisation algorithms or its modifications. It is 
worth nothing that it is also possible to expand the 
base knowledge of the fuzzy adjustment mechanism in 
such a way to include in the adaptation strategy rules 
that account for the saturation of the rudder angle 
and/or weather conditions.

Fig.3: 30° course-changing control 
5. SIMULATION RESULTS

The fuzzy adaptive controller presented above was 
evaluated by simulation study involving the non-linear 
model of the containership presented in section 2. For 
this purpose, different sailing conditions characterised 
by a different sea state and travelling directions were 
considered. Also different initial conditions for the 
controller' parameters were considered; i.e. all 
parameters being set to zero or all parameters 
randomly initialised. Figure 3 shown a 30° course 
changing manoeuvre performed with beam sea 
characterised by a significant wave height h=3 meters 
and a period T=8 sec. With dotted line is represented 
the reference manoeuvre while with solid line is the 
ship' heading angle. Figure 4 shows the rudder angle 
and the demanded change in the controller parameters 
from the fuzzy adjustment mechanism. As it can be 
appreciated from this figure the mean value of the 
parameter £ converges to zero while the instantaneous 
value is always different from zero. This is due to the 
presence of the external disturbance. For this instance, 
it is possible to consider a dead-zone in the adaptation 
algorithm. In particular, if the demanded change in the 
controller parameters (value off-) is less then a certain

100 200

fuzzy adju

300 40 SO 600

100 200 300 400 500 600

Fig.4: 30" course-changing control 
threshold the controller parameters 0, are not adjusted.

Fig.5: Course-Keeping control
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This is seen better in figure 5 where is shown the 
ship's heading angle the parameter s and the rudder 
angle for a course-keeping manoeuvre with the same 
sea conditions and angle of attack of 135°. 
In order to test the ability of the adaptive controller to 
retain previously learned manoeuvres the same 
sequence of reference heading angle can be repeated. 
In figure 6 it is shown a typical sequence of such 
reference angles. Figure 7 shows the rudder angle and 
the parameter e. From this figure it is possible to 
appreciate that the fuzzy adaptive autopilot need less 
adjustment of the controller parameters, when the 
requested manoeuvre has been already performed in 
the past.

.40 - — — -t —— - - —— —

ZOO 40O GOO 6OO 1000 1200 1400 1GOO 1SOO 200O

Fig. 6: Course-changing manoeuvre

0 200 400 600 800 1000 1200 1400 1600 1600 2000 

fuzzy adjustment mechanism output

! -002 

' -004

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
time in sec

Fig.7: Course-changing manoeuvre

6. CONCLUDING REMARKS

In this paper an indirect fuzzy adaptive autopilot for a 
containership is presented. The structure of the fuzzy 
controller with its mathematical representation has 
been presented and justified. The controller 
parameters are adjusted trough a fuzzy system, the 
design of which is based on some heuristic knowledge 
of the ship's dynamics. Except for this weak 
requirement the design procedure is very general and 
does not rely on any mathematical model of the ship. 
Moreover, it is easy to expand the knowledge base of 
the fuzzy adjustment mechanism in such a way that 
the optimisation process will be constrained. It is 
believed that rules accounting for the saturation on the 
control signal or for the noise in the measured tracking 
error can increase the overall performances of the 
control system. The simulation results presented in

section 5 are based on a four-degree of freedom non 
linear mathematical model of a containership. In order 
to take into account the wave effects, a stochastic 
model of the ship waves induced motions has been 
considered. The proposed autopilot has been tested for 
both course-keeping and course-changing 
manoeuvres. All the simulations carried out at 
different sea conditions and different sailing direction 
confirms the viability of the proposed approach.
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Abstract. Neural Networks for control and system 
analysis have been intensively investigated during the 
last ten years, not only in terms of the research being 
carried out, but perhaps more importantly in terms of 
the potential range of applications. The main 
characteristics of neural networks for control 
applications can be summarised as: they can be used to 
approximate any continues mapping, they perform this 
approximation through learning, parallel processing and 
fault tolerance are easily accomplished. In this paper the 
problem to stabilise a non-linear ship's dynamics around 
an equilibrium point is considered. This particular mode 
of operation is known as course-keeping manoeuvre. 
Steering criteria for this mode of operating is introduced 
and the classical results of optimal Linear Quadratic 
controller are extended by means of a feedback 
linearisation of the non-linear dynamics is achieved 
through the use of neural networks. Simulation results 
are included to show the viability of the proposed 
approach.

