2,554 research outputs found

    Optimal irrigation water allocation using a genetic algorithm under various weather conditions

    Get PDF
    Growing water scarcity, due to growing populations and varying natural conditions, puts pressure on irrigation systems, which often are the main consumptive water users. Therefore, water resources management to improve the allocation of limited water supplies is essential. In this study, a non-linear programming optimization model with an integrated soil/water balance is developed to determine the optimal reservoir release policies and the optimal cropping pattern around Doroudzan Dam in the South-West of Iran. The proposed model was solved using a genetic algorithm (GA). Four weather conditions were identified by combining the probability levels of rainfall, evapotranspiration and inflow. Moreover, two irrigation strategies, full irrigation and deficit irrigation were modeled under each weather condition. The results indicate that for all weather conditions the total farm income and the total cropped area under deficit irrigation were larger than those under full irrigation. In addition, our results show that when the weather conditions and the availability of water changes the optimal area under corn and sugar beet decreases sharply. In contrast, the change in area cropped with wheat is small. It is concluded that the optimization approach has been successfully applied to Doroudzan Dam region. Thus, decision makers and water authorities can use it as an effective tool for such large and complex irrigation planning problems

    Development of soft computing and applications in agricultural and biological engineering

    Get PDF
    Soft computing is a set of โ€œinexactโ€ computing techniques, which are able to model and analyze very complex problems. For these complex problems, more conventional methods have not been able to produce cost-effective, analytical, or complete solutions. Soft computing has been extensively studied and applied in the last three decades for scientific research and engineering computing. In agricultural and biological engineering, researchers and engineers have developed methods of fuzzy logic, artificial neural networks, genetic algorithms, decision trees, and support vector machines to study soil and water regimes related to crop growth, analyze the operation of food processing, and support decision-making in precision farming. This paper reviews the development of soft computing techniques. With the concepts and methods, applications of soft computing in the field of agricultural and biological engineering are presented, especially in the soil and water context for crop management and decision support in precision agriculture. The future of development and application of soft computing in agricultural and biological engineering is discussed

    Optimal reservoir operation using Nash bargaining solution and evolutionary algorithms

    Get PDF
    Optimizing reservoir operation is critical to ongoing sustainable water resources management. However, different stakeholders in reservoir management often have different interests and resource competition may provoke conflicts. Resource competition warrants the use of bargaining solution approaches to develop an optimal operational scheme. In this study, the Nash bargaining solution method was used to formulate an objective function for water allocation in a reservoir. Additionally, the genetic and ant colony optimization algorithms were used to achieve optimal solutions of the objective function. The Mahabad Dam in West Azerbaijan, Iran, was used as a case study site due to its complex water allocation requirements for multiple stakeholders, including agricultural, domestic, industrial, and environmental sectors. The relative weights of different sectors in the objective function were determined using a discrete kernel based on the priorities stipulated by the government (the Lake Urmia National Restoration Program). According to the policies for the agricultural sector, water allocation optimization for different sectors was carried out using three scenarios: (1) the current situation, (2) optimization of the cultivation pattern, and (3) changes to the irrigation system. The results showed that the objective function and the Nash bargaining solution method led to a water utility for all stakeholders of 98%. Furthermore, the two optimization algorithms were used to achieve the global optimal solution of the objective function, and reduced the failure of the domestic sector by 10% while meeting the required objective in water-limited periods. As the conflicts among stakeholders may become more common with a changing climate and an increase in water demand, these results have implications for reservoir operation and associated policies

    Identifying efficient Nitrate reduction strategies in the Upper Danube

    Get PDF
    Nitrogen losses in the form of Nitrate (N-NO3) from point and diffuse sources of pollution are recognized to be the leading cause of water body impairment throughout Europe. Implementation of conservation programs is perceived as being crucial for restoring and protecting the good ecological status of freshwater bodies. The success of conservation programs depends on the efficient identification of management solutions with respect to the envisaged environmental and economic objectives. This is a complex task, especially considering that costs and effectiveness of conservation strategies depend on their locations. We applied a multi-objective, spatially explicit analysis tool, the R-SWAT-DM framework, to search for efficient, spatially-targeted solution of Nitrate abatement in the Upper Danube Basin. The Soil Water Assessment Tool (SWAT) model served as the nonpoint source pollution estimator for current conditions as well as for scenarios with modified agricultural practices and waste water treatment upgrading. A spatially explicit optimization analysis that considered point and diffuse sources of Nitrate was performed to search for strategies that could achieve largest pollution abatement at minimum cost. The set of optimal spatial conservation strategies identified in the Basin indicated that it could be possible to reduce Nitrate loads by more than 50% while simultaneously provide a higher income

    A Game Theory Approach for Conjunctive Use Optimization Model Based on Virtual Water Concept

