276 research outputs found

    A rule-based semantic approach for data integration, standardization and dimensionality reduction utilizing the UMLS: Application to predicting bariatric surgery outcomes

    Get PDF
    Utilization of existing clinical data for improving patient outcomes poses a number of challenging and complex problems involving lack of data integration, the absence of standardization across inhomogeneous data sources and computationally-demanding and time-consuming exploration of very large datasets. In this paper, we will present a robust semantic data integration, standardization and dimensionality reduction method to tackle and solve these problems. Our approach enables the integration of clinical data from diverse sources by resolving canonical inconsistencies and semantic heterogeneity as required by the National Library of Medicine's Unified Medical Language System (UMLS) to produce standardized medical data. Through a combined application of rule-based semantic networks and machine learning, our approach enables a large reduction in dimensionality of the data and thus allows for fast and efficient application of data mining techniques to large clinical datasets. An example application of the techniques developed in our study is presented for the prediction of bariatric surgery outcomes

    Preface

    Get PDF

    Generation and Applications of Knowledge Graphs in Systems and Networks Biology

    Get PDF
    The acceleration in the generation of data in the biomedical domain has necessitated the use of computational approaches to assist in its interpretation. However, these approaches rely on the availability of high quality, structured, formalized biomedical knowledge. This thesis has the two goals to improve methods for curation and semantic data integration to generate high granularity biological knowledge graphs and to develop novel methods for using prior biological knowledge to propose new biological hypotheses. The first two publications describe an ecosystem for handling biological knowledge graphs encoded in the Biological Expression Language throughout the stages of curation, visualization, and analysis. Further, the second two publications describe the reproducible acquisition and integration of high-granularity knowledge with low contextual specificity from structured biological data sources on a massive scale and support the semi-automated curation of new content at high speed and precision. After building the ecosystem and acquiring content, the last three publications in this thesis demonstrate three different applications of biological knowledge graphs in modeling and simulation. The first demonstrates the use of agent-based modeling for simulation of neurodegenerative disease biomarker trajectories using biological knowledge graphs as priors. The second applies network representation learning to prioritize nodes in biological knowledge graphs based on corresponding experimental measurements to identify novel targets. Finally, the third uses biological knowledge graphs and develops algorithmics to deconvolute the mechanism of action of drugs, that could also serve to identify drug repositioning candidates. Ultimately, the this thesis lays the groundwork for production-level applications of drug repositioning algorithms and other knowledge-driven approaches to analyzing biomedical experiments

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    The Journal of Early Hearing Detection and Intervention: Volume 1 Issue 2

    Get PDF
    • …
    corecore