INTRODUCTION

The increasing cost of fuel during the 1970s produced a 
growth interest in the ship motion control problem. The 
main challenge was to develop and put into operation 
new ship's control systems, which could perform the 
desired task in a safe and economical way. For this 
purpose the coupling between the different motions 
could not be neglected. The most popular approach was 
the Linear Quadratic (LQ) Controller, in which the 
controller parameters are selected in order to satisfy 
certain optimal criteria expressed as a quadratic cost 
function. Different cost functions taking into account 
yaw and rudder deviation, fuel consumption, etc., were 
proposed Norrbin (1), Katebi et al (2), and Broome et al 
(3). Although the LQ technique appeared to be robust 
for parameter changes, other researchers were 
investigating the applicability of adaptive control 
techniques such as model reference Honderd and 
Winkelman (4), Amerongen and Udink Ten Gate (5) or 
self-tuning adaptive controller Kallstrom et al (6), Brink 
et al (7). Adaptive control is also needed to maintain 
optimal performances, even when the process 
characteristics change due to the changing in forward 
speed, load condition, water depth etc. Astrom (8).

The ship's autopilot proposed in this paper, is based on 
well-known results of non-linear control theory. The 
solution adopted herein is based on the assumption that 
the ship's dynamics can be linearized through feedback 
linearisation technique. Two neural networks are 
therefore trained in order to produce respectively the 
desired change in the systems co-ordinate and the new 
input signal, in such a way that the feedback 
linearisation of the ship's dynamics is achieved. With 
respect to the feedback linearized system, standard LQ 
theory is applied in order to deduce the optimal control 
law for the course-keeping problem.

NON-LINEAR MODEL OF A CONTAINERSHIP

The mathematical model of a container ship used in this 
study is described in detail in Tiano and Blanke (9) and 
Blanke and Jessen (10). It is herein considered a 
stochastic extension of such models capable to describe 
the ship response in irregular sea waves, which is 
expressed by the following non-linear equations:

u-vr-xg r +zg pr

v+ur-z p+ xg r \ = Y +

, r+ mx \ = N + N
(1)

The above equations with reference to the co-ordinate 
system shown in figure 1, describe the coupled surge, 
sway, yaw and roll motions, where D is the 
displacement, g the gravity constant, p the water mass 
density, Rz((p ) is the action of the Tightening arm that 
depends on the roll angle cp, while (xG,0,zG) are the co 
ordinates of the mass centre. The mass is denoted by m 
whereas Ixx and Izz are the inertial moments about x 
and z, respectively. The linear velocity of surge and 
sway are u and v and the angular ones of yaw and roll 
are respectively r and p. The Tightening arm function 
can be expressed as:

R, (<p) = sin (p\ GM + —— tan (2)
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where GM is the ship metacentric height and BM is the 
distance from the centre of buoyancy to the metacentre. 
Terms X, Y denote the deterministic forces acting along 
x e y while N and K are the deterministic moments 
around z and x, which take into account the 
hydrodynamic effects from the hull movements and 
forces exerted on the ship by the rudder and by the 
propulsion system. Such forces and moments are 
usually described by regarding X,Y,N,K as polynomial 
expansion in terms of state variables, control actions 
and hydrodynamic coefficients Lewis (11).

The effects of external disturbances, i.e. wind and 
waves, consist of related forces Xw, Yw and moments 
Nw, Kw acting as perturbation terms in the

Surge

Ro
11

Sway
" Pitc

u

Ya

Fig. 1: Co-ordinate system
corresponding right hand parts of equation 1. Such 
terms, owing to their intrinsically random nature, are 
generally quite difficult to be characterised through 
explicit mathematical relations: for example, as to the 
waves, they should be calculated by integrating the 
wave pressure over the immersed surface of the hull, on 
the assumption that the pressure within the waves is 
unaffected by the presence of the ship. As it has been 
shown in Lewis (11) and Price and Bishop (12), a 
reasonable simplifying assumption consists in applying 
a linear superposition principle, which makes it possible 
to separate the ship motion due to the environment from 
the motion induced by the rudder and by the propeller 
thrust. According to this modelling approach, waves 
and wind are regarded as finite order linear realisations 
of stochastic processes characterised by known spectral 
densities. By limiting attention to sea waves, which are 
by far the dominant disturbance, it is possible to regard 
a long crested irregular sea height ^"(r), at time t, as 
described by a one-dimensional amplitude spectrum, the 
main parameters of which are the significant wave 
height, h and the average wave period T. This spectrum, 
accepted by the International Ship Structure Congress 
(ISSC) is given by:

173/T
6)

^ eXP|
-691

(3)

The relation between the response of each individual 
component of the wave induced ship state vector xw = 
[uw vw rw pw]T, can be obtained in terms of the spectrum:

G^fax^R^faz^G^ i=l,4 (4)
where x ' s the an§le of encounter between ship and 
waves, U is the ship velocity and RXw is the receptance

operator, which is assumed to be known from 
experimental tests, describing the response of the ship i 
motion to the waves Blanke and Jessen (10). In order to 
obtain the corresponding spectrum relative to the ship 
centre of mass, it is finally necessary to express the 
spectrum given by equation 4 as a function of the 
frequency of encounter between ship and waves

co e = col 1 -——cos(#) . According to this approach, it
I 8 )

is possible to implement an accurate and numerically 
reliable simulation of sea wave induced ship motions.

MODELS USED FOR CONTROL
Owing to the complexity and to the strong couplings 
between the different motion of a ship, when designing 
motion control systems, it is a usual convention to 
divide the total motions into two different sets:

1) Vertical plane motion, in which only surge, 
pitch and heave motion are considered,

2) Lateral plane motion, which includes yaw,
sway and roll motions.

For most of the traditional ships such as RO-ROs, 
containerships, super-tankers and so on, pitch and heave 
motions could be neglected in comparison with the 
others and only the coupling between the remaining 
should be taken into account. However, for motions of 
small amplitudes it is possible to neglect the coupling 
between those remaining and consider the design of 
control systems regarding only the motion of interest 
Abkowitz (13), Lloyd (14). It is possible then to 
consider autopilots designed only for course keeping or 
course changing, or stabilisation systems designed only 
for roll damping motion. The most popular models used 
for the purpose to design yaw motion control systems 
are the ones by Nomoto et al (15) and Norrbin (16). For 
the former the models are deduced combining the linear 
equation representing the yaw and the sway motions and 
removing the dependence on roll. Such models basically 
represent the relationship between the rudder position 
and the yaw angle.
The Nomoto Model is a second-order differential 
equation where the coefficients are functions of the 
hydrodynamic derivatives:

T\ T 2 = k (5)

Using the transfer function representation, equation (5) 
can be expressed:

r(s) _ k(l + T3 s)

where,
- Yv (la -N]- Nr (m -Y.} + (mu- Yr )N -Y Nr

Nv (mu-Y,)+Nr Yv
YV NS -NV YS

N v (mu-Yr )+Nr Yv
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T r - ^ "A r -> v r

1 2 7v v (mM -rr )+^rv

Nomoto further reduced this model to,

or in Laplace form in to

where

(7)

(8)

(9)

The Nomoto model is accurate in predicting ship yaw 
for a large class of vessels, however it is inaccurate 
either when large rudder angles and manoeuvres are 
concerned or when the ship is directionally unstable. 
The Norrbin model tries to take into account the non- 
linearity of the ship introducing a non-linear term in the 
equation,

rr+H(r) = kS (10) 
Under steady-state condition it must be //(/•)= kS . A 
non-linear approximation of H(r) may be given as a 
third order polynomial:

2+a2 r + a} r + a0 (11) 
Norrbin suggested that the parameter OT O assume a zero 
value caused by asymmetric hull or flow conditions. 
The parameter a} = +1 for course stable ships and the 
parameter a 2 = —1 for course unstable ships. Finally 
a 3 could describe by itself the non-linearity of the ship.

Steering criteria

In order to design an optimal controller, performances 
indexes have to be defined. In this respect, for a 
particular sailing condition different factors may be 
considered: 1) economy (fuel consumption), 2) safety 
(related to accuracy and manoeuvrability), 3) user 
predilections. It is common practice to distinguish 
between two main different modes of sailing for the 
specification of the ship steering control system 
performances. These modes are : course changing and 
course keeping.