    Get PDF
    In this study to allocate the agricultural and environmental water, considering virtual water concept, a multi-objective optimization model based on NSGA-II is developed. The objectives consist of equity maximization, agricultural benefit maximization for each region, maximization of green water utilization and finally minimization of environmental shortage. Then a cooperative game (Grand Coalition) model is presented by forming all possible coalitions. By the game model including Nucleolus, Proportional Nucleolus, Normal Nucleolus and Shapley methods, the benefit is reallocated based on all Pareto optimal solutions obtained from multi-objective optimization model. Then using two famous fallback bargaining methods, Unanimity and q-Approval, preferable alternative (solution) for each of the cooperative games is determined. Finally, based on the obtained benefit for each selected alternatives, the two most beneficial alternatives are chosen. The proposed methodology applied for water allocation of Minoo-Dasht, Azad-Shahr and Gonbad-Kavoos cities in Golestan province, Iran for a 3-year period as a case study. Also, eight crops including Wheat, Alfalfa, Barley, Bean, Rice, Corn, Soya, and Cotton are selected based on local expertsโ€™ recommendations. The modelsโ€™ results indicated no significant difference between the grand coalition model and the multi-objective optimization model in terms of the average cultivation area (a relative change of 2.1%), while lower agricultural water allocation occurred for the grand coalition model (about 10.35 percent average) compared with the multi-objective optimization model. It is also observed that more agricultural benefit gained by the grand coalition model (32 percent average). Finally, it is found that Wheat and Corn hold the most rates of import and export, respectively, and Rice was the crop which has the least shortage of production to supply food demand

    Predictive fertilization models for potato crops using machine learning techniques in Moroccan Gharb region

    Get PDF
    Given the influence of several factors, including weather, soils, land management, genotypes, and the severity of pests and diseases, prescribing adequate nutrient levels is difficult. A potatoโ€™s performance can be predicted using machine learning techniques in cases when there is enough data. This study aimed to develop a highly precise model for determining the optimal levels of nitrogen, phosphorus, and potassium required to achieve both high-quality and high-yield potato crops, taking into account the impact of various environmental factors such as weather, soil type, and land management practices. We used 900 field experiments from Kaggle as part of a data set. We developed, evaluated, and compared prediction models of k-nearest neighbor (KNN), linear support vector machine (SVM), naive Bayes (NB) classifier, decision tree (DT) regressor, random forest (RF) regressor, and eXtreme gradient boosting (XGBoost). We used measures such as mean average error (MAE), mean squared error (MSE), R-Squared (RS), and R2Root mean squared error (RMSE) to describe the modelโ€™s mistakes and prediction capacity. It turned out that the XGBoost model has the greatest R2, MSE and MAE values. Overall, the XGBoost model outperforms the other machine learning models. In the end, we suggested a hardware implementation to help farmers in the field

