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Abstract 
 

Recently, dynamic models of marine ships are often required to design advanced 
control systems. In practice, the dynamics of marine ships are highly nonlinear and are 
affected by highly nonlinear, uncertain external disturbances. This results in parametric 
and structural uncertainties in the dynamic model, and requires the need for advanced 
robust control techniques. There are two fundamental control approaches to consider 
the uncertainty in the dynamic model: robust control and adaptive control. The robust 
control approach consists of designing a controller with a fixed structure that yields an 
acceptable performance over the full range of process variations. On the other hand, 
the adaptive control approach is to design a controller that can adapt itself to the 
process uncertainties in such a way that adequate control performance is guaranteed. 

 
In adaptive control, one of the common assumptions is that the dynamic model is 

linearly parameterizable with a fixed dynamic structure. Based on this assumption, 
unknown or slowly varying parameters are found adaptively. However, structural 
uncertainty is not considered in the existing control techniques. To cope with the 
nonlinear and uncertain natures of the controlled ships, an adaptive neural network 
(NN) control technique is developed in this thesis. The developed neural network 
controller (NNC) is based on the adaptive neural network by adaptive interaction 
(ANNAI). To enhance the adaptability of the NNC, an algorithm for automatic 
selection of its parameters at every control cycle is introduced. The proposed ANNAI 
controller is then modified and applied to some ship control problems. 



 vii

 
Firstly, an ANNAI-based heading control system for ship is proposed. The 

performance of the ANNAI-based heading control system in course-keeping and 
turning control is simulated on a mathematical ship model using computer. For 
comparison, a NN heading control system using conventional backpropagation (BP) 
training methods is also designed and simulated in similar situations. The 
improvements of ANNAI-based heading control system compared to the conventional 
BP one are discussed. 

 
Secondly, an adaptive ANNAI-based track control system for ship is developed by 

upgrading the proposed ANNAI controller and combining with Line-of-Sight (LOS) 
guidance algorithm. The off-track distance from ship position to the intended track is 
included in learning process of the ANNAI controller. This modification results in an 
adaptive NN track control system which can adapt with the unpredictable change of 
external disturbances. The performance of the ANNAI-based track control system is 
then demonstrated by computer simulations under the influence of external 
disturbances. 

 
Thirdly, another application of the ANNAI controller is presented. The ANNAI 

controller is modified to control ship heading and speed in low-speed maneuvering of 
ship. Being combined with a proposed berthing guidance algorithm, the ANNAI 
controller becomes an automatic berthing control system. The computer simulations 
using model of a container ship are carried out and shows good performance. 

 
Lastly, a hybrid neural adaptive controller which is independent of the exact 

mathematical model of ship is designed for dynamic positioning (DP) control. The 
ANNAI controllers are used in parallel with a conventional proportional-derivative 
(PD) controller to adaptively compensate for the environmental effects and minimize 
positioning as well as tracking error. The control law is simulated on a multi-purpose 
supply ship. The results are found to be encouraging and show the potential advantages 
of the neural-control scheme. 



 viii

Contents 
 
 
 

 
Acknowledgements .....................................................................................  
Abstract ..........................................................................................................  
Contents..........................................................................................................  
List of figures ................................................................................................  
List of tables ..................................................................................................  
Nomenclatures..............................................................................................  
 
Chapter 1 Introduction 

1.1 Background and Motivations...........................................................  
1.1.1 The History of Automatic Ship Control .................................  
1.1.2 The Intelligent Control Systems.............................................  

1.2 Objectives and Summaries ...............................................................  
1.3 Original Distributions and Major Achievements ...........................  
1.4 Thesis Organization ..........................................................................  
 

Chapter 2 Adaptive Neural Network by Adaptive Interaction 
2.1 Introduction .......................................................................................  
2.2 Adaptive Neural Network by Adaptive Interaction .......................  

2.2.1 Direct Neural Network Control Applications.........................  
2.2.2 Description of the ANNAI Controller....................................  

2.3 Training Method of the ANNAI Controller ....................................  
2.3.1 Intensive BP Training .............................................................  
2.3.2 Moderate BP Training............................................................  
2.3.3 Training Method of the ANNAI Controller ...........................  

 

Chapter 3 ANNAI-based Heading Control System 
3.1 Introduction .......................................................................................  
3.2 Heading Control System...................................................................  

Page 

iv 
vi 

viii 
xi 

xiv 
xv 

 
 

1 
1 
2 
6 
7 
8 

 

 
9 

11 
11 
13 
17 
17 
17 
18 

 
 

21 
22 



 ix

3.3 Simulation Results ............................................................................  

3.3.1 Fixed Values of n and γ ..........................................................  
3.3.2 With adaptation of n and γ......................................................  

3.4 Conclusion .........................................................................................  
 

Chapter 4 ANNAI-based Track Control System 
4.1 Introduction .......................................................................................  
4.2 Track Control System .......................................................................  
4.3 Simulation Results ............................................................................  

4.3.1 Modules for Guidance using MATLAB.................................  
4.3.2 M-Maps Toolbox for MATLAB.............................................  
4.3.3 Ship Model.............................................................................  
4.3.4 External Disturbances and Noise ...........................................  
4.3.5 Simulation Results .................................................................  

4.4 Conclusion .........................................................................................  
 

Chapter 5 ANNAI-based Berthing Control System 
5.1 Introduction .......................................................................................  
5.2 Berthing Control System ..................................................................  

5.2.1 Control of Ship Heading ........................................................  
5.2.2 Control of Ship Speed ............................................................  
5.2.3 Berthing Guidance Algorithm................................................  

5.3 Simulation Results ............................................................................  
5.3.1 Simulation Setup ....................................................................  
5.3.2 Simulation Results and Discussions.......................................  

5.4 Conclusion .........................................................................................  
 

Chapter 6 ANNAI-based Dynamic Positioning System 
6.1 Introduction .......................................................................................  
6.2 Dynamic Positioning System ............................................................  

6.2.1 Station-keeping Control .........................................................  
6.2.2 Low-speed Maneuvering Control ..........................................  

6.3 Simulation Results ............................................................................  

26 
28 
33 
39 

 
 

41 
41 
48 
48 
49 
50 
50 
51 
55 

 

 
57 
58 
59 
61 
63 
66 
66 
67 
79 

 

 
80 
81 
82 
86 
88 



 x

6.3.1 Station-keeping ......................................................................  
6.3.2 Low-speed Maneuvering........................................................  

6.4 Conclusion .........................................................................................  
 

Chapter 7 Conclusions and Recommendations 
7.1 Conclusion .........................................................................................  

7.1.1 ANNAI Controller .................................................................  
7.1.2 Heading Control System ........................................................  
7.1.3 Track Control System.............................................................  
7.1.4 Berthing Control System........................................................  
7.1.5 Dynamic Positioning System .................................................  

7.2 Recommendations for Future Research..........................................  
 

References ......................................................................................................  
Appendixes A ................................................................................................  
Appendixes B ................................................................................................  
 

89 
92 
98 

 
 

100 
100 
101 
101 
102 
102 
103 

 
104 
112 
116 



 xi

List of Figures 

 

 
 
Fig. 2.1 Indirect adaptive control ...............................................................  
Fig. 2.2 Direct adaptive control..................................................................  
Fig. 2.3 Configuration of the ANNAI controller........................................  

Fig. 2.4 Flow chart of “intensive” BP algorithm. n and γ is fixed..............  
Fig. 2.5 Flow chart of “moderate” BP algorithm. n is adaptively selected  

Fig. 2.6 Flow chart of the proposed ANNAI algorithm. Both n and γ is 
adaptively selected ........................................................................  

Fig. 3.1 ANNAI-based heading control system configuration...................  
Fig. 3.2 NN configuration ..........................................................................  
Fig. 3.3 Simulations of ANNAI and BPNN based heading control system 

without wind and noise, course change from -20o to +20o............  
Fig. 3.4 Simulations of ANNAI and BPNN based heading control system 

with wind and noise, course change from -20o to +20o.................  
Fig. 3.5 Simulations of ANNAI and BPNN based heading control system 

without wind and noise, course change from -30o to +30o............  
Fig. 3.6 Simulations of ANNAI and BPNN based heading control system 

with wind and noise, course change from -30o to +30o.................  
Fig. 3.7 Simulations of ANNAI-based heading control system with 

improper values of learning rate (a); number of training iterations 
(b)..................................................................................................  

Fig. 3.8 Simulations of ANNAI and BPNN based heading control system 

with initial n = 5, initial γ = 0.01; ρ = 1, λ = σ = 0.2, no wind and 
noise, course change from -30o to +30o ........................................  

Fig. 3.9 Simulations of ANNAI and BPNN based heading control system 

with initial n = 5, initial γ = 0.01; ρ = 1, λ = σ = 0.2, with wind 
and noise, course change from -30o to +30o..................................  

Fig. 3.10 Course-keeping performance of ANNAI and BPNN based 

Page 
10 
11 
15 
18 
19 

 
20 
22 
24 

 
29 

 
29 

 
30 

 
31 

 
 

32 
 
 

34 
 
 

36 
 



 xii

heading control systems................................................................  
Fig. 3.11 Training process of ANNAI and BPNN within one control cycle 

at k = 30 s ......................................................................................  
Fig. 3.12 Adaptation process of output layer weight of ANNAI and BPNN 
Fig. 3.13 Adaptation process of hidden layer weight of ANNAI and BPNN 
Fig. 3.14 Cost function value of ANNAI and BPNN...................................  
Fig. 4.1 ANNAI-based track control system using ANNAI controller and 

modified LOS guidance algorithm; off-track distance is 
considered .....................................................................................  

Fig. 4.2 Track control using LOS guidance under influence of sea current 
Fig. 4.3 Calculation of LOS guidance signal .............................................  
Fig. 4.4 Wheel-Over-Point and Reach while changing course ..................  
Fig. 4.5 Simulation of a ship departing from Pusan bay ............................  
Fig. 4.6 Track control performance of the ANNAI-based track control 

system without the influence of disturbances ...............................  
Fig. 4.7 Track control performance of the ANNAI-based track control 

system with the influence of disturbances ....................................  
Fig. 5.1 Configuration of automatic berthing control system ....................  
Fig. 5.2 NNC1 configuration......................................................................  
Fig. 5.3 NNC2 configuration......................................................................  
Fig. 5.4 Concept of the drift angle .............................................................  
Fig. 5.5 Determination of desired heading.................................................  
Fig. 5.6 Automatic berthing control without wind and noise.....................  
Fig. 5.7 Automatic berthing with onshore wind and noise, wind speed 

changes randomly from 10 knots to 20 knots ...............................  
Fig. 5.8 Automatic berthing with onshore wind and noise, wind speed 

changes randomly from 15 knots to 25 knots ...............................  
Fig. 5.9 Automatic berthing with onshore wind and noise, wind speed 

changes randomly from 20 knots to 30 knots ............................... 
Fig. 6.1 Configuration of the proposed hybrid neural adaptive DP system 
Fig. 6.2 General framework of low-speed maneuvering............................ 
Fig. 6.3 Plot of ship position. Without controller (upper-left); with PD-

controller (upper-right); with ANNAI controllers (lower-left); 

36 
 

37 
38 
38 
39 

 
 

43 
44 
45 
46 
50 

 
53 

 
55 
59 
60 
62 
64 
65 
70 

 
73 

 
75 

 
78 
82 
88 

 
 



 xiii

with hybrid adaptive neural controller (lower-right) .................... 
Fig. 6.4 Station-keeping simulation results ................................................ 
Fig. 6.5 Low-speed maneuvering simulation result of case 1. The desired 

track connecting four marked points is gray line.......................... 
Fig. 6.6 Low-speed maneuvering simulation result of case 2. The desired 

track connecting four marked points is gray line.......................... 
Fig. 6.7 Low-speed maneuvering simulation result of case 3. The desired 

track connecting four marked points is gray line.......................... 

90 
92 

 
95 

 
96 

 
98 

 

 



 xiv

List of Tables 

 

 
 
Table 3.1 Comparison performance indices ................................................. 
Table B.1 Main dimensions of Mariner Class Vessel .................................... 
Table B.2 Main dimensions of Container Ship ............................................. 

Page 
31 

116 
119 

 



 xv

Nomenclatures 
 

iO  

iI  

iθ  

jpij ww ,  

)(xg  
)(xsig  

)(tan xsig  
d
iO  

21 ,, γγγ  

n 
p, i, j 

ji θθ ,  

k 
ite 

kE  

k
d
k XX ,  

α  
β  

maxmin , nn  

maxmin ,γγ  

k
d
k ψψ ,  

k
c
k δδ ,  

kr  
σλρ ,,i  

d 

sc VVV
rrr

,,0  

LOSψ  

kk Ll ,  

R0 
R 

Output of neuron i 
Input of neuron i 
Threshold value of neuron i 
Weight of the output and hidden neurons 
The activation function of a neuron 
Sigmoidal activation function of a neuron 
Tangent sigmoidal activation function of a neuron 
Desired output value of neuron i 
Learning rates 
Number of iteration in one control cycle 
Number of neurons in input, output and hidden layer 
Threshold values for output and hidden layers 
Time step indicator 
Iteration indicator 
Cost function at time step k 
Desired and actual state vector at time step k 
Positive constant for automatic selection of γ  and n 
Positive integer for automatic selection of γ  and n 

Lower and upper bounds of n 
Lower and upper bounds of γ  

Desired and actual heading angle 
Command and actual rudder angle 
Rate of turn (yaw rate) 
Positive penalty constants in cost functions 
Off-track distance in track control 
Velocity of ship, speed of advance and current speed 
Line-of-Sight heading 
Ship latitude and longitude at time step k 
Radius of circle of acceptance in LOS algorithm 
Reach distance 



 xvi

kμ  
d
kμ  

a1, a2 

ζ 

k
d
k uu ,  

k
c
k nn ,  

Φ  

L 
B 
K1, K2,ξ  

Kmin, Kmax 

di 

)(ψTJ  

Tyx ],,[ ψη =  

Trvu ],,[=ν  
T

yxHd ]0,,[ ΔΔ=  

ze 

b  

 

T],,[ 321 ττττ =  

NNPD ττ ,  

dη  

dpdp KKKK ′′ ,,,  

4321 ,,, χχχχ  

321 ,, κκκ  

eJ T ˆ)(ψε =  

Normalized off-track distance 
Desired off-track distance 
Positive constants 
Course change angle 
Desired and actual ship speed 
Command and actual engine revolution 
Drift angle 
Ship length 
Ship breadth 
Positive constant in berthing algorithm 
Lower and upper bounds of K1 
Off-track distance in x-axis of berthing algorithm 
Transformation matrix 
Vector of ship state 
Vector of linear velocities of ship 
Vector of position of H in vessel-fixed coordinate 
Distance from ship to reference point 
Vector of bias forces and moment of environmental 
disturbances 
Vector of control forces and moment 
Control output of PD-controller and NN controller 
Vector of desired state 
PD-controller parameters 
Positive constants 
Positive penalty constants in cost function 
Vector of transformed error 

 



 1

 
 
Chapter 1 Introduction 
                                                             
 
 
 

The topic of this doctoral work is the development of adaptive neural network 
control system and its application to marine control problems. An adaptive neural 
network controller is developed and applied to course-keeping control of ship. This 
adaptive neural network controller is then applied to design track-keeping control 
system for ship. Based on the proposed neural network control scheme, an automatic 
berthing control system for ship is developed. A similar adaptive neural network 
control algorithm is applied to design a hybrid neural adaptive controller for dynamic 
positioning of ship. This thesis contains five main chapters which will be briefly 
summarized in 1.2. 

 
 

1.1 Background and Motivations 
 

1.1.1 The History of Automatic Ship Control 
 
Generally, automatic control system development for ships is to fulfill two 

principal targets in maritime navigation. The first target is to ensure safe navigation and 
the other is to control the ship economically. Safe navigation requires that, automatic 
control system must be able to control the ship to avoid the risk of collision, sinking, 
running aground. In order to control the ship economically, the automatic control 
system is required to control the ship in a manner that minimizes the propulsive energy 
loss without degrading the safe navigation. So far, many control methods have been 
applied to automatic control of ship to obtain these targets. 

 
The history of ship control started in 1908 with the invention of the gyrocompass 

which was the basic instrument in the first feedback control systems for heading 
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control or autopilots today, and it extends further with the development of local 
positioning systems in the 1970s. These systems and new results in feedback control 
resulted in new applications like dynamic positioning (DP) systems for ships and rigs. 
From late 1970s to date, track control system was developed to control not only ship’s 
heading but also position with respect to a reference track. The availability of global 
positioning systems such as GPS and GLONASS, and successful results with 
controllers in ship autopilots and dynamic positioning systems resulted in a growing 
interest for waypoint tracking control systems [79]. More recently, studies on 
automatic ship maneuvering in restricted waters (such as automatic berthing systems) 
have been reported in literature [27], [89], and [90]. 

 

1.1.2 The Intelligent Control Systems 
 
Generally, it is difficult to accurately represent a complex plant or process by a 

mathematical model or by a simple computer model. Even when the model itself is 
tractable, controller using a “hard” (non-soft or crisp) control algorithm might not 
provide satisfactory performance. Furthermore, the crisp control algorithms can not 
formulate the actions made by an experienced and skilled operator, who can performs 
high-level control of some industrial processes successfully [63]. 

 
As mentioned in [63], from the control theory point of view, model-based control 

can not provide satisfactory results if the process model itself is inaccurate. Even when 
an accurate model is known, if the parameter values are partially known, ambiguous, or 
vague, then approximates have to be made. In such a case, crisp control algorithms 
based on incomplete information usually will not give satisfactory results. To improve 
robustness of the control systems, classical feedback control has used methods such as: 
adaptive and robust control technique designed to cope with uncertainties due to large 
variations in parameter values, environmental conditions, and signal inputs. However, 
the region of operability of the control system will be restricted, although it will be 
considerably large in comparison with non-robust classical control systems. In 
complex processes in practice, the range of uncertainty may be substantially larger than 
can be tolerated by crisp algorithms of adaptive and robust control. In such situations, 
“intelligent” control techniques are useful. 
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Since late 1980s, research interests in automatic control have turned to developing 

the "intelligent control systems". Intelligent control can be classified into, but not 
limited to, the following areas: expert or knowledge based systems, fuzzy logic 
controllers and NN based controllers. 

