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1. Introduction      

The agricultural sector will require more water in the near future to provide more food, fibre 
and fuels (Molden et al., 2007).  As population increases and development calls for increased 
demand of food, a change in diet due to increased prosperity, and a recent focus on 
biofuels.  This population growth - coupled with industrialization and urbanization - will 
result in an increasing demand for water and will have serious consequences on the 
conservation of water resources. Therefore, a rational approach to best water management 
practices is needed to balance water supply and demand. One approach to check if the 
supply is adequate to meet the demand is to account for the respective components in the 
water balance. Doing so provides an opportunity to search for possible ways to save water 
from one application and allocate it to another.  Simulation models are strong in this regard; 
they can simulate the processes in the real system and predict the state variables at every 
stage in the simulation. 
The role of simulation models in understanding the processes in the soil-plant-atmosphere 
system has increased significantly in recent years. This is attributed to increased computing 
capabilities available today (Ines et al., 2002). Such mechanistic ecophysiological models 
integrate knowledge from data collection by various methods (e.g. GPS, field sampling, 
satellite remote sensing, radar etc.) and laboratory research. Simulations from such models 
are widely used to predict and simulate crop growth, yield, water requirements and 
greenhouse gas emissions. For monitoring agricultural crop production, growth of crops is 
modeled, for example, by using simulation models. Estimates of crop growth often are 
inaccurate for practical field conditions. Therefore, model simulations must be improved by 
incorporating information on the actual growth and development of field crops, for 
example, by using remote sensing data. 
Numerous researchers have also used remotely sensed data in conjunction with crop 
growth models via data assimilation for the purpose of improving soil moisture estimation 
(Entekhabi et al., 1994; Van Dams et al., 1997; Reichle et al. 2001; Ines et al., 2002; Kamble et 
al., 2008). The objective of data assimilation is to obtain the best estimate of the state of the 
system by combining observations with the forecast model’s first guess. Genetic algorithms 
(GA) are designed to search, discover and emphasize good solutions by applying selection 
and crossover techniques, inspired by nature, to supply solutions (Holland, 1975; Goldberg, 
1989). GA operates on pieces of information like nature does on genes in the course of 
evolution. Changes in the genes of individuals from a given population allow selection of 
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certain groups of genes that are most important in fitting the environment pressures on the 
population. All individuals of one generation are evaluated by a fitness function. The 
strength of GA with respect to other local search algorithms is due to the fact that, in a GA 
framework, more strategies can be adopted together to find individuals to be added to the 
mating pool. Addition is made both in the initial population phase and in the dynamic 
generation phase. Thus, a more variable search space can be explored at each algorithm step. 
Based on the above biological evolution idea, a so-called “SWAP-GA” has been developed 
by Ines et al., (2002) to estimate input parameters of SWAP from remote sensing data. The 
SWAP-GA model was adopted and re-coded according to the objectives of this research.  
After recoding and recalibrating with local parameters simulation was then carried out for 
different generations and different populations.  
Ines et al. (2002) developed an assimilation methodology for the Soil, Water, Atmosphere 
and Plant (SWAP) simulation model (Van Dams et al., 1997) with remote sensing data using 
a genetic algorithm (GA). Similar work was done by Chemin (2006), Kamble et al. (2006, 
2008), Irmak et al. (2009) in which remotely sensed information was fed to SWAP-GA for 
optimization of soil hydraulic parameters.  Proper evaluation of the water balance in the 
unsaturated zone depends strongly on the appropriate characterization of the soil hydraulic 
functions but direct measurement of soil hydraulic properties in the laboratory using soil 
core samples is the classic way to determine the soil hydraulic functions (van Genuchten et 
al., 1991). Unfortunately, direct measurement of these functions is impractical for most 
applications in research and management, especially for large-scale water management 
problems.  The hydraulic parameters are mostly influenced by the water consumption by 
crop or evapotranpiration phenomenon which control the crop growth and water 
consumption and vice a versa. Therefore, it may be useful to have a method that assimilate 
evapotranpiration in a hydrological model and use as a function of flexible boundary 
conditions and can also give the optimized hydraulic property. 
This chapter introduces ET data assimilation scheme was implemented with a SWAP model 
and genetic algorithm to optimize crop growth parameters. The goal of this system was to 
provide realistic description of hydrological balance in an analytically tractable way, as a 
basis for quantitative understanding of soil moisture response to different hydraulic 
parameter which controls ET. In addition, this chapter introduces few implementation 
results from two case studies performed in India and USA with different conditions.  