    by integrating deep learning, mechanistic model and field observations

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๋†์—…์ƒ๋ช…๊ณผํ•™๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋†๋ฆผ๊ธฐ์ƒํ•™, 2022. 8. Youngryel Ryu.Rice (Oryza sativa) is a vital cereal crop that feeds more than 50% of the world population. However, the traditional anaerobic management leads rice production to consume ~40% of the irrigation water and emit ~10% of the global anthropogenic methane. A new paradigm for sustainable rice farming is urgently required amid challenges from increasing food demand, water scarcity, and reducing greenhouse gases emissions. Rice plants transpire considerable water overnight. Saving nighttime water loss is desirable but first need to understand the underlying mechanism of nocturnal stomatal opening. Apart from the night, optimizing daytime management is pivotal for designing an environmentally sustainable rice farming system. In a long-term strategy, detailed and reliable crop type map is compulsory to upscale new leaf level findings and site level methods to regional or global scale. Therefore, in this dissertation, we improved mechanistic understanding of nocturnal stomatal conductance in rice plants (Chapter II); provided an interdisciplinary and heuristic approach for designing an environmentally sustainable rice farming system with a case study in South Korea (Chapter III); and developed a new crop type referencing method by mining off-the-shelf Google Street View images to map crop types (Chapter IV). In chapter II, we proposed a โ€œcoordinated leaf traitโ€ hypothesis to explain the ecological mechanism of nocturnal stomatal conductance (gsn) in rice. We conducted an open-field experiment by applying drought, nutrient deficiency, and the combined drought-nutrient deficiency stress. We found that gsn was neither strongly reduced by drought nor consistently increased by nutrient deficiency. With abiotic stress as a random effect, gsn was strongly positively correlated with nocturnal respiration (Rn). Notably, gsn primed early morning photosynthesis, as follows: Rn (โ†‘) โ†’ gsn (โ†‘) โ†’ gsd (daytime stomatal conductance) (โ†‘) โ†’ A (assimilation) (โ†‘). This photosynthesis priming effect diminished after mid-morning. Leaves were cooled by gsn as follows: gsn (โ†‘) โ†’ E (transpiration) (โ†‘) โ†’ Tleaf (leaf temperature) (โ†“). However, our results clearly suggest that evaporative cooling did not reduce Rn cost. Our results indicate that gsn is more closely related to carbon respiration and assimilation than water and nutrient availability, and that leaf trait coordination (Rn โˆ’ gsn โˆ’ gsd โˆ’ A) is likely the primary mechanism controlling gsn. In chapter III, we aimed to increase current crop yield, reduce irrigation water consumption, and tackle the dilemma to simultaneously reducing CH4 and N2O emissions in a flooded rice production system. By proposing a heuristic and holistic method, we optimized farm management beyond previous most emphasized irrigation regimes while also exploring niches from other pivotal options regarding sowing window, fertilization rate, tillage depth, and their interactions. Specifically, we