 
(1) Expert Systems 

 
The first field of artificial intelligence to be commercially recognized is expert 

system. One of the primary objectives of expert systems is to mimic human expertise 
and judgment using a computer program by applying knowledge of specific areas of 
expertise to solve finite, well-defined problems. These computer programs contain 
human expertise (called heuristic knowledge) obtained either directly from human 
experts or indirectly from books, publications, codes, standards, or databases, as well 
as general and specialized knowledge that pertains to specific situations [42]. Expert 
systems have the following advantages 

 
(a) Experts need not be present for a consultation; expert systems may be 

delivered to remote locations where expertise may not be otherwise available. 
(b) Expert systems do not suffer from some of the shortcomings of the human 

beings (for example, they do not tired or careless as the work load increase) 
but, when properly used, continue provide dependable and consistent results. 

(c) The techniques inherent in the technology of expert systems minimize the 
recollection of information by requesting only relevant data from the user or 
appropriate databases. 

(d) Expert knowledge is saved and readily available because the expert system 
can become a repository for undocumented knowledge that might otherwise 
be lost (for example, through retirement). 

(e) The development of expert systems forces documentation of consistent 
decision-making policies. The clear definition of these policies makes the 
overall decision-making process transparent and the implementation of policy 
changes instant and simultaneous at all sites. 
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On the other hand, expert systems have disadvantages that affect their use 
 
(a) They usually deal with static situations. 
(b) They must be kept up to date as conditions change. 
(c) They often can not be used in novel or unique situations. 
(d) Results are very dependent on the adequacy of the knowledge incorporated 

into the expert system. 
(e) Perhaps most important, they do not benefit from experience except through 

updating the knowledge base (based on human experience). 
(f) Expert systems are unable to solve problems outside their domain of 

expertise. In many cases they are unable to detect the limitations of their 
domain. 

 
(2) Fuzzy Control Systems 

 
Fuzzy systems are knowledge-based or rule-based systems. The heart of a fuzzy 

system is a knowledge base consisting of the so-called fuzzy IF-THEN rules. A fuzzy 
IF-THEN rule is an IF-THEN statement in which some words are characterized by 
continuous membership functions [46]. There are five major branches in fuzzy theory: 
(1) fuzzy mathematics, where classical mathematical concepts are extended by 
replacing classical sets with fuzzy sets; (2) fuzzy logic and artificial intelligence, where 
approximations to classical logic are introduced and expert systems are developed 
based on fuzzy information and approximate reasoning; (3) fuzzy systems, which 
include fuzzy control and fuzzy approaches in signal processing and communications; 
(4) uncertainty and information, where different kinds of uncertainties are analyzed; 
and (5) fuzzy decision making, which considers optimization problems with soft 
constraints [46]. These five branches are not independent and there are strong 
interconnections among them. 

 
Practically, the most significant applications of fuzzy systems have concentrated 

on control problems. Fuzzy systems can be used either as open-loop controllers or 
closed-loop controllers. When used as an opened-loop controller, the fuzzy system 
usually sets up some control parameters and then the system operates according to 
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these control parameters. Many applications of fuzzy systems in consumer electronics 
belong to this category. When used as a closed-loop controller, the fuzzy system 
measures the outputs of the process and takes control actions on the process 
continuously. Applications of fuzzy systems in industrial processes belong to this 
category. The fundamental difference between fuzzy control and conventional control 
is that, conventional control starts with a mathematical model of the process and 
controllers are designed for the model; fuzzy control, on the other hand, starts with 
heuristic and human expertise (in terms of fuzzy IF-THEN rules) and controllers are 
designed by synthesizing these rules [46]. 

 
Many different kinds of fuzzy control systems have been introduced to control 

practices. The theory and typical applications of fuzzy control systems can be found in 
[39], [42], [46], and [84]. For marine control problems, applications of fuzzy control 
systems have been also investigated by many researchers. Interesting applications to 
surface ship control can be found in [6], [9], [22], [32], [33], [45], [66] - [68], [88], and 
[91] - [93]. 

 
(3) Neural Network Control Systems 

 
In recent years, the neural network control technology has grown very rapidly. 

Many neural network control systems of different structures have been proposed and 
widely applied in a range of technical practices. NNs are very attractive in control 
applications because of the following properties: (1) massive parallelism; (2) inherent 
nonlinearity; (3) powerful learning capability; (4) capability of generalization; (5) 
guarantied stability for certain nonlinear control problems (see [12], [41], [63], and 
[75] for further details). 

 
In addition, NNs have been proved to be universal controllers, “that is, if the 

system to be controlled is stabilized by a continuous controller, there exists a NN 
which can approximate the controller such that the controlled system by the NN is 
stabilized with a given bound of output error” [8]. Among neural control structures 
mentioned in literature and applied to practices, such as [5], [15], [17], [25], [29], [40], 
[52], [69], [70], [72], [73], [75], adaptive NNs control has been proposed to control 
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dynamical systems. The basic idea is to use NNs in connection with the adaptive 
control methods. 

 
Among the above intelligent control technologies, NNs and fuzzy logic have been 

applied to control of dynamic systems. NNs and fuzzy logic technologies are quite 
different, and each has unique capabilities that are useful in information processing. 
Yet, they often can be used to accomplish the same results in different ways. For 
instant, they can speed the unraveling and specifying the mathematical relationships 
among the numerous variables in complex dynamic process. Both can be used to 
control nonlinear systems to a degree not possible with conventional linear control 
systems. They perform mappings with some degree of imprecision [42]. 

 
The review of literature mentioned above has shown that the application of NNs 

to marine control problems is very potential, and NNs are attractive in designing 
intelligent adaptive control systems. Therefore, in this thesis an adaptive NN control 
system is developed for ship control problems in direct methods and will be presented 
in chapter 2. 

 
 

1.2 Objectives and Summaries 
 
The goal of this research is to develop an adaptive NNC for marine vehicles. The 

proposed NNC is then applied to four control problems: heading control, track control, 
berthing control, and dynamic positioning control. The objectives of the research are 
summarized as follows 

 
(a) Developing an adaptive neural network by adaptive interaction controller. 

The proposed ANNAI can be online-trained and its parameters can be 
adaptively updated; 

 
(b) Developing an adaptive NN-based heading control system for ships using the 

proposed ANNAI. Investigating its performance and compare with the 
conventional BP based NNC; 
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(c) Developing an adaptive NN-based track control system for ships employing 

the learning ability of the ANNAI. Verifying the track control system by 
testing the adaptability with external effects using computer simulations; 

 
(d) Developing an automatic berthing system applying the proposed ANNAI in 

controlling ship heading and speed. Adopting a berthing guidance system for 
ship; 

 
(e) Proposing a DP control system of ship by combining the ANNAI with 

conventional proportional-derivative (PD) controller. Validating and 
evaluating the proposed hybrid control scheme through computer simulations. 

 
 

1.3 Original Contributions and Major Achievements 
 
The main contributions and achievements produced by this work are described as 

follows: 
 
(a) We developed an adaptive NN by adaptive interaction, called ANNAI. 
 
(b) We introduced an algorithm for automatic updating the learning rate and 

number of training iterations to improve the adaptability of ANNAI. 
 
(c) We proposed an adaptive heading control system for ships with the proposed 

ANNAI. 
 
(d) We designed an adaptive track control system for ships using the ANNAI 

controller and a modified LOS algorithm. 
 
(e) We designed an automatic berthing control system based on the ANNAI. 
 
(f) We proposed a berthing guidance algorithm which can guide the ship to 
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follow the desired berthing route. 
 
(g) We developed a hybrid neural adaptive controller for DP control of ship. The 

controller can avoid the use of ship mathematical model and estimation of 
external disturbances. 

 
(h) We introduced an algorithm to move the reference point in low-speed 

maneuvering control of ship. This algorithm can ensure that the ship can 
follow the intended track while ship heading is kept at the desired value. 

 
 

1.4 Thesis Organization 
 

Chapters: Chapter 2 presents the ANNAI controller which can adapt its weights at 
every control cycle and the algorithm for automatic updating the learning rate and 
number of training iterations to improve the adaptability of ANNAI; Chapter 3 
introduces an application of the ANNAI to heading control of ships and compares with 
conventional BPNN controller; Chapter 4 presents a track control system based on the 
ANNAI controller; Chapter 5 discusses the application to automatic berthing control of 
the proposed ANNAI controller; Chapter 6 investigates a hybrid neural controller by 
combining the ANNAI controllers with a PD-controller for DP control of ship; and 
Chapter 7 summaries the advantages and limitations of the proposed NN control 
schemes, possible applications and the future developments of the research works. 

 
Appendixes: This thesis uses mathematical model of ships as well as DP system 

for simulation studies. The mathematical model of DP ships is briefly reviewed in 
Appendix A. The referred mathematical model of ships and their Matlab M-files are 
presented in Appendix B. 
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Chapter 2 Adaptive Neural Network by 

Adaptive Interaction 
                                                                  

 
 
 
2.1 Introduction 
 

The potential of NNs for control has received much attention and rapidly grown in 
the 1990s, because of the ability of NNs in solving some awkward control problems 
where the high non-linearities of the controlled plant and unpredictable external 
disturbances make the plant's behaviors hard to control. In addition, the fast calculation 
of NNs is also suitable for real time control applications. The theory and applications 
of NNs in control can be found in [14], [19], [40], [75]. 

 
The application of NN control theory in the field of marine is relatively new. A 

study in feasibility of using NNs to control surface ships was discussed in [65]. A 
feedback optimal NNC for dynamic systems was proposed and applied to ship 
maneuvering [38]. The NNC requires off-line training phase for the synaptic weights. 
Later, [21] introduced a recurrent NN for ship modeling and control and compared 
with classical methods. To achieve an adaptive NNC for ship, Y. Zhang et al. used 
multi-layer NNC with single hidden layer and on-line training strategy of network 
weights as adaptive NNC for ship control including course-keeping, track-keeping and 
auto-berthing control [89], [90]. In their work, a BP algorithm was used for weights 
updating. 

 
There have been different methods to utilize NNs as adaptive controllers and they 

can be categorized into indirect control (Fig. 2.1) and direct control (Fig. 2.2). In 
indirect control, the parameters of the plant are estimated using a NN, and the 
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parameters of the controller are chosen assuming that the identified parameters 
represent the true values of the plant parameter vector based on certainty equivalent 
principle. This scheme does not require any priori knowledge about the plant. Still, it 
requires another NN in addition to the NN for control to emulate the plant (shown in 
Fig. 2.1). The plant emulator needs an off-line phase of training with a sufficiently 
large data set for identification of the forward or inverse dynamics of the plant to be 
controlled [14], [40]. Direct scheme is simpler than indirect scheme. It does not require 
the iterative off-line training process to identify the plant parameters and provides 
adaptive laws for updating the NN weights. 

 
In this thesis, a direct adaptive NNC for ship control problems is proposed. This 

NNC is based on the adaptation algorithm developed in [70] and the extension of NNC 
proposed in [23] with some modifications and improvements. The proposed NNC can 
be trained on-line so that, in this control scheme, off-line training phases are removed. 
Additionally, both the learning rate and the number of iterations for weight updating 
can be dynamically selected [19], [20]. With this adaptation method, the sufficient (but 
not excessive) training for on-line training requirement is achieved, no pre-test of the 
NN is required and the training time is minimized without adversely affecting the 
ability of the network to learn the plant's behavior. This new feature has not been found 
in the previous works. 

 

 
Fig. 2.1 Indirect adaptive control 
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Fig. 2.2 Direct adaptive control 

 
 

2.2 Adaptive Neural Network by Adaptive Interaction 
 
This subchapter will present the summary of direct NN control scheme 

applications to practice and then focus on the details of the proposed ANNAI controller. 
 

2.2.1 Direct Neural Network Control Applications 
 
In the study of [43], comparisons are made about stability, speed of convergence, 

noise rejection, memory size, control effort, number of required calculations, and 
tracking performance for the three control algorithms. Those are neural network 
approach (method similar to Miller’s Cerebellar Model Arithmetic Computer-CMAC) 
and two traditional adaptive systems methods, namely the self-tuning regulator (STR) 
of [36] and the Lyapunov-based model reference method by Parks (1966) (see [36] for 
more details). This study showed the advantages and disadvantages of the three 
approaches through simulation experiments and showed that, the challenge to the 
researchers and designers in control is to take advantage of the desirable properties of 
each of the classes of systems. Up to nowadays, the studies on combining the 
experience and dependability of classical and traditional adaptive control with the 
potential and promise of NN-based systems have been investigated and proposed in 
literature. The best characteristics of the above different classes of systems have been 
exploited. 
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Using the well-known BP algorithm, NNC can perform the direct adaptive control 
function. The NN weights are updated on-line at every control cycle. The NNC can 
learn dynamically and no trainer is necessary, so off-line training phase of the NNC can 
be removed. The configuration of this control scheme is described in [89]. The task of 
the NN is to “learn” the plant behavior from its current and previous states (through 
time delay operators z-m and z-n), and then to infer appropriate control actions in the 
next time step. 

 
In [87] the authors proposed two kinds of NN-based predictor which can forecast 

the output of nonlinear processes over a certain horizon in the future. Based on the NN 
predictor, a strategy of long-range predictive control is proposed. In order to implement 
the on-line adaptive control, a recursive least square (RLS) type learning algorithm was 
proposed to speed up the learning of the feedforward NN. 

 
In [28] a NN-based adaptive predictive control algorithm for nonlinear non-

minimum phase systems was proposed. In this control scheme, the nonlinear system is 
separated into linear non-minimum phase part and the nonlinear part by Taylor series 
expansion. The resulting nonlinear part is identified by a NN and compensated in the 
control algorithm such that feedback linearization can be achieved. 

 
In [50] it was shown that, NN can be used to improve upon approximate dynamic 

inversion for control of uncertain nonlinear systems. In one architecture, the NN 
adaptively cancels inversion errors through on-line learning. Such learning is 
accomplished by a simple weight update rule derived from Lyapunov theory, thus 
assuring the stability of the closed-loop system. The authors applied this in control of 
an agile-air missile autopilot. 

 
More recently, to achieve NN-based control schemes with proven stability for 

some classes of nonlinear systems, the NN control approach have been combined with 
adaptive control in such way that, “the NNC exhibits a learning-while-functioning 
feature, instead of learning-then-control” [72]. In [72], the structure of the NN 
controller is derived using filtered error notations and passivity approach. A uniform 
ultimate boundedness of the closed-loop system is given in the sense of Lyapunov. In 
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[52] the author proposed a direct adaptive NN control scheme to control an under water 
vehicle. The NN is used to approximate the dynamics of the controlled plant, a control 
law is derived and the NN weights are updated based on Lyapunov method and ensure 
that the closed-loop error converges to zero and the boundedness of the weights can be 
shown. The similar methods also found in controlling a class of nonlinear systems in 
the face of both unknown nonlinearities and unmodeled dynamics [3], [51], and [74]. 

 
In addition, NN-based model reference adaptive control has also been discussed. 

[24] proposed an approach to model reference adaptive control based on NN for a class 
of first-order continuous-time nonlinear dynamical systems. The NN is used to 
compensate adaptively the nonlinearities in the plant. A stable controller-parameter 
adjustment mechanism, which is determined using the Lyapunov theory, is constructed 

using a σ-modification-type updating law. The control error converges asymptotically 
to a neighborhood of zero. 

 
In [70] the authors proposed a direct adaptive NN control scheme by adaptive 

interaction theory. According to this study, the neurons in NN are considered 
subsystems which are called devices in a complex system. It is equivalent to BP 
algorithm but requires no feedback network to back propagate the error. The adaptive 
NN control of various systems using this approach was simulated in [23] to 
demonstrate the effectiveness of the algorithm. 

 

2.2.2 Description of the ANNAI Controller 
 
It is shown in [70] that, using the standard notations as follows, for Nji ∈,  

 

iO  the output of neuron i;  

iI  the input of neuron i; 

iθ  the threshold value of neuron i; 

ijw  the weight of the connection from neuron i to neuron j; 

)(xg  the activation function of a neuron; 
d
iO  the desired output value of neuron i (for output neurons); 

γ  the learning rate, 
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the NN can be described by 
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The goal is to minimize the following error 
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where i

d
ii OOe −=  if i is output neuron. 

 
And the adaptation algorithm for NN in [70] can be written as 

 

iji
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kiki
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O
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γ&& ,                  (2.4) 

 

where ijw&  is the increment of weights, )( iIg′  is the derivative of )( iIg  with respect 

to iI . 

 
Equation (2.4) describes Brandt-Lin algorithm for adaptation of weights in NN. 

Later, a NNC based on the Brandt-Lin algorithm was proposed in [23] where the 
simulation showed the effectiveness of the NNC, and some notes and conclusions were 
figured out. 

 
(1) General Form of the On-line Trained ANNAI 

 
The configuration of the ANNAI proposed in this thesis is shown in Fig. 2.3. 

Using the cost function described in [89] we have 



 15

 

k
T
kk

d
k

T
k

d
kk uuXXPXXE Λ+−−=

2
1)()(

2
1 ,               (2.5) 

 
where Xk

d and Xk are desired state vector and actual state vector respectively; uk
c is the 

command control vector and uk is the actual control vector; P is a real symmetric 
positive semi-definite matrix reflecting the weightings of the plant variables to be 
controlled; Λ is a real symmetric positive definite matrix for the control vector. 

 
Fig. 2.3 Configuration of the ANNAI controller. The inputs of NNC consist of ek 

and its delayed signals. The cost function Ek is processed by Brandt-Lin 

algorithm to adapt NNC weights so that Ek is minimized. 

 
Similarly in [89], the training process of the network is carried out within each 

control cycle indicated by k with n being the number of the training iterations. The 
adaptation algorithm (2.4) is used to adjust the synaptic weights in the NN so that, cost 

function Ek can be minimized. The inputs to the NNC consist of error k
d
kk XXe −=  

and its time delayed values. The task of the NNC is to infer appropriate control actions 
in the next time step after “learning” the behavior of the plant’s desired and actual 
states through ek. To improve adaptation speed and ability of the NNC, a method to 

adjust the network learning rate γ and number of iterations n automatically is proposed 
(Fig. 2.6). 

 
(2) Automatic Selection of Learning Rate and Number of Training Iterations 

 

During the training process, if the learning rate γ is too large, then the NN can fail 
to converge, jumping back and forth over the minimum [19]. On the other hand, if the 
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learning rate is too small, the adaptation may be very slow to converge. [89] and [90] 
applied an “intensive training” scheme to the BPNN which needs some pre-tests to 
achieve the sufficient (but not excessive) network training and the on-line control 
requirement (see Fig. 2.4). Similarly, in [57], various simulation works were carried 
out to verify the NNC so that the learning rate and number of training iterations n were 
carefully selected. Thus, adapting the learning rate can significantly speed up the 
convergence of the weights and remove the manual selection of this parameter. 

 
In [20], a new strategy called “moderate training” was proposed. The number of 

training iterations specified for each control cycle was not fixed but dynamically 
selected as a function of the cost function. In the new control cycle, the previously 
selected weights were not discarded but used as starting values for the new updating 
process (see Fig. 2.5). 

 

In this study, a new strategy for the automatic selection of both n and γ 
simultaneously based on [19] is proposed. Here the learning rate is increased if the cost 
Ek is decreasing. If the cost increases during the process, the learning rate is repeatedly 
reduced until the cost decreases. Simultaneously, the number of training iterations is 
selected such that it cooperates with the selected learning rate to achieve the sufficient 
(but not excessive) network training and the on-line control requirement. 

 

The algorithm for automatic selection of n and γ can be described as 
 
Step 1 IF )()1( kEkE <+ THEN increase learning rate 
  )()1()1( kk γαγ +=+ , and reduce number of iteration 
  β−=+ )()1( knkn  

ELSE decrease learning rate 
  )()1()1( kk γαγ −=+ , and increase number of iteration 
  β+=+ )()1( knkn  

Step 2 k = k + 1 and go to next control cycle 

 
Where α  is a positive constant and β  is a positive integer. For “safe” learning 

we can select the lower and upper bounds for n and γ such that 
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maxmin )( nknn ≤≤ , and 

 

maxmin )( γγγ ≤≤ k . 

 
 

2.3 Training Method of the ANNAI Controller 
 
Firstly in this section, comparison between the training method of the proposed 

ANNAI controller with those of intensive BP training and moderate BP training is 
reviewed. 

 

2.3.1 Intensive BP Training 
 
The flow chart of intensive BP training method as in [89] and [90] is shown in Fig. 

2.4. Fixed values of n and γ were used. At the beginning of a control cycle indicated by 
k, NN weights are initialized as small random values. The outputs of neurons in hidden 
layer and output layer are then calculated using those weights. Next, the NN weights 
are updated using BP training method so that cost function Ek can be minimized. This 
process is iteratively repeated n times before new control cycle starts (k = k + 1). The 
NN output at iteration n is the control output at control cycle k. 

 

2.3.2 Moderate BP Training 
 
The flow chart of moderate BP training method as in [20] is shown in Fig. 2.5. 

Fixed value of γ was used. The number of training iterations n specified for each 
control cycle was not fixed but dynamically selected as a function of the cost function 
( nk = f(Ek) ). The iterative training was similar to that of intensive method except that, 
in the new control cycle, the previously selected weights were not discarded but used 
as starting values for the new updating process. The aim of this method is to terminate 
training at the iteration where the cost function can not be reduced any more. Hence we 
can reduce the training time and avoid excessive training. 
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2.3.3 Training Method of ANNAI Controller 
 
The flow chart of training method of the proposed ANNAI controller is shown in 

Fig. 2.6. The values of n and γ are not fixed but automatically selected at every control 
cycle as described in 2.2.2 (page 16). At the beginning of a control cycle indicated by k, 
NN weights are initialized as small random values. The outputs of neurons in hidden 
layer and output layer are then calculated using those weights. Next, the NN weights 
are updated using Brandt-Lin training method so that cost function Ek can be 
minimized. This process is iteratively repeated nk times before new control cycle starts 
(k = k + 1). The NN output at iteration nk is the control output at control cycle k. 

 

Fig. 2.4 Flow chart of “intensive” BP algorithm. n and γ is fixed. 
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Fig. 2.5 Flow chart of “moderate” BP algorithm. n is adaptively selected. 

 
The training method of ANNAI controller employs the advantages of both 

intensive and moderate training. Additionally, learning rate is also adaptively selected 
and Brandt-Lin algorithm is used for weights updating at each iteration. This approach 
helps to speed up training and enhance the adaptability as well as stability of the 
proposed ANNAI controller compared with conventional BPNN. The comparisons 
between ANNAI and BPNN were shown in [58], [59] and will be presented again in 
chapter 3. 
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Fig. 2.6 Flow chart of the proposed ANNAI algorithm. Both n and γ is adaptively 

selected. 

nk and γk setting; 
Initialization Ek = 0 

ite = 1 

ite = ite + 1

ite ≤ nk 

Output calculation of 
hidden and output layer 

nk+1 = nk + β 
γk+1 = (1 - α)γk

Ek+1 < Ek 
nk+1 = nk - β 
γk+1 = (1+ α)γk 

k = k + 1 

NO

YES 

YES

New iteration

New cycle 

Calculation of cost function 
Ek+1 

Updated weights and 
controller output at 
cycle k 

Adaptation 
process of n and γ 

Iterative weights 
update process 

Weights initialization 

NO

Weights adjustment 
(Brandt-Lin algorithm) 



 21

 
 
Chapter 3 ANNAI-based Heading Control System 
                                                                  

 
 
 
3.1 Introduction 
 

The course-keeping capabilities were the first applications for automatic ship 
control. Elmer Sperry (1860-1930) constructed the first automatic ship steering 
mechanism in 1911 extended from gyrocompass (see [78], [79]). Nowadays, modern 
autopilots can execute more complex maneuverings such as turning, docking 
operations and are used not only for surface ships but submarines, torpedoes, missiles 
as well. 

 
In 1922, Nicolas Minorsky (1885-1970) presented a three-term control law 

feedback control system, which today is referred to as Proportional-Integral-Derivative 
(PID) control. The autopilot systems of Sperry and Minorsky were both single-input 
single-output (SISO) systems, and the heading of the ship was measured by a 
gyrocompass. The performance of the conventional PID autopilot in rough sea was 
analyzed by M. Blanke (1981) [79]. 

 
In the late 1970s and early 1980s, marine adaptive autopilots were rapidly 

developed with adaptation schemes applied to conventional PID autopilots. Other 
approaches like stochastic adaptive systems, self-tuning adaptive control, and model-
reference adaptive control have been applied. More methods which have been recently 
explored include H-infinitive adaptive control [10], self-tuning poles assignment 
optimal control [13], and a good summary of autopilots development can be seen in 
[78], [79] and [89]. 

 
Since late 1980s, the “intelligent” control systems have been developed and 
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applied to marine control. Many studies in intelligent control of marine vehicles have 
been reported in literature. In [89], researches of these areas were listed. [92] proposed 
a fuzzy logic course autopilot, and an improved one was introduced in the next study 
[93]. [16] used genetic algorithms for ship steering control optimization. In [88], a 
model reference adaptive robust fuzzy autopilot was investigated. More discussions 
can be seen in [66] - [68]. In the research of [89] and [90], three control systems of ship 
(course-keeping, track-keeping, and automatic berthing) using the BP-based NNC were 
introduced. The authors compared their BP-based NNC with a well-tuned discrete PID 
controller. Compared to the PID controller, the NNC showed distinct advantages in 
terms of higher performance accuracy, less adjustment of rudder, and resistance to 
noise. 

 
In this chapter the ANNAI controller proposed in chapter 2 is designed for 

heading control of ships and compared with the BP-based NNC as presented in [89] 
and [90]. The simulation results and discussions will be provided. 

 
 

3.2 Heading Control System 
 

 

Fig. 3.1 ANNAI-based heading control system configuration. 

 
In this subchapter, a direct adaptive ANNAI-based heading control system for 
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NN with one hidden layer. The configuration of the NNC is shown in Fig. 3.1 and Fig. 
3.2, where wij is used to indicate the weights between output layer and hidden layer, 
and wjp is used to indicate the weights between hidden layer and input layer. In general, 
the subscripts p, j and i indicate the number of neurons in input, output and hidden 

layer respectively. In this system, c
k

c
ku δ= , kku δ= , kkX ψ= , and p = 4, j = 6, i = 1 

(The NNC consists of four input neurons, six hidden neurons and one output neuron). 
The input signals of the NNC are merely heading error and its time-delayed values. 
The task of the ANNAI-based heading control system is to find appropriate rudder 
angle to minimize the following cost function 
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in which, ψk
d and ψk are desired heading and actual heading respectively. Thus we have 
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The output of neuron i in the output layer with sigmoidal activation function is 
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The output of neuron i in the output layer with tangent sigmoidal activation 

function is 
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The output of neuron i in the output layer with linear activation function is 
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where, K is a constant gain and 
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j

ijiji OwI θ)( .               (3.6) 

 

Here Oi=1 = δk
c is output of NNC or rudder command, Ii is the summation of the 

weighted inputs to the units in the output layer plus θi, where θi is the threshold value 
of the output layer neurons. The neurons in hidden layer have the sigmoidal activation 
function. The output of neurons in the hidden layer is 
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where, 

 

∑ +=
p

jpjpj OwI θ)( .               (3.8) 

 

 
Fig. 3.2  NN configuration. 

 
Now, applying the adaptation algorithm (2.4) for the hidden weights of the NNC, 

we have 
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ijijj ww &⋅=φ .                        (3.10) 

 
As stated in [23], ‘the adaptation law for wij is more complicated as it is linked to 

the plant to be controlled’. Here Op is the set of p inputs to the NNC consisting of 

current heading error ek and its delayed signals at time steps k-1, k-2,…, k-p+1 (Op = 
ep). Applying the adaptation algorithm (2.4) we can get the adaptation law for wij by 
(3.11), (3.12), or (3.13) if the activation function of the output neurons are (3.3), (3.4), 
or (3.5) respectively 
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kjiij eIsigIKw )()( ′⋅= γ& .          (3.13) 

 
According to [23], instead of (3.11), (3.12), and (3.13) the update law for wij can 

be approximated by 
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Based on the work in [89], we can modify the cost function in (3.1) in the form of 
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in which rk is the yaw rate at time step k, σ is a constant. Using the chain rule we can 
modify (3.2) as the following 
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Also similarly in [89], replacing kkr δ∂∂  by 1)( −=∂∂ kkrsign δ  yields 
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Now (3.2) is replaced by (3.17), and (3.14) can be rewritten as 
 

)()()( kkkjkkkjij reOreIsigw σλδργσλδργ ++⋅⋅=++⋅⋅=& .      (3.18) 

 
To summary, the ANNAI-based heading control system has the adaptation law for 

the hidden layer weights and output layer weights as described in equations (3.9) and 
(3.18) respectively. 

 
 

3.3 Simulation Results 
 
In this subchapter, computer simulations for course-keeping and track-keeping 

control performance of the proposed NNC are undertaken. In these simulations, the 
effects of random measurement noise and wind disturbances are considered to test the 
reliability and the robustness of the NNC. 

 
To compare with the proposed ANNAI-based heading control system, simulations 

of BPNN-based heading control system of previous studies are also shown with the 
same number of training iterations and the effects of measurement noise and wind 
disturbances. Additionally, the algorithm for automatic adapting NN parameters is 
applied to the ANNAI-based heading control system. 

 
The NNC is designed under the assumption that an accurate measurement of the 

ship’s state (heading, position, yaw rate) is available on board. With the availability of 
the general and additional navigational aids such as gyrocompass or satellite compass, 
rate gyro, and GPS/DGPS receiver, accurate measurement of the ship’s state is possible. 
In this study, a mathematical ship model is used to provide the ship’s state and to verify 
the performance of the controllers. The ship model used in this study is a realistic 
model of a Mariner Class Vessel. The planar motion mechanism tests and full-scale 



 27

steering and maneuvering predictions for this Mariner Class Vessel were performed by 
the hydro-aerodynamics laboratory in Lyngby, Denmark (see Appendix B.1 for more 
details). To be able to do turning control and cope with large steps of set courses, a 
reference model that reflects the dynamics of the vessel is used to produce a feasible 

desired course [79]. The simulations are carried out using the MATLAB© 7.0. 
 
In the previous study we showed that the proposed ANNAI-based heading control 

system needs much less iteration for training than BPNN-based autopilot does [57]. 
This significantly reduces calculation time of the NNC, which is important in digital 
controller design. Many simulation works have been carried out to verify the ANNAI-

based heading control system to select the proper n and γ to achieve the best 
performance. Also in the previous study, we selected the initial weights with opposite 
signs in the hidden neurons as suggested in [23], and activation function of the output 
neuron was sigmoid and linear gain. But in the following simulation we select the 
initial weights as rather small random values and good adaptation does occur. 

 
Firstly in this subchapter, an ANNAI-based heading control system is simulated in 

the case when the activation function of the output neuron is tangent sigmoid with 

fixed values of n and γ. And next, the adaptation strategy of n and γ is used in the 
proposed heading control system to show its effectiveness and improvement. In order 
to test the robust of the ANNAI-based heading control system, wind disturbance and 
measurement noise are used. The effect wind disturbance against the body of the ship 
is based on the work of Isherwood (1972) introduced in [79], with wind speed changes 
randomly every 5 s and assumes values between 15 and 25 knots, relative wind 

direction varies randomly between [-60ο, +60ο] every 30 s. A random uniformly 
distributed signal on [-0.1ο, +0.1ο] is used as the sensor noise in the heading sensor. 

 

The constraints in the actuator are δ∈[-35ο, 35ο] and ∈δ& [-2.5ο/s, 2.5ο/s]. Firstly, 

the desired course against 0ο is 20ο from 0s to 300s, then -20ο from 300s to 600s, and 
finally 20ο from 600s to 900s. Next, the desired course is 30ο from 0s to 300s, then -30ο 
from 300s to 600s, and finally 30ο from 600s to 900s. These rather large steps in course 
changing are for testing turning control performance. In all simulation works, the initial 
speed is 15 knots (or 7.7175 m/s). The parameters for the automatic selection algorithm 
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of n and γ are selected as follows 
 

],,,,,[ minmaxminmax γγβα nn  = [0.105, 1, 150, 30, 2.5, 0.5]. 

 
The BPNN-based heading control system based on [89] and [90] is used for 

comparison. A set of performance indices is also defined to provide a numerical 
comparison 

 

∑ −=
k

k
d
kE 2)( ψψψ ,                (2.24) 

2
1)(∑ −−=

k
kkE δδδ ,          (2.25) 

 

where, Eψ is the squared amplitude of the heading error, Eδ is the squared variation in 
rudder adjustment. 

 

3.3.1 Fixed Values of n and γ 
 

(1) Course change from -20ο to +20ο 

 
In Fig. 3.3 and Fig. 3.4, the learning rate and number of training iterations are 

fixed (n = 50, γ = 1 for ANNAI and γ = 0.25 for BPNN). The ANNAI and BPNN based 
heading control systems have shown good performance with and without noise and 
disturbances. These simulations show the feasibility and effectiveness of the proposed 

ANNAI-based heading control system. However, as shown in [57], if n or/and γ is 
increased, the large overshoot in heading and oscillations in rudder will occur due to 
exceed of training. Thus, pre-tests are necessary here. 
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Fig. 3.3 Simulations of ANNAI and BPNN based heading control system without 

wind and noise, course change from -20o to +20o. ANNAI : n = 50, γ = 1, 

ρ = 1, λ = σ = 0.2. BPNN : n =50, γ = 0.25, ρ = 1.5, λ = σ = 0.1 
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Fig. 3.4 Simulations of ANNAI and BPNN based heading control system with 

wind and noise, course change from -20o to +20o. ANNAI : n = 50, γ = 1, 

ρ = 1, λ = σ = 0.2. BPNN : n =50, γ = 0.25, ρ = 1.5, λ = σ = 0.1 
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(2) Course change from -30ο to +30ο 

 
Simulations in Fig. 3.5 and Fig. 3.6 showed good performance of both heading 

control systems in case the course change is from -30ο to +30ο, with and without noise 
and disturbances. From Fig. 3.3 – 3.6, better course-keeping, smaller overshoot and 
less rudder efforts of ANNAI-based heading control system in comparison with 
BPNN-based heading control system are observed. 

 
In Table 3.1, the numerical comparisons of the two autopilots in Fig. 3.3 – 3.6 are 

shown. These numerical results show that, Eψ of ANNAI-based heading control system 
is smaller than that of BPNN-based heading control system with almost same Eδ. 
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Fig. 3.5 Simulations of ANNAI and BPNN based heading control system without 

wind and noise, course change from -30o to +30o. ANNAI : n = 50, γ = 1, 

ρ = 1, λ = σ = 0.2. BPNN : n =50, γ = 0.25, ρ = 1.5, λ = σ = 0.1 
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Fig. 3.6 Simulations of ANNAI and BPNN based heading control system with 

wind and noise, course change from -30o to +30o. ANNAI : n = 50, γ = 1, 

ρ = 1, λ = σ = 0.2. BPNN : n =50, γ = 0.25, ρ = 1.5, λ = σ = 0.1 
 

Table 3.1  Comparison performance indices 

Fig. 3.3 Fig. 3.4 Fig. 3.5 Fig. 3.6  
ANNAI BPNN ANNAI BPNN ANNAI BPNN ANNAI BPNN 

Eψ 18704 19822 19726 20822 73040 74429 79910 81214 
Eδ 346 351 459 465 404 402 451 453 

 

(3) ANNAI-based heading control system with improper initial parameters 

 
In Fig. 3.7 the simulations have been carried out with the improper value of 

learning rate γ = 0.1 (Fig. 3.7a) and improper number of training iterations n = 5 (Fig. 
3.7b) for the ANNAI-based heading control system. The adaptation is poor even no 

wind and noise applied and course change is from -20ο to +20ο. Actually, many pre-
tests have been done to select proper value of learning rate and number of training 
iterations in order to achieve the good performance described in Figs. 3.3 - 3.6. 

 



 32

0 100 200 300 400 500 600 700 800 900
−30

−20

−10

0

10

20

30
Actual heading, reference heading and desired heading

H
ea

di
ng

 [d
eg

]

Act. hdg
Ref. hdg
Des. hdg

0 100 200 300 400 500 600 700 800 900
−20

−15

−10

−5

0

5

10

15
Rudder angle (δ)

R
ud

de
r 

[d
eg

]

Time [s]  

(a) Simulation with n = 50, γ = 0.1, ρ= 1, λ = σ = 0.2 
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(b) Simulation with n = 5, γ = 1, ρ= 1, λ = σ = 0.2 

Fig. 3.7 Simulations of ANNAI-based heading control system with improper 

values of learning rate (a); number of training iterations (b) 
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3.3.2 With adaptation of n and γ 
 
To improve the proposed ANNAI-based heading control system performance and 

remove the time-consumed manual selections of n and γ, an automatic adaptation 
algorithm for these parameters is proposed. Computer simulations are shown in Fig. 
3.8 and Fig. 3.9. In these simulations, no pre-tests are necessary and we try to use 

improper initial values of n and γ (n = 5, γ = 0.01) but they do not degrade the 
adaptation and performance of the NNC. Because both n and γ are dynamically 
updated at every control cycle. The small average values of n are also observed. The 
poor performance shown in Fig. 3.7 has been overcome. 

 
Fig. 3.8 is the simulation result of ANNAI and BPNN based heading control 

system in case of no noise and wind applied and course change from -30ο to +30ο. In 
Fig. 3.9, the effects of measurement noise and wind disturbances are included. These 
simulations show good adaptation ability of the heading control system when coping 
with large change of reference course and the robustness are maintained through time. 
We do not need to adjust the NNC learning rate and number of training iterations 
manually as they can be automatically selected. 
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(a) Heading and rudder angle 
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(b) Zoom in of course change performance 
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(c) Learning rate and number of training iterations 

Fig. 3.8 Simulations of ANNAI and BPNN based heading control system with 

initial n = 5, initial γ = 0.01; ρ = 1, λ = σ = 0.2, no wind and noise, course 

change from -30o to +30o 
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(a) Heading and rudder angle 
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(b) Zoom in of course change performance 
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(c) Learning rate and number of training iterations 

Fig. 3.9 Simulations of ANNAI and BPNN based heading control system with 

initial n = 5, initial γ = 0.01; ρ = 1, λ = σ = 0.2, with wind and noise, 

course change from -30o to +30o 
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Fig. 3.10 Course-keeping performance of ANNAI and BPNN based heading 

control systems 
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In Fig. 3.10, we test the course-keeping performance of both heading control 
systems under the effects of strong wind. The wind force increases to the extent from 

20 to 30 knots. The set course is 0ο and simulation time is 600 s. The ANNAI-based 
heading control system uses less rudder movement than the BPNN-based heading 
control system does, but shows a better course-keeping performance. This comparison 

can be confirmed by numerical results of Eψ = 628, Eδ = 20 for ANNAI-based heading 
control system; Eψ = 660, Eδ = 33 for BPNN-based heading control system. 

 
Fig. 3.11 shows the training process of both ANNAI and BPNN within one control 

cycle. The squared error of the NNC output is reduced iteration by iteration. This 
example is taken from control cycle indicated by k = 30 s in the simulation of Fig. 3.8. 
In one control cycle, the squared error at the first iteration where training process starts 
is the maximum error. Within one control cycle, NNCs require a number of iterations 
to reduce this squared error to the minimum value. Fig. 3.12 and Fig. 3.13 show the 
adaptation process of connection weight in output layer and hidden layer, respectively, 
for both ANNAI and BPNN controllers. During control process, the weights of ANNAI 
have a faster convergence and smoother transient phase than those of BPNN. In Fig. 
3.14 we can see a better minimization process for the cost function of ANNAI 
controller in comparison with that of BPNN controller. 
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Fig. 3.11 Training process of ANNAI and BPNN within one control cycle at k = 

30s 
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Fig. 3.12 Adaptation process of output layer weight of ANNAI and BPNN 
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Fig. 3.13 Adaptation process of hidden layer weight of ANNAI and BPNN 
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Fig. 3.14 Cost function value of ANNAI and BPNN 

 
 

3.4 Conclusion 
 
This chapter presented an application of NN control to automatic course-keeping 

and turning control of ships. The new approach of adaptive NN controller developed in 
chapter 2 was applied to heading control system for ships. Various computer 
simulations were undertaken to validate the proposed ANNAI-based heading control 
system. The obtained results lead to the following conclusions which are the 
advantages of the proposed NNC 

 
(a) It can work well with good performance when coping with non-linear 

and time-varying characteristics of the ship. 
 
(b) It is not necessary to use the ship model parameters in designing the 

controller, the error in ship model can be avoided. 
 
(c) Its parameters can be dynamically updated to ensure the robustness 
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through time and speed up adaptation process while maintaining 
sufficient training. 

 
(d) The on-line training ability can help to cope with new situations, 

including different ships or environmental conditions. 
 
(e) The proposed NNC is also stable as all its parameters are updated at 

every control cycle. 
 
(f) It is not very sensitive with measurement noise of input signals. 
 
(g) The automatic selection algorithm for learning rate and number of 

iterations worked well to maintain the stability of the control system. 
 
The NNC can adapt directly without approximating the ship dynamics by a NN. 

This not only eliminates the error in approximation, but also significantly reduces the 
complexity of design. Furthermore, the proposed ANNAI can adapt faster than BPNN 
and its configuration is simpler. With the proposed algorithm for automatic adaptation 
of learning rate and number of training iteration, the adaptation of NNC can be 
improved and manual time-consuming selection of the NNC parameters is removed. 

 
The proposed NNC can be applied to other types of ship and more complicated 

control problems because of its adaptation ability. To improve the performance, it 
might be used in combination with other techniques and theory such as fuzzy control. 
These will be further research topics of the authors. 
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Chapter 4 ANNAI-based Track Control System 
                                                             
 
 
 
4.1 Introduction 
 

Since late 1970s, track control system has been studied. Advanced control theories 
have been applied to seek optimal rudder control to track a predetermined path. The 
transformation of the way-points to a feasible path or trajectory is in general a 
nonlinear optimization problem [79]. The controller can be design using linear or 
nonlinear theory. Extensions to nonlinear trajectory tracking and maneuvering control 
are currently new fields of research. More recent studies can be seen in [1], [11], [16], 
[37], [44], [47] - [49], [76], and [77]. 

 
Recently, intelligent controllers design for track control of ship has been paid 

attention by many researchers, such as in [9], [89], [90], [91] – [94]. To apply neural 
networks in track control system, most authors used “off-line learning”. The training 
methods mostly base on knowledge of the way conventional controllers operate on a 
given ship. On the other hand, [89] and [90] proposed a neural network controller, 
which used an online learning method for track control problem. In this single-input 
multi-output (SIMO) control law, rudder is used to minimize both tracking error and 
heading error. 

 
In our previous studies [58] and [59], the ANNAI controller (chapter 2) whose 

parameters can be automatically adapted was proposed for course-keeping and track-
keeping control. The ANNAI controller combined with Line-of-Sight (LOS) guidance 
algorithm (see [79] for more details about LOS algorithm) showed good performance 
without the influence of sea current acting on ship. But in practice, external 
disturbances, especially sea currents make the ship deviate from the intended track. To 
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improve the performance of track control system, the lateral off-track distance from the 
intended track will be considered. 

 
In this chapter, the improvement of the ANNAI-based track control system is 

conducted by considering the lateral off-track distance from the intended track in the 
learning process of the ANNAI controller. A new solution is proposed for track control 
by combining the modified LOS guidance algorithm with such an improved ANNAI 
controller. Thus both the advantage of LOS guidance algorithm and the adaptability of 
the ANNAI controller are exploited. Using this solution the control problem becomes 
SIMO control similar in [89] and [90], in which the rudder is used to minimize both the 
lateral off-track distance and the heading error. 

 
For simulating the track control performance, a mathematical ship model is used. 

MATLAB modules built for guidance system and displaying the movement of ship on 
Mercator projection chart are proposed. For visually displaying, M-Maps toolbox for 
MATLAB is applied. 
 

 

4.2 Track Control System 
 
The main results of this research were already published in [60], where the 

ANNAI-based track control system proposed in [58] was reviewed and the improved 
ANNAI-based track control system was introduced. This subchapter presents new 
results of the ANNAI-based track control system. 

 
The NNC is a multilayer feedforward neural network with one hidden layer. The 

configuration of the NNC is shown in Fig. 4.1 where wij is used to indicate the weights 
between output layer and hidden layer, wjp is used to indicate the weights between 
hidden layer and input layer. The subscripts p, i, and j indicate the number of neurons 
in input, output and hidden layer respectively. The input signals of the NNC are merely 

heading error and its time-delayed values. ψk
d and ψk are desired heading and actual 

heading respectively. Oi=1 = δk
c is output of NNC or rudder command, Ii is the 

summation of the weighted inputs to the units in the output layer plus θi, where θi is the 
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threshold value of the output layer neurons. The intended track consists of waypoints 
and the straight lines connecting the waypoints from departure to arrival. LOS 
guidance was presented in [79] and applied to surface ships in previous works such as 
[58], [91] and a modified version in [6]. This chapter also proposes another modified 
version of the LOS algorithm. 

 
The configuration of the ANNAI-based track control system is shown in Fig. 4.1. 

The LOS guidance system produces guidance heading signals for ship to follow and 
make the ship position converge to the predefined track. Off-track distance is added to 
learning process of the NNC to improve the adaptability of the ANNAI-based track 
control system with the effects of external disturbances. 

 

 
Fig. 4.1 ANNAI-based track control system using ANNAI controller and 

modified LOS guidance algorithm; off-track distance is considered 

 
(1) Effect of Disturbances on Ship’s Track 

 
In navigational practice, precise track control performance of a ship is always 

affected by external disturbances such as sea current and wind. If those effects are 
considerable then the accurate track control of ship is deteriorated, especially in the 
case of navigation in restricted waters. In such situations the conventional LOS 
guidance algorithm can not help to perform good track control ability [92]. 

Ship

(Disturbances)
Rudder 
Limiter

Delay

wjp 

wij

NNC 

+
-
ek

(Noise) 

kδ
c
kδ kψ  

d
kψ

Ref.
model

LOS
Algorithm

Ship position 
Way-points 

losψOff-track distance 
calculation 

dk 



 44

 

 
Fig. 4.2  Track control using LOS guidance under influence of sea current 

 
Fig. 4.2 shows LOS guidance algorithm performance for track control under the 

influence of sea current. If the following equality holds 
 

cs VVV
rrr

+= 0 ,                       (4.1) 
 

where, sV
r

, 0V
r

, and cV
r

 are ship’s actual speed, speed of advance and current speed, 
respectively, and 0V

r
 has same direction with LOS vector, then actual track of the ship 

is clear off the intended track a certain distance d. 
 
(2) ANNAI-based Track Control System with Off-track Distance Included 

 
In [89] a SIMO adaptive NNC for track control using BP training method was 

introduced. The rudder is used to minimize both the lateral off-track distance and the 
heading error which is tangent with desired path. 

 
Later, [32] presented an adaptive fuzzy autopilot for track control. In this study, 

the lateral off-track distance was used as an input to “Adjustable scaling factor 
mechanism” which provided the fuzzy autopilot the adaptability with external 
disturbances. 

 
In [91] an intelligent track control system for ship with specialized learning using 

neurofuzzy as SIMO controller was introduced. 
 
To improve the tracking control ability, in this research the off-track distance (see 

Fig. 4.2) is considered to design a SIMO track control system based on the ANNAI 
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controller developed in chapter 2. The output of the ANNAI controller (rudder 
command) is calculated to minimize both the lateral off-track distance caused by 
external disturbances and the error between actual ship heading and LOS guidance 
signal. 

 

The LOS guidance signal (ψLOS) is calculated by LOSMERCATOR module (see 
4.3.1) which is described in Fig. 4.3. Let A(lk-1, Lk-1), B(lk, Lk) be previous and 
current waypoint positions in latitude and longitude respectively. N is intersection 
point of LOS vector and AB. The middle latitude (see [86]) as follows in (4.2) 

 

)(
2
1

1 kkm lll += − .                       (4.2) 

 
In Fig. 4.3, S is ship position (lship, Lship) and 
 

SN = nL ,                    (4.3) 
 
where n is number of ship length L. 

 
Fig. 4.3  Calculation of LOS guidance signal 

 
AC = BD = Δl = 1−− kk ll ,                     (4.4) 

 
AD = BC = ΔL = mkk lLL cos)( 1−− ,                (4.5) 

 
AG = 1−− kship ll ,                         (4.6) 
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AH = mkship lLL cos)( 1−− .                    (4.7) 
 

Using MECATOR or MIDLAT module introduced later in 4.3.1, we can 
determine the course Co from A to B and distance AB. Similar in [79], NF and NE can 
now be determined. Position of N in latitude and longitude can be calculated as 

 
NFll kLOS += −1 ,               (4.8) 

 

mkLOS lAFLL cos/1 += − .                     (4.9) 

 
From S(lship, Lship), N(lLOS, LLOS), and using MECATOR or MIDLAT module, we 

can calculate ψLOS. 
 

 
Fig. 4.4  Wheel-Over-Point and Reach while changing course 

 
In the LOS algorithm, wheel over point (WOP) is the point at which rudder angler 

must be applied to achieve the required course alteration. To determine WOP the study 
in [79] introduced fixed value of the radius of circle of acceptance R0 in the LOS 
algorithm. In [92], R0 was calculated using table look up method where the value of R0 
at each course changing situation obtained from ship model testing. Alternatively, in 
this study R0 is determined as the distance from waypoint Y to A (starting point of 
turning circle) plus Reach (R) as expressed in (4.10) and shown in Fig. 4.4 (see [86]). R 
is the advanced distance from WOP to A and depends on the condition of ship and the 
rudder angle. Value of R0 is determined as follow 

 
RRYAXYR +=+== ζ50 .                 (4.10) 

O
R

ζ/2
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where ζ5≅YA  depends on the course change angle ζ . Equation (4.10) is included 

in simulation program for automatic calculation of R0. For further details of 
determination of R0, see [86]. 

 
We have discussed the modified LOS algorithm. Now let’s see how the off-track 

distance is employed. In this research, the cost function is modified from that of [58]. 
Using the method introduced in [93], we can determine the off-track distance d and its 
sign. We also define normalized off-track distance as Ld=μ , where L is the length 

of ship. The cost function in [58] is modified as follow 
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Similar in [58], it is possible to write 
 

k

k

k

k

k

k

k

k

k

k

k

k

k

k Er
r
EEEE

δ
μ

μδδψψ ∂
∂

∂
∂

−
∂
∂

∂
∂

+
∂
∂

−
∂
∂

=
∂
∂

2 .             (4.12) 

 
From (4.12), by replacing kkr δ∂∂ /  and kk δμ ∂∂ /  with 1)/( −=∂∂ kkrsign δ  and 

1)/( −=∂∂ kksign δμ  respectively, we can obtain 
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Note that the desired value 0=d

kμ , hence (3.18) can be modified as 

 
)()()( 2121 kkkkjkkkkjij reOreIsigw σλδμρργσλδμρργ +++⋅⋅=+++⋅⋅=& . 

(4.15) 
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Depending on the value kμ , we select 2ρ  as follows 

 

kaa μρ ⋅+= 212 ,                        (4.16) 

 
where 1a  and 2a  are positive constants. Equation (4.16) can improve the 

adaptability of the autopilot since the ANNAI is more sensitive to the off-track distance. 
 
The adaptation law for hidden layer weights similar to (3.9) is as follows 
 

)(]0)([ jjpjjpjp IsigOIsigOw −=⋅+−= φγφ& ,             (4.17) 
 

 
where 

 

ijijj ww &⋅=φ ,                        (4.18) 
 

)exp(1
1)(

j
j I

Isig
−+

=                         (4.19) 

 
To summarize, the ANNAI controller has the adaptation law for the hidden layer 

weights and output layer weights as described in (4.17) and (4.15) respectively. Based 
on the above ANNAI controller and modified LOS algorithm, we propose a track 
control system as shown in Fig. 4.1. 

 

 
4.3 Simulation Results 

 
4.3.1 Modules for Guidance Using MATLAB 

 
In this study the modules written in MATLAB are introduced for guidance and 

control using Mercator chart. They can be used to calculate and display ship’s 
movement on the navigational equipment monitors. The followings are brief 
descriptions of the module programs: 
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LOSMERCATOR calculates LOS guidance signal using Mercator formula 

[86]. 
 
MERCATOR calculates distance and course between two points on 

Mercator chart using Mercator formula. 
 
MIDLAT calculates distance and course between two points on Mercator 

chart using middle-latitude formula [86]. 
 
NEXTPOS calculates next position from one position if distance and course 

between the two positions are known. This calculation is based on middle 
latitude method. 

 
OFFTRACKDIST calculates off-track distance from ship position to desired 

track in way-point navigation. 
 
SHIPICON returns vector of points for drawing ship icon on Mercator 

chart for moving animation of ship motion. It can use real dimensions of ship. 
 
WOP returns distance from current way-point to the respective Wheel-Over-

Point at which ship turns to new course. 
 