2. Evapotranspiration by energy balance model 

Evapotranspiration is one of the most critical parameters and has a considerable impact on 
water losses. ET is usually the largest hydrological flux through during the summer months 
in Great Plains. The ability is required to accurately estimate the magnitude of this flux will, 
therefore, go a long way towards being able to compute the water balance and plan the 
water resources and regimes. It is, however, the most difficult flux to quantify (Peacock and 
Hess, 2004). Furthermore, quantification of this flux on a watershed or a regional scale is 
much more difficult. ET is highly dynamic in space and time because of the complex 
interaction of soil, vegetation and climate.  In the last few decades, analysis of this 
biophysical phenomenon has received much attention (Burman and Pochop, 1994). After 
FAO 56 by Food and Agriculture Organization of the United Nations, last decade has 
witnessed many investigations of up-scaling the point-scale evapotranspiration (ET) to 
regional scale (Allen, 2000) and of quantifying ET either directly from remotely sensed 
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information (Bastiaanssen et al., 1998a, Bastiaanssen et al., 1998b, Schmugge et al., 2002, Su 
and Troch, 2003,  Jia et al., 2003 Kamble et al., 2007 and Pan et al., 2008) or from simulation 
modeling.  
These Land surface energy balance (EB)-based models convert satellite sensed radiances into 
land surface characteristics to estimate ET as a ‘‘residual’’ of the land surface energy balance 
equation. The Surface Energy Balance Algorithm for Land (SEBAL) was developed to 
quantify ET over large areas using remote sensing-based land surface energy fluxes 
(Bastiaanssen et al. 1998). It has been used to estimate riparian ET (Goodrich et al., 2000), 
basin wide ET (Bastiaanssen et al., 2002), mapping regional runoff and precipitation (Church 
et al., 1995), and developing crop coefficients (Singh and Irmak, 2009). Another satellite 
remote sensing model, the METRIC (Mapping Evapotranspiration at high Resolution using 
Internalized Calibration) was introduced by Allen et al. (2007a, b). The model originates 
from versions of SEBAL and is based on similar principles. Similar to SEBAL, METRIC 
models use near-surface temperature gradient (dT) estimated as an indexed function of 
radiometric surface temperature, thereby eliminating the need for absolutely accurate 
surface temperature or air temperature measurements to estimate sensible heat flux (H) in 
the computation of land surface energy balance.  
Surface Energy Balance Algorithm for Land (SEBAL) was developed to quantify ET over 
large areas using satellite-based surface energy fluxes (Bastiaanssen et al. 1998). SEBAL is a 
one-source energy balance model that estimates the latent heat flux (evapotranspiration) as 
a residual of other energy balance components: 

               
n

ET R G Hλ = − −  (1) 

where Rn is net radiation (W m-2), G is the soil heat flux (W m-2), H is the sensible heat flux 
(W m-2), and λET is the latent heat flux (W m-2). Rn is the difference between the incoming 
and outgoing fluxes, which is expressed as:  

 (1 )n s s l l s lR R R R R Rε↓ ↑ ↓ ↑ ↓= − + − − −  (2) 

where Rs↓ is the incoming shortwave radiation (W m-2), Rs↑ is the outgoing shortwave 
radiation (W m-2), Rl↓ is the incoming longwave radiation (W m-2), Rl↑ is the outgoing 
longwave radiation (W m-2), and εs is the surface emissivity (unitless). Soil heat flux is 
mainly driven by a thermal gradient in the topsoil and this gradient is highly dynamic in 
space and time. The soil heat flux was estimated as a function of NDVI and Rn using the 
relationship developed by Singh et al. (2007) for south central Nebraska soil and crop 
management conditions: 

 ( )0.3811exp 2.3187 nG NDVI R= ⎡ − ⎤⎣ ⎦  (3)   

 a p

ah

C dT
H

r

ρ
=   (4) 

where, ρa is the air density (kg m-3), Cp is the specific heat of air (J kg-1 K-1), dT is the near 
surface and air temperature difference (K), and rah is the aerodynamic resistance to heat 
transfer (s m-1). Once the instantaneous Rn, G, and H are determined, the instantaneous 
evaporative fraction (Λ) was calculated as: 
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Finally, the daily actual ET (ETc) was estimated as: 