calibrated and validated the process-based DNDC model with five years of eddy covariance observations. The DNDC model later was integrated with the non-dominated sorting genetic algorithm (NSGA-III) to solve the multi-objective optimization problem. We found that the optimized management would maintain or even increase current crop yield to its potential (~10 t/ha) while reducing more than 50% irrigation demand and GHGs (CH4 & N2O) emissions. Our results indicate that earlier sowing window and improvements on irrigation practice together would be pivotal to maximizing crop yield while sustaining environmental benefits. We found that the optimal fraction of non-flooded days was around 54% of growing season length and its optimal temporal distributions were primarily in vegetative stages. Our study shows that the present farm yield (8.3-8.9 t/ha) in study site not only has not achieved its potential level but also comes at a great environmental cost to water resources (604-810 mm/yr) and GHGs emissions (CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr). Furthermore, this simple method could further be applied to evaluate the environmental sustainability of a farming system under various climate and local conditions and to guide policymakers and farming practices with comprehensive solutions. In chapter IV, we apply a convolutional neural network (CNN) model to explore the efficacy of automatic ground truthing via Google Street View (GSV) images in two distinct farming regions: Illinois and the Central Valley in California. Ground reference data are an essential prerequisite for supervised crop mapping. The lack of a low-cost and efficient ground referencing method results in pervasively limited reference data and hinders crop classification. In this study, we demonstrate the feasibility and reliability of our new ground referencing technique by performing pixel-based crop mapping at the state level using the cloud-based Google Earth Engine platform. The mapping results are evaluated using the United States Department of Agriculture (USDA) crop data layer (CDL) products. From ~130,000 GSV images, the CNN model identified ~9,400 target crop images. These images are well classified into crop types, including alfalfa, almond, corn, cotton, grape, rice, soybean, and pistachio. The overall GSV image classification accuracy is 92% for the Central Valley and 97% for Illinois. Subsequently, we shifted the image geographical coordinates 2โ€“3 times in a certain direction to produce 31,829 crop reference points: 17,358 in Illinois, and 14,471 in the Central Valley. Evaluation of the mapping results with CDL products revealed satisfactory coherence. GSV-derived mapping results capture the general pattern of crop type distributions for 2011โ€“2019. The overall agreement between CDL products and our mapping results is indicated by R2 values of 0.44โ€“0.99 for the Central Valley and 0.81โ€“0.98 for Illinois. To show the applicational value of the proposed method in other countries, we further mapped rice paddy (2014โ€“2018) in South Korea which yielded fairly well outcomes (R2=0.91). These results indicate that GSV images used with a deep learning model offer an efficient and cost-effective alternative method for ground referencing, in many regions of the world.