4.3.2 M-Maps Toolbox for MATLAB 
 
M-Maps Toolbox, which is a set of mapping tools written in MATLAB and is 

available in [64], is used for visual simulation of ship’s movement. Fig. 4.5 
shows an example of simulation of a ship departing from Pusan bay using M-Maps 
Toolbox and module programs in subchapter 4.3.1. 
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Fig. 4.5  Simulation of a ship departing from Pusan bay 

 

4.3.3 Ship Model 
 
In this research the mathematical ship model is used for simulating and testing the 

performance of the controller. The simulations are carried out for a Mariner Class 
Vessel, the nonlinear model of which can be found in GNC Toolbox for MATLAB [78] 
- [80]. The planar motion mechanism tests and full-scale steering and maneuvering 
predictions for this Mariner Class Vessel were performed by the hydro-aerodynamics 
laboratory in Lyngby, Denmark (see Appendix B.1 for more details). 

 
4.3.4 External Disturbances and Noise 

 
Among many possible external disturbances acting on a ship only two will be 

applied here. They are sea current and wind, which mainly influence the track control 
performance. 

 
To simulate sea current, the two-dimensional current model described in [79] is 

used here. Sea current true direction of 220ο and velocity varying from 0.5 to 1 m/s is 
used. 
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The effect of wind disturbance against the body of ship is based on the work of 

Isherwood (1972) introduced in [79] with wind speed changes randomly from 10 knots 

to 20 knots every 5 s, wind direction changes randomly from 0ο to 90ο every 30 s. 
 

A random uniformly distributed signal on [-0.1ο, +0.1ο] is used as the sensor noise 
in the heading sensor. 

 
4.3.5 Simulation Results 

 
In this subchapter, simulation results of the ANNAI-based track control system are 

presented without and with the influence of measurement noise and external 
disturbances. We select the ANNAI controller with p=4, i=1, and j=6. The input 
neurons have linear activation functions, the hidden neurons have sigmoidal activation 
functions, and the output neuron has tangent sigmoidal activation function. The 
following parameters are used 

 
],,,,[ 211 aaσλρ  = [1.0, 0.2, 0.2, 0.4, 0.6].              (4.20) 

 

The intended track consists of four waypoints (34.8333οN, 128.8333οE), 
(34.857οN, 128.8333οE), (34.857οN, 128.8873οE), (34.8333οN, 128.8873οE). The 
initial ship position and heading is (34.8333οN, 128.83153οE) and 020ο. For each 
simulation, the ship position on the track is plotted every 120 s. 

 
In Fig. 4.6, track control simulation of the ANNAI-based track control system 

without the influence of disturbances is shown. The intended track is dashed line and 
the actual track is solid line. Without external disturbances the ship is nicely kept along 
the intended track (Fig. 4.6a). 
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Track−keeping simulation on mercator chart
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(a) Plot of the ship track without disturbances 
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(b) Ship heading and rudder angle. 
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(c) Off-track distance 

Fig. 4.6 Track control performance of the ANNAI-based track control system 

without the influence of disturbances 

 

In Fig. 4.7, the simulation of track control performance under the influence of 
external disturbances is shown. Although affected by the external disturbances, the ship 
can converge fast to new course and keep close to the intended track (see Fig. 4.7a, d). 
It is observed in Fig 4.7b that the rudder responded actively against the effects of the 
external disturbances. This simulation illustrates the positive effect of off-track 
distance on learning process of the ANNAI controller to cope with external 
disturbances. More simulation works and comparisons between conventional LOS-
based and the proposed ANNAI-based track control system can be found in [60]. 

Track−keeping simulation on mercator chart
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(a) Plot of the ship track with disturbances 
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(b) Ship heading and rudder angle 
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(c) Current and wind 
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Fig. 4.7 Track control performance of the ANNAI-based track control system 

with the influence of disturbances 

 
 

4.4 Conclusion 
 
In this study, an adaptive ANNAI-based track control system for ships is 

developed. LOS guidance algorithm is applied to calculate guidance course for the 
track control system. The proposed method has shown good performance under the 
influence of external disturbances. 

 
Principally, the differences between the proposed adaptive track control scheme 

and the ones proposed in previous studies are 
 
(a) The method to calculate guidance signal and radius of circle of 

acceptance R0 in the LOS algorithm. 
 
(b) The use of normalized off-track distance in learning process of the 

ANNAI. 
 
(c) The combination of the improved ANNAI controller with modified 

LOS algorithm. 
 
For simulation purpose, module programs written in MATLAB are introduced for 

guidance and control using Mercator chart. They can be used to calculate and display 
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ship's movement on the navigational equipment monitors such as ECDIS (Electronic 
Chart Display and Information System). M-Maps toolbox for MATLAB is applied for 
visually displaying ship's movement. 

 
Our purpose is to improve the ANNAI-based track control system employing the 

learning ability of the ANNAI controller. The new ANNAI-based track control system 
must have adaptability with external effects. This purpose has been achieved. 

 



 57

 
 
Chapter 5 ANNAI-based Berthing Control System 
                                                             
 
 
 
5.1 Introduction 
 

Since last two decades, studies on automatic ship berthing have been carried out 
by many researchers. This topic of study is one of the difficult problems in ship control 
fields [55]. Therefore, almost recent researches in automatic berthing control tried to 
employ “intelligent control” that can in some extents mimics human operators. These 
control techniques include knowledge-based control systems, expert systems, fuzzy 
logic controllers and neural network-based controllers. NNs have proved to be an 
effective and attractive option in developing automatic ship berthing controllers. 

 
In [33] a berthing control system using fuzzy neural network was presented. In 

[89], a multi-variable controller for automatic ship berthing using multi-layer 
feedforward NN was introduced. This controller used BP training method to adapt the 
NN weights with an on-line training scheme. The effectiveness and robustness of the 
NNC were shown by computer simulations in ideal environmental condition and under 
the influence of noise and wind. 

 
Later, [54] introduced a parallel NNC for automatic ship berthing which has 

separated hidden layers that output the engine and rudder respectively, and the 
improvements were shown through various computer simulations. Then the authors 
presented a motion identification method using NN and its application to automatic 
ship berthing [55]. In their study, motion identification was used to estimate the effect 
of environmental disturbances. Off-line training scheme using BP method was also 
applied with teaching data consisting of 6 sets of automatic berthing simulation. One of 
the most recent research was presented in [27] for automatic berthing of Kaisho Maru 
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with PID controller and Reference Point guidance. 
 
Recently, in [58] – [60], we have proposed direct adaptive NNC for course-

keeping and track-keeping control of ship based on the adaptation algorithm developed 
by [70] and the extension of the NNC proposed in [23] (see chapter 2). 

 
Employing the advantages of the NNC developed in our previous studies, in this 

chapter an adaptive NNC and its application to automatic berthing control of ship is 
presented. The proposed NNC can be trained online using adaptive interaction 
technique without any teaching data and off-line training phase. The BP network is not 
required in this kind of NNC so the configuration is simplified and the speed of 
training is considerably improved [58]. 

 
Firstly in this chapter, the ANNAI (developed in chapter 2) used to control rudder 

and propeller during automatic berthing process are presented. Then a berthing 
guidance algorithm is proposed. To test the proposed controller, computer simulations 
of automatic ship berthing are carried out with and without the influence of wind and 
measurement noise. Finally, the discussion and conclusion are shown. 

 
 

5.2 Berthing Control System 
 
In this chapter an automatic berthing control system using ANNAI controllers and 

a berthing guidance algorithm is presented. Our goal is to maneuver the ship 
automatically to a desired point near planned berth and stop the ship there with almost 
zero final speed and desired heading. We only focus on designing and validating the 
NNC, so within the limited extent of this chapter the use of side thrusters or tugs is not 
considered. Therefore the control problem is to control of an underactuated ship where 
rudder and propeller are used to control the ship in 3 DOF. The configuration of 
proposed automatic berthing control system is shown in Fig. 5.1. 

 
The controller consists of ANNAI1 and ANNAI2 which control rudder and engine 

respectively. These are ANNAI which are similar to the multi-layer feedforward NN 
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with one hidden layer developed in [58]. Ship actual heading and speed at time step k 

are kψ  and ku ; corresponding desired heading and speed are d
kψ  and d

ku . The 
heading error and speed error are respectively defined as 

 

k
d
kke ψψ −=1 ,                            (5.1) 

 

k
d
kk uue −=2 .                            (5.2) 

 
These error signals and their time delays are inputs of ANNAI1 and ANNAI2 (Fig. 

5.1). The output of ANNAI1 is command rudder angle ( c
kδ ) whereas that of ANNAI2 

is command engine revolution ( c
kn ) at time step k. The actual rudder angle and engine 

revolution acted on ship are kδ  and kn  respectively. 

 

 
Fig. 5.1  Configuration of automatic berthing control system 

 

5.2.1 Control of Ship Heading 
 
The configuration of the ANNAI1 is shown in Fig. 5.2 where ijw1  is used to 

indicate the weights between output layer and hidden layer, and jpw1  is used to 

indicate the weights between hidden layer and input layer. The subscripts p, i, and j 
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indicate the number of neurons in input, output and hidden layer respectively. The 
input signals of the ANNAI1 are merely heading error and its time-delayed values. 

 

 

Fig. 5.2  ANNAI1 configuration 

 
Similar to chapter 4, we also define normalized off-track distance as Ldi=μ , 

where L is the length of ship, di  will be defined later in (5.21). The cost function 

used for the ANNAI1 is similar to that of (4.11), and is rewritten as follows 
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where 11ρ , 12ρ , 1λ , and 1σ  are positive penalty constants; kr  is yaw rate; and 

d
kμ  is desired value of kμ . Note that, we want the ship position to be as close to 

intended route as possible, therefore 0=d
kμ  is selected. 

 
Similar to the ANNAI proposed in [60], the adaptation laws for the hidden layer 

weights and output layer weights of the ANNAI1 are as follows respectively 
 

)1(11]0)1(1[11 1 jjpjjpjp IsigOIsigOw −=⋅+−= φγφ& ,          (5.4) 

 
)1(11 1112111 kkkkjij reOw σδλμρργ +++⋅⋅=& ,             (5.5) 

 
where 

 

pO1  is the set of p inputs to the ANNAI1 consisting of current heading error ke1  
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and its delayed signals at time steps k-1, k-2,…, k-p+1, 
 

jO1  is the output of neurons in the hidden layer, 

 

)1exp(1
1)1(1

j
jj I

IsigO
−+

== ,                 (5.6) 

 

jI1  is the summation of the weighted inputs to the units in the hidden layer plus 
threshold value j1θ  of the hidden layer neurons, 

 

∑ +=
p

jpjpj OwI 1)1(1 θ ,                   (5.7) 

 

1γ  is the learning rate, and 

 

ijijj ww 111 &⋅=φ .                       (5.8) 

 
Using the adaptation laws (5.4) and (5.5), ANNAI1 can make the ship heading 

kψ  track the desired value d
kψ  generated by the berthing guidance algorithm which 

will be discussed later in subchapter 5.2.3. 
 

5.2.2 Control of Ship Speed 
 
The configuration of the ANNAI2 is similar to that of ANNAI1 and shown in Fig. 

5.3, but ke1  and its time delayed signals are replaced by ke2  and its delayed signals 

at time steps k-1, k-2,…, k-p+1. The task of ANNAI2 is to infer proper engine 
revolution command such that the following cost function is minimized 
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The adaptation law for hidden layer weights of ANNAI2 is in the form of equation 

(5.4) 
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)2(22)0)2(2[22 2 jjpjjpjp IsigOIsigOw −⋅⋅=⋅+−⋅= φγφ& .      (5.10) 

 

 
Fig. 5.3  ANNAI2 configuration 

 
In ANNAI2 the output neuron is tangent sigmoidal activation function type, where 

output signal is 
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Based on [58], the adaptation law for the output layer weight can be written as 
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Taking derivative of )2(tan iIsig , (5.12) can be expressed as 
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Using the chain rule we can write 
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1−−= kkk uuu& .                         (5.15) 

 
Note that ku&  increases or decreases following the increase or decrease of the 

engine revolution kn . So kk nu ∂∂ &  in the equation (5.14) can be replaced with 
1)( =∂∂ kk nusign &  to yield 
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Replacing (5.16) into (5.13) yields 
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To summarize, the adaptation law for the hidden layer weights and output layer 

weights of ANNAI2 are described in equations (5.10) and (5.17) respectively. Using 

these adaptation laws, ANNAI2 can make the ship speed track the desired value d
ku  

generated by the berthing guidance algorithm. 
 

5.2.3 Berthing Guidance Algorithm 
 
In this research, the automatic berthing control system is designed to use rudder 

and propeller to control the state of an unknown and non-linear ship. A predefined 
berthing route is a curve automatically generated using spline function for the given 
position and heading of ship at initial and goal points. Practically, to track such a 
curved route, ship's heading and tangent vector of the curved route at ship's position 
should make a proper drift angle (Φ ) while ship moves along the route (Fig. 5.4). 

 

The berthing guidance algorithm proposed here calculates d
kψ  to ensure that ship 

can track the route and stop at goal point with desired heading. 
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Fig. 5.4  Concept of the drift angle 

 

(1) Calculation of d
kψ  

 
If the ship is on the desired berthing route (M in Fig. 5.5), the desired heading 

d
kψ  is the direction from M to N, where Nky  is determined by a step of K⋅L forward 

from current ky  

 
LKyy kNk ⋅+= .                          (5.18) 

 
Equation (5.18) is based on the method in [89]. Here, K is a constant and L is the 

ship length. This d
kψ  ensures that ship moves with a certain drift angleΦ . However, 

the radius of the planned berthing route is not equal at every point on the route, hence 
Φ  should be properly varied. 

 
Now consider the situation where the ship is not on the desired route but at the 

point F or F' in Fig. 5.5. In this case, the new desired heading Φ  is determined as the 
direction from F or F' to N1, with kNy 1  is determined by a step of LK ⋅1  forward 
from current ky  ( KK << 10 ) 
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Fig. 5.5  Determination of desired heading 

 
LKyy kkN ⋅+= 11 ,                       (5.19) 

 
where 1K  can be obtained from 

 

minminmax1 )exp()( K
L
diKKK +−⋅−= ξ ,              (5.20) 

 
in which, maxK , minK  are maxima and minima of K; ξ  is a positive constant, and 

di  is length of FM or F'M, off-track distance on x axis 
 

Mk xxdi −= .                        (5.21) 

 
From (5.20) we can see that 1K  varies from maxK  to minK  according to di : 

1K  becomes maxK  when di  equals 0; 1K  approaches minK  while di  increases. 

Using this method to calculate d
kψ , ship can move back the desired route whenever it 

deviates. 
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(2) Calculation of d
ku  

 
In practice, the heading of the ship is emphasized in the early stages of the 

berthing process. Only when the ship approaches the berth the velocity values do 

become more important [89]. Similar to this work, the desired speed d
ku  can be 

determined as 
 

IF 2KLD >  THEN k
d
k uu =                    (5.22) 

 

IF 2KLD ≤  THEN k
d
k u

LK
Du
2

=                (5.23) 

 
where, D is the distance between the current ship position ( ky , kx ) and the goal point, 
L is the length of the ship, and 2K  is a constant given by the designer according to the 

stopping characteristics of the ship. 
 
 

5.3 Simulation Results 
 

5.3.1 Simulation Setup 
 
The NNC1 and NNC2 are multilayer feedforward NN with one hidden layer. Each 

NNC consists of four input neurons, six hidden neurons and one output neuron. The 
input neurons have linear activation functions, the hidden neurons have sigmoidal 
activation function, and the output neurons have tangent sigmoidal activation function. 
The parameters for NNC1 and NNC2 are selected as follows 

 
],,,,,[ 11111211 γσλρρ N  = [1.5, 1.75, 0.045, 0.2, 50, 1.5],      (5.24) 

 
],,,,[ 22222 γσλρ N  = [1.5, 0.15, 0.2, 50, 2],            (5.25) 

 
],,,[ 2minmax ξKKK  = [0.3, 0.1, 0.4, 2].              (5.26) 
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Here, 1N , 2N  are the initial number of iterations in one control cycle of NNC1, 
NNC2; 1γ , 2γ  are the initial learning rates of NNC1, NNC2. During control process, 

1N , 2N , 1γ , 2γ  are automatically updated (see chapter 2 and [58]). The initial and 

final ship position and heading is (34.833οN, 128.83οE) and 150ο; (34.828οN, 
128.84οE) and 90ο, respectively. The berth is assumed to be the South border of the 
chart with latitude of 34.82795οN. 

 
In this research, the mathematical ship model is used for simulation and testing the 

performance of the controllers. The ship model used in this study is a nonlinear model 
of a container ship taken from GNC Toolbox of [80] with length L = 175 m and 
breadth B = 25.4 m (see more in Appendix B.2). 

 
The effect of wind disturbance against the body of the ship is based on the work of 

Isherwood (1972) introduced in [79]. A random uniformly distributed signal on [-0.1ο, 
+0.1ο] is used as the sensor noise in the heading sensor. The random noise in ship 
position is set with ratio of 0.1, and 0.01 in speed and yaw rate measurement. 

 
For visual simulation of ship's movement, M-Maps Toolbox, which is a set of 

mapping tools written in MATLAB and available in [64], is used. The modules written 
in MATLAB introduced in [60] and chapter 4 for guidance and control using Mercator 
chart are applied here. 

 

5.3.2 Simulation Results and Discussion 
 
In this subchapter, the berthing control simulations with and without the effect of 

wind disturbance and measurement noise are presented. 
 