 24 2486400 ( )n
c

w

R G
ET

ρ λ
Λ −

=    (6) 

where, ETc is the daily crop ET (mm day-1), Rn24 is the daily net radiation calculated on a 
daily time step (W m-2), G24 is the daily soil heat flux (W m-2), λ is the latent heat of 
vaporization (J kg-1), and ρw is the density of water (kg m-3).  
The output from the SEBAL model is an actual ET map calculated on a 30-m grid resolution 
basis using SEBAL algorithms (Eq. 1. through Eq. 6). Further descriptions of the SEBAL 
methodology are discussed in detail in Singh et al. (2008). We ran the model for each of the 
seven Landsat images to quantify the spatial distribution of ETc. After obtaining the ETr (via 
geostatistics) and ETc maps (via SEBAL), the spatial distribution of Kcr was calculated by 
dividing the ETc map values by the ETr map values. 

3. Crop growth modelling and SWAP 

An intermediate version of the SWAP model (SWAP) (fig. 1) was used in this study (Ines et 
al., 2005). The SWAP model is physically based one-dimensional model to simulate vertical 
transport of water flow, solute transport, heat flow and crop growth at the field scale level 
(Van Dam et al., 1997). It requires inputs including management practices and 
environmental conditions to compute a daily soil water balance and crop growth. The major 
processes taken into account are phenological development, assimilation, respiration, and 
ET.  The SWAP uses Richard’s equation to simulate vertical soil water movement in variable 
saturated soils is given as follows: 

   ( ) 1= K
t z z

θ ψψ
⎡ ⎤∂ ∂ ∂⎛ ⎞+⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

  (7) 

where K is the hydraulic conductivity (cm d-1), ψ is the pressure head (cm), z is the 
elevation above a vertical datum (cm), θ is the water content (cm3 cm-3), and t is time (d). 
The soil hydraulic functions in the model are defined by the Mualem-Van Genuchten 
(MVG) equations which describe the capacity of the soil to store, release and transmit water 
under different environmental and boundary conditions (Ines, 2002).  Darcy’s law is used to 
determine potential soil evaporation in wet soil conditions. Root water extraction at various 
depths in the root zone is calculated from potential transpiration, root length density and 
possible reductions due to wet, dry, or saline conditions (Eitzinger, 2000).  
As SWAP simulates actual evaporation (Ea) and transpiration (Ta),ETa can be taken as the 
sum of Ea and Ta. The Penman–Monteith approach (Allen et al., 1994) was used to estimate 
the potential ET rate, ETp. The partitioning of ETp into potential soil evaporation (Ep) and 
potential transpiration (Tp) is established according to soil cover fraction.  In the case of wet 
soil, Ea is determined by the atmospheric demand and equals to Ep. When the soil dries out, 
the soil hydraulic conductivity decreases, which reduces evaporation. SWAP calculates the 
maximum possible evaporation rate (Emax) according to Darcy's law and sets Ea equal to 
the minimum value of Ep and Emax. Hence, Emax is governed by the soil hydraulic  
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Fig. 1. Integrated modeling scheme of Soil Water Atmosphere Plant (SWAP) model 

functions. The Ta is calculated using the root water uptake reduction due to water and/or 
salinity stress. Water requirements of a crop depend mainly on crop growth stage and 
environmental conditions. Different crops have different water-use requirements under the 
same weather conditions. For wheat, phenological stage was used along with the values of 
reference ET for computing the consumptive use at different growth stages by a water-
balance approach.  