์Œ€(์˜ค๋ฆฌ์ž ์‚ฌํ‹ฐ๋ฐ”)์€ ์„ธ๊ณ„ ์ธ๊ตฌ์˜ 50% ์ด์ƒ์„ ๋จน์—ฌ ์‚ด๋ฆฌ๋Š” ์ค‘์š”ํ•œ ๊ณก๋ฌผ ์ž‘๋ฌผ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ „ํ†ต์ ์ธ ํ˜๊ธฐ์„ฑ ๊ด€๋ฆฌ๋Š” ์Œ€ ์ƒ์‚ฐ์œผ๋กœ ๊ด€๊ฐœ์ˆ˜์˜ 40%๋ฅผ ์†Œ๋น„ํ•˜๊ณ  ์ „ ์„ธ๊ณ„ ์ธ๊ณต ๋ฉ”ํƒ„์˜ 10%๋ฅผ ๋ฐฐ์ถœํ•œ๋‹ค. ์‹๋Ÿ‰ ์ˆ˜์š” ์ฆ๊ฐ€, ๋ฌผ ๋ถ€์กฑ, ์˜จ์‹ค๊ฐ€์Šค ๋ฐฐ์ถœ ๊ฐ์†Œ ๋“ฑ์˜ ๊ณผ์ œ ์†์—์„œ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ๋ฅผ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ด ์‹œ๊ธ‰ํ•˜๋‹ค. ๋ฒผ๋Š” ํ•˜๋ฃป๋ฐค ์‚ฌ์ด์— ์ƒ๋‹นํ•œ ์–‘์˜ ๋ฌผ์„ ๋‚ด๋ฟœ๋Š”๋‹ค. ์•ผ๊ฐ„ ์ˆ˜๋ถ„ ์†์‹ค์„ ์ค„์ด๋Š” ๊ฒƒ์€ ๋ฐ”๋žŒ์งํ•˜์ง€๋งŒ, ๋จผ์ € ์•ผ๊ฐ„ ๊ธฐ๊ณต ๊ฐœ๋ฐฉ์˜ ๊ธฐ๋ณธ ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์ดํ•ดํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์•ผ๊ฐ„๊ณผ ๋ณ„๋„๋กœ ์ฃผ๊ฐ„ ๊ฒฝ์˜์˜ ์ตœ์ ํ™”๋Š” ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๋Š” ๋ฐ ๋งค์šฐ ์ค‘์š”ํ•˜๋‹ค. ์žฅ๊ธฐ ์ „๋žต์—์„œ, ์ƒˆ๋กœ์šด ์žŽ ์ˆ˜์ค€ ๋ฐœ๊ฒฌ๊ณผ ํ˜„์žฅ ์ˆ˜์ค€ ๋ฐฉ๋ฒ•์„ ์ง€์—ญ์  ๋˜๋Š” ์ „์—ญ์  ๊ทœ๋ชจ๋กœ ์ƒํ–ฅ ์กฐ์ •ํ•˜๋ ค๋ฉด ์ƒ์„ธํ•˜๊ณ  ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ์ž‘๋ฌผ ์œ ํ˜• ๋งต์ด ํ•„์ˆ˜์ ์ด๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฒผ๋†์‚ฌ์˜ ์•ผ๊ฐ„ ๊ธฐ๊ณต ์ „๋„๋„์— ๋Œ€ํ•œ ๊ธฐ๊ณ„์  ์ดํ•ด๋ฅผ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค(์ œ2์žฅ). ํ™˜๊ฒฝ์ ์œผ๋กœ ์ง€์† ๊ฐ€๋Šฅํ•œ ๋ฒผ๋†์‚ฌ ์‹œ์Šคํ…œ์„ ์„ค๊ณ„ํ•˜๊ธฐ ์œ„ํ•œ ํ•™์ œ ๊ฐ„ ๋ฐ ํœด๋ฆฌ์Šคํ‹ฑ ์ ‘๊ทผ๋ฒ• ์ œ๊ณต(์ œ3์žฅ). ๊ทธ๋ฆฌ๊ณ  ์ƒˆ๋กœ์šด ์ž‘๋ฌผ ์œ ํ˜• ์ฐธ์กฐ ๋ฐฉ๋ฒ•์„ ๊ฐœ๋ฐœํ–ˆ๋‹ค. ๊ธฐ์„ฑํ’ˆ์ธ Google Street View ์ด๋ฏธ์ง€๋ฅผ ๋งˆ์ด๋‹ํ•˜์—ฌ ์ž๋ฅด๊ธฐ ์œ ํ˜•์„ ๋งคํ•‘ํ•ฉ๋‹ˆ๋‹ค. 2์žฅ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ฒผ์˜ ์•ผํ–‰์„ฑ ๊ธฐ๊ณต ์ „๋„๋„(gsn)์˜ ์ƒํƒœํ•™์  ๋ฉ”์ปค๋‹ˆ์ฆ˜์„ ์„ค๋ช…ํ•˜๊ธฐ ์œ„ํ•ด "ํ˜‘๋™๋œ ์žŽ ํ˜•์งˆ" ๊ฐ€์„ค์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๊ฐ€๋ญ„, ์˜์–‘ ๊ฒฐํ• ๋ฐ ๊ฐ€๋ญ„-์˜์–‘์†Œ ๊ฒฐํ• ๋ณตํ•ฉ ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ์ ์šฉํ•˜์—ฌ ๋…ธ์ง€ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” gsn์ด ๊ฐ€๋ญ„์— ์˜ํ•ด ํฌ๊ฒŒ ๊ฐ์†Œํ•˜์ง€๋„ ์•Š๊ณ  ์˜์–‘ ๊ฒฐํ•์— ์˜ํ•ด ์ง€์†์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜์ง€๋„ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ๋ฌด์ƒ๋ฌผ์  ์ŠคํŠธ๋ ˆ์Šค๋ฅผ ๋ฌด์ž‘์œ„ ํšจ๊ณผ๋กœ ์‚ฌ์šฉํ•˜์—ฌ gsn์€ ์•ผ๊ฐ„ ํ˜ธํก(Rn)๊ณผ ๊ฐ•ํ•œ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์˜€์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, gsn์€ Rn(โ†‘) โ†’ gsn(โ†‘) โ†’ gsd(์ฃผ๊ฐ„ ๊ธฐ๊ณต ์ „๋„๋„)(โ†‘) โ†’ A(๋™ํ™”)(โ†‘)์™€ ๊ฐ™์ด ์ด๋ฅธ ์•„์นจ ๊ด‘ํ•ฉ์„ฑ์„ ํ”„๋ผ์ด๋ฐํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ด‘ํ•ฉ์„ฑ ํ”„๋ผ์ด๋ฐ ํšจ๊ณผ๋Š” ์˜ค์ „ ์ค‘๋ฐ˜ ์ดํ›„์— ๊ฐ์†Œํ–ˆ์Šต๋‹ˆ๋‹ค. ์žŽ์€ gsn์— ์˜ํ•ด ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋ƒ‰๊ฐ๋˜์—ˆ์Šต๋‹ˆ๋‹ค: gsn(โ†‘) โ†’ E(์ฆ์‚ฐ)(โ†‘) โ†’ Tleaf(์žŽ ์˜จ๋„)(โ†“). ๊ทธ๋Ÿฌ๋‚˜ ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ์ฆ๋ฐœ ๋ƒ‰๊ฐ์ด Rn ๋น„์šฉ์„ ๊ฐ์†Œ์‹œํ‚ค์ง€ ์•Š์•˜๋‹ค๋Š” ๊ฒƒ์„ ๋ถ„๋ช…ํžˆ ์‹œ์‚ฌํ•ฉ๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” gsn์ด ๋ฌผ ๋ฐ ์˜์–‘์†Œ ๊ฐ€์šฉ์„ฑ๋ณด๋‹ค ํƒ„์†Œ ํ˜ธํก ๋ฐ ๋™ํ™”์™€ ๋” ๋ฐ€์ ‘ํ•˜๊ฒŒ ๊ด€๋ จ๋˜์–ด ์žˆ์œผ๋ฉฐ ์žŽ ํ˜•์งˆ ์กฐ์ •(Rn - gsn - gsd - A)์ด gsn์„ ์ œ์–ดํ•˜๋Š” ์ฃผ์š” ๋ฉ”์ปค๋‹ˆ์ฆ˜์ผ ๊ฐ€๋Šฅ์„ฑ์ด ์žˆ์Œ์„ ๋‚˜ํƒ€๋ƒ…๋‹ˆ๋‹ค. ์ œ3์žฅ์—์„œ ์šฐ๋ฆฌ๋Š” ํ˜„์žฌ์˜ ์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ๋Š˜๋ฆฌ๊ณ  ๊ด€๊ฐœ ์šฉ์ˆ˜ ์†Œ๋น„๋ฅผ ์ค„์ด๋ฉฐ ์นจ์ˆ˜๋œ ์Œ€ ์ƒ์‚ฐ ์‹œ์Šคํ…œ์—์„œ CH4์™€ N2O ๋ฐฐ์ถœ๋Ÿ‰์„ ๋™์‹œ์— ์ค„์ด๋Š” ๋”œ๋ ˆ๋งˆ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ–ˆ๋‹ค. ํœด๋ฆฌ์Šคํ‹ฑํ•˜๊ณ  ์ „์ฒด๋ก ์  ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•จ์œผ๋กœ์จ, ์šฐ๋ฆฌ๋Š” ์ด์ „์— ๊ฐ€์žฅ ๊ฐ•์กฐ๋˜์—ˆ๋˜ ๊ด€๊ฐœ ์ฒด์ œ๋ฅผ ๋„˜์–ด ๋†์žฅ ๊ด€๋ฆฌ๋ฅผ ์ตœ์ ํ™”ํ•จ๊ณผ ๋™์‹œ์— ํŒŒ์ข… ์ฐฝ, ์ˆ˜์ •๋ฅ , ๊ฒฝ์ž‘ ๊นŠ์ด ๋ฐ ์ด๋“ค์˜ ์ƒํ˜ธ ์ž‘์šฉ๊ณผ ๊ด€๋ จ๋œ ๋‹ค๋ฅธ ์ค‘์ถ”์  ์˜ต์…˜์˜ ํ‹ˆ์ƒˆ๋ฅผ ํƒ์ƒ‰ํ–ˆ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์šฐ๋ฆฌ๋Š” 5๋…„๊ฐ„์˜ ์™€๋ฅ˜ ๊ณต๋ถ„์‚ฐ ๊ด€์ฐฐ๋กœ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ DNDC ๋ชจ๋ธ์„ ๊ต์ •ํ•˜๊ณ  ๊ฒ€์ฆํ–ˆ๋‹ค. DNDC ๋ชจ๋ธ์€ ๋‚˜์ค‘์— ๋‹ค์ค‘ ๊ฐ๊ด€์  ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋น„์ง€๋ฐฐ์  ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ๋“ฌ(NSGA-III)๊ณผ ํ†ตํ•ฉ๋˜์—ˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ตœ์ ํ™”๋œ ๊ด€๋ฆฌ๋ฅผ ํ†ตํ•ด 50% ์ด์ƒ์˜ ๊ด€๊ฐœ ์ˆ˜์š”์™€ GHG(CH4 & N2O) ๋ฐฐ์ถœ๋Ÿ‰์„ ์ค„์ด๋ฉด์„œ ํ˜„์žฌ ๋†์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ์ž ์žฌ๋ ฅ(~10t/ha)๊นŒ์ง€ ์œ ์ง€ํ•˜๊ฑฐ๋‚˜ ์ฆ๊ฐ€์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ์Šต๋‹ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ๊ฒฐ๊ณผ๋Š” ๋” ์ด๋ฅธ ํŒŒ์ข… ๊ธฐ๊ฐ„๊ณผ ๊ด€๊ฐœ ๊ด€๊ฐœ ๊ด€ํ–‰์˜ ๊ฐœ์„ ์ด ํ™˜๊ฒฝ์  ์ด์ต์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋†์ž‘๋ฌผ ์ˆ˜ํ™•๋Ÿ‰์„ ์ตœ๋Œ€ํ™”ํ•˜๋Š” ๋ฐ ์ค‘์ถ”์ ์ผ ๊ฒƒ์ด๋ผ๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ์šฐ๋ฆฌ๋Š” ํ™์ˆ˜ ์—†๋Š” ๋‚ ์˜ ์ตœ์  ๋ถ€๋ถ„์ด ์„ฑ์žฅ๊ธฐ ๊ธธ์ด์˜ ์•ฝ 54%์˜€๊ณ  ์ตœ์ ์˜ ์‹œ๊ฐ„ ๋ถ„ํฌ๋Š” ์ฃผ๋กœ ์‹๋ฌผ ๋‹จ๊ณ„์— ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ฐœ๊ฒฌํ–ˆ๋‹ค. ์šฐ๋ฆฌ์˜ ์—ฐ๊ตฌ๋Š” ์—ฐ๊ตฌ ํ˜„์žฅ์˜ ํ˜„์žฌ ๋†์žฅ ์ˆ˜ํ™•๋Ÿ‰(8.3-8.9 t/ha)์ด ์ž ์žฌ์  ์ˆ˜์ค€์„ ๋‹ฌ์„ฑํ–ˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ˆ˜์ž์›(604-810 mm/yr)๊ณผ GHGs ๋ฐฐ์ถœ(CH4: 186-220 kg C/ha/yr; N2O: 0.3-1.6 kg C/ha/yr)์— ๋ง‰๋Œ€ํ•œ ํ™˜๊ฒฝ ๋น„์šฉ์„ ์ดˆ๋ž˜ํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ์ด ๊ฐ„๋‹จํ•œ ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๊ธฐํ›„ ๋ฐ ์ง€์—ญ ์กฐ๊ฑด ํ•˜์—์„œ ๋†์—… ์‹œ์Šคํ…œ์˜ ํ™˜๊ฒฝ ์ง€์† ๊ฐ€๋Šฅ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ  ์ •์ฑ… ์ž…์•ˆ์ž์™€ ๋†์—… ๊ด€ํ–‰์„ ํฌ๊ด„์ ์ธ ํ•ด๊ฒฐ์ฑ…์œผ๋กœ ์•ˆ๋‚ดํ•˜๋Š” ๋ฐ ์ถ”๊ฐ€๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค. ์ œ4์žฅ์—์„œ๋Š” ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN) ๋ชจ๋ธ์„ ์ ์šฉํ•˜์—ฌ ๋‘ ๊ฐœ์˜ ๊ตฌ๋ณ„๋˜๋Š” ๋†์—… ์ง€์—ญ์—์„œ ๊ตฌ๊ธ€ ์ŠคํŠธ๋ฆฌํŠธ ๋ทฐ(GSV) ์ด๋ฏธ์ง€๋ฅผ ํ†ตํ•ด ์ž๋™ ์ง€์ƒ ํŠธ๋Ÿฌ์‹ฑ์˜ ํšจ๊ณผ๋ฅผ ํƒ๊ตฌํ•œ๋‹ค. ์ผ๋ฆฌ๋…ธ์ด์™€ ์บ˜๋ฆฌํฌ๋‹ˆ์•„์˜ ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ. ์ง€์ƒ ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๋Š” ๊ฐ๋…๋œ ์ž‘๋ฌผ ๋งคํ•‘์„ ์œ„ํ•œ ํ•„์ˆ˜ ์ „์ œ ์กฐ๊ฑด์ด๋‹ค. ์ €๋ ดํ•˜๊ณ  ํšจ์œจ์ ์ธ ์ง€์ƒ ์ฐธ์กฐ ๋ฐฉ๋ฒ•์ด ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ฐธ์กฐ ๋ฐ์ดํ„ฐ๊ฐ€ ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ œํ•œ๋˜๊ณ  ์ž‘๋ฌผ ๋ถ„๋ฅ˜๋ฅผ ๋ฐฉํ•ดํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ Google ์–ด์Šค ์—”์ง„ ํ”Œ๋žซํผ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ƒํƒœ ์ˆ˜์ค€์—์„œ ํ”ฝ์…€ ๊ธฐ๋ฐ˜ ํฌ๋กญ ๋งคํ•‘์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ƒˆ๋กœ์šด ์ง€์ƒ ์ฐธ์กฐ ๊ธฐ์ˆ ์˜ ์‹คํ˜„ ๊ฐ€๋Šฅ์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ๋งคํ•‘ ๊ฒฐ๊ณผ๋Š” ๋ฏธ๊ตญ ๋†๋ฌด๋ถ€(USDA) ์ž‘๋ฌผ ๋ฐ์ดํ„ฐ์ธต(CDL) ์ œํ’ˆ์„ ์‚ฌ์šฉํ•˜์—ฌ ํ‰๊ฐ€๋œ๋‹ค. ์•ฝ 130,000๊ฐœ์˜ GSV ์ด๋ฏธ์ง€์—์„œ CNN ๋ชจ๋ธ์€ ์•ฝ 9,400๊ฐœ์˜ ๋ชฉํ‘œ ํฌ๋กญ ์ด๋ฏธ์ง€๋ฅผ ์‹๋ณ„ํ–ˆ๋‹ค. ์ด ์ด๋ฏธ์ง€๋“ค์€ ์•ŒํŒ”ํŒŒ, ์•„๋ชฌ๋“œ, ์˜ฅ์ˆ˜์ˆ˜, ๋ฉดํ™”, ํฌ๋„, ์Œ€, ์ฝฉ, ํ”ผ์Šคํƒ€์น˜์˜ค ๋“ฑ์˜ ์ž‘๋ฌผ ์œ ํ˜•์œผ๋กœ ์ž˜ ๋ถ„๋ฅ˜๋œ๋‹ค. ์ „์ฒด GSV ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ •ํ™•๋„๋Š” ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์˜ ๊ฒฝ์šฐ 92%, ์ผ๋ฆฌ๋…ธ์ด ์ฃผ์˜ ๊ฒฝ์šฐ 97%์ด๋‹ค. ๊ทธ ํ›„ ์ด๋ฏธ์ง€ ์ง€๋ฆฌ์  ์ขŒํ‘œ๋ฅผ ํŠน์ • ๋ฐฉํ–ฅ์œผ๋กœ 2~3ํšŒ ์ด๋™ํ•˜์—ฌ 31,829๊ฐœ์˜ ํฌ๋กญ ๊ธฐ์ค€์ ์„ ์ƒ์„ฑํ–ˆ๋‹ค. ์ฆ‰, ์ผ๋ฆฌ๋…ธ์ด์—์„œ 17,358๊ฐœ, ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์—์„œ 14,471๊ฐœ์˜€๋‹ค. CDL ์ œํ’ˆ์œผ๋กœ ๋งคํ•‘ ๊ฒฐ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•œ ๊ฒฐ๊ณผ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ์ผ๊ด€์„ฑ์ด ๋‚˜ํƒ€๋‚ฌ๋‹ค. GSV์—์„œ ํŒŒ์ƒ๋œ ๋งคํ•‘ ๊ฒฐ๊ณผ๋Š” 2011-2019๋…„ ์ž‘๋ฌผ ์œ ํ˜• ๋ถ„ํฌ์˜ ์ผ๋ฐ˜์ ์ธ ํŒจํ„ด์„ ํฌ์ฐฉํ•œ๋‹ค. CDL ์ œํ’ˆ๊ณผ ์šฐ๋ฆฌ์˜ ๋งคํ•‘ ๊ฒฐ๊ณผ ์‚ฌ์ด์˜ ์ „์ฒด ํ•ฉ์น˜๋Š” ์„ผํŠธ๋Ÿด ๋ฐธ๋ฆฌ์˜ ๊ฒฝ์šฐ 0.44โ€“0.99์˜ R2 ๊ฐ’๊ณผ ์ผ๋ฆฌ๋…ธ์ด ์ฃผ์˜ ๊ฒฝ์šฐ 0.81โ€“0.98์˜ R2 ๊ฐ’์œผ๋กœ ํ‘œ์‹œ๋œ๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์˜ ๋‹ค๋ฅธ ๊ตญ๊ฐ€์—์„œ ์ ์šฉ ๊ฐ€์น˜๋ฅผ ๋ณด์—ฌ์ฃผ๊ธฐ ์œ„ํ•ด, ๊ฝค ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ์–ป์€ ํ•œ๊ตญ์˜ ๋…ผ(2014โ€“2018)์„ ์ถ”๊ฐ€๋กœ ๋งคํ•‘ํ–ˆ๋‹ค(R2=0.91). ์ด๋Ÿฌํ•œ ๊ฒฐ๊ณผ๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ๊ณผ ํ•จ๊ป˜ ์‚ฌ์šฉ๋˜๋Š” GSV ์ด๋ฏธ์ง€๊ฐ€ ์„ธ๊ณ„์˜ ๋งŽ์€ ์ง€์—ญ์—์„œ ์ง€์ƒ ์ฐธ์กฐ๋ฅผ ์œ„ํ•œ ํšจ์œจ์ ์ด๊ณ  ๋น„์šฉ ํšจ์œจ์ ์ธ ๋Œ€์ฒด ๋ฐฉ๋ฒ•์„ ์ œ๊ณตํ•œ๋‹ค๋Š” ๊ฒƒ์„ ๋‚˜ํƒ€๋‚ธ๋‹ค.1. Abstract 3 LIST OF FIGURES 9 LIST OF TABLES 13 ACKNOWLEDGEMENTS 14 Chapter I. Introduction 15 1.1. Study Background 15 1.2. Purpose of Research 15 Chapter II. Nocturnal stomatal conductance in rice: a coordinating bridge between prior respiration and photosynthesis next dawn 17 Abstract 17 1. Introduction 18 2. Materials and Methods 22 2.1 Plants and growth conditions 22 2.2 Leaf physiological traits 22 2.3 Rapid A/Ci response curves 24 2.4 Stomatal anatomy measurements 24 2.5 Statistical analyses 24 3. Results 25 3.1 Effects of abiotic stress on leaf traits 25 3.2 Nighttime leaf physiological traits 26 3.3 Significant priming effects of gsn on early morning photosynthesis (~5:00 โ€“ 7:00) 27 3.4 Path analyses only support the leaf trait coordination 28 3.5 Impacts of gsn on gsd and Amax under light-saturated conditions 29 3.6 Photosynthesis priming effects not detected after mid-morning (9:00) 31 4. Discussion 32 4.1 Abiotic stress results: Implications for different hypotheses 33 4.2 Enhanced carbon assimilation through coordinated regulation by gsn 34 4.3 Evaporative cooling: Passive thermoregulation via leaf trait coordination 36 References 37 Chapter III. Multi-objective optimization of crop yield, water consumption, and greenhouse gases emissions for sustainable rice production 42 Abstract 42 1. Introduction 43 2. Materials