(1) Without wind and measurement noise 

 
Fig. 5.6 shows the simulation results in case no wind and no measurement noise 

applied. The ship position on the berthing trajectory is plotted every 45 seconds. It is 
shown that the tracking target has been satisfactorily achieved. The maximum di  is 

about 12 m, less than half of ship breadth B. 
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Berthing simulation

 50.00’  128oE 
 50.20’ 

 50.40’  50.60’ 

 49.70’ 

  34oN 
 49.80’ 

 49.90’ 

 50.00’ 

 

(a) Plot of ship positions: intended berthing route (dashed), actual track (solid) 
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(b) Actual heading, desired heading and rudder angle 
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(c) Actual speed, desired speed and engine revolution 
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(d) Surge, sway velocity and yaw rate 
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Fig. 5.6  Automatic berthing control without wind and noise 

 
(2) With Wind and Measurement Noise 

 

The berthing simulations are undertaken under random offshore and onshore wind 
and measurement noise. The wind speed changes randomly every 5 seconds and 
assumes values between 10 knots and 20 knots. Firstly, to represent offshore wind 

disturbance, the wind direction varies between 90ο and 270ο every 30 s. Secondly, to 
represent onshore wind disturbance, the wind direction varies from 270ο via 3600 to 
90ο every 30 s. The simulations show that the offshore and onshore wind effect on the 
lateral speed of the ship and final x ordinate, but the robustness of the NNC is 
maintained. The maximum value of di  is about 12 m. Only the simulation of onshore 

wind condition is shown (Fig. 5.7). 
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Berthing simulation
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(a) Plot of ship positions: intended berthing route (dashed), actual track (solid) 
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(b) Actual heading, desired heading and rudder angle 
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(c) Actual speed, desired speed and engine revolution 
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(d) Surge, sway velocity and yaw rate 
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Fig. 5.7 Automatic berthing with onshore wind and noise, wind speed changes 

randomly from 10 knots to 20 knots 

 

Berthing simulation
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(a) Plot of ship positions: intended berthing route (dashed), actual track (solid) 
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(b) Actual heading, desired heading and rudder angle 
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(c) Actual speed, desired speed and engine revolution 
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(d) Surge, sway velocity and yaw rate 
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Fig. 5.8 Automatic berthing with onshore wind and noise, wind speed changes 

randomly from 15 knots to 25 knots 
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Berthing simulation
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(a) Plot of ship positions: intended berthing route (dashed), actual track (solid) 
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(b) Actual heading, desired heading and rudder angle 
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(c) Actual speed, desired speed and engine revolution 
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(d) Surge, sway velocity and yaw rate 
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Fig. 5.9 Automatic berthing with onshore wind and noise, wind speed changes 

randomly from 20 knots to 30 knots 

 
In the next simulations, more difficult situations are selected. Only onshore wind 

simulations are shown. The wind speed changes randomly every 5 seconds and 
assumes values between 15 knots and 25 knots (Fig. 5.8); and then from 20 knots to 30 
knots (Fig. 5.9). In Fig. 5.8e, ship is off the desired route with maximum value of about 
14.5 m (approximately a half of ship breadth B). At final stage, ship is pushed toward 
the berth. The tracking target has also been reasonably maintained. However, care 
should be taken when selecting the final goal point. 

 
In Fig. 5.9 where wind speed increases, the safe berthing is not maintained. This is 

dangerous situation for berthing without the use of side thrusters and tugs. 
 
In all above simulations the fluctuation in the rudder movement was observed, and 

consequently lateral speed and yaw rate also fluctuated. This fluctuation may be 
reduced by carefully selecting the penalty constancies in the cost function. 
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5.4 Conclusion 
 
In this chapter, an automatic berthing control system for ship is developed. The 

ANNAI controller is applied to control the ship's rudder and engine revolution in order 
to automatically control the ship berthing. A useful berthing guidance algorithm is 
proposed. This algorithm can calculate desired heading and speed for the controllers. 
The obtained simulation results lead to the following conclusions 

 
(a) The NNC can be trained online without the necessity of any teaching 

data and offline training phase. 
 
(b) The NNC can make both ship's heading and speed track the desired 

values. 
 
(c) The proposed berthing guidance algorithm works effectively in berthing 

process. 
 
(d) The unknown and non-linearity ship can be controlled satisfactorily; no 

priori knowledge of ship is required. 
 
(e) The NNC is not so sensitive to measurement noise of input signals. 
 
(f) The control system is robust under the light effect of wind disturbance. 
 
(g) When the wind disturbance is considerable, the use of side thrusters 

and/or tugs is required. 
 
However, more simulations should be undertaken in various external 

environmental conditions and for other types of ship to evaluate the safe distance from 
final goal point to the berth, which is required for safe berthing operation. These works 
will be considered in the future. 
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Chapter 6 ANNAI-based Dynamic Positioning System 
                                                             
 
 
 
6.1 Introduction 
 

Dynamic positioning (DP) systems for ships are commonly the systems that have 
station-keeping and low-speed maneuvering functions [79]. The ship is controlled in 
three degree of freedom (surge, sway, and yaw) by means of the ship propulsion 
system, which includes main propellers aft of the ship, tunnel thrusters and azimuth 
thruster mounted under the hull. Rudders are not used during station-keeping since the 
rudder forces are quite small at low speed [83]. Since the 1960s, DP systems have been 
developed using conventional PID controllers in cascade with low pass and/or notch 
filters, model-based control utilizing stochastic optimal control theory and Kalman 
filtering techniques. Conventional DP systems are designed by linearizing the 
kinematic equations of motions about a set of predefined constant yaw angles such that 
linear optimal control theory and gain-scheduling techniques can be applied. These 
control methods and their later extensions as well as modifications proposed by 
numerous authors for DP systems are briefly mentioned in [79]. 

 
More lately DP systems utilizing modified Linear Quadratic Gaussian (LQG) 

feedback controller and a model reference feedforward controller [83]; nonlinear 
output feedback [4]; passive nonlinear observer based control [2] and [81]; nonlinear 
control based on robust observer [52]; nonlinear passive weather optimal positioning 
control (WOPC) system [82] have been developed. The main trend of these studies is 
to remove the assumptions of linearization of the kinematics by using nonlinear 
observer and feedback control theory. These DP systems are designed requiring 
mathematical models of the controlled ships, based on which nonlinear observer can be 
constructed. 
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The main motivation of this research is to remove the necessity of mathematical 

ship model by using an “intelligent” control technique. In the control systems where 
the controlled plants are highly nonlinear and external disturbances are highly 
nonlinear uncertainties, intelligent control techniques are useful. Especially, the NN 
control, one of the intelligent control techniques, has grown very rapidly in recent 
years. Many NN control systems of different structures have been proposed and widely 
applied in a range of technical practices. NNs are very attractive in control applications 
(see [12], [41], [63], and [75] for more details). 

 
However, very few papers on the application of intelligent control, particular NN 

control, to DP systems have been found, such as [45], [85]. In this chapter, a hybrid 
neural adaptive control scheme which can perform station-keeping and low-speed 
maneuvering of ships is developed. The aim is to take advantage of the learning ability 
of NNs, and to derive a NN-based control algorithm which is independent of the exact 
mathematical model of the ship. Furthermore, it is not necessary to estimate the bias 
term representing slowly-varying external environmental forces and moments. A 
conventional PD-controller for nonlinear DP model as suggested in [79] is modified 
and combined with the ANNAI controller introduced in chapter 2 and [58], [59]. In the 
proposed hybrid neural adaptive control scheme, PD-controller provides an 
approximate control, and ANNAI controllers with on-line training ability are 
introduced to improve the DP system performance. For low-speed maneuvering 
function, we propose an algorithm to guide the ship along the desired track. 

 
At first, the DP system configuration is described. And then, to validate the 

proposed DP system, computer simulations of station-keeping and low-speed 
maneuvering performance of a multi-purpose supply ship are presented under the 
influence of measurement noise and external disturbances. 

 
 

6.2 Dynamic Positioning System 
 

This section presents a new DP system based on the ANNAI controller. The DP 
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system has two functions, position-keeping and low-speed maneuvering. 
 
Fig. 6.1 shows the configuration of the proposed DP system, where hybrid neural 

adaptive controller consists of a PD-controller (which has gains pK ′  and dK ′ ) and 

three adaptive neural networks ANNAI1, ANNAI2, ANNAI3. In Fig. 6.1, each element 

of vector eJ T ˆ)(ψ  is input to one ANNAI controller. Elements of the vector 
T

nnnn OOOO ],,[ 321=  are outputs of the ANNAI controllers. Thruster allocation block 
is used to calculate the contribution of each actuator of the ship propulsion system. 
More detail of the DP system model is presented in Appendix A. 

 

 
Fig. 6.1 Configuration of the proposed ANNAI-based DP system. Conventional 

PD controller is combined with the ANNAI controllers 

 

6.2.1 Station-keeping Control 
 
(1) Hybrid Neural Adaptive Controller 

 
It is shown in [79] that the DP system was designed based on the nonlinear DP 

model 

 

νηη )(J=& ,                           (6.1) 
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bJDM T )(ητνν +=+& ,                     (6.2) 
 

wy ηη += ,                          (6.3) 

 

where η  is the vector of earth-fixed position and heading, ν  is the vector of vessel-
fixed linear velocity, )(ηJ  is the transformation matrix between the earth-fixed 

coordinate and the vessel-fixed coordinate (for surface vessel )()( ψη JJ =  and J-1(ψ) 

= JT(ψ), τ  is the control vector of forces and moment, b  is a vector of bias forces 
and moment representing slowly-varying environmental disturbances, wη  is a zero 
means bounded disturbance vector, y  is the measurement vector, M  is the inertia 

matrix including hydrodynamic added inertia, and D  is the damping matrix. The 
more detail of DP model is presented in Appendix A. 

 
Instead of using integral action to compensate for b , in [79] (page 430) a PD-

controller 

 

bJKeKJ T
dp

T )()( ψνψτ −−−= ,                 (6.4) 

 

de ηη −=                            (6.5) 

 

was used under the assumption that b  is known (perfect compensation) and dη  is 
the desired states, 0=dη& . However, it is impossible to measure b , so in that study, a 
state observer which can generate estimates of η , ν , and b  and at the same time 

provide wave filtering was needed. Hence, a nonlinear mathematical model of the ship 

was used. The controller using the estimates states η̂ , ν̂ , and b̂  in [79] is 

 

bJKeKJ T
dp

T ˆ)(ˆˆ)( ψνψτ −−−= ,                 (6.6) 

 

de ηη −= ˆˆ .                           (6.7) 
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In this research we avoid using any mathematical model of ship in designing the 
controller. Additionally, it is not necessary to estimate the bias term b . In order to do 

that, we propose a hybrid neural adaptive control scheme as described in Fig. 6.1. 
Equation (6.6) suggests that we can use a conventional PD-controller with parameters 

pK ′  and dK ′  approximately selected, that is 

 

νψτ ˆˆ)( dp
T

PD KeKJ ′−′−= .                     (6.8) 

 

The control input PDτ  by (6.8) can provide an approximate control of ship. 

However, the controller must be able to compensate optimally the effects of b  as well 
as minimize ê . So a proper compensation value must be added to PDτ  in every 

control cycle. We know that the ship dynamics and external disturbances are highly 
nonlinear, hence neural network controller is a good choice in this situation. 

 
The ANNAI controller introduced in chapter 2 is stable and can be adaptively 

trained in fast time [58], [59]. Further more, we can use this ANNAI controller in direct 
control method. Hence, it is suitable to use the ANNAI controller in parallel with the 
PD-controller. For these reasons we apply the ANNAI controller in combination with 
the PD-controller in (6.8). The control output of the proposed controller has the form 

 

ndp
T

NNPD OKeKJ −′−′−=+= νψτττ ˆˆ)( ,             (6.9) 

 

where ]ˆ)([ eJFO T
nNN ψτ −=−= , 3ℜ∈nO  is outputs of three ANNAI controllers, 

ê  is determined by (6.7). For the ANNAI controllers of this application, η=kX , 

d
d
kX η= , and NN

c
ku τ= . The controller described by (6.9) is independent of an 

explicit mathematical model of ship and requires no estimation of b . It is expected 

that the model error and estimation error can be removed. This ability is an advantage 
in comparison with prior works in terms of coping with nonlinearities and uncertainties 
in ship dynamics as well as external disturbances. 
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(2) Adaptation Law of ANNAI Controllers 

 
Now we discuss how the ANNAI controllers are designed and can derive the 

control vector NNτ  in (6.9). For the proposed DP system, the estimates states η̂  and 

ν̂  are obtained with proper wave filters. The selected ANNAI controllers are multi-
layer feedforward neural networks with one hidden layer. The vector of transformed 

error eJ T ˆ)(ψε =  is the input vector of ANNAI controllers and must be converged to 
zero. The cost functions for these controllers have the following form 

 

]ˆ[
2
1 222

iiniiiii OE νκλερ &++= ,                  (6.10) 

 

where iρ , iλ , iκ  (i = 1, …,3) are positive constants. 

 
The adaptation law for hidden layer of the ANNAI controller as in [58] can be 

written as 

 

)( hid
iii

hid
i Isigw −= φε& ,                      (6.11) 

 

where )(⋅sig  is a sigmoidal activation function and 

 

out
i

out
ii ww &⋅=φ ,                          (6.12) 

 

∑ += hid
ii

hid
i

hid
i wI θε ,                     (6.13) 

 

where hid
iθ  is the threshold values of the hidden layers. For the output layer, the 

adaptation law has the following form 

 

)ˆ)(( iiniiii
hid
ii

out
i vOIsigw && κλεργ ++= .               (6.14) 
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Here, iγ  are learning rates of the ANNAI controllers. In this study, output 

neurons have tangent sigmoidal activation function, such that 

 

)(tan out
ini IsigO = ,                        (6.15) 

 

∑ += out
i

hid
i

out
i

out
i IsigwI θ)( ,                    (6.16) 

 

where out
iθ  is the threshold values of the output layers. 

 
To summarize, the ANNAI controllers can minimize the cost function (6.10) using 

adaptation laws (6.11) and (6.14). Once the outputs nO  of ANNAI controllers are 

determined, the control input of DP system is determined by (6.9). Using the control 
scheme described in (6.9), the DP system can compensate for unknown bias term 
representing slowly-varying environmental disturbances, and minimize positioning 
error. Further details of the ANNAI adaptation laws were shown in chapter 2 and can 
be found in [58] and [59]. 

 

6.2.2 Low-speed Maneuvering Control 
 
This subsection presents the low-speed maneuvering control function of the DP 

system. To maneuver the ship the reference point method is used. At every control 
cycle, the ship is stabilized on a moving reference point R(xd, yd) (Fig. 6.2) at a desired 

heading ψd. In this case the desired states vector is T
dddd yx ],,[ ψη = . Suppose that 

we want to make a certain point H(xH, yH) of the ship (as shown in Fig. 6.2) follow the 

desired track (be stabilized at R). If T
HHH yx ],,[ ψη = is the ship states at H, the error 

vector is now expressed as 

 

dHe ηη −= .                         (6.17) 

 

In Fig. 6.2, position of H in the vessel-fixed reference coordinate is determined by 
xΔ  and yΔ . The position of H in the earth-fixed reference coordinate can be easily 
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obtained as 

 

HH dJy
x

J )(ˆ
0

)(ˆ ψηψηη +=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Δ
Δ

+= ,                (6.18) 

 

where T
yxHd ]0,,[ ΔΔ= . From (6.8), (6.17), and (6.18) the hybrid neural adaptive 

control scheme to stabilize H at the reference point R is proposed as 
 

ndp
T

NNPD OKeKJ −′−′−=+= νψτττ ˆˆ)( ,            (6.19) 

 

]ˆ)([ eJFO T
n ψ= ,                         (6.20) 

 

dHdJe ηψη −+= )(ˆˆ .                       (6.21) 

 
Here, the adaptation laws of the ANNAI controllers are similarly determined as in 

the previous subsection. Using the control scheme expressed in (6.19), (6.20), and 
(6.21), the DP system can compensate for unknown bias term representing slowly-
varying environmental disturbances, and minimize tracking error. 

 
In order to make the ship follow the desired track, we propose an algorithm to 

move the reference point R along the desired track. Let ze be the distance HR, we can 
have 

 

22 )()( dHdHe yyxxz −+−= .                 (6.22) 

 

Based on the work in [35], the speed u of R is chosen as 

 

ψχχχχψ Δ−−−−−=Δ 4302 )1(),,( )(
1

* eeeuztu eztt
e ,           (6.23) 
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where additional term ψχ Δ− 4e  is added to the original algorithm, and 0* ≠u , iχ > 0, 

i = 1, …4, 1χ < 1, and dψψψ −=Δ . 

 

Fig. 6.2 General framework of low-speed maneuvering. In the vessel-fixed 

reference coordinate, H is determined by xΔ  and yΔ . In the earth-

fixed reference coordinate, H is determined by xH and yH, R is determined 

by xd and yd. 

 
The choice of u(t,ze) in (6.23) has the following desired features: when the tracking 

error ze and/or heading error Δψ are large, the reference point R will wait for the ship 
position and her heading to reach to the set point dη ; when ze and Δψ are small, the 

reference point R will move along the desired track at the speed closed to *u  and the 
ship follows it within the specified look ahead distance while maintaining the desired 
heading [35]. 

 
 

6.3 Simulation Results 
 
In order to validate the proposed DP control system, we carry out computer 

simulations using the nonlinear model of an off-shore supply ship Northern Clipper 
which was presented in [81]. The length of Northern Clipper is L = 72.6 m and the 

mass is m = 4.591⋅106 kg (see more in Appendix B.3). The coordinate system is located 
in the center of gravity. The bias time constants are chosen as }1000,1000,1000{diagT = . 
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The wave model parameters are also chosen as in [81] with ζi = 0.1 and ωoi = 0.8976 
rad/s corresponding to a wave period of 7.0 s in surge, sway and yaw. 