4. Data assimilation with genetic algorithm 

The objective of data assimilation is to obtain the best estimate of the state of the system by 
combining observations with the forecast model’s first guess. Genetic algorithms (GA) are 
designed to search, discover and emphasize good solutions by applying selection and 
crossover techniques, inspired by nature, to supply solutions (Holland 1975; Goldberg 1989). 
GA operates on pieces of information like nature does on genes in the course of evolution. 
Changes in the genes of individuals from a given population allow selection of certain 
groups of genes that are most important in fitting the environment pressures on the 
population. All individuals of one generation are evaluated by a fitness function. The 
strength of GA with respect to other local search algorithms is due to the fact that, in a GA 
framework, more strategies can be adopted together to find individuals to add to the mating 
pool, both in the initial population phase and in the dynamic generation phase. Thus, a 
more variable search space can be explored at each algorithm step. 
Based on the above biological evolution idea, a so called ‘‘SWAP-GA’’ has been developed 
by Ines and Honda (2005) to estimate input parameters of SWAP from remote-sensing data. 
The proposed parameters were fed to SWAP by GA according to the evaluation of the 
difference processes between SWAP output ET and the target energy balance ET values. The 
GA searches for the optimum crop parameter set while SWAP tests the proposed parameters 
simultaneously by using them in forward simulations (Figure 2).  

 
-  

2
METRIC SWAPET ET

nC = |

⎛ ⎞
⎜ ⎟
⎝ ⎠    (8) 
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Fig. 2. SWAP-GA data assimilation framework  

Consider C the cost function, and d is the satellite overpass date.   where ET is estimated 
with energy balance model using remotely sensed data (cm) and it was treated  as 
observations. ETSWAP is an estimated ET with SWAP (cm), n is the time domain  and Cxy is 
the objective function (root mean square error: RMSE) for the pixel at x, y location (cm). 
When a minimum-difference defined threshold was reached, SWAP parameters were stored 
for reconstruction of ET for any required day in the cropping season. The fitness of an 
individual having x,y pixel location characteristics is the inverse of the cost function times 
the constraints aimed at minimizing the RMSE between ETSWAP and target ETMETRIC.  

     
( )

1

* (1.0 Constraint)
xy

xy

F
C

=
+

 (9)  

In Equation 13, the constraint is a function of the emergence date of the second crop (DEC) 
and the date of harvest: 

 Constraint = Date of emergence – Harvest date  (10) 

Subject to the possible range of sowing dates:  

min maxj j jb sd b≤ ≤     (j=1,…,6)  

where bminj is the earliest possible sowing date, bmaxj is the latest possible sowing date, and 
sdj is the actual sowing date. The units are day-of-year (ordinal day).  
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5. Research case studies  

5.1 On-demand irrigations scheduling in Sirsa Irrigation Circle, India 

The proposed approach was tested using a dataset on irrigated cotton field in the Sirasa 
Irrigation Circle for On-demand irrigation scheduling. Data used in this study was 
previously collected as part of comprehensive research conducted by the Wageningen 
Agricultural University, The Netherlands during 2002 for calibrating the SWAP model (Van 
Dam et al., 2003). 
Figure 3 compares temporal distribution of SEBAL ET with predicted SWAP ET with 
SWAP-GA. Both SEBAL ET and SWAP-GA showed similar patterns of under and over 
estimations of actual ET. The SWAP-GA slightly overestimated ET early in the season when 
the soil surface was dry and underestimated late in the season when the soil surface was wet 
and covered by the crop which influences efficiency of water use, high water productivity 
and efficient farming activities. 
 

 
Fig. 3. Actual evapotranspiration (cm d-1) for the 2002 cotton growing seasons. Observed ET 
is based on SEBAL algorithms (SEBAL ET) on satellite overpass dates.  ET predictions are 
with original SWAP and SWAP-GA models 

Simulated and observed soil water content (cm3/ cm3) at 0-15 cm and 15-30 cm  soil depths 
by SWAP-GA  with optimized parameters, rainfall  and irrigation amounts are shown in the 
figure 4. As per the scheduling criteria and its physiological stage, water uptake by crop 
changes, throughout season 50-60 percent of the total water uptake by the crop occurs over 
the first 90 cm depth, where more than 90 percent of the total root weight is found.  It 
reveals that the top layer of the soil (0-15 cm and 15-30 cm) has greater fluctuations. It is 
because the top layer forms the sphere of life which receives moisture in pulses of rainfall 
and irrigation also the same water is eliminated through evaporation and transpiration by 
plants. The simulated and observed soil moisture levels show the increasing value from 
June to September, and then decreasing from September to November, which corresponds 
to the variation of irrigation and precipitation. But the dramatic difference between the 
simulated and observed soil moisture was found in July. The simulation has the lowest 
value in August due to the large relative contribution of ET (Fig. 3), whereas this 
phenomenon does not occur in the observation.  
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5.2 Optimization of hydraulic parameters and sensitivity analysis in Clay Center, 
Nebraska-USA 