and methods 46 2.1 Study site 46 2.2 DNDC model 46 2.3 In situ data 47 2.4 Multi-objective optimization (MOO) algorithm 48 2.5 DNDC-NSGA-III integration and optimization 48 3. Results 50 3.1 DNDC model validation 50 3.2 The gaps between the current farming outcomes and optimized objectives 53 3.3 Approaching Pareto fronts through the heuristic and holistic management 55 3.4 The gaps between current farming practices to potential crop yield with optimal holistic management 56 4. Discussion 58 4.1 Could heuristic and holistic management increase current rice yield with less irrigation water? 58 4.2 Could heuristic and holistic management simultaneously reduce CH4 and N2O emissions? 59 4.3 Limitations and uncertainties 60 Reference 61 Chapter IV. Exploring Google Street View with Deep Learning for Crop Type Mapping 70 Abstract 70 1. Introduction 71 2. Materials and Methods 74 2.1 Study area 74 2.2 General methodology 75 2.3 Google Street View image collection 76 2.4 CNN model training and validation 77 2.5 Producing ground reference data and quality control 79 2.6 Mapping crop types 80 2.7 Mapping results evaluation 81 2.8 Additional test case 82 3. Results 83 3.1 GSV image classification 83 3.2 Producing ground reference data from classified GSV images 84 3.3 Mapping using the GSV derived ground reference 86 4. Discussion 96 4.1 Can we use GSV images to efficiently produce low-cost, sufficient, and reliable crop type ground reference data covering large areas? 96 4.2 Can we use GSV-derived reference data as โ€œground truthโ€ to map crop types for large areas spanning many years? 97 Appendix 99 References 105 Chapter V. Conclusions 123 Supplementary Information Chapter II 125 Supplementary Information Chapter III 131 Supplementary Information Chapter IV 135 5. Abstract in Korean 138๋ฐ•

    Sustainable Irrigation in Agriculture: An Analysis of Global Research

    Get PDF
    Irrigated agriculture plays a fundamental role as a supplier of food and raw materials. However, it is also the worldโ€™s largest water user. In recent years, there has been an increase in the number of studies analyzing agricultural irrigation from the perspective of sustainability with a focus on its environmental, economic, and social impacts. This study seeks to analyze the dynamics of global research in sustainable irrigation in agriculture between 1999 and 2018, including the main agents promoting it and the topics that have received the most attention. To do this, a review and a bibliometric analysis were carried out on a sample of 713 articles. The results show that sustainability is a line of study that is becoming increasingly more prominent within research in irrigation. The study also reveals the existence of substantial differences and preferred topics in the research undertaken by different countries. The priority issues addressed in the research were climatic change, environmental impact, and natural resources conservation; unconventional water resources; irrigation technology and innovation; and water use efficiency. Finally, the findings indicate a series of areas related to sustainable irrigation in agriculture in which research should be promoted
    • โ€ฆ
    corecore