Course changing: During a course changing manoeuvre 
the ship heading angle is changed in such a way that the 
ship can sail in the new direction specified by a new 
(desired) heading angle. During this manoeuvre it is 
possible to distinguish between three main parts as : 1) 
the start of the manoeuvre, where for safety reasons, the 
intention of the manoeuvre must be clearly indicated to 
others ships, 2) a stationary turning, characterised by a 
constant turning rate, and 3) the end of the manoeuvre,

where it is important to control the overshoot of the 
manoeuvre in order to avoid dangerous paths. The 
specification of this manoeuvre in the time domain can 
be done in terms of the step response of a reference 
model. Model reference adaptive technique can be used 
in order to design optimal controllers for this particular 
mode of operation Amerongen and Naute Lemke (17). 
Course-keeping: In the course-keeping mode of 
operating, the control system has to maintain a fixed 
direction of sailing, compensating for the different 
external environmental disturbances (i.e. wind, waves 
and current). The controller has to select the best trade 
off between precision (which will minimise the 
elongation of the sailed distance) and control effort 
(rudder movement, which will produce additional drag 
force and consequent loss of speed). A first 
approximation of the relative increase in drag force due 
to steering can be represented by the equation:

"
R

The first term in the parenthesis represents the Coriolis 
force due to the coupling between sway and yaw while 
the second term represents the drag induced by the 
rudder movement. As a consequence of the problem 
definition it is clear that this optimisation problem fits 
very nicely in the formulation of the Linear Quadratic 
Gaussian control problem. Different papers have shown 
the applicability of this control technique for steering a 
large tanker in different sailing conditions by a proper 
choice of the weighting matrices. However, the majority 
of such papers propose a solution for the LQG problem 
based on a linearisation of the ship's dynamics around 
an equilibrium point, achieved considering the first- 
order truncation of the power series expansion of the 
ship's equations of motion. The assumption that the 
rudder angle is "small" (does not exceed approximately 
8/10 degrees) therefore has to be fulfilled.

In the following sections the feedback-linearisation 
technique is introduced. Further, it is shown how the 
same design procedure (namely the LQ) applied to a 
linearisation of the plant achieved by feedback 
linearisation technique can, under a certain extent 
guarantee a large stability region around the equilibrium 
point, with respect to that achieved by considering the 
linearisation of the plant equation by simply considering 
the first-order terms of the non-linear equations.

FEEDBACK LINEARISATION

The problem to examine to what extent the behaviour of 
a non-linear system could be made linear under the 
effect of an appropriate feedback control law have been 
studied extensively during the 1980s and today 
represents a well-established subject in the non-linear 
system analysis Isidori (18) Slotine and L (19) Freeman 
Randy and Kokotovic (20). The problem of feedback 
linearisation of a non-linear system can be stated as 
follow:
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(13)

1) find a suitable change of co-ordinates in the state 
space z = 0(x)

2) and a feedback law u(k) = a[x(k\ v(k)] 
such that the feedback system with new input v(k) and 
state z(k) is equivalent to a liner one. Suppose that the 
single-input, single-output (SISO) non-linear system 
with accessible states is represented by the equation:

x(k + \)= f[x(k\u(k}} (12)
where jceiR" is the state and we^R'is the control 
input. If the system (12) is feedback linearizable it 
follows that:

z(k +1) = 4X(k + 1)] = <i>\f(X(k\ a(x(k\ v(
= Az(k)+ Bv(k)

where A and B represent the behaviour of the linear 
system. However, when the non-linear function / is 
known, it is possible to check the conditions under 
which the system is feedback linearizable. In the 
adaptive problem, however where the function / is 
supposed to be unknown it is only possible to suppose 
the feedback linearisability of the plant and search for
two mapping NN^ : <R" -» SR" and NNa : <R -» 9t of

^(•) and a(-) respectively, using neural network such 
that equation (13) is verified.

In the following section an automatic procedure to find 
the mapping AW^ and NNa in order to achieve the
feedback linearisation through neural networks is 
presented. Once linearized through feedback 
linearisation technique, the system is controlled by the 
optimal feedback gains calculated from the standard LQ 
theory. Comparison of the proposed approach and a 
standard LQ controller by simulation results are 
presented in the final section.

Course-keeping controller by feedback linearisation

In the adaptive problem the ship's dynamics are 
unknown, therefore an estimated model is used in order 
to carry out the controller design. A model of the ship's 
dynamics can be estimated from a collection of 
input/output data via neural network as shown in figure 
2. The network NN f (•) represent the estimation of the
ship's dynamic and since it is fed with the ship output 

instead of the estimated output ^(-), this

architecture is referred to as series-parallel
identification.
The question that arises is whether feedback
linearisation of the real system (equation 12), implies
feedback linearisation of the estimated system (NN f (•))
with the architecture shown in figure 2. Because neural 
networks are universal approximator Hornick et al (21), 
it follows that it is possible to approximate with 
bounded error any non-linear function over a compact 
region D, i.e.