This study was conducted at the University of Nebraska-Lincoln South Central Agricultural 
Laboratory (SCAL) near Clay Center, Nebraska, USA (Latitude: 40º 34' N; Longitude: 98º 08' 
W; elevation: 552 m above MSL). In this research, the METRICTM was used to compute 
complete radiation and energy balances along with the resistances for momentum, heat, and 
water vapor transport for each pixel in the experimental area. 
 

 
Fig. 4. Comparison of observed (SEBAL ET) and predicted evapotranspiration for the 2002 
cotton growing seasons.  The potential (dashed line) and actual (solid line) 
evapotranspiration were estimated by SWAP-GA with optimized parameters 

Fourteen satellite images were selected from June through October in 2006 because these 
images were with a cloud cover less than 10%. The relative ET in this study was expressed 
as the reference ET fraction (ETrF) and was computed using the procedures outlined by 
Allen et al. (2007a and b). Figure 4a shows the ET for the MODIS satellite overpass on 
August 14, 2006. As expected, the ET was highly variable in south-central Nebraska due to 
variation in cropping practices, irrigation, and vegetation development. Furthermore, the ET 
values were usually lower for agricultural lands than rangeland/natural vegetation in 
August due to less green vegetation fraction because of crop maturity and harvest stages at 
this time. On the other hand, grazed rangeland/natural vegetation has green vegetation in 
August as evidenced by high NDVI on the scene. Higher ET values from grazed 
rangeland/natural vegetation pixels indicated that most of the available energy was used 
for transpiration. The spatial distribution of daily ET predictions on August 14, 2006 was 
between the range of 0.9-1.15 for agricultural lands and was as high as 0.13 for the natural 
vegetation/rangeland across the image (Fig. 4a). Figure 4b shows seasonal ET map 
corresponding to the 2006 season for the entire Clay, York, Hamilton Adams and Fillmore 
counties (Figure 1). Seasonal ET varied from 400 mm for bare soil to 950 mm for irrigated 
crops. Rain fed areas surrounding the Fillmore County (in the south east) had ET values 
around 400 mm which depicted the bare fields and fallow lands. The ET over Adams 
County showed the ET in between 400 mm to 650 mm, while ET values are for the SCAL 
fields in York and Hamilton Counties due to shallow water table, lateral seepage from the 
SCAL fields and an open network of irrigation canals. The ET map further showed a spatial 
gradient of increasing ET from the southern parts towards the northern parts of the 
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irrigation system except low ET in the Howard County due to settlements. All of these ET 
values are important for the agro-hydrological balance of the area as well as ground water 
modeling.  According to table 1, average daily ET (ET) was 0.426 cm.day-1 with a mode and 
maximum values of 0.75 cm. day-1 and 0.71 cm.day-1, respectively, for the study field. It is 
evident from the numerical figures in table that some crops are still developing on May and 
others are transpiring at higher rates. On June23, all the crops in the area are established. 
This indicates the variability of sowing dates and water management practices as influenced 
by water availability. 
The ET assimilation is carried out to obtain the best estimate of the state of the hydraulic 
system by combining observations with the forecast model at first guess. Figure 5 reveals 
the actual ET for the 2006 corn growing seasons. ET predictions are with original SWAP and 
SWAP-GA models. The result shows excellent fitness between the observed ET and 
simulated ET. There is a bias condition due to the comparison of point observation with 
model explicitly taken into account to prevent unnecessary forcing towards the biased 
observations. 
 