 
The ANNAI controllers are feedforward neural networks with four input neurons, 

six hidden neurons and one output neuron. The input vector of each neural network 
consists of iε  and their three delayed signals. Number of training iterations in one 

control cycle of each neural network is fixed at 50. The other parameters are 
 

]25.0,175.0,125.0[],,[ 321 =ρρρ ,                 (6.24) 

 
]2.0,025.0,1[],,[ 321 =λλλ ,                    (6.25) 

 
]2.0,02.0,5.1[],,[ 321 =κκκ ,                   (6.26) 

 
]5.0,5.0,3.0[],,[ 321 =γγγ .                    (6.27) 

 

The gains of PD-controller are chosen as: 

 

 }3200,350,350{ eeediagK p =′ ,                  (6.28) 

 
}340,310,310{ eeediagK d =′ .                   (6.29) 

 

6.3.1 Station-keeping 
 
In Fig. 6.3 the simulation results of four situations are shown. Firstly, we apply no 

control action and the ship moves away from original position (0, 0) due to external 
disturbances. Secondly, we apply PD-controller and maximum distance from ship to 
the original position is about 3 m. Thirdly, we use ANNAI controllers. Although ship 
does not move away, her position is not stationed around the original position. Finally, 
we apply the proposed hybrid adaptive neural controller. The ship is stationed around 
the original position with maximum distance in x is about 0.5 m, and in y is about 1 m. 
Simulation time is 600 s. 
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Fig. 6.3 Plot of ship position. Without controller (upper-left); with PD-controller 

(upper-right); with ANNAI controllers (lower-left); with hybrid adaptive 

neural controller (lower-right) 

 
In next simulation (Fig. 6.4), the center of gravity is stationed at the point (0, 0). 

Initial ship heading is 90ο, after 300 s the heading is changed to 160ο, and after 1700 s 
it is changed to 135ο. The simulation result has shown the ability of the DP system in 
station-keeping. The ship is stably kept at desired position and direction is correctly 
changed under the effect of external disturbances represented by bias term. As shown 
in Fig. 6.4b, the maximum error in x is about 2.5 m, and in y about 1.2 m. 
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(a) Plot of ship position in xy coordinates in station-keeping simulation. 
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(b) Measured (dotted), filtered (solid) position in x, y, and heading. 
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(c) Control output of controllers. ANNAI controllers (dotted), PD-controller 

(dashed), and hybrid neural adaptive controller (solid). 

Fig. 6.4 Station-keeping simulation results 

 

6.3.2 Low-speed Maneuvering 
 
In these simulations we select a desired track connecting four marked points (0, 0), 

(100,-100), (200, 0), (100, 100), (0, 0). In all simulations the ship positions are plotted 
every 60 seconds. Off-track distance, filtered position in x, y, and ship heading, control 
forces and moment are shown. In low-speed maneuvering following marked points, we 
use distance from R to current marked point Zep as in [35] to modify (6.23) as follow 

 

ψχχχχψ Δ−−−−=Δ 432 )1(),,( 1
* eeeuzZu eep zZ

eep           (6.30) 

 

where 
]15,2.0,2.0,95.0[],,,[ 4321 =χχχχ .               (6.31) 

 

Equation (6.30) can reduce ship speed exponentially while approaching the 
marked point to prevent position overshoot. By selecting values of xΔ , yΔ  to 
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determine position of H, we can make a specific point of ship follow the desired track. 
The following three cases are simulated: 

 

Case 1: The point H is located at the center of gravity of the ship and follows the 

desired track while ship heading on each segment is set to 0ο, 315ο, 225ο, 135ο. In this 
case, position of H in vessel-fixed reference coordinate is chosen as: 0=Δx , 0=Δy . 

The initial position and heading of ship is (0, 0) and 0ο. The simulation result is shown 
in Fig. 6.5. 

 
In this simulation, the center of gravity of the ship moves along the desired track 

with small off-track distance and heading is kept at desired value. At each marked 
point, ship heading changes to new desired value before the ship continues to move 

along new segment. This action is resulted in by the effect of new item ψχ Δ− 4e  in 
(6.23). 

 

Case 2: The point H is located on the bow of the ship and follows the desired track 

while ship heading on each segment is set to 315ο, 45ο, 135ο, 225ο. In this case, 
position of H in vessel-fixed reference coordinate is chosen as: 2/Lx =Δ , 0=Δy . 

The initial position and heading of ship is (-L/2, 0) and 0ο. The plot of the ship 
positions is shown in Fig. 6.6. In low-speed maneuvering, the effects of disturbances 
on ship are considerable. However, in this simulation the bow of the ship can follow 
the desired track while ship heading on each segment is maintained at the desired value. 

 

Case 3: Similar to the case 2 but the ship heading on each segment is set to 0ο, 90ο, 
180ο, 270ο. This case is more difficult than case 2 because ship moves in a direction 
different from her heading. The plot of the ship positions is shown in Fig. 6.7. 

 
Similar to the simulation of case 2, ship’s bow in the case 3 can follow the desired 

track, and the desired heading is still maintained. In both cases 2 and 3, at each marked 
point the ship’s bow is stationed at the point so that ship heading changes to new value 
before moving along new segment. Clearly, this action is also resulted in by the effect 

of new item ψχ Δ− 4e  in (6.23). 
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(a) xy plot of ship position in low-speed maneuvering simulation. 
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(b) Off-track distance, position in x, y, and ship heading. 
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(c) Control output of controllers. ANNAI controllers (dotted), PD-controller 

(dashed), and hybrid neural adaptive controller (solid). 

Fig. 6.5 Low-speed maneuvering simulation result of case 1. The desired track 

connecting four marked points is gray line 
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(a) xy plot of ship position in low-speed maneuvering simulation. 
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(b) Off-track distance, position in x, y, and ship heading. 
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(c) Control output of controllers. ANNAI controllers (dotted), PD-controller 

(dashed), and hybrid neural adaptive controller (solid). 

Fig. 6.6 Low-speed maneuvering simulation result of case 2. The desired track 

connecting four marked points is gray line 
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(a) xy plot of ship position in low-speed maneuvering simulation. 
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(b) Off-track distance, position in x, y, and ship heading. 
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(c) Control output of controllers. ANNAI controllers (dotted), PD-controller 

(dashed), and hybrid neural adaptive controller (solid). 

Fig. 6.7 Low-speed maneuvering simulation result of case 3. The desired track 

connecting four marked points is gray line 

 

 

6.4 Conclusion 
 
Practically, it is still difficult to obtain an exact ship model to improve the control 

performance. To cope with this challenge, this chapter has presented a new hybrid 
neural adaptive DP system, which is independent of the exact mathematical model of 
ship, using ANNAI controllers and a conventional PD-controller. The ANNAI 
controller has been introduced to adaptively compensate for unknown bias term 
representing slowly-varying environmental disturbances and minimize positioning and 
tracking error. Computer simulations have been carried out to prove the feasibility of 
the proposed controller and test its performance. The external disturbance effects have 
been added to ensure that the proposed control scheme remains stable during operation. 

 
It has been shown in Fig. 6.3 that the performance of the hybrid adaptive neural 

controller in stabilizing ship at desired position has been improved in comparison with 
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PD-controller and NNC. The proposed DP system has shown the ability to control 
dynamically positioned ship in position-keeping as well as various maneuvering 
situations under the effects of external disturbances. The independence of a 
mathematical ship model proved that, we can apply the DP system to other ship to do 
similar tasks without redesign the controller. Additionally, the proposed DP system 
does not require the estimation of the bias term. So the model error and estimation 
error can be removed. Furthermore, a method of moving the reference point has been 
modified and applied to low-speed maneuvering. This method has shown the 
effectiveness of stabilizing ship at reference point as well as maintaining the desired 
heading. This ability is useful for specialized tracking functions for supply ships, cable 
and pipe laying ships. 

 
In practice, if it is possible to design the PD-controller more carefully and the 

ANNAI controllers’ parameters are optimally selected, for example if we apply to a 
real ship with some prior knowledge of the ship, the control performance can be 
improved more. Future work will consider the actuator allocation and saturation, as 
well as the extreme environmental situations. The role of the NNC within the hybrid 
control scheme will be more closely analyzed, especially the issue of stability will be 
addressed more comprehensively. 
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Chapter 7 Conclusions and Recommendations 
                                                             

 
 
 

In this thesis, the overall goal was to develop methodologies which can improve 
and enhance performance and reliability of marine vehicles utilizing recent 
developments in the field of adaptive neural network control techniques. A new 
adaptive neural network controller was developed and applied to heading control of 
ships. This adaptive neural network controller was then improved and extended to 
design a track control system, which can adapt with the external disturbances acting on 
ship. Based on the proposed neural network control scheme, an automatic berthing 
control system for ship was developed. A similar adaptive neural network control 
algorithm was applied to design a hybrid neural adaptive controller for dynamic 
positioning of ship. In this chapter, conclusions are summarized for each topic in 
chapters 2 – 6. Finally, some recommendations for future research are presented. 

 
 

7.1 Conclusions 
 
The conclusions for each topic of this research can be summarized as follows. 
 

7.1.1 ANNAI Controller 
 
(1) A new approach of neural network training was further developed in order to 

apply to automatic ship control. The ANNAI controller can be online-trained. 
 
(2) To enhance the adaptability of the neural network controller, an algorithm for 

automatic selection of learning rate and number of training iterations was 
proposed. This algorithm also helped to speed up training speed and maintain 
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the stability of the control system. It also helped to avoid manual time-
consuming selection of neural network parameters by trial and error method. 

 

7.1.2 Heading Control System 
 
(1) The proposed ANNAI controller was applied to heading control of ships. In 

digital control system, the time needed for calculation of control output is 
very important. The proposed neural network takes less time for calculation of 
control output in comparison with conventional backpropagation neural 
network. 

 
(2) The proposed neural network heading control system can cope with new 

situations, including different ships or environmental conditions. This ability 
is resulted in by the online training scheme applied to the neural network. 

 
(3) Ship model error and approximation error can be removed. Because the neural 

network controller can adapt directly without approximating the ship 
dynamics, and no ship mathematical model was required in designing the 
controller. 

 

7.1.3 Track Control System 
 
(1) In practice, external disturbances especially sea current, make the ship deviate 

from the intended track. To enhance the adaptability of the track control 
system, off-track distance from ship to the intended track was included in the 
learning process of the neural network controller developed in chapter 2. 
Employing the learning ability of the neural network, the track control system 
can adapt with the changes of external disturbances as well as ship dynamics. 

 
(2) Modification of the well-known LOS guidance algorithm was proposed. An 

alternative method to calculate guidance signal and radius of circle of 
acceptance R0 was proposed. This calculation considered the dependence of 
R0 on ship turning characteristic and the difference between the present course 
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and new course. 
 

(3) For visual simulation purpose, module programs written in MATLAB are 
introduced for guidance and control using Mercator chart. They can be used to 
calculate and display ship's movement on the navigational equipment 
monitors such as ECDIS. 

 

7.1.4 Berthing Control System 
 
(1) An automatic berthing control system was developed. The proposed neural 

network controller was modified to be suitable to control ship heading and 
speed in low-speed maneuvering in harbor. The off-track distance from ship to 
intended berthing route was included in ship heading control algorithm. This 
modification can make the ship tend to get close to the intended track. 

 
(2) A useful berthing guidance algorithm is proposed by modifying the prior 

works. This algorithm can calculate desired heading and speed for the 
controllers. 

 
(3) The computer simulations demonstrated that, the control system is robust 

under the light effect of wind disturbance. When the wind disturbance is 
considerable, the use of side thrusters and/or tugs is required. 

 

7.1.5 Dynamic Positioning System 
 
(1) Practically, it is still difficult to obtain an exact ship model to improve the 

control performance. To cope with this challenge, a new hybrid neural 
adaptive DP system was proposed. This DP system is independent of the exact 
mathematical model of ship, using the proposed neural network controllers in 
parallel with a conventional PD-controller. 

 
(2) No estimation of external disturbances was required, because the neural 

network controllers can compensate for the external disturbances by learning 
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ship dynamics. 
 

(3) The DP system can minimize positioning error and tracking error. For low-
speed maneuvering, an algorithm to guide the ship along the intended track 
and maintain ship heading was proposed. 

 
 

7.2 Recommendations for Future Research 
 
The results of the present work indicate the following potential topics for future 

research. 
 
(1) The adaptive neural network controller developed in this study can be applied 

to other marine control problems such as rudder roll control, floating 
structures control, and control of under water vehicles. 

 
(2) Extensive study on the selection of the best structure of neural network for 

each control problems is recommended. 
 

(3) The parameters of the neural network controller in cost function require 
proper selection to obtain optimal performance. Investigation of possible 
application of genetic algorithms to find optimal values is recommended for 
further study. 

 
(4) The improvement in hybrid control algorithm suggests that, we can employ 

the advantages of conventional control methods and neural network control, 
as well as other intelligent control. Future work will consider the combination 
of these control methods in designing marine control systems. 

 
(5) The role of the neural network controller within the hybrid control scheme 

will be more closely analyzed, especially the issue of stability will be 
addressed more comprehensively in further study. 
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Appendix A 
 
Mathematical Model of Dynamic Positioning Ships 
                                                                        

 
This Appendix presents a brief mathematical model for dynamic positioning of 

ships based on [79]. 
 

A.1 Equations of Motion 
 

The earth-fixed position (x, y) and heading ψ of the vessel relative to an earth-
fixed coordinate XEYEZE are expressed in vector form by Tyx ],,[ ψη = , and the vessel-
fixed linear velocity vector is expressed by Trvu ],,[=ν . These three modes are 
referred to as the surge, sway and yaw modes of a ship. The origin of the vessel-fixed 
coordinate XYZ is located at the vessel center line in a distance xG from the center of 
gravity. The low frequency motion of DP ships in surge, sway, and yaw can be 
described as follow 

 

bJDM T )(ητνν +=+& ,                      (A.1) 

 

νηη )(J=& .                            (A.2) 

 

Here, T],,[ 321 ττττ =  is a control vector of forces and moment provided by the 

propulsion system. 33xM ℜ∈  is the inertia matrix including hydrodynamic added 
inertia, and 33xD ℜ∈  is the damping matrix. 
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where m is the mass, Iz is the moment of the ship about the vessel-fixed z-axis, 

rvrvu NNYYX &&&&& ,,,,  are added inertia, rvvu NNYX ,,,  are linear damping forces and 

moment, and u0 is the nominal velocity of the ship. 
 
Unmodeled external forces and moment due to wind, currents and waves are 

lumped together into an earth-fixed constant (or slowly-varying) bias term 3ℜ∈b , 
)(ηJ  is the transformation matrix between the earth-fixed coordinate and the vessel-

fixed coordinate. The transformation matrix has the following form 
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where J(ψ) is nonsingular for all ψ and J-1(ψ) = JT(ψ). 
 

A.2 Bias Modeling 
 
A common model for the bias forces in surge, sway and yaw moment for marine 

vehicle control application is 

 

nbTb Ψ+−= −1& ,                         (A.6) 

 

where 3ℜ∈b  is a vector of bias forces and moment, n is a vector of zero-mean 
Gaussian white noise, T is a diagonal matrix of positive bias time constants and 

33xℜ∈Ψ  is a diagonal matrix scaling the amplitude of n. This model can be used to 
describe slowly-varying environmental forces and moments due to 2nd order wave 
loads, ocean currents, wind and unmodeled dynamics. 
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A.3 Wave Force Modeling 
 
Wave forces can be divided into 1st-order wave disturbances and 2nd-order wave 

drift forces. For the practical application to control system design, the 1st-order wave 
disturbances can be described by three harmonic oscillators with some damping. Linear 
2nd order wave forces are generally expressed as 

 

EwA += ξξ& ,                         (A.7) 
 

ξη Cw = ,                           (A.8) 

 

where T
wwww yx ],,[ ψη = , 6ℜ∈ξ , and 3ℜ∈w  is a zero means bounded 

disturbance vector and 

 

⎥
⎦

⎤
⎢
⎣

⎡
ΩΩ

=
2221

0 I
A , ⎥

⎦

⎤
⎢
⎣

⎡
Σ

=
2

0
E , [ ]IC 0= ,              (A.9) 

 

where 
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Here oiω , iζ , and iσ  (i = 1, …, 3) are wave frequency, relative damping ratio 

and parameters related to wave intensity, respectively. 
 

