7,062 research outputs found

    Scattering of Ocean Surfaces in Microwave Remote Sensing by Numerical Solutions of Maxwell Equations

    Full text link
    Sea-surface scattering has long been studied using various analytical methods. These analytical methods include the two scale method (TSM), the small-slope approximation (SSA), the small-perturbation method (SPM), the Advanced Integral Equation Method (AIEM), and the Geometrical/Physical Optics (GO/PO) method. These analytical methods rely on making approximations and assumptions in the modelling process. Some of these assumptions undermine their applicability in a wide range of situations. The input for analytical methods are usually the ocean spectrum. In real implementations, there are 2 sources of uncertainty in such approaches: (1) the analytical methods have a limited range of applicability to the surface scattering problem; the approximations made in these methods are questionable and (2) the various ocean spectra are another source of uncertainty. We earlier applied a numerical method in 3-dimensions (NMM3D) to the scattering problem of soil surfaces. Through comparison with measured data, we established the accuracy and applicability of NMM3D. We see a drastic increase of ocean remote sensing applications in recent years. It is thus feasible to extend NMM3D to the sea-surface scattering problem. Compared to soil, sea water has a much higher permittivity, e.g., 75+61i at L-band. The large permittivity dictates the need for using a much denser mesh for the sea surface. In addition, the root mean square (rms) height of the sea surface is large under moderate to high ocean wind speeds, which requires a large simulation area to account for the influence of long scale wave like gravity waves. Compared to the two-scale model commonly used for the ocean scattering problem, NMM3D does not need an ad-hoc split wavenumber in the ocean spectrum. Combined with a fast computational algorithm, it was shown that NMM3D can produce accurate results compared to measured data like the Aquarius missions. TSM could also match well with Aquarius provided with a pre-selected splitting wavenumber. But it was observed that the result of TSM changes with different splitting wavenumbers. It is seen that TSM is fairly heuristic while NMM3D can serve as an exact method for the scattering problem. On the other hand, through our study of NMM3D, we found that with a fine grid, the final impedance matrix converges slowly and also it becomes hard to perform simulations for a large surface. This has provoked us to (1) solve low convergence problem for a dense mesh and (2) resolve difficulties in simulations of large surfaces. Inspired by the existing impedance boundary condition (IBC) method, we proposed a neighborhood impedance boundary condition (NIBC) method to solve the slow convergence problem caused by the dense grid. Different from IBC where the surface electric field and the surface magnetic field are related locally, NIBC relates the surface electric field to the magnetic field within a preselected bandwidth BW. Through numerical simulations, we found that the condition number can be reduced using NIBC. Errors of NIBC are controllable through changing BW. We applied NIBC to various wind speeds and surface types and found NIBC to be quite accurate when surface currents only suffer an error norm of less than 1%.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145797/1/qiaot_1.pd

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on nine research projects and a list of publications.National Aeronautics and Space Administration Contract 958461U.S. Navy - Office of Naval Research Grant N00014-92-J-1616University of California/Jet Propulsion Laboratory Contract 960408U.S. Army - Corps of Engineers/Cold Regions Research and Engineering Laboratory Contract DACA89-95-K-0014Mitsubishi CorporationU.S. Navy - Office of Naval Research Agreement N00014-92-J-4098Federal Aviation AdministrationDEMACOJoint Services Electronics Program Grant DAAHO4-95-1-003

    Airborne sound propagation over sea during offshore wind farm piling

    Get PDF
    Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario

    Applications of numerical models for rough surface scattering

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (p. 273-286).by Joel Tidmore Johnson.Ph.D

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of content for Section 3, reports on ten research projects and a list of publications.U.S. Navy - Office of Naval Research Contract N00014-92-J-4098U.S. Federal Aviation Administration Contract 94-G-007U.S. Federal Aviation Administration Contract 97-G-031California Institute of Technology Contract JPL 960408National Aeronautics and Space Administration Contract JPL 958461U.S. Navy - Office of Naval Research Contract N00014-92-J-1616National Science Foundation Grant ECS 96-15799U.S. Navy - Office of Naval Research Contract N00014-97-1-0172Joint Services Electronics Program Contract DAAH04-95-1-0038Mitsubishi Corporatio

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth's sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling atmosphere-ocean radiative transfer: A PACE mission perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates

    Modeling Atmosphere-Ocean Radiative Transfer: A PACE Mission Perspective

    Get PDF
    The research frontiers of radiative transfer (RT) in coupled atmosphere-ocean systems are explored to enable new science and specifically to support the upcoming Plankton, Aerosol, Cloud ocean Ecosystem (PACE) satellite mission. Given (i) the multitude of atmospheric and oceanic constituents at any given moment that each exhibits a large variety of physical and chemical properties and (ii) the diversity of light-matter interactions (scattering, absorption, and emission), tackling all outstanding RT aspects related to interpreting and/or simulating light reflected by atmosphere-ocean systems becomes impossible. Instead, we focus on both theoretical and experimental studies of RT topics important to the science threshold and goal questions of the PACE mission and the measurement capabilities of its instruments. We differentiate between (a) forward (FWD) RT studies that focus mainly on sensitivity to influencing variables and/or simulating data sets, and (b) inverse (INV) RT studies that also involve the retrieval of atmosphere and ocean parameters. Our topics cover (1) the ocean (i.e., water body): absorption and elastic/inelastic scattering by pure water (FWD RT) and models for scattering and absorption by particulates (FWD RT and INV RT); (2) the air-water interface: variations in ocean surface refractive index (INV RT) and in whitecap reflectance (INV RT); (3) the atmosphere: polarimetric and/or hyperspectral remote sensing of aerosols (INV RT) and of gases (FWD RT); and (4) atmosphere-ocean systems: benchmark comparisons, impact of the Earth’s sphericity and adjacency effects on space-borne observations, and scattering in the ultraviolet regime (FWD RT). We provide for each topic a summary of past relevant (heritage) work, followed by a discussion (for unresolved questions) and RT updates
    • …
    corecore