 
Fig. 6. MODIS  derived spatial distribution of evapotranspiration (ET) (August 14, 2006) 
during the growing season in the study area  

Figure 7 revised the relationship between the observed and predicted ET simulated by 
SWAP-GA (with data assimilation) and SWAP (without data assimilation) model for 2006 
season. The independent regression analysis for two dataset shows the fitness of the SWAP-
GA data with observed data and compares it with fitness of the SWAP data without data 
assimilation. This regression coefficient of SWAPGA (with data assimilation) provides good 
estimates than previously SWAP (without data assimilation). The relations obtained were 
statistically significant for ET data assimilation method. This fact indicates the strong need 
of assimilating observed data in crop growth model to minimize errors between simulation 
and reallife crop growth. 
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Fig. 7. Actual evapotranspiration (cm d-1) for the 2006 corn growing seasons. Observed ET 
is based on METRIC algorithms (METRIC) on satellite overpass dates.  ET predictions are 
with original SWAP and SWAP 

  

 
Fig. 8. Relationship between ET by remote sensing data and (observed) and Simulated ET 
from SWAPGA (with data assimilation) and SWAP (without data assimilation) model. The 
solid line corresponds to the 1:1 relation to the regression equation for the 2006 growing 
seasons 

Optimization of crop growth parameters and sensitivity analysis 

The optimized parameters were determined by minimizing the RMSE between SWAP-ET 
and the target METRIC-ET values. Generally, the actual remote sensing data contains errors 
due to atmospheric conditions, cloud cover, and errors in the remote sensing-based 
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models/algorithms used to estimate ET. Therefore, we tested the procedure assuming that 
some degree of error in remote sensing observations (METRIC ET) was present in the 
dataset. We compared the results from GA for different populations and different 
generations. Best results were obtained by applying the algorithm which was configured for 
10 populations and 10 generations with up to nine variable parameters (three crop and six 
hydraulic parameters). The data inventory during the 2006 corn growing season was used to 
verify the optimized parameters from SWAP-GA simulation. Table 1 shows the values of 
optimized parameters as well as data from the experimental field. Best results are obtained 
by applying the algorithm which configured for 100 Population and 100 generation with up 
to nine variable parameters, which are selected according to the hydraulic sensitivity to 
water management problem and fitness function is based on crop parameter sensitivity.  In 
simulations, hydraulic properties were based on measured values where possible; some 
values were altered slightly by optimizing the model to the local conditions until good 
agreement with measured ET was attained (fig 9).   
 

Optimized  
parameters 

Definition Unit 
Minimum 

value 
Maximum 

value 
Optimized 

value 

GWjan 
Groundwater at start 

of season 
cm 100 160 120 

GWdec 
Groundwater at end 

of season 
cm 100 160 130 

BASEGW 
Level of impervious 

layer 
cm 170 230 185 

KHBOT 

horizontal  
hydraulic 

conductivity bottom 
layer 

cm 15 30 25 

KVTOP 
Vertical hydraulic 
conductivity top 

layer 
cm 5 20 18 

RDS 
maximum rooting 
depth allowed by 

the soil 
cm 120 240 180 

Table 1. Definition, unit, minimum, and maximum values of optimized parameters in 
SWAP-GA 

The implementation of this sensitivity analysis after the estimation process aims at 
determining if the parameters estimated previously are well identified. Therefore, to 
examine the SWAP model response to changes of specific input data, i.e., to have an 
indication of the required accuracy at which each hydraulic parameter should be available; a 
sensitivity analysis of the model was performed (Figure 8). From the original dataset, 
obtained from field measurements and literature as explained above, the base simulation 
was established. From this, the sensitivity analysis was performed, assessing the effect 
produced by a given variation of the input data range on the SWAP output. 
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Fig. 8. Hydraulic parameter sensitivity analysis for 4 different cases according to change 
(+/- 20) in GW, BASEGW, KVTOP, KVBOT and RDS 

6. Conclusion 

We used remote sensing-based SEBAL and METRIC ET data to characterize our model via a 
stochastic data assimilation approach (GA), and the derived information was then used as 
inputs to SWAP. This methodology was evaluated in India and North American climatic 
conditions with different objectives. The methodology developed in this research to estimate 
hydraulic parameters and application to on-demand irrigation from calibrated crop model 
parameters gave good results. Parameter estimations were successful, and the ability of the 
model to produce similar ET values to the observed values (SEBAL ET) was promising, 
although, in general, the performance of SWAP-GA for on-demand irrigation can be 
described as reasonable. GA-based optimization retains the advantageous features of 
forward modeling, while reducing the number of required function evaluations to a level 
that is often much more computationally manageable. These conclusions suggest that it is 
indeed necessary to couple a remotely sensed ET with a pixel-based hydrological model in 
order to study and explore the water management options. 
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