\\NNf (x, M)- f(x, u)|| < \\e(x, «| < s Vx,ueD 

Applying the mapping <f> and a to NN f (the estimation 
of the ship's dynamics) from equation 12 follows:

Since ^(-) is a smooth function and \\e(x, w)|| is assumed 
to be small, equation 14 can be rewritten;

=(15)
)+ e(X(k\ a( 

a(x(k\ v(* 
= Az + Bv + e<i
If the neural model of the ship is sufficiently good ( e} is 
sufficiently small), equation 1 5 is an approximation of a 
linear system.

The objective now is to simultaneously train two neural 
networks NN^ (•) and NNa (•) that can approximate the

unknown mapping ^(-)and «(•) respectively, in such a 
way that when the input to the neural model is given by 
u(k)= NNa (x, v) the transformed state 
z(k + 1) = AW^(jt) will follow the output of a linear 
model z(k + 1) as shown in figure 3 .

SIMULATION RESULTS

The linear system shown in figure 3, from which the 
unknown mapping ^(-) and or(-) are trained, is obtained 
by a straightforward linearisation of the non-linear ship 
equation 1, at a ship speed 12.5 m/s and GM=83 cm. 
The resulting state space representation is as follows:

X(k + \}=Ax(k)+Bu(k) (16)
where jc(-)e9? 5 is the state vector defined as

x = [v,r, p,q>, y\ , wQeJHs the rudder angle. The 
matrices of the linear system are defined as:

"- 0.0122 -4.4802 -0.0300 -0.0256 0 
-0.0012 -0.2211 -0.0062 -0.0009 0 

A= 0.0025 -0.6504 -0.0252 -0.0282 0 
00 1 00 
0 1 000

Fig. 2: Ship's dynamics estimation
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0.1315
-0.0050

B= -0.0043
0
0

A pseudo binary random manoeuvre with rudder 
5e|±100 ], has been performed in order to collect the 
input/output pair (v(-),z(-)}used for the training of the 
unknown mapping AW^Qand NNa (). Once the 

unknown mapping AW^Qand AWa (-)have been
trained the overall non-linear system shown in figure 4 
has been simulated in different sailing conditions.

| Linear system

Fig. 3: Architecture for feedback linearisation

For the linearized system (equation 16) an optimal LQ 
controller has been designed and figure 5 and 6 shows a 
course-keeping manoeuvre with waves disturbances 
characterised by an angle of attack of 90 degrees, an 
average period of 10 second and a significant wave 
height of 7 meters. As can be appreciated from the 
figure, in this particular situation, both controllers the 
LQ linear controller (figure 5) and the non-linear LQ 
controller obtained by feedback-linearisation (figure 6) 
are able to maintain properly the heading angle.

Fig. 4: Control system architecture

However, as shown in figure 7 and 8, for an initial state 
vector defined by x,=[0,0,0.2,0,0], the linear 
approximation is not anymore valid and the linear LQ 
controller perform poorly while the non-linear LQ still 
maintain good performances. It is possible to show that

the system controlled with the linear controller became 
unstable for an initial state vector of x=[0,0.3,0.2,0,0], 
while the non-linear LQ remain stable.

CONCLUDING REMARKS

In this paper a feedback-linearisation of a non-linear 
unknown ship's dynamic achieved by neural networks 
as been proposed. Once feedback-linearized the non 
linear ship's dynamic has been controlled by a standard 
LQ optimal controller. Furthermore, has been shown by 
simulations, that the non-linear controller achieved with 
this approach can guarantee a bigger stability region 
around the equilibrium point with respect the linear 
controller. However, it is clear that for practical 
implementation of the proposed approach, the feedback 
linearizability of the non-linear plant is necessary and 
especially in the adaptive case, where the plant's 
dynamics are supposed unknown this condition can not 
be verified a-priori. The hypothesis used in this paper 
that the state of the system is accessible makes the 
controller design simpler, however as in the case of not 
accessible state the use of observer or identifier can 
represent a further concern.

rudder angle
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Fia. 5: Course-keeping for the linear LO controller
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Fig. 8: Non-linear controller for initial condition X| 
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