A.4 Measurement Systems 
 
For conventional ships, positions and yaw angles are usually measured by global 

positioning system (GPS) or hydroacoustic positioning reference (HPR) systems, and 
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gyro compasses. However, for ship positioning systems the differential GPS is usually 
applied to reduce positioning errors. The measurement can be written as 

 

vy w ++= ηη ,                          (A.10) 

 

where 3ℜ∈v  is the zero mean Gaussian white measurement noise. It is assumed that 
the total position of the ship can be obtained by superposition of the position and 
direction of the ship and the wave displacements. 
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Appendix B 
 
Parameters used in the Simulations 
                                                                        

 

B.1 Mariner Class Vessel 
 
Both planar motion mechanism tests and full-scale steering and maneuvering 

predictions for this Mariner Class Vessel were performed by the hydro-aerodynamics 
laboratory in Lyngby, Denmark. The main data and dimensions of the Mariner Class 
Vessel are shown in [78] 

 
Table B.1  Main dimensions of Mariner Class Vessel 

 

Length overall (LOA) 171.80 m 

Length between perpendiculars (LPP) 160.93 m 

Maximum beam (B) 23.17 m 

Design draft (T) 8.23 m 

Design displacement (∇) 18541 m3 

Design speed (u0) 15 knots 

 

Matlab M-File for Nonlinear Model of Mariner Class Vessel 
 
function [xdot,U] = mariner(x,ui,U0) 
% [xdot,U] = mariner(x,ui) returns the speed U in m/s (optionally) and the  
% time derivative of the state vector: x = [ u v r x y psi delta n ]'  for 
% the Mariner class vessel L = 160.93 m, where 
% 
% u     = perturbed surge velocity about Uo (m/s) 
% v     = perturbed sway velocity about zero (m/s) 
% r     = perturbed yaw velocity about zero (rad/s) 
% x     = position in x-direction (m) 
% y     = position in y-direction (m) 
% psi   = perturbed yaw angle about zero (rad) 
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% delta = actual rudder angle (rad) 
% 
% The inputs are : 
%  
% ui    = commanded rudder angle (rad) 
% U0    = nominal speed (optionally). Default value is U0 = 7.7175 m/s = 15 
% knots. 
% 
% Reference: M.S. Chislett and J. Stroem-Tejsen (1965). Planar Motion 
%            Mechanism Tests and Full-Scale Steering and Maneuvering 
%            Predictions for a Mariner Class Vessel,Technical Report Hy-5, 
%            Hydro- and Aerodynamics Laboratory, Lyngby, Denmark. 
%  
% Author:    Trygve Lauvdal 
% Date:      12th May 1994 
% Revisions: 19th July 2001 (Thor I. Fossen): added input/ouput U0 and U, 
%                         changed order of x-vector 
%            20th July 2001 (Thor I. Fossen): replaced inertia matrix with  
%                         correct values 
%            11th July 2003 (Thor I. Fossen): max rudder is changed from 30  
%                         deg to 40 deg to satisfy IMO regulations for 35 deg  
%                         rudder execute 
  
% Check of input and state dimensions 
if (length(x)  ~= 7),error('x-vector must have dimension 7 !'); end 
if (length(ui) ~= 1),error('ui must be a scalar input!'); end 
if nargin==2, U0 = 7.7175; end 
  
% Normalization variables 
L = 160.93; 
U = sqrt((U0 + x(1))^2 + x(2)^2); 
  
% Non-dimensional states and inputs 
delta_c = -ui;   % delta_c = -ui such that positive delta_c -> positive r 
  
u     = x(1)/U;    
v     = x(2)/U;   
r     = x(3)*L/U;  
psi   = x(6);  
delta = x(7);  
  
% Parameters, hydrodynamic derivatives and main dimensions 
delta_max  = 35;           % max rudder angle      (deg) 
Ddelta_max = 2.5;          % max rudder derivative (deg/s) 
  
m  = 798e-5; 
Iz = 39.2e-5; 
xG = -0.023; 
  



 118

Xudot =  -42e-5;   Yvdot =  -748e-5;   Nvdot = 4.646e-5; 
Xu    = -184e-5;   Yrdot =-9.354e-5;   Nrdot = -43.8e-5; 
Xuu   = -110e-5;   Yv    = -1160e-5;   Nv    =  -264e-5; 
Xuuu  = -215e-5;   Yr    =  -499e-5;   Nr    =  -166e-5; 
Xvv   = -899e-5;   Yvvv  = -8078e-5;   Nvvv  =  1636e-5; 
Xrr   =   18e-5;   Yvvr  = 15356e-5;   Nvvr  = -5483e-5; 
Xdd   =  -95e-5;   Yvu   = -1160e-5;   Nvu   =  -264e-5; 
Xudd  = -190e-5;   Yru   =  -499e-5;   Nru   =  -166e-5; 
Xrv   =  798e-5;   Yd    =   278e-5;   Nd    =  -139e-5; 
Xvd   =   93e-5;   Yddd  =   -90e-5;   Nddd  =    45e-5; 
Xuvd  =   93e-5;   Yud   =   556e-5;   Nud   =  -278e-5; 
                   Yuud  =   278e-5;   Nuud  =  -139e-5; 
                   Yvdd  =    -4e-5;   Nvdd  =    13e-5; 
                   Yvvd  =  1190e-5;   Nvvd  =  -489e-5; 
                   Y0    =    -4e-5;   N0    =     3e-5; 
                   Y0u   =    -8e-5;   N0u   =     6e-5; 
                   Y0uu  =    -4e-5;   N0uu  =     3e-5; 
  
% Masses and moments of inertia 
m11 = m-Xudot; 
m22 = m-Yvdot; 
m23 = m*xG-Yrdot; 
m32 = m*xG-Nvdot; 
m33 = Iz-Nrdot; 
  
% Rudder saturation and dynamics 
if abs(delta_c) >= delta_max*pi/180, 
   delta_c = sign(delta_c)*delta_max*pi/180; 
end 
delta_dot = delta_c - delta; 
if abs(delta_dot) >= Ddelta_max*pi/180, 
   delta_dot = sign(delta_dot)*Ddelta_max*pi/180; 
end 
  
% Forces and moments 
X = Xu*u + Xuu*u^2 + Xuuu*u^3 + Xvv*v^2 + Xrr*r^2 + Xrv*r*v + Xdd*delta^2 +... 
    Xudd*u*delta^2 + Xvd*v*delta + Xuvd*u*v*delta; 
  
Y = Yv*v + Yr*r + Yvvv*v^3 + Yvvr*v^2*r + Yvu*v*u + Yru*r*u + Yd*delta + ... 
    Yddd*delta^3 + Yud*u*delta + Yuud*u^2*delta + Yvdd*v*delta^2 + ... 
    Yvvd*v^2*delta + (Y0 + Y0u*u + Y0uu*u^2); 
  
N = Nv*v + Nr*r + Nvvv*v^3 + Nvvr*v^2*r + Nvu*v*u + Nru*r*u + Nd*delta + ... 
    Nddd*delta^3 + Nud*u*delta + Nuud*u^2*delta + Nvdd*v*delta^2 + ... 
    Nvvd*v^2*delta + (N0 + N0u*u + N0uu*u^2); 
  
% Dimensional state derivative 
detM22 = m22*m33-m23*m32; 
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xdot = [           X*(U^2/L)/m11 
        -(-m33*Y+m23*N)*(U^2/L)/detM22 
         (-m32*Y+m22*N)*(U^2/L^2)/detM22 
           (cos(psi)*(U0/U+u)-sin(psi)*v)*U 
           (sin(psi)*(U0/U+u)+cos(psi)*v)*U    
                    r*(U/L) 
                    delta_dot                  ]; 

 
 

B.2 Container Ship 
 
A mathematical model for a single-screw height-speed container ship in surge, 

sway, roll, and yaw is shown in [78]. The main data of the ship model is presented 
below. 

 
Table B.2  Main dimensions of Container Ship 

 

Length (L) 175.00 m 

Breadth (B) 25.40 m 

Draft  fore (dF) 8.00 m 

 aft  (dA) 9.00 m 

 mean (d) 8.50 m 

Displacement volume 21,222 m3 

Height from keel to transverse metacenter (KM) 10.39 m 

Height from keel to center of buoyancy (KB) 4.6154 m 

Block coefficient (CB) 0.559  

Rudder area (AR) 33.0376 m2 

Aspect ratio (Λ) 1.8219  

Propeller diameter (D) 6.533 m 

 

Matlab M-File for Nonlinear Model of Container Ship 
 

function [xdot,U] = container(x,ui) 
% [xdot,U] = container(x,ui) returns the speed U in m/s (optionally) and the  
% time derivative of the state vector: x = [ u v r x y psi p phi delta n ]'   
% for a container ship L = 175 m, where 



 120

% 
% u     = surge velocity          (m/s) 
% v     = sway velocity           (m/s) 
% r     = yaw velocity            (rad/s) 
% x     = position in x-direction (m) 
% y     = position in y-direction (m) 
% psi   = yaw angle               (rad) 
% p     = roll velocity           (rad/s) 
% phi   = roll angle              (rad) 
% delta = actual rudder angle     (rad) 
% n     = actual shaft velocity   (rpm) 
% 
% The input vector is : 
% 
% ui      = [ delta_c n_c ]'  where 
% 
% delta_c = commanded rudder angle   (rad) 
% n_c     = commanded shaft velocity (rpm)   
% 
% Reference:  Son og Nomoto (1982). On the Coupled Motion of Steering and  
%             Rolling of a High Speed Container Ship, Naval Architect of  
%             Ocean Engineering, 20: 73-83. From J.S.N.A. , Japan, Vol. 150, 
%             1981. 
%  
% Author:    Trygve Lauvdal 
% Date:      12th May 1994 
% Revisions: 18th July 2001 (Thor I. Fossen): added output U, changed order  
%                    of x-vector 
%            20th July 2001 (Thor I. Fossen): changed my = 0.000238 to 
%                    my = 0.007049 
  
% Check of input and state dimensions 
  
if (length(x) ~= 10),error('x-vector must have dimension 10 !');end 
if (length(ui) ~= 2),error('u-vector must have dimension  2 !');end 
  
% Normalization variables 
L = 175;                     % length of ship (m) 
U = sqrt(x(1)^2 + x(2)^2);   % service speed (m/s) 
  
% Check service speed 
if U <= 0,error('The ship must have speed greater than zero');end 
if x(10) <= 0,error('The propeller rpm must be greater than zero');end 
  
delta_max  = 35;             % max rudder angle (deg) 
Ddelta_max = 2.5;            % max rudder rate (deg/s) 
n_max      = 160;            % max shaft velocity (rpm) 
  
% Non-dimensional states and inputs 
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delta_c = ui(1);  
n_c     = ui(2)/60*L/U;   
  
u     = x(1)/U;   v   = x(2)/U;   
p     = x(7)*L/U; r   = x(3)*L/U;  
phi   = x(8);     psi = x(6);  
delta = x(9);     n   = x(10)/60*L/U; 
  
% Parameters, hydrodynamic derivatives and main dimensions 
m  = 0.00792;    mx     = 0.000238;   my = 0.007049; 
Ix = 0.0000176;  alphay = 0.05;       lx = 0.0313; 
ly = 0.0313;     Ix     = 0.0000176;  Iz = 0.000456; 
Jx = 0.0000034;  Jz     = 0.000419;   xG = 0; 
  
B     = 25.40;   dF = 8.00;    g     = 9.81; 
dA    = 9.00;    d  = 8.50;    nabla = 21222;  
KM    = 10.39;   KB = 4.6154;  AR    = 33.0376; 
Delta = 1.8219;  D  = 6.533;   GM    = 0.3/L; 
rho   = 1025;    t  = 0.175;   T     = 0.0005;  
  
W     = rho*g*nabla/(rho*L^2*U^2/2); 
  
Xuu      = -0.0004226;  Xvr    = -0.00311;    Xrr      = 0.00020;  
Xphiphi  = -0.00020;    Xvv    = -0.00386; 
  
Kv       =  0.0003026;  Kr     = -0.000063;   Kp       = -0.0000075;  
Kphi     = -0.000021;   Kvvv   =  0.002843;   Krrr     = -0.0000462;  
Kvvr     = -0.000588;   Kvrr   =  0.0010565;  Kvvphi   = -0.0012012;  
Kvphiphi = -0.0000793;  Krrphi = -0.000243;   Krphiphi =  0.00003569; 
  
Yv       = -0.0116;     Yr     =  0.00242;    Yp       =  0;  
Yphi     = -0.000063;   Yvvv   = -0.109;      Yrrr     =  0.00177;  
Yvvr     =  0.0214;     Yvrr   = -0.0405;     Yvvphi   =  0.04605; 
Yvphiphi =  0.00304;    Yrrphi =  0.009325;   Yrphiphi = -0.001368; 
  
Nv       = -0.0038545;  Nr     = -0.00222;    Np       =  0.000213;  
Nphi     = -0.0001424;  Nvvv   =  0.001492;   Nrrr     = -0.00229;  
Nvvr     = -0.0424;     Nvrr   =  0.00156;    Nvvphi   = -0.019058;  
Nvphiphi = -0.0053766;  Nrrphi = -0.0038592;  Nrphiphi =  0.0024195; 
  
kk     =  0.631;  epsilon =  0.921;  xR    = -0.5; 
wp     =  0.184;  tau     =  1.09;   xp    = -0.526;  
cpv    =  0.0;    cpr     =  0.0;    ga    =  0.088;  
cRr    = -0.156;  cRrrr   = -0.275;  cRrrv =  1.96;  
cRX    =  0.71;   aH      =  0.237;  zR    =  0.033; 
xH     = -0.48;   
  
% Masses and moments of inertia 
m11 = (m+mx); 



 122

m22 = (m+my); 
m32 = -my*ly; 
m42 = my*alphay; 
m33 = (Ix+Jx); 
m44 = (Iz+Jz); 
  
% Rudder saturation and dynamics 
if abs(delta_c) >= delta_max*pi/180, 
   delta_c = sign(delta_c)*delta_max*pi/180; 
end 
  
delta_dot = delta_c - delta; 
if abs(delta_dot) >= Ddelta_max*pi/180, 
   delta_dot = sign(delta_dot)*Ddelta_max*pi/180; 
end 
  
% Shaft velocity saturation and dynamics 
n_c = n_c*U/L; 
n   = n*U/L; 
if abs(n_c) >= n_max/60, 
   n_c = sign(n_c)*n_max/60; 
end 
  
if n > 0.3,Tm=5.65/n;else,Tm=18.83;end         
n_dot = 1/Tm*(n_c-n)*60; 
  
% Calculation of state derivatives 
  vR     = ga*v + cRr*r + cRrrr*r^3 + cRrrv*r^2*v; 
  uP     = cos(v)*((1 - wp) + tau*((v + xp*r)^2 + cpv*v + cpr*r)); 
   J     = uP*U/(n*D); 
  KT     = 0.527 - 0.455*J;  
  uR     = uP*epsilon*sqrt(1 + 8*kk*KT/(pi*J^2)); 
  alphaR = delta + atan(vR/uR); 
  FN     = - ((6.13*Delta)/(Delta + 2.25))*(AR/L^2)*(uR^2 + 
vR^2)*sin(alphaR); 
  T      = 2*rho*D^4/(U^2*L^2*rho)*KT*n*abs(n); 
  
% Forces and moments 
 X    = Xuu*u^2 + (1-t)*T + Xvr*v*r + Xvv*v^2 + Xrr*r^2 + Xphiphi*phi^2 + ... 
        cRX*FN*sin(delta) + (m + my)*v*r; 
   
 Y    = Yv*v + Yr*r + Yp*p + Yphi*phi + Yvvv*v^3 + Yrrr*r^3 + Yvvr*v^2*r + ... 
        Yvrr*v*r^2 + Yvvphi*v^2*phi + Yvphiphi*v*phi^2 + Yrrphi*r^2*phi + ... 
        Yrphiphi*r*phi^2 + (1 + aH)*FN*cos(delta) - (m + mx)*u*r; 
  
 K    = Kv*v + Kr*r + Kp*p + Kphi*phi + Kvvv*v^3 + Krrr*r^3 + Kvvr*v^2*r + ... 
        Kvrr*v*r^2 + Kvvphi*v^2*phi + Kvphiphi*v*phi^2 + Krrphi*r^2*phi + ... 
        Krphiphi*r*phi^2 - (1 + aH)*zR*FN*cos(delta) + mx*lx*u*r - W*GM*phi; 
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 N    = Nv*v + Nr*r + Np*p + Nphi*phi + Nvvv*v^3 + Nrrr*r^3 + Nvvr*v^2*r + ... 
        Nvrr*v*r^2 + Nvvphi*v^2*phi + Nvphiphi*v*phi^2 + Nrrphi*r^2*phi + ... 
        Nrphiphi*r*phi^2 + (xR + aH*xH)*FN*cos(delta); 
  
% Dimensional state derivatives  xdot = [ u v r x y psi p phi delta n ]' 
detM = m22*m33*m44-m32^2*m44-m42^2*m33; 
  
xdot =[                      X*(U^2/L)/m11 
          -((-m33*m44*Y+m32*m44*K+m42*m33*N)/detM)*(U^2/L) 
           ((-m42*m33*Y+m32*m42*K+N*m22*m33-N*m32^2)/detM)*(U^2/L^2) 
                   (cos(psi)*u-sin(psi)*cos(phi)*v)*U 
                   (sin(psi)*u+cos(psi)*cos(phi)*v)*U  
                              cos(phi)*r*(U/L)                 
           ((-m32*m44*Y+K*m22*m44-K*m42^2+m32*m42*N)/detM)*(U^2/L^2) 
                                p*(U/L) 
                              delta_dot  
                                n_dot                 ]; 

 

B.3 Multi-purpose Offshore Supply Ship 
 
For the computer simulations, the nonlinear model of an off-shore supply ship 

Northern Clipper which was presented in [81] is used. The length of Northern Clipper 

is L = 72.6 m and the mass is m = 4.591⋅106 kg. The coordinate system is located in the 
center of gravity. The values for the inertia matrix and damping matrix are 
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The values for the bias time constants are chosen as 
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The wave model parameters are also chosen as in [81] with ζi = 0.1 and ωoi = 
0.8976 rad/s corresponding to a wave period of 7.0 s in surge, sway and yaw. 

 

Matlab M-File for Nonlinear Model of Multi-purpose Offshore Supply Ship 
 

function xdot = nclipper(x,b,tau) 
% Ship model for DP control simulation (supply ship Northern Clipper) 
% x   = [ x y psi u v r]' 
% tau = [tau1 tau2 tau3]’  % control vector of forces and moment 
% b   = [b1 b2 b3]’        % bias term vector 
% 
% Reference:  T.I. Fossen (1994), “Guidance and Control of Ocean Vehicles”, 
%             John Wiley & Sons. 
% 
% Author:     Phung-Hung Nguyen 
% Date:       12th Jul 2006 
  
L    = 76.2;               % length of Northern Clipper (m) 
mass = 4.591e6;            % mass of Northern Clipper   (kg) 
  
% inertia matrix 
M = [5.3122e6   0           0 
     0          8.2831e6    0 
     0          0           3.7454e9]; 
  
% damping matrix 
D = [5.0242e4   0           0 
     0          2.7229e5    -4.3933e6 
     0          -4.3933e6   4.1894e8]; 
  
% Check of input and state dimensions 
if (length(x)  ~= 6),error('x-vector must have dimension 6 !');end 
if (length(tau) ~= 3),error('u-vector must have dimension 3 !');end 
  
J = [cos(x(3)) -sin(x(3)) 0 
     sin(x(3))  cos(x(3)) 0 
     0          0         1]; 
  
nu      = [x(4) x(5) x(6)]'; 
eta_dot = J*nu; 
nu_dot  = -inv(M)*D*nu + inv(M)*tau + inv(M)*inv(J)*b; 
  
xdot    = [eta_dot' nu_dot']'; 
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